Enabling AI and Analytics on Big Science Data at NERSC

TIES Workshop at PEARC 2023

Steven Farrell Data, AI, and Analytics Services, NERSC Lawrence Berkeley National Laboratory July 24, 2024

National Energy Research Scientific Computing Center

- NERSC (at LBNL) is the *mission* High Performance Computing and Data facility for the DOE Office of Science
 - We deploy supercomputer systems for cutting edge simulations and data analytics at scale
 - 8,000+ Users, 800+ Projects, ~2000 NERSC citations per year

Bio Energy, Environment

Particle Physics, Astrophysics

Computing

Nuclear Physics

Materials, Chemistry, Geophysics

Fusion Energy, Plasma Physics

NERSC diagram

NERSC diagram

AI is transforming science

Recent AI wave in DOE science

across all domains

Some of the key application areas:

- Analysis of large datasets
- Acceleration of expensive simulations
- Control of complex experiments

AI4Science maturity

What is the level of maturity of ML in your research? (mark all that apply to your projects) 174 responses

AI4Science needs HPC

Growing computational cost of training

• Problems, datasets, and models getting bigger, more complex

Growing AI workload on HPC

7

NERSC

Two Distinct Eras of Compute Usage in Training AI Systems

AI4Science needs HPC

HPC systems provide the capabilities needed for AI

 e.g., big foundational models for science will be trained on supercomputers

HPC centers play an important role beyond hardware

- provide a software ecosystem for large scale scientific workflows, tools for MLOps
- work with scientists to push on the frontiers of methods
- train scientific communities on best practices, tools
- help close the gap between large tech and smaller academic research groups
- *democratize AI for science*

NERSC AI Strategy

- **Deploy** optimized hardware and software systems
- **Apply** AI for science using cutting-edge methods
- *Empower* through seminars, workshops, training and schools

Perlmutter: A Scientific AI Supercomputer

HPE/Cray Shasta system

Phase 1 (installed in 2021):

- 12 GPU cabinets with 4x NVIDIA <u>Ampere</u> GPU nodes; Total >6000 GPUs
- 35 PB of All-Flash storage

Phase 2 (installed in 2022):

- 12 AMD CPU-only cabinets
- HPE/Cray Slingshot high performance network

Optimized software stack for AI Application readiness program (NESAP) Need for Speed: Researchers Switch on World's Fastest AI Supercomputer

11

NVIDIA

=

NERSC AI software

We build and deploy optimized modules for

- Python
- PyTorch (pytorch-distributed + NCCL)
- TensorFlow (horovod + NCCL)

We support optimized containers

- NVIDIA's NGC DL images are most recommended
- Users can build their own

Users can use their own environments

• conda, etc.

https://docs.nersc.gov/machinelearning/

NERSC supports user container workloads today via Shifter Developed at NERSC

- Addresses security concerns of docker (i.e. rootless) and enables scalability on HPC systems
- Users can build their images with docker, then easily convert to shifter with a simple pull command

Encapsulation, isolation, reproducibility, portability, and even scalability

NERSC is currently moving to Podman

All the benefits of shifter, but using OCI standard runtime

Containers are valuable to our scientific computing users

- HPC features provided via the *podman-hpc* wrapper
- Enables user builds at NERSC

Containers at NERSC

Jupyter: supercharge interactive supercomputing Jupyter

300

£ 200 100 User quote: "Jupyter notebooks are verv

The 3 most important things in life: food, shelter and Jupyter... everything else is optional."

important for me:

We have deployed an HPC-aware Jupyter service:

- Patterns and frameworks for connecting Jupyter with HPC JU 200
- Data Management tools in an HPC environment
- Interactive Visualization
- Reproducible Science through Containerization

Interactive supercomputing: Jupyter Notebook + HPC Workers

- Launch workers in a short turnaround queue •
- Pull results from running HPC Jobs in realtime ٠

The Superfacility Model: an ecosystem of connected facilities, software and expertise to enable new modes of discovery

Superfacility@LBNL: NERSC, ESnet, AMCR, & SDD working together to support experimental science

- Integrates experimental, computational, and networking facilities for reproducible science
- Enables new discoveries by coupling experimental science with large scale data analysis and simulations

COMPUTATIONAL

RESEARCH

Machine-readable supercomputers: the Superfacility API

Vision: all NERSC interactions are callable; backend tools assist large or complex operations.

Endpoints currently deployed:

/meta	information about this Superfacility API installation
/status	NERSC component system health
/account	Get accounting information about the user's projects
/utilities	basic file browsing, upload and download of small
	files to and from NERSC
/storage	Transfer files between Globus endpoints.
/compute	Run commands and manage batch jobs on NERSC compute
/tasks	Get information about your pending or completed tasks
/reservations	submit and manage future compute reservations

17 https://api.nersc.gov/

Superfacility API		
meta information about this Superfacility API installation		
GET /meta/changelog		
GET /meta/config		
status NERSC component system health		
GET /status		
GET /status/notes		
GET /status/notes/{name}		
GET /status/outages		
GET /status/outages/planned		
GET /status/outages/planned/{name}		
GET /status/outages/{name}		
GET /status/{name}		
account Get accounting information about the user's projects		
POST /account/groups		

/account/groups

The NESAP Learning program

- Part of NERSC's Application Readiness Program
 - Partnerships with science and vendor teams to push on science applications
- Very successful to-date with large scale results and high-impact publications
- New projects and postdocs starting soon!

H1 Collaboration ([...] Mikuni et. al.): recent press release

nak

Shashank Subramanian now staff

FourCastNet

- Pathak et al. 2022
- arXiv:2202.11214
- High-resolution atmospheric forecasting. Hybrid data/ model
- parallel @ 4000 GPUs
- First deep-learning model with
- skill & resolution of numerical
- weather prediction

CatalysisDL

Chanussot et al. 2021 <u>arXiv:2010.09990</u> Largest catalysis dataset (<u>OC20 and OC22</u>); <u>Graph-parallel NN approaches</u> and <u>NeurIPS</u> 2021 + 2022 Competitions

Pre-trained models now used with DFT - e.g. FineTuna; AdsorbML

Optimizing AI4Science on HPC

We need good benchmarks that represent the scientific workloads

MLPerf[™] benchmarks, by the MLCommons[™] organization, are the industry standard measure of ML compute performance

MLPerf HPC is thus an AI training benchmark with scientific applications designed to push on HPC systems

- CosmoFlow 3D CNN predicting cosmological parameters
- DeepCAM segmentation of phenomena in climate sims
- OpenCatalyst GNN modeling atomic catalyst systems
- OpenFold (*new in '23*) protein folding (AlphaFold2)

Two measurement types:

- Time to train a model to target accuracy
- *Throughput* (models/min) of training many models concurrently

MLPerf HPC outcomes and next steps

We've had 3 successful submission rounds so far

- With results from several leading HPC systems across the world
 - ANL: ThetaGPU
 - CSCS: Piz Daint
 - Dell: 32XE8545
 - Fujitsu: ABCI
 - Fujitsu+RIKEN: Fugaku TACC: Longhorn

- Helmholtz AI: HoreKa, JUWELS •
- LBNL: Cori, Perlmutter
- NCSA: HAL
- NVIDIA: Selene
- Driving impressive performance and scaling improvements
 - improvements up to 5x in most recent submission round (v2.0) Ο
 - throughput measurements scaled up to 5,120 GPUs (Perlmutter), and Ο 82,944 CPUs (Fugaku)
- All submission code along with results are published and open source
 - https://mlcommons.org/en/training-hpc-20/ Ο
 - https://github.com/mlcommons/hpc results v2.0 Ο

MLPerf HPC outcomes and next steps

For NERSC, participation has been extremely valuable

- Helped us shake out Perlmutter during deployment
- Enabled us to evaluate Perlmutter performance and showcase its capabilities

We have great plans for MLPerf HPC in 2023!

- Adding a new benchmark based on AlphaFold2 (OpenFold)
- Adding power measurements
- Increasing outreach, educational, and publication opportunities
- Please reach out if you are interested in learning more

Empowerment and training resources

The Deep Learning for Science School at Berkeley Lab <u>https://dl4sci-school.lbl.gov/</u>

- 2019 in-person lectures, demos, hands-on sessions, posters (videos, slides, code)
- 2020 summer webinar series. Recorded talks: <u>https://dl4sci-school.lbl.gov/agenda</u>

The Deep Learning at Scale Tutorial

- Since 2018, and with NVIDIA in 2020/21
- 2021 was first training event to use Perlmutter Phase 1 with hands-on material for distributed training
- See the <u>SC22 material here</u>
- Accepted again for SC23!

NVIDIA AI for Science Bootcamp - Aug 25-26, 2022

- View the agenda and slides
- Other NERSC trainings
 - New User Training, Data Day, etc.

Next steps: MLOps for science

We need tools that are easy-to-use for newcomers as well as production-grade for more mature workflows

- They should help users build, train, tune, and deploy their AI models
- Clouds and big AI enterprises all have their own interfaces for MLOps

Some cool things we're currently working on

- Distributed AI with jupyter notebooks
 - Using Ray Train + Ray Tune for distributed training and HP tuning
 - Utilities to easily spin up Ray cluster, collect metrics, show dashboard
- Distributed GPU inference serving
 - for heterogeneous CPU+GPU jobs
 - for superfacility workflows
- Platforms for automation and experiment tracking

NERSC postdoc

The FAIR Universe project

A DOE HEP project to develop an unbiased data benchmark ecosystem for physics

- Provide a large-compute-scale platform for sharing datasets, training large models, and hosting challenges and benchmarks.
- Host challenges and benchmarks focused on discovering and minimizing the effects of systematic uncertainties.

Will ultimately enable new ways of conducting open, reproducible research!

Using the <u>CodaBench</u> platform and extending it to interface with NERSC systems and tackle uncertainty-aware physics challenges

Closing thoughts

- HPC centers play an essential role in enabling open science
- NERSC offers world-class capabilities for scientific AI + analytics
- We would love to hear from you about what more we could be doing
- The future is looking bright for Al-enhanced scientific discovery

Questions? Collaborations?

SFarrell@lbl.gov

Jobs @ NERSC: https://lbl.referrals.selectminds.com/page/nersc-careers-85

Backup

Al is transforming science

Spin: Container Services for Science

Many projects need more than HPC.

Spin is a platform for services.

Users deploy their science gateways, workflow managers, databases, and other network services with Docker containers.

- Access HPC file systems and networks
- Use public or custom software images
- Orchestrate complex workflows
- Secure, scalable, and managed

kubernetes

Some projects using Spin:

Office of

Science

Evolution of deep learning for science and supercomputing

Some example projects:

- 2017 SC17 conference Deep learning at 15PF
- 2018 Gordon Bell Prize <u>Exascale DL for Climate Analytics</u>
- 2019 Etalumis: bringing probabilistic programming to scientific simulators at scale
- 2020 SC20 <u>MeshfreeFlowNet: a physics-constrained deep continuous space-time</u> <u>super-resolution framework</u>
- 2022 FourCastNet: Accelerating Global High-Resolution Weather Forecasting using Adaptive Fourier Neural Operators

This period showed a very rapid growth in

- Available Compute
 - 15 PetaFlops in SC17 -> 'Exascale' (half-precision) in SC18
- Sophistication of models and methods
- Availability of software
 - Custom hand-rolled Caffe/MPI SC17
 - Tensorflow/Horovod and Cray DL Plugin SC18
 - Pytorch DDP SC19

Analyze: Self-supervised sky surveys

- arXiv:2110.00023 Sky surveys image billions of galaxies that need to be understood
- Limited "labels", so can learn in semi-supervised way
- Pre-training on entire dataset on HPC, downstream task can be on laptop/edge
- **Recently used** to find > 1000 previously undiscovered strong-lens candidates

Initial approach: Hayat et. al. (2020)

Strong-lens analysis: Stein et. al. (2021)

arXiv:2012.13083

Similarity search

- Given just a **single example**, instantly search for similar objects.
- Discover new lenses or other phenomena given just a few queries

Direction for future deep learning for science:

 Community can benefit from multipurpose models trained on large-scale computing
BERKELEY LAB Similar galaxies ——

Try it out yourself:

32

share.streamlit.io/georgestein/galaxy searchartment of

Bringing Science Solutions to the World

Office of

Science

Accelerate: Data-driven atmospheric modeling

Pathak et al. 2022 arXiv:2202.11214

- Data-driven modeling of atmospheric flows using a state-of-the-art transformer-based "Fourier Neural Operator"
- Collaboration with NVIDIA, Caltech and others
- Forecasts global weather at 0.25° resolution
 - Order of magnitude greater resolution than state-of-the-art deep learning models
 - Forecasts wind speeds, precipitation and water vapor close to the skill of numerical weather prediction models up to 8 days
 - Produces a 24hr 100-member ensemble forecast in 7 seconds on a Perlmutter GPU node
 - Traditional NWP: 5 mins on *thousands of CPU nodes* for equivalent ensemble 33

FourCastNet: Large-compute scaling

Scales to e.g. 3808 GPUs on Perlmutter with model parallel on 4-gpus

Pathak et al. 2022 arXiv:2202.11214 Kurth et al. 2022 arXiv:2208.05419

Automate: discovering new catalysts

- GraphNNs to accelerate catalyst discovery for energy storage and climate change mitigation
- Collaboration with CMU and Facebook/Meta
- Largest catalysis datasets to date (<u>OC20 and OC22</u>)
 - Challenges in <u>NeurIPS 2021 and 22</u>
- Perlmutter helps push to larger better performing models
- Exploiting Graph-parallel NN approaches

PM:A100 PM:A100 + Optimizations

Performance comparison of Perlmutter (PM) with Cori CPU and GPU nodes. Optimizations carried out in collaboration with NVIDIA DevTechs

Cori:V100

- Public pre-trained models on OC20 now used by CMU group for 90% faster
- BERKELEY LAB

250

200

100

50

Cori:Haswell

Graphs per 150

Second

Unfolding for particle physics

H1 Collaboration ([...] Mikuni et. al. 2002 <u>Phys. Rev. Lett. 128, 132002</u>, <u>2022</u> <u>Deep Inelastic Scattering (DIS) Conference</u>. and recent <u>press release</u>

- "Unfolding" of fundamental particle interactions from observation in complex building-size experiments
- Collaboration with LBL Physics Division and H1 Collaboration
- Combines novel iterative ML approach <u>OmniFold</u> with GraphNN to extracts new physics insights
- Uses Perlmutter for 1000s of bootstrapping and UQ runs each using 128 GPUs for training
- Other projects to replace full detector simulation (expensive and not easily scalable)
 - Using ML surrogate models incorporating diffusion generative models for the first time in particle physics
 - More info here: arXiv:2206.11898

EY LAB

MLPerf HPC Benchmarks

CosmoFlow

- 3D CNN regression on cosmology simulations
- Originally published at SC18
- Target: MAE < 0.124
- Data shape: (128, 128, 128, 4), total size 10.2 TB

DeepCAM

- 2D CNN segmentation, identifying weather phenomena in climate simulations
- 2018 GB prize paper
- Target: IOU > 0.82
- Data shape: (768, 1152, 16), total size 8.8 TB

MLPerf HPC Benchmarks

OpenCatalyst

- GNN predicting energy and forces in atomic catalyst systems (material surface + molecule)
- Dataset: Open Catalyst 2020 (OC20), variable system size, 300GB total size
- Reference model: DimeNet++, 1.8M parameters
- Target: forces MAE < 0.036

https://opencatalystproject.org/

Office of

Science