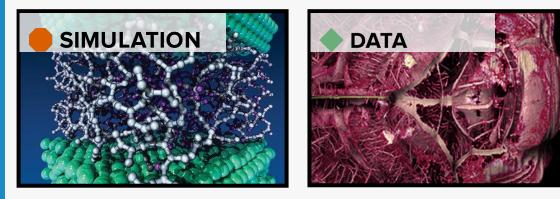


# **About Argonne**

Argonne is a multidisciplinary science and engineering research center located outside Chicago.

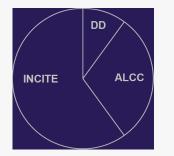
- Born out of the University of Chicago's work on the Manhattan Project in the 1940s.
- Managed by UChicago Argonne, LLC, for the U.S. Department of Energy's Office of Science.
- Works with universities, industry, and other national labs on questions and experiments too large for any one institution to do by itself.




# **Argonne Leadership Computing Facility**



The Argonne Leadership Computing Facility provides world-class computing resources to the scientific community.

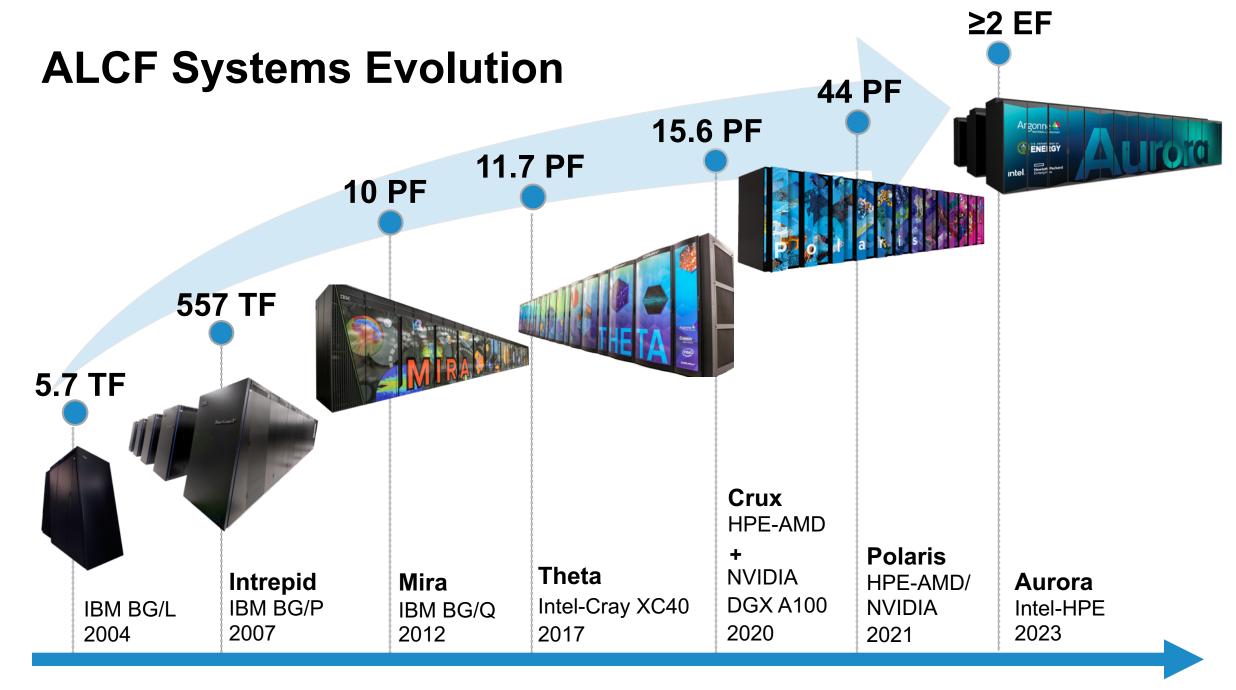

- Users pursue scientific challenges
- In-house experts to help maximize results
- Resources fully dedicated to open science







ALCF offers different pipelines based on your computational readiness. Apply to the allocation program that fits your needs.




# Architecture supports three types of computing

- Large-scale Simulation (PDEs, traditional HPC)
- Data Intensive Applications (scalable science pipelines)
- Deep Learning and Emerging Science AI (training and inferencing)



3 Argonne Leadership Computing Facility







## **Computing Resources**

### Polaris

- HPE Apollo Gen10+
- AMD processors/NVIDIA GPUs
- 44 petaflops (double precision)
- NVIDIA GPU A100; HBM stack
- AMD EPYC Processor Milan
- 560 nodes

## Theta

- KNL NODESIntel-Cray XC40
- 11.7 petaflops
- 4,392 nodes
- 281,088 cores
- 843 TB (DDR4); 70 TB (HBM) of memory

### **GPU NODES**

- NVIDIA DGX A100
- 3.9 petaflops
- AMD EPYC 7742
- 24 nodes
- 24 TB of DDR4; 7.7 TB (HBM) of memory

## Cooley

- Cray/NVIDIA 126 nodes
- 1512 Intel Haswell CPU cores
- 126 NVIDIA Tesla K80 GPUs
- 48 TB RAM / 3 TB GPU

### lota

- Intel/Cray XC40 architecture
- 117 teraflops
- 44 nodes
- 2,816 cores
- 12.3 TB of memory

## **JLSE Experimental Testbeds**

- 150 nodes
- Intel/AMD/IBM/Marvell/GPGPU
- EDR/100GbE/OPA
- Lustre/GPFS/DAOS

## Grand and Eagle (Storage)

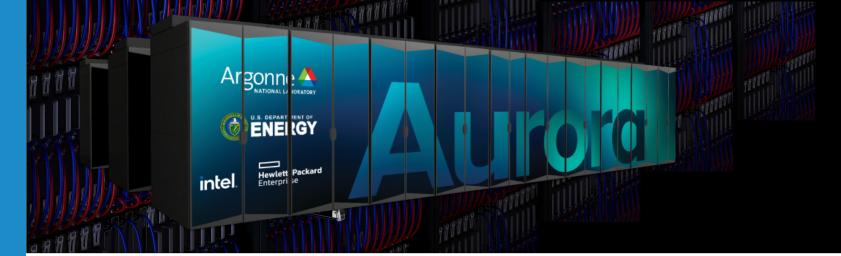
- Each system has:
- HPE ClusterStor E1000
- 100 petabytes of usable capacity
- 8,480 disk drives
- Lustre filesystem
  - 160 Object Storage Targets
  - 40 Metadata Targets
- HDR InfiniBand network
- 650 GB/s rate on data transfers



# **ALCF AI Testbed**

## **Next-Generation AI-Accelerators**

- Infrastructure of next-generation machines with hardware accelerators customized for artificial intelligence (AI) applications with a goal to integrate AI accelerators in existing and upcoming supercomputers
- Provides a platform to evaluate usability and performance of machine learningbased HPC science applications running on these accelerators.
- Promising results for diverse spectrum of science ranging from cancer, covid19, high-energy physics, biosciences, climate, among others.
- Close collaboration with AI accelerator vendors on their product developments and roadmaps




https://www.alcf.anl.gov/alcf-ai-testbed



# **AURORA OVERVIEW**





Argonne's upcoming exascale supercomputer will leverage several technological innovations to support machine learning and data science workloads alongside traditional modeling and simulation runs.

## Peak Performance $\geq 2$ Exaflops DP

#### Intel GPU

Intel® Data Center GPU Max Series

## **Intel Xeon Processor**

Intel® Xeon Max Series CPU with High Bandwidth Memory

### Platform HPE Cray-Ex

Compute Node 2x Intel® Xeon Max Series processors 6x Intel® Data Center GPU Max Series 8x Slingshot11 fabric endpoints

## GPU Architecture

Intel XeHPC architecture High Bandwidth Memory

## **Node Performance** >130 TF

System Size 166 Cabinets 10,624 Nodes 21,248 CPUs 63,744 GPUs

### **System Memory**

1.36PB HBM CPU Capacity10.9PB DDR5 Capacity8.16PB HBM GPU Capacity

### System Memory Bandwidth

30.58PB/s Peak HBM BW CPU 5.95PB/s Peak DDR5 BW 208.9PB/s Peak HBM BW GPU

High-Performance Storage 230PB 31TB/s DAOS bandwidth 1024 DAOS Nodes

## **System Interconnect** HPE Slingshot 11 Dragonfly topology with adaptive routing

### System Interconnect BW

Peak Injection BW 2.12PB/s Peak Bisection BW 0.69PB/s

### **Network Switch**

25.6 Tb/s per switch (64 200 Gb/s ports) Links with 25 GB/s per direction

## **Programming Environment**

- C/C++, Fortran
- SYCL/DPC++
- OpenMP 5.0
- Kokkos, RAJA



## **Aurora High-level System Overview**

**AURORA SYSTEM** 

 166 Compute racks
 DAOS <-> L

 10,624 Nodes
 GPU: 8.16 PB HBM

 CPU: 1.36 PB HBM, 10.9 PB DDR5
 DAOS: 64 racks, 1024 nodes

 230 PB (usable), 31 TB/s

System Service Nodes (SSNs) User Access Nodes (UANs) DAOS Nodes (DNs) Gateway Nodes (GNs) IOF service, scalable library loading DAOS <-> Lustre data mover

COMPUTE RACK

64 Compute blades 32 Switch blades GPU: 49.1 TB HBM CPU: 8.2 TB HBM, 64 TB DDR5

**SWITCH BLADE** 1 Slingshot switch 64 ports Dragonfly topology

## **COMPUTE BLADE**

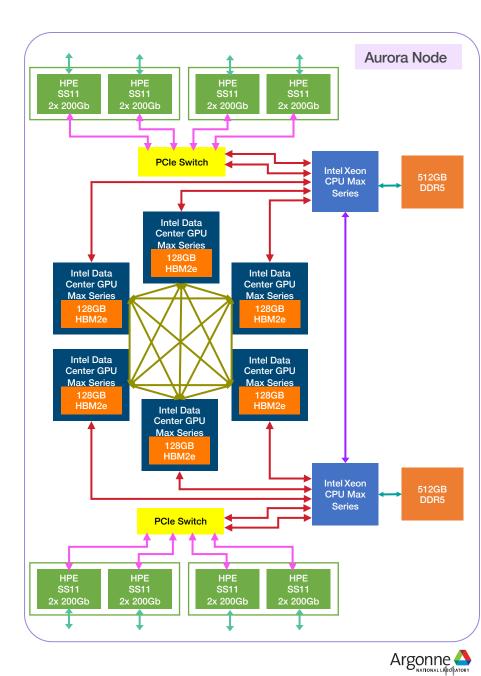
2 Intel Xeon Max Series w HBM 6 Intel Data Center GPI Max Series GPU: 768 GB HBM CPU: 128 GB HBM, 1024 GB DDR5



# **AURORA NODE**

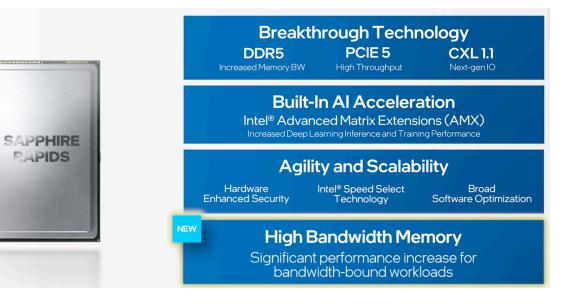


# Aurora Exascale Compute Blade


## NODE CHARACTERISTICS

- **6** GPU Intel Data Center GPU Max Series (#)
- **2** CPU Intel Xeon CPU Max Series (#)
- 768 GPU HBM Memory (GB)
- 19.66 Peak GPU HBM BW (TB/s)
- 128 CPU HBM Memory (GB)
- 2.87 Peak CPU HBM BW (TB/s)
- **1024** CPU DDR5 Memory (GB)
- **0.56** Peak CPU DDR5 BW (TB/s)
- ≥ 130 Peak Node DP FLOPS (TF)
- **200** Max Fabric Injection (GB/s)

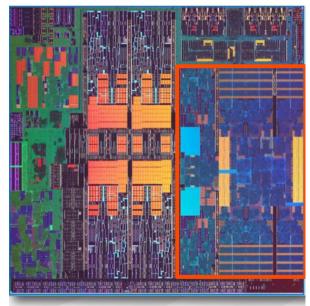
8 NICs (#)








# 4<sup>th</sup> Gen Intel® Xeon Max Series CPU with HBM (Sapphire Rapids)


| XEON DESCRIPTION                   |         |
|------------------------------------|---------|
| Vector Extension                   | AVX-512 |
| Threads (#)                        | 2       |
| Total HBM Memory (GB)              | 64      |
| Peak HBM Memory BW (TB/s)          | 1.43    |
| Total DDR5 4400 Memory (GB)        | 512     |
| Peak DDR5 4400 Memory BW<br>(TB/s) | 0.28    |

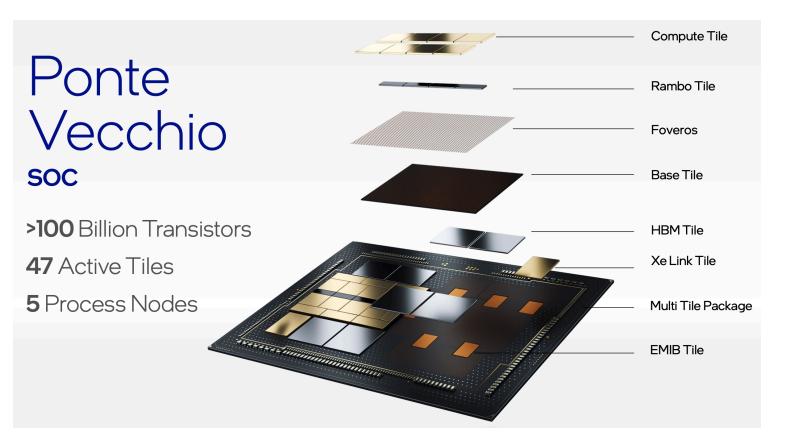




# **Intel GPUs**

- Intel has been building integrated GPUs for over a decade
- These have evolved into Xe architecture used in next gen GPUs
  - Xe LP
    - Platforms: Tiger Lake, Iris Xe Max
    - Integrated low power
  - Xe HP/HPG
    - DG2/Intel Arc GPU
    - Discrete & High power
  - Xe HPC
    - Ponte Vecchio
    - High performance computing







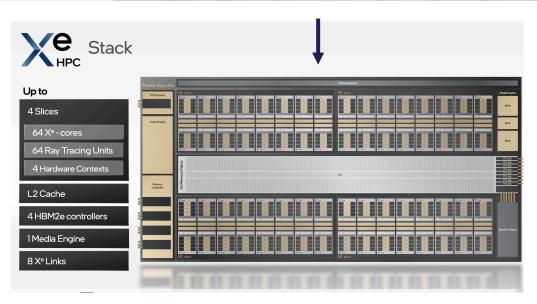



## Intel® Data Center GPU Max Series (Ponte Vecchio)

- Multi Tile architecture
- Compute Tile
  - Xe Cores
  - L1 Cache
- Base Tile
  - PCIe Gen5
  - HBM2e Main Memory
  - MDFI
  - EMIB
- Connectivity Tile
  - Xe link



https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html




# Intel® Data Center GPU Max Series Architectural Components

| Vector<br>Evgne XMX XMX Vecto   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ore                              |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Vector<br>Ergine XMX XMX Vector |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sananig Bioon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of<br>ta Center GPU Max Series   |
| Vector XMX XMX Ve               | etor<br>S<br>Vector<br>Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>Matrix<br>Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Load/Store<br>512 B/CLK<br>Cache |
| 1\$ L1\$ / SLM                  | 512 bit<br>per engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4096 bit<br>per engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1\$/ SLM (512KB), <b> \$</b>    |
|                                 | and the second se | and the second se |                                  |
| Core                            | X <sup>e</sup> -core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| Vector Engine                   | X <sup>e</sup> -core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Matrix Engine<br>(ops/clk)       |
| Vector Engine                   | Vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| Vector Engine<br>(ops/clk)      | Vector<br>Ergne XMX XM<br>Vector<br>Ergne XMX XM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ergne Ergne Vector Ergne Vector Ergne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ops/clk)                        |
| (ops/clk)<br><b>256</b> FP32    | Vector XMX XN<br>Vector XMX XN<br>Vector XMX XN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Engree       MX     Vector       Figure     Vector       MX     Vector       Engree     Vector       MX     Vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ops/clk)<br>2048 TF32           |



| 16 X <sup>e</sup> – cores | X <sup>e</sup> slice  |                                      |                       |                            |                           |                           |                                     |                                                      |
|---------------------------|-----------------------|--------------------------------------|-----------------------|----------------------------|---------------------------|---------------------------|-------------------------------------|------------------------------------------------------|
| 8MB L1 Cache              | Xe-core               | Xe-core                              | Xe-core               | X <sup>e</sup> -core       | Xe-core                   | Xe.core                   | Xe.core                             | Xe.core                                              |
| omb Li Cache              | Vegar Mark Mark Vegar | Veger And And Veger                  | Table New York        | Table Mark Sec.            | Table Mark State          | Next And And And          | Next And And And                    | Vigner 2000 2000 Vigner                              |
|                           | Veger AND AND Veger   | Veger 200 Des Veger                  | Tender ANK ANK Viewer | Tenter 2000 Direct Victor  | Venier JAK INK Venier     | Visiter 3066 1000 Visiter | Visiter 3066 2000 Visiter           | Mandare JAME JAME Mandare                            |
| 16 Ray Tracing Units      | Vegar and and Vegar   | Vietor Inter Vietor<br>Cantel Vietor | Land/There            | Last/Tore                  | Herrier 2000 2000 Vector  | Hector 3000 AND Vector    | Heller 3000 BND Velour<br>Land/Hore | Land/ Born                                           |
| Ray Traversal             | B UK/SM               | B US/SM                              | B US/SUR              | But Tacing Unit            | Bay Tacing Unit           | B UR/SUM                  | Rev Tracing Unit                    | BayTracingUnit                                       |
|                           | RayTracingUnit        | ReyTracingUnit                       | RayTacingUnit         | RayTracingUnit             | RayTracingUnit            | Ray Tracing Unit          | Ray Tracing Unit                    | ReyTracingUnit                                       |
| Triangle Intersection     | 6 16/5/N              | 6 USJSM                              | 6 USUSUM              | 6 US/SUN                   | 6 US/SUH                  | 16 US/SUM                 | 16 US/SUM                           | 6 US/SUR                                             |
|                           | Alla 166 Alla         | NUT MAK BAR MULT                     | MOR 2004 MOR          | AGE 200 East and Ality     | ARDA NAK NAK ADDA         | YUCH ANY ANY YUCH         | AREA NOT AND                        | WILL BAR MALE TOT                                    |
| Bounding Box Intersect.   | biger and and biger   | NAME AND DESCRIPTION                 | Noter and and Sour    | Year and any Year          | National and and Alifer   | jaha wa jaha              | Athe was were Athen                 | Althe <b>100</b> 1000 Althe<br>Althe <b>100</b> 1000 |
|                           | ADDA NEK BAK ADDA.    | 1000 MM 100 M000                     | 100 <b>XXX XXX</b>    | 1000 <b>3400 3000 1000</b> | 1000 <b>200</b> 2000 1000 | Allin and and Allin       | 1000 MIC 2000 MIC                   | 101 <b>101</b> 101                                   |
| 1 Hardware Context        | X <sup>e</sup> .core  | X <sup>e</sup> .core                 | X <sup>e</sup> -core  | X <sup>e</sup> -core       | X <sup>e</sup> -core      | X <sup>e</sup> -core      | X <sup>e</sup> -core                | X <sup>e</sup> -core                                 |
|                           |                       |                                      |                       |                            |                           |                           |                                     |                                                      |





## **AURORA FABRIC**



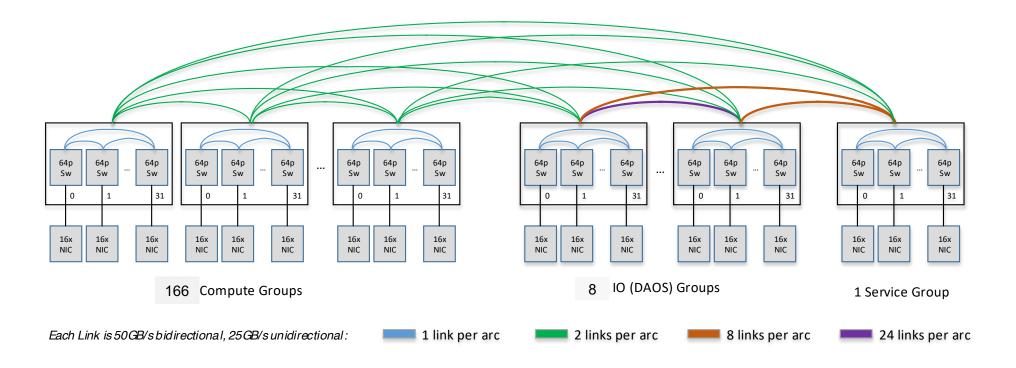
# **HPE Slingshot Interconnect**

## **Consistent, Repeatable Application Performance**

- Advanced congestion control
- Fine grained adaptive routing
- Very low average and tail latency

## **Extremely Scalable RDMA Performance**

- Connectionless protocol
- Fine grained flow control
- MPI HW tag matching & progress engine
- Dragonfly topology 3 switch hops (typical)


## **Native Ethernet**

- Native IP no encapsulation
- High-scale bandwidth integration to campus

# HPE Slingshot Switches - 64 ports @ 200 Gbps **HPE Switch ASIC Rack switches** 100% DLC Switches **HPE Slingshot NICs - 200 Gbps** HPE NIC ASIC 100% DLC NIC Mezz **PCIe Adapters**



## Fabric



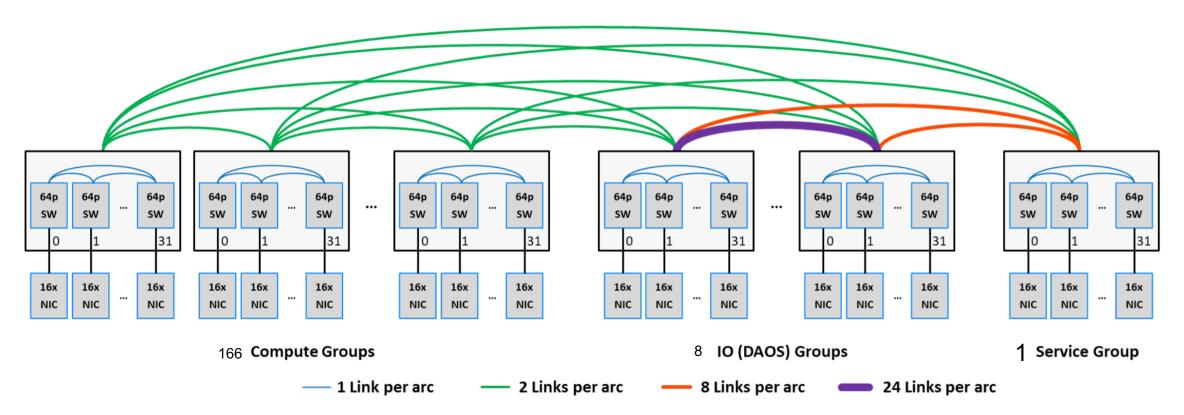
- 1-D Dragonfly Topology 175 total groups (166 compute + 8 IO + 1 Service),
- All the global links are optical, all the local links in compute groups are electrical
- 2 global links between any two compute groups
- 24 links between any two IO groups, 8 links between the Service group and each IO group
- Total injection bandwidth: 2.12PB/s
- Total bisection bandwidth: 0.69PB/s



# AURORA STORAGE



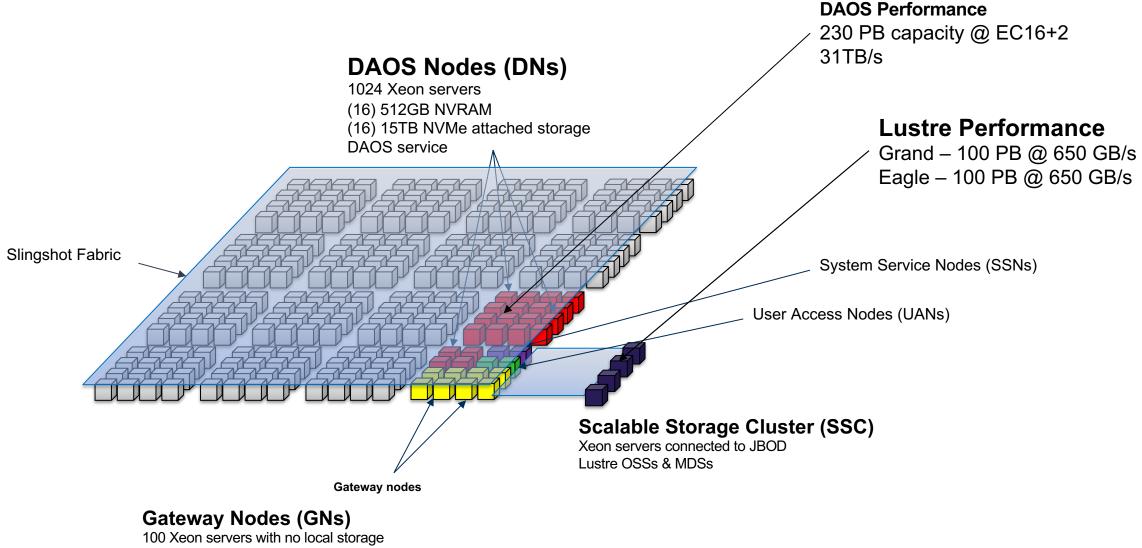
# **Aurora Storage Systems**


- DAOS provides Aurora's main "platform" high performance storage system
- Aurora leverages existing Lustre storage systems, Grand and Eagle, for center-wide data access and data sharing

| System      | Capacity                                                                           | Performance             |
|-------------|------------------------------------------------------------------------------------|-------------------------|
| Aurora DAOS | <ul> <li>230 PB @ EC16+2</li> <li>250 PB NVMe</li> <li>8 PB Optane PMEM</li> </ul> | 31 TB/s Read & Write    |
| Eagle       | 100 PB @ RAID6                                                                     | > 650 GB/s Read & Write |
| Grand       | 100 PB @ RAID6                                                                     | > 650 GB/s Read & Write |






## **Aurora Network Architecture**



- Increased DAOS inter-group bandwidth
  - Support rebuilding and inter-server communication
  - Prevent DAOS server traffic interfering with application communication
- Increased bandwidth to service group
  - Support off-cluster access and data-movement
- 21 Argonne Leadership Computing Facility



## **Aurora Storage Overview**

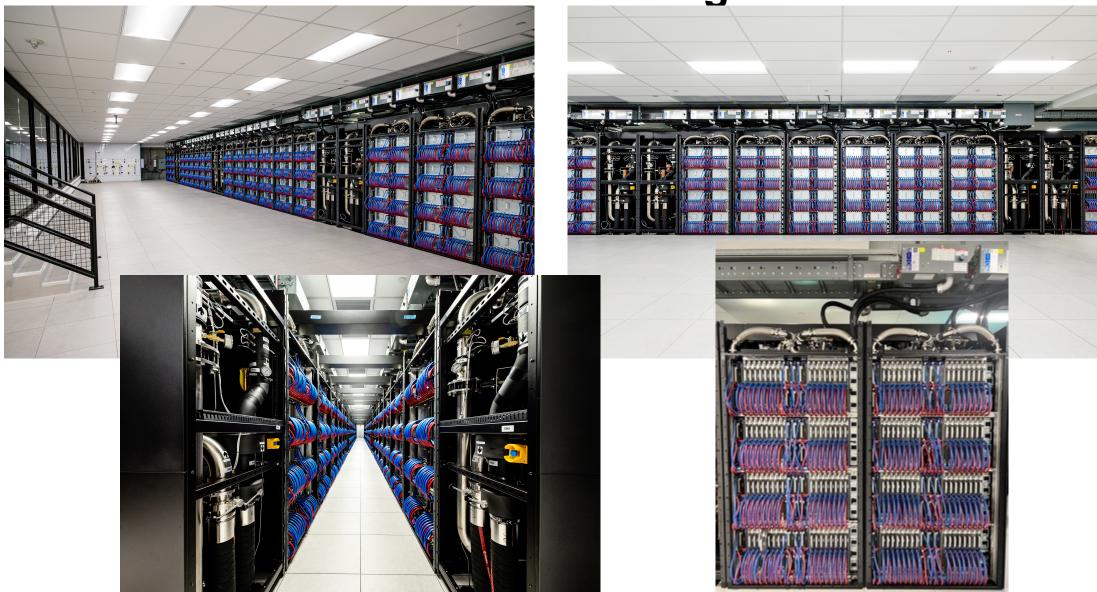




# **DAOS Node Details**

- Intel Coyote Pass System
  - -(2) Xeon 5320 CPU (Ice Lake)
  - -(16) 32GB DDR4 DIMMs
  - -(16) 512GB Intel Optane Persistent Memory 200
  - -(16) 15.3TB Samsung PM1733
  - —(2) HPE Slingshot NIC
- 1024 Total Servers
  - -Each node will run 2 DAOS engines
  - -2048 DAOS engines








# **AURORA INSTALLATION**



## **Aurora Cabinets Installation at Argonne**





# AURORA SOFTWARE STACK & PROGRAMMING MODELS



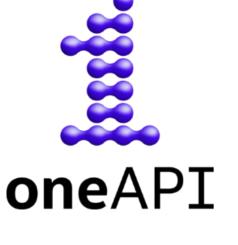
## **Three Pillars of Aurora**

| Simulation                                 | Data                   | Learning                 |  |  |  |
|--------------------------------------------|------------------------|--------------------------|--|--|--|
| HPC Languages                              | Productivity Languages | Productivity Languages   |  |  |  |
| Directives                                 | Big Data Stack         | DL Frameworks            |  |  |  |
| Parallel Runtimes                          | Statistical Libraries  | Statistical Libraries    |  |  |  |
| Solver Libraries                           | Databases              | Linear Algebra Libraries |  |  |  |
| Compilers, Performance Tools, Debuggers    |                        |                          |  |  |  |
| Math Libraries, C++ Standard Library, libc |                        |                          |  |  |  |
| I/O, Messaging                             |                        |                          |  |  |  |
| Containers, Visualization                  |                        |                          |  |  |  |
| Scheduler                                  |                        |                          |  |  |  |
| Linux Kernel, POSIX                        |                        |                          |  |  |  |



## oneAPI

**"oneAPI** is a cross-industry, open, standards-based unified programming model that delivers a common developer experience across accelerator architectures—for faster application performance, more productivity, and greater innovation." -- oneapi.com


## **Three Components**

- Language
  - DPC++
- Libraries
  - oneMKL, oneDAL, ...
- Hardware Abstraction Layer
  - Level Zero (L0)

Set of specifications that any one can implement

Intel has their own implementations https://software.intel.com/ONEAPI

Good documentation for understanding what will be on Aurora





## **Aurora oneAPI Components**

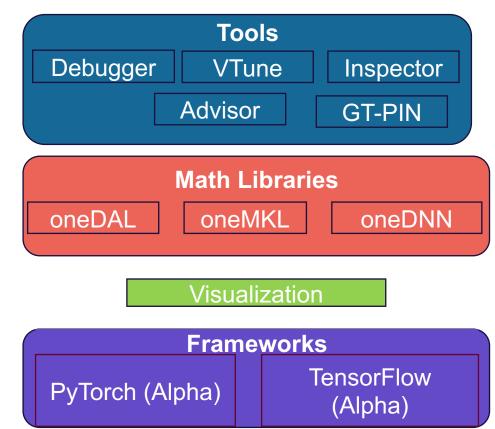




DPC++ Compiler (CPU & GPU)

**DPC++** Compatibility Tool

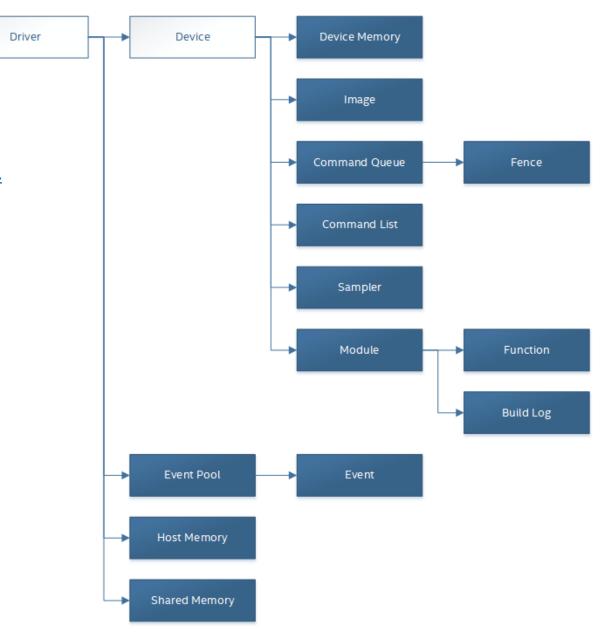
C/C++/Fortran OpenMP Offload Compiler (CPU & GPU)


Compiler/Compatibility IDE Plugins

Intel Distribution for Python

Parallel STL / oneDPL

oneTBB

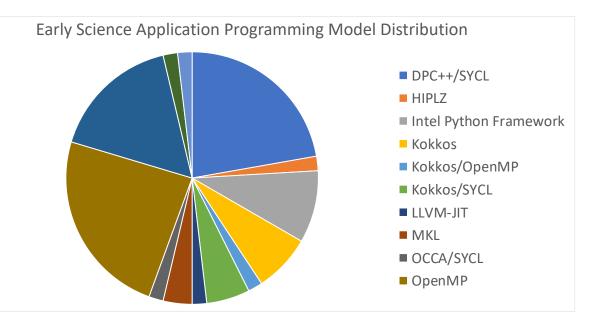

oneCCL Aurora MPICH





# Level Zero (L0)

- Low-level programming model for fine grained control of device
  - <u>https://spec.oneapi.com/versions/latest/oneL</u>
     <u>0/index.html</u>
- Management of:
  - Device memory
  - Synchronization
  - Command queue and command lists
  - And more





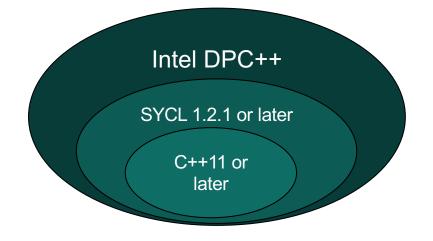

# Aurora Programming Model

- Aurora applications may use:
  - DPC++/SYCL
  - OpenMP
  - Kokkos
  - Raja
  - OpenCL
- Experimental
  - HIP
- Not available on Aurora:
  - CUDA
  - OpenACC








# DPC++ (SYCL)

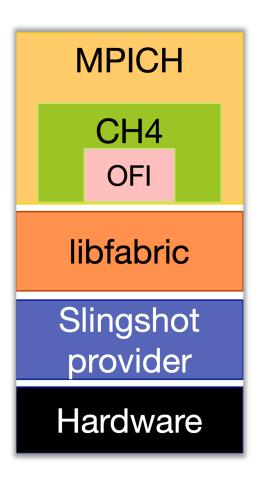
## DPC++

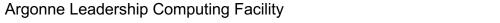
- Intel implementation of SYCL standard
- Add language or runtime extensions as needed to meet user needs
- Incorporates SYCL 1.2.1 specification and Unified Shared Memory
- Part of Intel oneAPI specification

## <u>SYCL</u>

- Khronos standard specification
- SYCL is a C++ based abstraction layer (standard C++11)
- Based on OpenCL concepts (but single-source)
- SYCL is designed to be as close to standard C++ as possible
- Current Implementations of SYCL:
  - ComputeCPP™ (www.codeplay.com)
  - Intel SYCL (github.com/intel/llvm)
  - triSYCL (github.com/triSYCL/triSYCL)
  - hipSYCL (github.com/illuhad/hipSYCL)
  - Runs on today's CPUs and nVidia, AMD, Intel GPUs




|   | Extensions                                                                     | Description                                   |  |  |  |
|---|--------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|
|   | Unified Shared                                                                 | defines pointer-based memory accesses and     |  |  |  |
|   | Memory (USM)                                                                   | management interfaces.                        |  |  |  |
|   |                                                                                |                                               |  |  |  |
| è |                                                                                | defines simple in-order semantics for queues, |  |  |  |
|   | In-order queues                                                                | to simplify common coding patterns.           |  |  |  |
|   |                                                                                | provides reduction abstraction to the ND-     |  |  |  |
|   | Reduction                                                                      | range form of parallel for.                   |  |  |  |
|   | Optional lambda                                                                | removes requirement to manually name          |  |  |  |
|   | name                                                                           | lambdas that define kernels.                  |  |  |  |
|   |                                                                                | defines a grouping of work-items within a     |  |  |  |
|   | Subgroups                                                                      | work-group.                                   |  |  |  |
|   |                                                                                | enables efficient First-In, First-Out (FIFO)  |  |  |  |
|   | Data flow pipes                                                                | communication (FPGA-only)                     |  |  |  |
| h | https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table |                                               |  |  |  |




## MPI

33

- MPICH for Aurora
- Based on open source MPICH with new features to support Aurora
- Uses OFI (Open Fabrics Interface) to communicate with the Slingshot Interconnect
- Redesigned to reduce instruction counts and remove nonscalable data structures
- Innovative collective algorithms
- Optimized Threading Support
- Shared Memory Optimizations through XPMEM
- MPICH is GPU aware for Intel GPUs
- It is built on top of oneAPI Level Zero
- It supports point to point, one-sided, and collectives
- Support for different data types through the Yaksa library
- OSU benchmarks with Level Zero used to validate correctness and performance



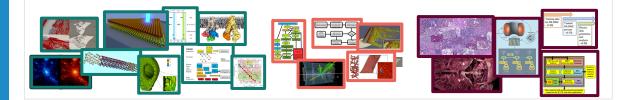




# **MPI (Contd)**

- Multiple optimizations added to support the unique hardware features of Aurora
  - Intel GPUs and all-to-all connectivity across the GPUs inside the node
  - Multiple NICs on the same node. MPICH supports:
    - Distribution of processes to NICs
    - Striping (a single rank distributes a single message across multiple NICS)
    - Hashing (a single rank sends different messages through different NICs, e.g., depending on the communicator or the target rank)
    - Efficient Multithreading support to use multiple NICs
  - Collectives optimized for Dragonfly network topology
- Most of the optimizations are already upstreamed in the MPICH repository. The rest is coming soon




## **AURORA APPLICATIONS**



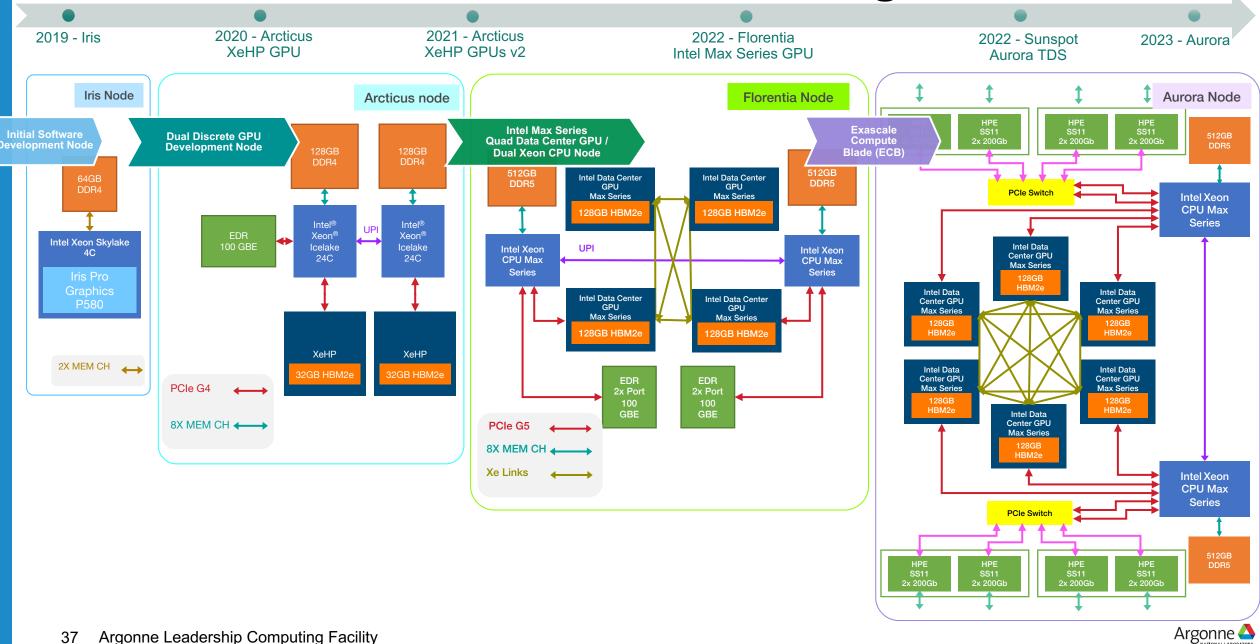
## **Exascale Applications/Software Readiness**

#### AURORA EARLY SCIENCE PROGRAM

- ALCF Aurora Early Science Program (ESP)
- 9 Simulation, 10 Data and Learning projects
- Every project will run a proposed science campaign on Aurora
- Training: Workshops, Hackathons, Dungeon Sessions, webinars
- Argonne postdoc and staff support (Catalysts)



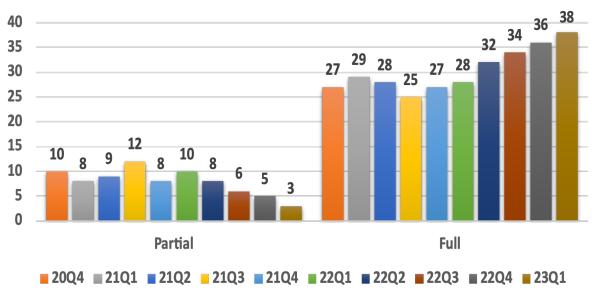



- DOE Exascale Computing Project (ECP)
- 3 technical areas: Application Development, Software Technology, Hardware and Integration
  - AD: 21 applications projects preparing codes for exascale
  - ST: 66 unique software products
  - HI: Applications Integration: deploy apps on specific exascale systems (Aurora, Frontier)
- AppInt funding for Argonne staff for Aurora:
  - ALCF working with 15 ECP AD so far

Argonne-Intel Center of Excellence – dedicated Intel staff

http://esp.alcf.anl.gov

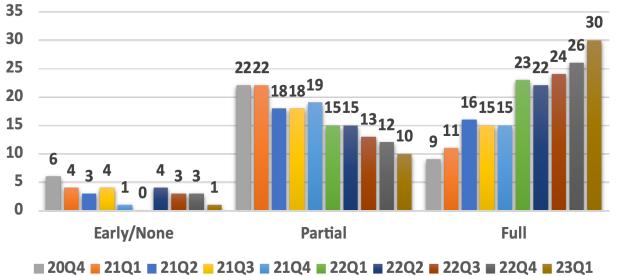



# **Evolution of Intel GPU Testbeds at Argonne**



## **Tracking Aurora Applications Development**

- Steps in application preparation
  - -Implementation of science and algorithms
  - -Porting to Aurora programming models
  - Testing with Aurora SDK on Aurora testbeds
  - -Tuning for performance on Aurora testbeds
  - -Scaling across the Aurora system


### **Application Science Implementation**



### ALCF and Intel working with over 40 projects to ready codes for Aurora

 Effort from over 60 Argonne & Intel people and numerous outside teams

### Port to Aurora Programming Models





## **Aurora Applications Status**

Running

Running

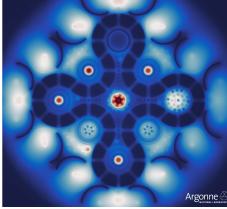
Running

Partially Running

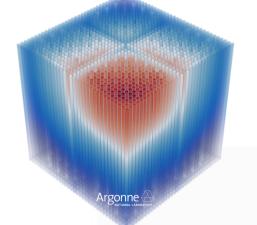
Porting in Progress

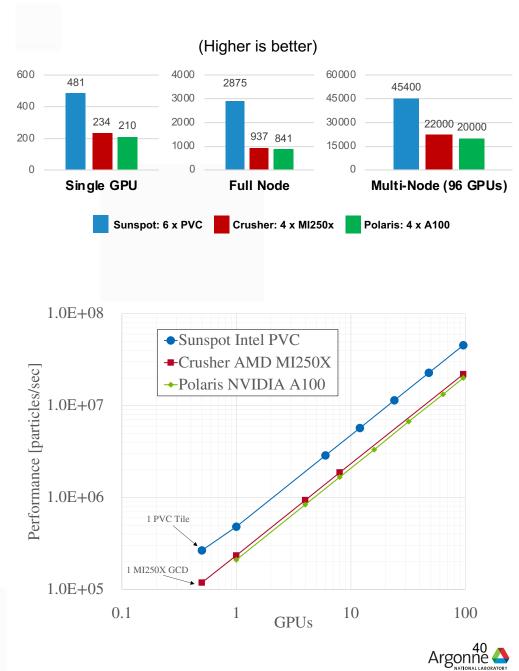
| Application      | Status |
|------------------|--------|
| XGC              |        |
| NAMD             |        |
| FloodFillNetwork |        |
| HACC             |        |
| QUDA             |        |
| OpenMC           |        |
| Flash-X/Thornado |        |
| NWChemEX         |        |
| AMR-Wind         |        |
| CANDLE/UNO       |        |
| HARVEY           |        |
| NekRS            |        |
| LAMMPS           |        |
| GENE             |        |
| FusionDL         |        |
| MadGraph         |        |
| BerkelyGW        |        |
| PHASTA           |        |
| MFIX-Exa         |        |
| Chroma           |        |
| cctbx            |        |

| Status |
|--------|
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |


39 Argonne Leadership Computing Facility




# **OpenMC** (courtesy of John Tramm)

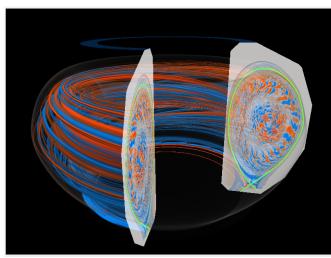

https://docs.openmc.org

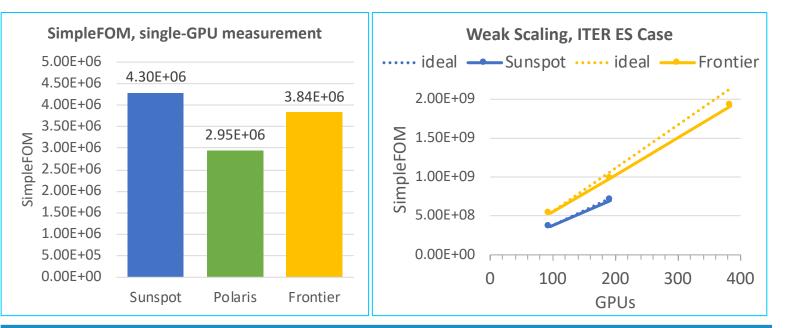
- OpenMC is being developed as part of the ECP ExaSMR project (PIs: Steven Hamilton, Paul Romano)
- OpenMC is a Monte Carlo particle transport code written in C++ and the OpenMP target offloading programming model
- The project seeks to accelerate the design of small modular nuclear reactors by generating virtual reactor simulation datasets with high-fidelity, coupled physics models for reactor phenomena that are truly predictive
- The Monte Carlo method employed by OpenMC is considered the "gold standard" for high-fidelity but these methods suffer from a very high computational cost.
- The extreme performance gains OpenMC has achieved on GPUs is finally bringing within reach a much larger class of problems that historically were deemed too expensive to simulate using Monte Carlo methods.

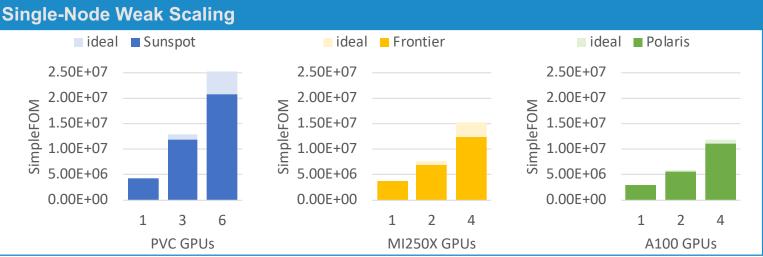


40 Argonne Leadership Computing Facility







# XGC (courtesy Tim Williams, Aaron Scheinberg)

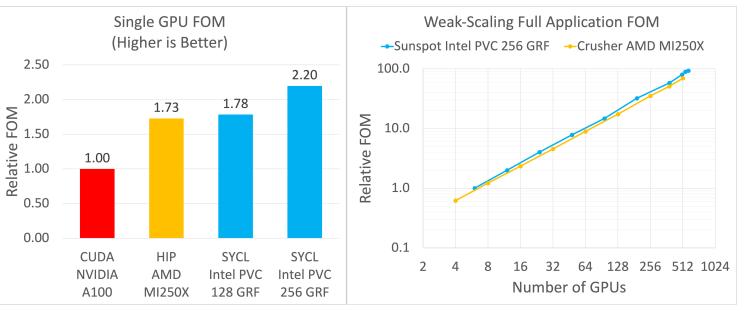
#### ESP Project PI: CS Chang ECP Project PI: Amitava Bhattacharjee

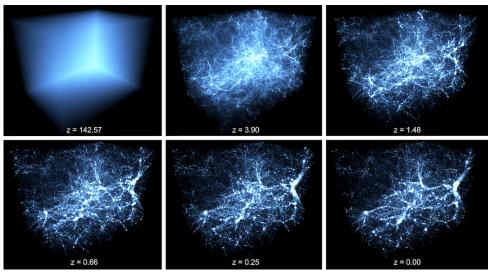
- Science case: Predict ITER fusion reactor plasma behavior with Tungsten impurity ions sputtered from the divertor
- Gyrokinetic particle-in-cell simulation of tokamak plasma using C++ and:
  - -Kokkos/SYCL on Intel GPUs
  - -Kokkos/HIP on AMD GPUs
  - -Kokkos/CUDA on NVIDIA GPUs









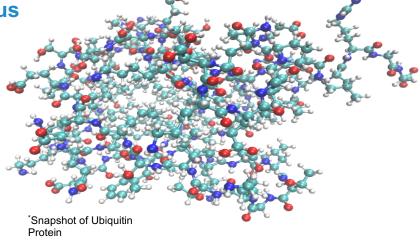

# **CRK-HACC** (courtesy Adrian Pope, Steve Rangel, Nick Frontiere)

### ESP/HACC PI: Katrin Heitmann ECP/ExaSky PI: Salman Habib

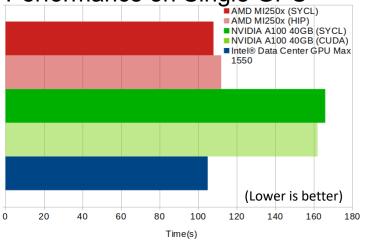
- CRK-HACC simulates the formation of large-scale structures in the Universe over cosmological time.
- CRK-HACC employs n-body methods for gravity and a novel formulation of Smoothed Particle Hydrodynamics.
- CRK-HACC is a mixed-precision C++ code, with FLOPS-intense sections implemented using architecture-specific programming models in FP32 precision.



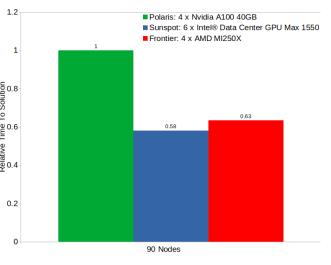


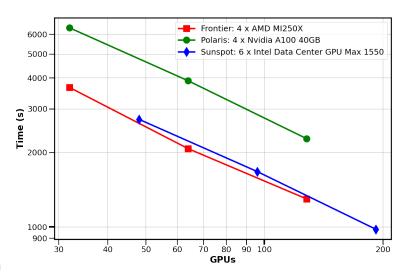

- CUDA and HIP are maintained as a single source with macros.
- SYCL kernels were translated from CUDA using SYCLomatic and custom LLVM-based tools, including optimizations for Intel GPUs.
- Figure-of-Merit (FOM) has units of particle-steps per second.
- Single GPU FOM problem used 33 million particles per GPU, and Intel PVC results are shown for both small (128) and large (256) Generalpurpose Register File (GRF) modes.
- Weak-scaling results are shown with the full application FOM, where the GPU represents roughly 80% of the total wall clock.




## **NWChemEx** (Courtesy of Ajay Panyala)

### https://github.com/NWChemEx-Project **ESP & Project Project PI: Theresa Windus**


- NWChemEx is a general purpose electronic structure code, which includes •
  - Array of high-fidelity coupled cluster methods
  - Hartree-Fock, DFT, MP2 methods
  - Reduced-scaling DLPNO formulation
  - Molecular dynamics
- Programming models: C++, CUDA, HIP, SYCL ٠
  - Communication frameworks: Global Arrays, **UPC++. MADNESS**
  - Tensor Contraction Engines: TAMM, TiledArray
- Key physics modules ٠
  - DLPNO-CCSD(T)
    - Reduced-scaling implementation for GPU platforms




### Performance on Single GPU



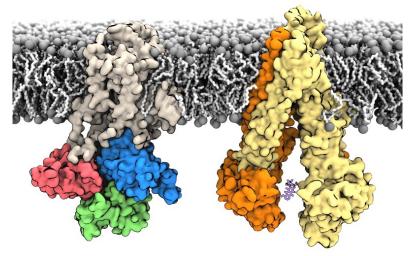
#### Strong Scaling Performance on 90-nodes





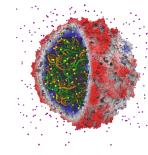
- Single GPU, Time in seconds for DLPNO-CCSD per iteration
- Performance of SYCL on NVIDIA & AMD were comparable with native CUDA & HIP respectively
- Argonne Leadership Computing Facility 43

Acknowledgment: Work performed by the NWChemEx team members without any architecture specific optimizations Argonne 🕰


2

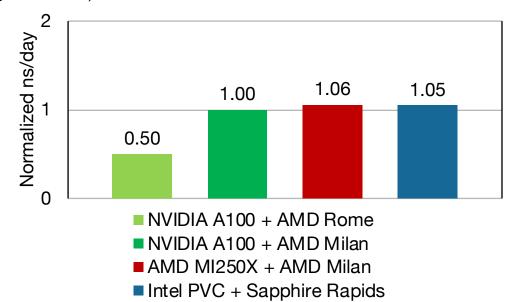
## NAMD 2 (Courtesy of Wei Jiang)

### Scalable molecular dynamics for exascale computations


### **ESP PI: Benoit Roux**

- Simulate large biomolecular systems or complex macromolecular machines
- Science problem: molecular structure-function relationship
- Algorithm: particle motion integration with short- and long-range force calculation
- Fine-grained force-domain decomposition
- Written using C/C++, Charm++, CUDA, HIP, SYCL




NAMD website: https://www.ks.uiuc.edu/Research/namd

Single-GPU Results



Benchmarking NAMD 2.15alpha2 on STMV (1.06M atoms) NVE simulation: *CHARMM force field (12A cutoff), rigid bonds with 2 fs timestep, multiple time stepping with 4 fs PME* 

(Higher is better)



NAMD GPU-offload performance depends on both GPU and CPU performance together with host-device latency and bandwidth



## **THANK YOU**



## **EXTRA SLIDES**





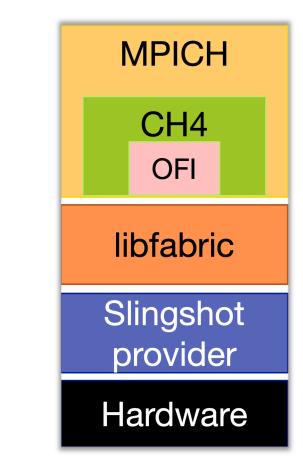
# Aurora Exascale Architecture

# ExaComm ISC 2023

# Intel. Hewlett Packard

### Kalyan Kumaran

Director of Technology at the Argonne Leadership Computing Facility (ALCF) Argonne National Laboratory 25 May 2023


# DOE Leadership Computing Facility

- Established in 2004 as a collaborative, multi-lab initiative funded by DOE's *Advanced Scientific Computing Research* program
- Operates as **one facility** with two centers, at Argonne and at Oak Ridge National Laboratory
- Deploys and operates at least two advanced architectures that are 10-100 times more powerful than systems typically available for open scientific research
- **Fully dedicated** to open science to address the ever-growing needs of the scientific community



## MPI

- Intel MPI & Cray MPI
  - MPI 3.0 standard compliant
- The MPI library will be thread safe
  - Allow applications to use MPI from individual threads
  - Efficient MPI\_THREAD\_MUTIPLE (locking optimizations)
- Asynchronous progress in all types of nonblocking communication
  - Nonblocking send-receive and collectives
  - One-sided operations
- Hardware and topology optimized collective implementations
- Supports MPI tools interface





## **Aurora System Overview**

| COMPUTE                                    |        | FABRIC                        |                              |
|--------------------------------------------|--------|-------------------------------|------------------------------|
|                                            | 400    | Fabric (name)                 | Slingshot11                  |
| Total Cabinets (#)                         | 166    | NIC                           | HPE SS – 200Gbps             |
| Total Nodes (#)                            | 10,624 |                               | HPE SS 64 ports @<br>200Gbps |
| Total Intel Data Center GPU Max Series (#) | 63,744 | Switch                        |                              |
| Total Intel Xeon Max Series w HBM (#)      | 21,248 | Fabric Topology (name)        | Dragonfly                    |
| Total DP Peak Flops (EF)                   | ≧ 2.0  | Peak injection BW (PB/s)      | 2.12                         |
|                                            |        | Peak Bi-section BW (PB/s)     | 0.69                         |
| MEMORY                                     |        | STORAGE                       |                              |
| Total GPU HBM Memory (PB)                  | 8.16   | Distributed Asynchronous Obje | ∽t                           |
| Peak GPU HBM BW (PB/s)                     | 208.9  | Store (DAOS) (PB) (usable)    | 230                          |
| Total Xeon HBM Memory (PB)                 | 1.36   | DAOS Performance (TB/s)       | 31                           |
| Peak Xeon HBM BW (PB/s)                    | 30.5   | DAOS Nodes (#)                | 1024                         |
| Total DDR5 Memory (PB)                     | 10.9   | Lustre GFS (PB)               | 150                          |
| Peak Xeon DDR5 BW (PB/s)                   | 5.95   | Lustre Performance (TB/s)     | 1                            |



## **Aurora Compilers**

Intel compilers will be the primary compilers on Aurora

- Provide C, C++, Fortran
- Optimized for Intel Data Center GPU Max Series
- Implemented using LLVM infrastructure
- Intel will upstream LLVM GPU backend and other related improvements
  - Enables 3<sup>rd</sup> party compiler development

LLVM

- Clang C/C++
- Flang Fortran
- Will generate code for Intel Data Center GPU Max Series
- Will incorporate ECP optimization enhancements

Cray

- Optimized C, C++, Fortran compilers for x86
- Utilizes LLVM components



## Libraries

- oneMKL
  - Optimized math libraries
- oneDAL
  - Optimized Data analytics
- oneCCL
  - Optimized communications for deep learning models
- oneDNN
  - Optimized deep learning routines

- Python
  - Tensorflow
  - PyTorch
  - Numba
  - Scikit-learn
- Apache Spark MLlib



# Tools

### **VTune Profiler**

- Widely used performance analysis tool
- Currently supports analysis on Intel integrated GPUs
- Will support future Intel GPUs

#### GPU Compute/Media Hotspots GPU Compute/Media Hotspots • (?) Analysis Configuration Collection Log Summary Graphics Platform • 5 0 hitecture Diagram 22.35 Stalled: ide: 1.0% 23.01 GB/s 0.42 GB/s Read 2010 6M Threads's 22.98 08/5 Occupancy: 93.15 0.00 GB/s 0.00 GB/s Read Write 23 23 (GB)s Test Utilization: 29.2% 100.0% 🦢 Any Process Thread Any Thread Module Any Module Inline Mode Hide inline

### Advisor

- Provides roofline analysis
- Offload analysis will identify components for profitable offload
  - Measure performance and behavior of original code
  - Model specific accelerator performance to determine offload opportunities
  - Considers overhead from data transfer and kernel launch

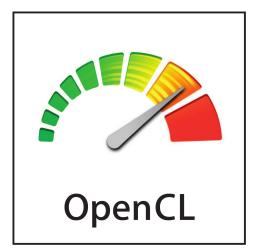
APIs and Tools for hardware counters and binary instrumentation for performance measurement



## **Data Science and Learning on Aurora**

Aurora will provide for a familiar, productive and performant HPC and Al software stack

- Python and Productivity Languages
  - Numba, NumPy, etc.
  - JAX and Julia
- Deep Learning Frameworks:
  - PyTorch, TensorFlow, Horovod, DDP, Deepspeed
- Machine Learning
  - OneDAL, scikit-learn, XGBoost, etc.
- Optimized and scalable communication using OneCCL
- Spark BigData Analytics stack
- Profiling and debugging tools


(intel) Intel oneAPI USA (English) 🌐 Sign In 👌 📿 Intel<sup>®</sup> AI Analytics Toolkit Achieve End-to-End Performance for AI Workloads oneAPT Features What's Included Documentation & Code Samples Training Specifications Help Accelerate Data Science & AI Pipelines Develop in the Cloud The Intel® AI Analytics Toolkit gives data scientists, AI developers, and Get what you need to build, test, and optimize your oneAPI projects for free. researchers familiar Python\* tools and frameworks to accelerate end-to-end With an Intel® DevCloud account, you get 120 days of access to the latest data science and analytics pipelines on Intel® architectures. The components Intel® hardware—CPUs, GPUs, FPGAs—and Intel oneAPI tools and are built using oneAPI libraries for low-level compute optimizations. This frameworks. No software downloads. No configuration steps. No toolkit maximizes performance from preprocessing through machine installations. learning, and provides interoperability for efficient model development. Using this toolkit, you can: • Deliver high-performance deep learning (DL) training on Intel® XPUs and integrate fast inference into your AI development workflow with Intel-optimized DL frameworks: TensorFlow\* and PyTorch\*, pretrained Download the Toolkit models, and low-precision tools. Get It Now Achieve drop-in acceleration for data preprocessing and machine learning workflows with compute-intensive Python\* packages: Modin\*, scikit-learn\*, and XGBoost\* optimized for Intel. · Gain direct access to Intel analytics and AI optimizations to ensure that your software works together seamlessly. https://software.intel.com/content/www/us/en/develop/tools/o neapi/ai-analytics-toolkit.html

54 Argonne Leadership Computing Facility



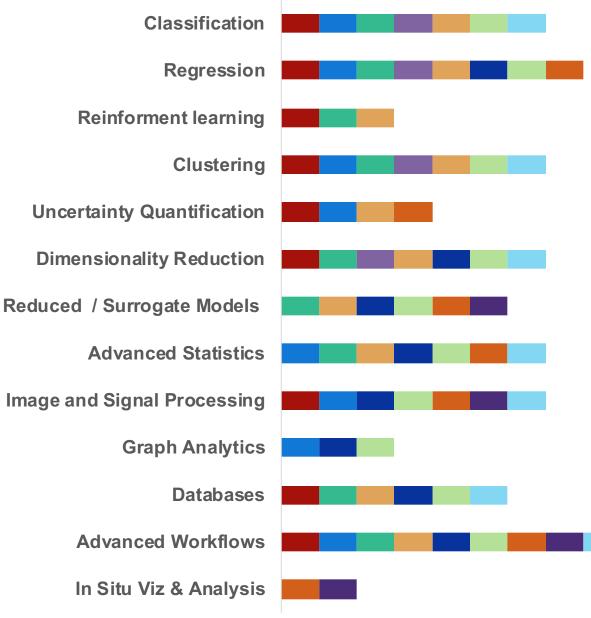
# OpenCL

- Open standard for heterogeneous device programming (CPU, GPU, FPGA)
- Standardized by multi-vendor Khronos Group, V 1.0 released in 2009
  - AMD, Intel, nVidia, ...
  - Many implementations from different vendors
- Intel implementation for GPU is Open Source (<u>https://github.com/intel/compute-runtime</u>)
- SIMT programming model
  - Distributes work by abstracting loops and assigning work to threads
  - Not using pragmas / directives for specifying parallelism
- Similar model to CUDA
- Consists of a C compliant library with kernel language
  - Kernel language extends C
  - Has extensions that may be vendor specific





## **OpenMP 4.5/5**


- OpenMP 5 constructs will provide directives based programming model for Intel GPUs
- Available for C, C++, and Fortran
- A portable model expected to be supported on a variety of platforms (Aurora, Frontier, Perlmutter, ...)
- Optimized for Aurora
- Integration with MKL for GPU offload
- For Aurora OpenACC codes could be converted into OpenMP
  - Automated translation possible through the clacc conversion tool (for C/C++)



https://www.openmp.org/



## **Aurora ESP Data and Learning Projects and Methods**



■ Virtual Drug Response Prediction

- Enabling Connectomics at Exascale to Facilitate Discoveries in Neuroscience
- Machine Learning for Lattice Quantum Chromodynamics
- Accelerated Deep Learning Discovery in Fusion Energy Science
- Many-Body Perturbation Theory Meets Machine Learning
- Exascale Computational Catalysis
- Dark Sky Mining
- Data Analytics and Machine Learning for Exascale CFD
- In Situ Visualization and Analysis of Fluid-Structure-Interaction Simulations
- Simulating and Learning in the ATLAS detector at the Exascale

Data



# **Bridging ESP Projects to Aurora**

- To be ready for Early Science runs, projects must
  - -Demonstrate INCITE level computational readiness (scaling, use GPUs, ready proposed problem in short order)
  - -Complete model validations, preliminary studies, parameter-setting exercises
  - -Finish integrating complex workflows for Data and Learning projects with realistic data
- Portability of applications, components, and workflows to Polaris

| Simulation<br>components                                                                                  | Data<br>components                                                           | Learning<br>components                                        | Workflows                                      |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|
| OpenMP 4.5+                                                                                               | Spark                                                                        | TensorFlow                                                    | <ul> <li>Containers</li> </ul>                 |
| <ul> <li>Kokkos</li> </ul>                                                                                | HDF5                                                                         | PyTorch                                                       | Balsam                                         |
| <ul> <li>SYCL</li> </ul>                                                                                  | <ul> <li>ADIOS</li> </ul>                                                    | <ul> <li>Distributed DL<br/>(eg., Horovod)</li> </ul>         | funcX/Parsl                                    |
| <ul> <li>PETSc, math libraries</li> <li>Many apps have<br/>explicit NVIDIA<br/>implementations</li> </ul> | <ul> <li>MPI-IO</li> <li>Databases</li> <li>Numba</li> <li>Python</li> </ul> | <ul> <li>Scitkit Learn</li> <li>JAX</li> <li>Julia</li> </ul> | <ul> <li>Python-based<br/>workflows</li> </ul> |

