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About Argonne
Argonne is a multidisciplinary science and engineering research 
center located outside Chicago.

• Born out of the University of Chicago’s work on the Manhattan Project 
in the 1940s.

• Managed by UChicago Argonne, LLC, for the U.S. Department of 
Energy’s Office of Science.

• Works with universities, industry, and other national labs on questions 
and experiments too large for any one institution to do by itself.
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Argonne Leadership Computing Facility

ALCF offers different pipelines based on your 
computational readiness. Apply to the allocation 
program that fits your needs.

The Argonne Leadership Computing Facility 
provides world-class computing resources to 
the scientific community.
• Users pursue scientific challenges
• In-house experts to help maximize 

results
• Resources fully dedicated to open 

science
Architecture supports three 
types of computing 
§ Large-scale Simulation 
(PDEs, traditional HPC)
§ Data Intensive Applications 
(scalable science pipelines)
§ Deep Learning and Emerging 
Science AI (training and 
inferencing) 
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ALCF Systems Evolution

5.7 TF

557 TF

10 PF

15.6 PF
44 PF

≥2 EF

Aurora
Intel-HPE
2023

Crux
HPE-AMD

Polaris
HPE-AMD/
NVIDIA
2021

+
Theta
Intel-Cray XC40
2017

Mira
IBM BG/Q
2012

Intrepid
IBM BG/P
2007

IBM BG/L
2004

NVIDIA 
DGX A100
2020

11.7 PF



Argonne Leadership Computing Facility5

Computing Resources

Iota
• Intel/Cray XC40 architecture
• 117 teraflops
• 44 nodes
• 2,816 cores
• 12.3 TB of memory

Cooley
• Cray/NVIDIA 

126 nodes
• 1512 Intel Haswell CPU cores
• 126 NVIDIA Tesla K80 GPUs
• 48 TB RAM / 3 TB GPU

Grand and Eagle (Storage)
Each system has: 
• HPE ClusterStor E1000
• 100 petabytes of usable capacity
• 8,480 disk drives
• Lustre filesystem

§ 160 Object Storage Targets
§ 40 Metadata Targets

• HDR InfiniBand network
• 650 GB/s rate on data transfers

JLSE Experimental Testbeds
• 150 nodes
• Intel/AMD/IBM/Marvell/GPGPU
• EDR/100GbE/OPA 
• Lustre/GPFS/DAOS

Theta
KNL NODES
• Intel-Cray XC40 
• 11.7 petaflops
• 4,392 nodes
• 281,088 cores
• 843 TB (DDR4); 70 TB (HBM) of 

memory
GPU NODES
• NVIDIA DGX A100 
• 3.9 petaflops
• AMD EPYC 7742
• 24 nodes 
• 24 TB of DDR4; 7.7 TB (HBM) of 

memory

Polaris
• HPE Apollo Gen10+
• AMD processors/NVIDIA GPUs
• 44 petaflops (double precision)
• NVIDIA GPU A100; HBM stack
• AMD EPYC Processor Milan
• 560 nodes
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ALCF AI Testbed

• Infrastructure of next-generation machines 
with hardware accelerators customized for 
artificial intelligence (AI) applications with a 
goal to integrate AI accelerators in existing 
and upcoming supercomputers

• Provides a platform to evaluate usability 
and performance of machine learning-
based HPC science applications running 
on these accelerators. 

• Promising results for diverse spectrum of 
science ranging from cancer, covid19, 
high-energy physics, biosciences, climate, 
among others.

• Close collaboration with AI accelerator 
vendors on their product developments and 
roadmaps 

https://www.alcf.anl.gov/alcf-ai-testbed

Next-Generation AI-Accelerators

Cerebras (CS-2) SambaNova

Graphcore GroqHabana
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AURORA OVERVIEW
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Peak Performance
≧ 2 Exaflops DP

Intel GPU
Intel® Data Center GPU 
Max Series

Intel Xeon Processor
Intel® Xeon Max Series 
CPU with High Bandwidth 
Memory

Platform
HPE Cray-Ex 

Compute Node
2x Intel® Xeon Max Series 
processors
6x Intel® Data Center GPU 
Max Series
8x Slingshot11 fabric 
endpoints

GPU Architecture
Intel XeHPC architecture
High Bandwidth Memory

Node Performance
>130 TF

System Size
166 Cabinets
10,624 Nodes
21,248 CPUs
63,744 GPUs

System Memory
1.36PB HBM CPU Capacity
10.9PB DDR5 Capacity
8.16PB HBM GPU Capacity

System Memory Bandwidth
30.58PB/s Peak HBM BW CPU
5.95PB/s Peak DDR5 BW
208.9PB/s Peak HBM BW GPU

High-Performance Storage
230PB 
31TB/s DAOS bandwidth
1024 DAOS Nodes

System Interconnect
HPE Slingshot 11
Dragonfly topology with adaptive 
routing

System Interconnect BW
Peak Injection BW 2.12PB/s
Peak Bisection BW 0.69PB/s

Network Switch
25.6 Tb/s per switch (64 200 
Gb/s ports) 
Links with 25 GB/s per direction

Programming Environment
• C/C++, Fortran
• SYCL/DPC++
• OpenMP 5.0
• Kokkos, RAJA

Argonne’s upcoming exascale
supercomputer will leverage several 
technological innovations to support 
machine learning and data science 
workloads alongside traditional 
modeling and simulation runs.
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Aurora High-level System Overview

9

SWITCH BLADE
1 Slingshot switch
64 ports
Dragonfly topology

COMPUTE RACK
64 Compute blades
32 Switch blades
GPU: 49.1 TB HBM
CPU: 8.2 TB HBM, 64 TB DDR5

System Service Nodes (SSNs)
User Access Nodes (UANs)
DAOS Nodes (DNs)
Gateway Nodes (GNs)

IOF service, scalable library loading
DAOS <-> Lustre data mover

COMPUTE BLADE
2 Intel Xeon Max Series w HBM
6 Intel Data Center GPI Max Series
GPU: 768 GB HBM
CPU: 128 GB HBM, 1024 GB DDR5

AURORA SYSTEM
166 Compute racks
10,624 Nodes
GPU: 8.16 PB HBM
CPU: 1.36 PB HBM, 10.9 PB DDR5
DAOS: 64 racks, 1024 nodes 

230 PB (usable), 31 TB/s



Argonne Leadership Computing Facility10 Argonne Leadership Computing Facility10

AURORA NODE
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Aurora Exascale Compute Blade
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NODE CHARACTERISTICS
6 GPU - Intel Data Center GPU Max Series (#)
2 CPU - Intel Xeon CPU Max Series (#)
768 GPU HBM Memory (GB)
19.66 Peak GPU HBM BW (TB/s)
128 CPU HBM Memory (GB)
2.87 Peak CPU HBM BW (TB/s)
1024 CPU DDR5 Memory (GB)
0.56 Peak CPU DDR5 BW (TB/s)
≧ 130   Peak Node DP FLOPS (TF)
200 Max Fabric Injection (GB/s)
8 NICs (#)

Aurora Node

Intel Data 
Center GPU 
Max Series

128GB
HBM2e

512GB 
DDR5

Intel Data 
Center GPU 
Max Series

128GB
HBM2e

Intel Data 
Center GPU 
Max Series

128GB
HBM2e Intel Data 

Center GPU 
Max Series

128GB
HBM2e

Intel Data 
Center GPU 
Max Series

128GB
HBM2eIntel Data 

Center GPU 
Max Series

128GB
HBM2e

Intel Xeon 
CPU Max 

Series

PCIe Switch

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

Intel Xeon 
CPU Max 

Series
PCIe Switch

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

512GB 
DDR5
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4th Gen Intel® Xeon Max Series CPU with HBM (Sapphire 
Rapids)

12

XEON DESCRIPTION
Vector Extension AVX-512
Threads (#) 2
Total HBM Memory (GB) 64
Peak HBM Memory BW (TB/s) 1.43
Total DDR5 4400 Memory (GB) 512
Peak DDR5 4400 Memory BW 
(TB/s) 0.28
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Intel GPUs
• Intel has been building integrated GPUs for over a decade
• These have evolved into Xe architecture used in next gen 

GPUs
• Xe LP

• Platforms: Tiger Lake, Iris Xe Max
• Integrated low power

• Xe HP/HPG
• DG2/Intel Arc GPU
• Discrete & High power

• Xe HPC
• Ponte Vecchio
• High performance computing
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Intel® Data Center GPU Max Series (Ponte Vecchio)
§ Multi Tile architecture
§ Compute Tile

§ Xe Cores
§ L1 Cache

§ Base Tile
§ PCIe Gen5
§ HBM2e Main Memory
§ MDFI
§ EMIB

§ Connectivity Tile
§ Xe link

https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html
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Intel® Data Center GPU Max Series Architectural 
Components

Compute Building Block of 
Intel® Data Center GPU Max Series
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AURORA FABRIC
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Consistent, Repeatable Application Performance
• Advanced congestion control
• Fine grained adaptive routing
• Very low average and tail latency

Extremely Scalable RDMA Performance
• Connectionless protocol
• Fine grained flow control
• MPI HW tag matching & progress engine
• Dragonfly topology – 3 switch hops (typical)

Native Ethernet  
• Native IP – no encapsulation
• High-scale bandwidth integration to campus

Rack switchesHPE Switch ASIC

HPE Slingshot Interconnect

100% DLC Switches

HPE NIC ASIC 100% DLC NIC MezzPCIe Adapters

HPE Slingshot Switches - 64 ports @ 200 Gbps

HPE Slingshot NICs - 200 Gbps 
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Fabric
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8

• 1-D Dragonfly Topology - 175 total groups (166 compute + 8 IO + 1 Service), 
• All the global links are optical, all the local links in compute groups are electrical
• 2 global links between any two compute groups 
• 24 links between any two IO groups, 8 links between the Service group and each IO group
• Total injection bandwidth: 2.12PB/s
• Total bisection bandwidth: 0.69PB/s

166
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AURORA STORAGE
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Aurora Storage Systems
• DAOS provides Aurora’s main “platform” high performance storage system
• Aurora leverages existing Lustre storage systems, Grand and Eagle, for center-wide data access and 

data sharing

System Capacity Performance
Aurora DAOS 230 PB @ EC16+2

§ 250 PB NVMe
§ 8 PB Optane PMEM

31 TB/s Read & Write

Eagle 100 PB @ RAID6
§ 8480 HDD
§ 40 Lustre MDT

> 650 GB/s Read & Write

Grand 100 PB @ RAID6
§ 8480 HDD
§ 40 Lustre MDT

> 650 GB/s Read & Write
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Aurora Network Architecture

8 1

• Increased DAOS inter-group bandwidth
• Support rebuilding and inter-server communication
• Prevent DAOS server traffic interfering with application communication

• Increased bandwidth to service group
• Support off-cluster access and data-movement

166
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Aurora Storage Overview

Slingshot Fabric

Scalable Storage Cluster (SSC)
Xeon servers connected to JBOD
Lustre OSSs & MDSs

DAOS Nodes (DNs)
1024 Xeon servers
(16) 512GB NVRAM
(16) 15TB NVMe attached storage
DAOS service

Gateway Nodes (GNs)
100 Xeon servers with no local storage
Access to external storage

System Service Nodes (SSNs)

User Access Nodes (UANs)

DAOS Performance
230 PB capacity @ EC16+2
31TB/s

Lustre Performance
Grand – 100 PB @ 650 GB/s
Eagle – 100 PB @ 650 GB/s

Gateway nodes



Argonne Leadership Computing Facility23

DAOS Node Details
• Intel Coyote Pass System

⏤ (2) Xeon 5320 CPU (Ice Lake)
⏤ (16) 32GB DDR4 DIMMs
⏤ (16) 512GB Intel Optane Persistent Memory 200
⏤ (16) 15.3TB Samsung PM1733
⏤ (2) HPE Slingshot NIC

• 1024 Total Servers
⏤Each node will run 2 DAOS engines
⏤2048 DAOS engines
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AURORA INSTALLATION
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Aurora Cabinets Installation at Argonne
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AURORA SOFTWARE STACK & 
PROGRAMMING MODELS
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Three Pillars of Aurora

Simulation Data Learning

Directives

Parallel Runtimes

Solver Libraries

HPC Languages

Big Data Stack

Statistical Libraries

Productivity Languages

Databases

DL Frameworks

Linear Algebra Libraries

Statistical Libraries

Productivity Languages

Math Libraries, C++ Standard Library, libc

I/O, Messaging

Scheduler

Linux Kernel, POSIX

Compilers, Performance Tools, Debuggers

Containers, Visualization
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oneAPI
“oneAPI is a cross-industry, open, standards-based unified programming model that 
delivers a common developer experience across accelerator architectures—for faster 
application performance, more productivity, and greater innovation.”
-- oneapi.com

Three Components
• Language

• DPC++
• Libraries

• oneMKL, oneDAL, ...
• Hardware Abstraction Layer

• Level Zero (L0)

Set of specifications that any one can implement

Intel has their own implementations
https://software.intel.com/ONEAPI

Good documentation for understanding what will be on 
Aurora

https://software.intel.com/ONEAPI
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Aurora oneAPI Components

29

DPC++ Compiler (CPU & GPU)

DPC++ Compatibility Tool

C/C++/Fortran OpenMP Offload Compiler 
(CPU & GPU)

Intel Distribution for Python

Languages & Runtimes

Parallel STL / oneDPL

Aurora MPICH

Compiler/Compatibility IDE Plugins

Debugger

oneMKL oneDNN
Math Libraries

Visualization

oneDAL

VTune

Advisor

Inspector
Tools

GT-PIN

Frameworks

PyTorch (Alpha) TensorFlow 
(Alpha)

oneCCL
oneTBB
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Level Zero (L0)
• Low-level programming model for fine 

grained control of device
• https://spec.oneapi.com/versions/latest/oneL

0/index.html

• Management of:
• Device memory
• Synchronization
• Command queue and command lists
• And more

https://spec.oneapi.com/versions/latest/oneL0/index.html
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Aurora Programming Models 
• Aurora applications may use:

• DPC++/SYCL
• OpenMP
• Kokkos
• Raja
• OpenCL

• Experimental 
• HIP

• Not available on Aurora:
• CUDA
• OpenACC

HIP
Early Science Application Programming Model Distribution

DPC++/SYCL
HIPLZ
Intel Python Framework
Kokkos
Kokkos/OpenMP
Kokkos/SYCL
LLVM-JIT
MKL
OCCA/SYCL
OpenMP
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DPC++ (SYCL)
DPC++
• Intel implementation of SYCL standard
• Add language or runtime extensions as needed to meet user needs
• Incorporates SYCL 1.2.1 specification and Unified Shared Memory
• Part of Intel oneAPI specification

SYCL
• Khronos standard specification
• SYCL is a C++ based abstraction layer (standard C++11)
• Based on OpenCL concepts (but single-source)
• SYCL is designed to be as close to standard C++ as possible
• Current Implementations of SYCL:

§ ComputeCPP™ (www.codeplay.com)
§ Intel SYCL (github.com/intel/llvm)
§ triSYCL (github.com/triSYCL/triSYCL)
§ hipSYCL (github.com/illuhad/hipSYCL)
§ Runs on today’s CPUs and nVidia, AMD, Intel GPUs

Intel DPC++

SYCL 1.2.1 or later

C++11 or 
later

Extensions Description
Unified Shared 
Memory (USM) 

defines pointer-based memory accesses and 
management interfaces. 

In-order queues
defines simple in-order semantics for queues, 
to simplify common coding patterns. 

Reduction
provides reduction abstraction to the ND-
range form of parallel_for. 

Optional lambda 
name

removes requirement to manually name 
lambdas that define kernels. 

Subgroups
defines a grouping of work-items within a 
work-group. 

Data flow pipes 
enables efficient First-In, First-Out (FIFO) 
communication (FPGA-only)

https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table

https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html
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MPI
• MPICH for Aurora
• Based on open source MPICH with new features to support 

Aurora
• Uses OFI (Open Fabrics Interface) to communicate with the 

Slingshot Interconnect
• Redesigned to reduce instruction counts and remove non-

scalable data structures
• Innovative collective algorithms
• Optimized Threading Support
• Shared Memory Optimizations through XPMEM
• MPICH is GPU aware for Intel GPUs

• It is built on top of oneAPI Level Zero
• It supports point to point, one-sided, and collectives
• Support for different data types through the Yaksa library
• OSU benchmarks with Level Zero used to validate 

correctness and performance
.
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MPI (Contd)

• Multiple optimizations added to support the unique hardware features of 
Aurora

• Intel GPUs and all-to-all connectivity across the GPUs inside the node

• Multiple NICs on the same node. MPICH supports:
• Distribution of processes to NICs
• Striping (a single rank distributes a single message across multiple NICS)
• Hashing (a single rank sends different messages through different NICs, 

e.g., depending on the communicator or the target rank)
• Efficient Multithreading support to use multiple NICs

• Collectives optimized for Dragonfly network topology

• Most of the optimizations are already upstreamed in the MPICH repository. 
The rest is coming soon
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AURORA APPLICATIONS
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Exascale Applications/Software Readiness

• ALCF Aurora Early Science Program (ESP)
• 9 Simulation,10 Data and Learning projects

• Every project will run a proposed science 
campaign on Aurora

• Training: Workshops, Hackathons, Dungeon 
Sessions, webinars

• Argonne postdoc and staff support (Catalysts)

36

§ DOE Exascale Computing Project (ECP)
§ 3 technical areas: Application Development, 

Software Technology, Hardware and Integration
– AD: 21 applications projects preparing 

codes for exascale
– ST: 66 unique software products
– HI: Applications Integration: deploy apps on 

specific exascale systems (Aurora, 
Frontier)

§ AppInt funding for Argonne staff for Aurora:
– ALCF working with 15 ECP AD so far

Argonne-Intel Center of Excellence – dedicated Intel staff
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a proof-of-concept, RMG-Cat successfully discovered the major kinetic pathways for 
CH4 oxidation on nickel; in less than 5 minutes on a single core, RMG-Cat was able to 
find all the same reactions as a microkinetic mechanism developed over several years by 
a team of experts. RMG-cat can use a single node effectively. An entire RMG-Cat run 
can take between a few seconds to a few hours on a personal laptop, but for the purposes 
of this application we only need to know which thermodynamic and kinetic parameters 
are absent or poorly estimated. This node-bound preprocessing step only takes a few 
seconds to evaluate. Once these parameters have been calculated through the workflow 
RMG-Cat can be run entirely as a post-processing step, and if necessary this process can 
be iterated upon until all relevant species are calculated. For each species, and all related 
reactions between those species that RMG-cat does not have information for, we will 
launch an instance of our search suite (KinBot, GAlgo, LRT) in parallel. 

Once the area to search is defined KinBot and GAlgo will use learning techniques such as 
genetic algorithms to efficiently explore the PES. These efficient searches will require 
hundreds of thousands (106) of individual energy evaluations and will simultaneously 
learn a low rank tensor (LRT) approximation of the PES that will be used to expedite the 
search and to calculate the kinetic and thermochemical parameters.  
Each of these searches will be carried out in the following manner, as shown in figure 1. 
At each step, GAlgo proposes a configuration to evaluate an objective function that 
measures the proximity of that particular configuration to a critical point of interest (e.g. 
saddle point or a local minimum). The configuration is represented by RxN matrix, where 
R is the number of configurations, and N is the dimensionality (e.g. for normal 
coordinates N=3a-6 where a is the number of nuclei), while the objective function 
requires KinBot to evaluate the PES from a computational chemistry application such as 
NWChem, as well as gradients with respect to each dimension, leading to a matrix of size 
Rx(N+1). GAlgo then uses the objective function value to propose a new configuration as 
it proceeds with the search of saddle points. KinBot generates input and parses output 
from simulations to feed these energies and gradients into LRT. LRT will need the 
aggregated number of PES evaluations input/output pairs, as MxN and Mx1 matrices, 
respectively, where M is the total, aggregated number of PES evaluations. The 
constructed LRT approximation (stored as a coefficient tensor) will be invoked instead of 
the PES evaluation if GAlgo's imposed accuracy tolerance is met. Our current estimates 
for the above dimensionalities are: N~100, M~106, and R~104.  

 
Figure 1: Application workflow 

RMG-Cat	encounters	
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phase	space	search	
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Properties	stored	
in	database	

High	Accuracy	
Single	Point	jobs	
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approximation	of	

the	surface	

GAlgo	inquires	the	
surface	evaluation	

PES		
or	LRT	

Submit	
Quantum	
Chemistry	

Job	to	Queue	

Dark Sky Mining Salman Habib

but not for the typical BSP-based supercomputing application. This model is very suited for the
A21 architecture (details cannot be discussed here due to RSNDA restrictions).

As a specific example from this project we consider the construction of synthetic galaxy

Core Catalog
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Merger Trees

 Galaxies 
Galaxy Positions
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Light-cone
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Figure 1. Workflow for synthetic galaxy catalog
construction showing science products (courtesy
LSST DESC Cosmological Simulations working
group).

catalogs; these have become the centerpiece of the
industry standard practice for validating cosmolog-
ical inference pipelines. While the use-cases of
such galaxy catalogs are highly varied, the princi-
pal idea behind their use is straightforward: the ex-
istence of a realistic mock universe generated from
a known underlying model allows scientists to val-
idate the analysis pipelines they intend to run on
the actual astronomical dataset.

Figure 1 shows an end-to-end diagram of
the workflow for producing a synthetic sky from
raw simulation outputs, which requires an entire
ecosystem of scientific codes rather than a single
application. Beginning from (Level 1) direct simu-
lation outputs, this ecosystem:

1. Creates Level 2 science datasets such as cat-
alogs of dark matter halos, as well as time-
series data such as trees of merger histories
of each halo;

2. Creates Level 3 mock galaxy catalogs by
training and applying nonlinear mappings
from the halos to synthetic galaxies that re-
side in the halos.

It is important to note that except for the open-source semi-analytic galaxy formation code Galacti-
cus [16] (which for many tasks is already being replaced by an Argonne-based methodology), all
the functional blocks in Figure 1 exist, were written by the Argonne team, and are already running
as a parallel workflow application on Cetus, Cooley, and the Phoenix cluster (the last-named is
a CELS/HEP data-intensive computing pathfinder project). Indeed, this science pipeline has now
reached production-level maturity: our group is currently deploying it to generate the flagship syn-
thetic catalogs for LSST DESC’s Data Challenge 2. At the time of this writing, a growing list of
more than twenty distinct analyses have been proposed by LSST DESC members who will use
these catalogs as a foundational component of the methodology in their proposed publications.

For our Aurora application, we propose to scale up our science pipeline to generate large suites
of high-accuracy synthetic skies, making the data products publicly available for analysis by the
wider cosmological community. The production phase of this proposal will be preceded by a train-
ing phase, in which we fine-tune our hierarchical model with targeted application of machine learn-
ing algorithms. As described below in Section 2.5.4, we will use generative deep learning models
trained on high-resolution simulations to produce synthetic halo- and star-formation histories. We
will accelerate evaluation of our forward modeled summary statistics with Gaussian Process mod-
eling, applying Variational Autoencoder techniques for dimensional reduction. Because our goal

6

Data/Learning for Exascale CFD K. E. Jansen

Figure 2: Isosurface of instantaneous Q criterion colored by speed over a vertical tail at Re = 3.5 105,
with a rudder deflection angle of 30 degrees and 12 unsteady jets active. This DES simulation
shows our method’s ability to refine the grid to capture the unsteady structures resulting from the
separation near the rudder and from the interaction between the unsteady jets and the crossflow.

(a) CFD - First adapted mesh. (b) CFD - Second adapted mesh. (c) Experiments.

Figure 3: Phase-averaged isosurface of velocity (color) and vorticity (grey) revealing coherent struc-
tures in the wake of a synthetic jet located at the junction between the stabilizer and the deflected
rudder of a vertical tail. Comparison between CFD predictions on two successive adapted meshes
and experimental results (c).

16

Figure 1: Workflow of the proposed simulations 

2e. Application Summary  
The proposed simulations embody a complex 
workflow, which integrates several codes and 
algorithms, as illustrated in Figure 1. Data will be 
generated by the electronic structure layer, comprising 
the Quantum Espresso9-10 code for generating low-cost, 
low-fidelity DFT data and the BerkeleyGW code for 
generating high-cost, high-fidelity MBPT data. Data 
from quantum mechanical simulations will flow into 
two layers of machine learning, a discovery layer and a 
decision layer. The discovery layer includes feature 
selection, using the SISSO code, to identify low-cost 
features that correlate strongly with high-cost excited 
state properties, as well as algorithms such as subgroup 
discovery11-12 to reveal patterns in data. The discovery layer will further promote deeper understanding of 
the underlying physics. Information from the discovery layer will feed into the decision layer, in which 
Bayesian optimization algorithms will decide which data points to sample next and at what level of 
fidelity. Decisions will be translated to queries of the CSD database, a large repository of unlabeled data, 
and coordinates of structures pulled out of CSD will be fed back into the electronic structure layer to 
acquire labels. This process will repeat iteratively in order to refine our models. Structures identified as 
promising candidates at any point will be further evaluated using high-fidelity GW+BSE calculations to 
accurately predict their electronic and optical properties. Due to the high computational cost of MBPT 
calculations of large periodic systems with several hundred atoms, we expect most of the computer time 
requested to be spent on BerkeleyGW calculations. The computational cost of DFT and ML calculations 
is negligible in comparison. Therefore, the proposed development plan is focused primarily on the 
BerkeleyGW code. Additional goals are scalability improvements of SISSO and development of Python 
workflow management tools to integrate and automate the whole workflow.  

2e.i. Application Software Requirements 

Quantum ESPRESSO: 
Language: FORTRAN-90 
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW 
Parallelism: MPI, OpenMP 
Past DOE Readiness Programs: NESAP for Cori 

BerkeleyGW: 
Language: FORTRAN 2008 
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW 
IO Libraries: Parallel HDF5 
Past DOE Readines Programs: NESAP For Cori 

SISSO: 
Language: FORTRAN 
Libraries: BLAS, LAPACK 
Parallelism: MPI 
Past DOE Readines Programs: optimization on Theta is underway within INCITE project 

Multi-fidelity Bayesian Optimization:  
Language: Python 
Libraries: cuDNN, CUDA, Tensorflow, Pytorch 
Parallelism: CUDA on GPUs 

 
Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

http://esp.alcf.anl.gov
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Evolution of Intel GPU Testbeds at Argonne
2019 - Iris 2020 - Arcticus 
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Aurora TDS

Iris Node

Intel Xeon Skylake 
4C

64GB 
DDR4

Iris Pro 
Graphics 

P580

2X MEM CH

Initial Software 
Development Node

Intel Xeon 
CPU Max 

Series

EDR
2x Port

100 
GBE

512GB 
DDR5

Florentia Node

Intel Data Center 
GPU

Max Series

128GB HBM2e

UPI

PCIe G5

8X MEM CH

Intel Xeon 
CPU Max 

Series

512GB 
DDR5

EDR
2x Port

100 
GBE

Xe Links

Intel Data Center 
GPU

Max Series

128GB HBM2e

Intel Data Center 
GPU

Max Series

128GB HBM2e

Intel Data Center 
GPU

Max Series

128GB HBM2e

Intel Data 
Center GPU 
Max Series

128GB
HBM2e

512GB 
DDR5

Intel Data 
Center GPU 
Max Series

128GB
HBM2e

Intel Data 
Center GPU 
Max Series

128GB
HBM2e Intel Data 

Center GPU 
Max Series

128GB
HBM2e

Intel Data 
Center GPU 
Max Series

128GB
HBM2eIntel Data 

Center GPU 
Max Series

128GB
HBM2e

Intel Xeon 
CPU Max 

Series

PCIe Switch

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

Intel Xeon 
CPU Max 

Series
PCIe Switch

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

HPE 
SS11

2x 200Gb

512GB 
DDR5

Aurora Node

Exascale 
Compute 

Blade (ECB)

Intel®
Xeon®

Icelake
24C

Intel®
Xeon®

Icelake
24C

EDR
100 GBE

128GB 
DDR4

128GB 
DDR4

Arcticus node

XeHP

32GB HBM2e

UPI

PCIe G4

8X MEM CH

XeHP

32GB HBM2e

Dual Discrete GPU 
Development Node

Intel Max Series 
Quad Data Center GPU / 

Dual Xeon CPU Node



Argonne Leadership Computing Facility38

Tracking Aurora Applications Development
• Steps in application preparation

⏤ Implementation of science and algorithms
⏤Porting to Aurora programming models
⏤Testing with Aurora SDK on Aurora testbeds
⏤Tuning for performance on Aurora testbeds
⏤Scaling across the Aurora system

38

§ ALCF and Intel working with over 40 
projects to ready codes for Aurora

§ Effort from over 60 Argonne & Intel 
people and numerous outside teams

Application Science Implementation Port to Aurora Programming Models
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Aurora Applications Status
Application Status

XGC

NAMD

FloodFillNetwork

HACC

QUDA

OpenMC

Flash-X/Thornado

NWChemEX

AMR-Wind

CANDLE/UNO

HARVEY

NekRS

LAMMPS

GENE

FusionDL

MadGraph

BerkelyGW

PHASTA

MFIX-Exa

Chroma

cctbx

Application Status

MILC

QMCPACK

E3SM-MMF

SW4

DCMesh

LATTE

Grid

GAMESS

NYX

Uintah

Data Driven CFD

DarkSkyMining

Flow Based Generative Model

Nalu-Wind

GEM

RXMD-NN

mb_aligner

spiniFEL

Multi-Grid Parameter Opt.

FastCaloSim

Running

Running

Running

Partially Running

Porting in Progress
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OpenMC (courtesy of John Tramm) 
https://docs.openmc.org

• OpenMC is being developed as part of the ECP ExaSMR project (PIs: 
Steven Hamilton, Paul Romano)

• OpenMC is a Monte Carlo particle transport code written in C++ and the 
OpenMP target offloading programming model

• The project seeks to accelerate the design of small modular nuclear 
reactors by generating virtual reactor simulation datasets with high-
fidelity, coupled physics models for reactor phenomena that are truly 
predictive

• The Monte Carlo method employed by OpenMC is considered the "gold 
standard" for high-fidelity but these methods suffer from a very high 
computational cost. 

• The extreme performance gains OpenMC has achieved on GPUs is 
finally bringing within reach a much larger class of problems that 
historically were deemed too expensive to simulate using Monte Carlo 
methods. 

(Higher is better)
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XGC (courtesy Tim Williams, Aaron Scheinberg)

• Science case: Predict ITER fusion 
reactor plasma behavior with Tungsten 
impurity ions sputtered from the 
divertor

• Gyrokinetic particle-in-cell simulation 
of tokamak plasma using C++ and:
⏤Kokkos/SYCL on Intel GPUs
⏤Kokkos/HIP on AMD GPUs
⏤Kokkos/CUDA on NVIDIA GPUs

ESP Project PI: CS Chang
ECP Project PI: Amitava Bhattacharjee
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CRK-HACC (courtesy Adrian Pope, Steve Rangel, Nick Frontiere)

ESP/HACC PI: Katrin Heitmann
ECP/ExaSky PI: Salman Habib
• CRK-HACC simulates the formation of 

large-scale structures in the Universe over 
cosmological time. 

• CRK-HACC employs n-body methods for 
gravity and a novel formulation of Smoothed 
Particle Hydrodynamics.

• CRK-HACC is a mixed-precision C++ code, 
with FLOPS-intense sections implemented 
using architecture-specific programming 
models in FP32 precision.

• CUDA and HIP are maintained as a single source with macros.
• SYCL kernels were translated from CUDA using SYCLomatic and 

custom LLVM-based tools, including optimizations for Intel GPUs.
• Figure-of-Merit (FOM) has units of particle-steps per second.
• Single GPU FOM problem used 33 million particles per GPU, and Intel 

PVC results are shown for both small (128) and large (256) General-
purpose Register File (GRF) modes.

• Weak-scaling results are shown with the full application FOM, where the 
GPU represents roughly 80% of the total wall clock.
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NWChemEx (Courtesy of Ajay Panyala)
https://github.com/NWChemEx-Project

l Single GPU, Time in seconds for DLPNO-CCSD per iteration
l Performance of SYCL on NVIDIA & AMD were comparable with 

native CUDA & HIP respectively

*Snapshot of Ubiquitin 
Protein

(Lower is better)

l Acknowledgment: Work performed by the NWChemEx team members without any 
architecture specific optimizations

• NWChemEx is a general purpose electronic 
structure code, which includes
– Array of high-fidelity coupled cluster methods
– Hartree-Fock, DFT, MP2 methods
– Reduced-scaling DLPNO formulation
– Molecular dynamics

• Programming models: C++, CUDA, HIP, SYCL
– Communication frameworks: Global Arrays, 

UPC++, MADNESS
– Tensor Contraction Engines: TAMM, 

TiledArray

• Key physics modules
– DLPNO-CCSD(T)

• Reduced-scaling implementation for 
GPU platforms

Performance on Single GPU

Strong Scaling 
Performance on 90-nodes

ESP & Project Project PI: Theresa Windus
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NAMD 2 (Courtesy of Wei Jiang)

• Simulate large biomolecular systems or complex macromolecular 
machines

• Science problem: molecular structure-function relationship

• Algorithm: particle motion integration with short- and long-range 
force calculation

• Fine-grained force-domain decomposition

• Written using C/C++, Charm++, CUDA, HIP, SYCL

Scalable molecular dynamics for exascale computations

Benchmarking NAMD 2.15alpha2 on STMV (1.06M atoms) NVE 
simulation: CHARMM force field (12A cutoff), rigid bonds 
with 2 fs timestep, multiple time stepping with 4 fs PME

NAMD website: https://www.ks.uiuc.edu/Research/namd

ESP PI: Benoit Roux
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THANK YOU



Argonne Leadership Computing Facility46 Argonne Leadership Computing Facility46

EXTRA SLIDES
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Aurora Exascale Architecture
ExaComm ISC 2023

25 May 2023
Kalyan Kumaran
Director of Technology at the Argonne Leadership Computing Facility (ALCF)
Argonne National Laboratory
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DOE Leadership 
Computing Facility
• Established in 2004 as a collaborative, multi-lab 

initiative funded by DOE’s Advanced Scientific 
Computing Research program

• Operates as one facility with two centers, at 
Argonne and at Oak Ridge National Laboratory 

• Deploys and operates at least two advanced 
architectures that are 10-100 times more 
powerful than systems typically available for 
open scientific research

• Fully dedicated to open science to address the 
ever-growing needs of the scientific community
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MPI
• Intel MPI & Cray MPI

• MPI 3.0 standard compliant

• The MPI library will be thread safe
• Allow applications to use MPI from individual threads
• Efficient MPI_THREAD_MUTIPLE (locking optimizations)

• Asynchronous progress in all types of nonblocking 
communication

• Nonblocking send-receive and collectives
• One-sided operations

• Hardware and topology optimized collective implementations
• Supports MPI tools interface
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Aurora System Overview

50

FABRIC
Fabric (name) Slingshot11
NIC HPE SS – 200Gbps

Switch HPE SS 64 ports @ 
200Gbps

Fabric Topology (name) Dragonfly
Peak injection BW (PB/s) 2.12
Peak Bi-section BW (PB/s) 0.69

STORAGE
Distributed Asynchronous Object 
Store (DAOS) (PB) (usable) 230

DAOS Performance (TB/s) 31
DAOS Nodes (#) 1024
Lustre GFS (PB) 150
Lustre Performance (TB/s) 1

COMPUTE
Total Cabinets (#) 166

Total Nodes (#) 10,624

Total Intel Data Center GPU Max Series (#) 63,744

Total Intel Xeon Max Series w HBM (#) 21,248

Total DP Peak Flops (EF) ≧ 2.0

MEMORY
Total GPU HBM Memory (PB) 8.16
Peak GPU HBM BW (PB/s) 208.9
Total Xeon HBM Memory (PB) 1.36
Peak Xeon HBM BW (PB/s) 30.5
Total DDR5 Memory (PB) 10.9
Peak Xeon DDR5 BW (PB/s) 5.95
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Aurora Compilers
Intel compilers will be the primary compilers on Aurora
– Provide C, C++, Fortran
– Optimized for Intel Data Center GPU Max Series 
– Implemented using LLVM infrastructure
– Intel will upstream LLVM GPU backend and other related improvements

• Enables 3rd party compiler development
LLVM 
– Clang – C/C++
– Flang – Fortran
– Will generate code for Intel Data Center GPU Max Series 
– Will incorporate ECP optimization enhancements
Cray
– Optimized C, C++, Fortran compilers for x86
– Utilizes LLVM components
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Libraries
• oneMKL

• Optimized math libraries

• oneDAL
• Optimized Data analytics

• oneCCL
• Optimized communications for deep learning 

models 

• oneDNN
• Optimized deep learning routines

• Python
• Tensorflow
• PyTorch
• Numba
• Scikit-learn

• Apache Spark MLlib
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Tools
VTune Profiler
– Widely used performance analysis tool
– Currently supports analysis on Intel integrated GPUs
– Will support future Intel GPUs

Advisor
– Provides roofline analysis
– Offload analysis will identify components for profitable offload

• Measure performance and behavior of original code
• Model specific accelerator performance to determine offload opportunities
• Considers overhead from data transfer and kernel launch

APIs and Tools for hardware counters and binary instrumentation for performance measurement
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• Python and Productivity Languages
• Numba, NumPy,  etc.
• JAX and Julia

• Deep Learning Frameworks:
• PyTorch, TensorFlow, Horovod, DDP, 

Deepspeed
• Machine Learning

• OneDAL, scikit-learn, XGBoost, etc.
• Optimized and scalable communication using 

OneCCL
• Spark BigData Analytics stack
• Profiling and debugging tools

Data Science and Learning on Aurora

https://software.intel.com/content/www/us/en/develop/tools/o
neapi/ai-analytics-toolkit.html

Aurora will provide for a familiar, productive and performant HPC and AI 
software stack Intel AI Analytics Toolkit

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html
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OpenCL
• Open standard for heterogeneous device programming (CPU, GPU, FPGA)
• Standardized by multi-vendor Khronos Group, V 1.0 released in 2009

• AMD, Intel, nVidia, …
• Many implementations from different vendors

• Intel implementation for GPU is Open Source (https://github.com/intel/compute-runtime) 
• SIMT programming model 

• Distributes work by abstracting loops and assigning work to threads
• Not using pragmas / directives for specifying parallelism

• Similar model to CUDA
• Consists of a C compliant library with kernel language 

• Kernel language extends C
• Has extensions that may be vendor specific

https://github.com/intel/compute-runtime
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OpenMP 4.5/5
• OpenMP 5 constructs will provide directives based programming model for Intel GPUs
• Available for C, C++, and Fortran
• A portable model expected to be supported on a variety of platforms (Aurora, Frontier, Perlmutter, …)
• Optimized for Aurora
• Integration with MKL for GPU offload
• For Aurora OpenACC codes could be converted into OpenMP

• Automated translation possible through the clacc conversion tool (for C/C++)

https://www.openmp.org/
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Aurora ESP Data and Learning Projects and Methods 

57
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Classification

Regression

Reinforment learning

Clustering

Uncertainty Quantification

Dimensionality Reduction

Reduced  / Surrogate Models

Advanced Statistics

Image and Signal Processing

Graph Analytics

Databases

Advanced Workflows

In Situ Viz & Analysis

Virtual Drug Response Prediction

Enabling Connectomics at Exascale to
Facilitate Discoveries in Neuroscience

Machine Learning for Lattice Quantum
Chromodynamics

Accelerated Deep Learning Discovery in
Fusion Energy Science

Many-Body Perturbation Theory Meets
Machine Learning

Exascale Computational Catalysis

Dark Sky Mining

Data Analytics and Machine Learning for
Exascale CFD

In Situ Visualization and Analysis of Fluid-
Structure-Interaction Simulations

Simulating and Learning in the ATLAS detector
at the Exascale
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Bridging ESP Projects to Aurora
• To be ready for Early Science runs, projects must

⏤Demonstrate INCITE level computational readiness (scaling, use GPUs, ready proposed problem in short order)
⏤Complete model validations, preliminary studies, parameter-setting exercises
⏤Finish integrating complex workflows for Data and Learning projects with realistic data

• Portability of applications, components, and workflows to Polaris

45

§ OpenMP 4.5+
§ Kokkos
§ SYCL
§ PETSc, math libraries
§ Many apps have 

explicit NVIDIA 
implementations

Simulation
components

§ Spark
§ HDF5
§ ADIOS
§ MPI-IO
§ Databases
§ Numba
§ Python

Data 
components

§ TensorFlow
§ PyTorch
§ Distributed DL 

(eg., Horovod)
§ Scitkit Learn
§ JAX
§ Julia

Learning 
components

§ Containers
§ Balsam
§ funcX/Parsl
§ Python-based 

workflows

Workflows


