Network challenges and directions for the Exascale era

ExaComm workshop, ISC '18 28 June 2018

General network scaling challenges

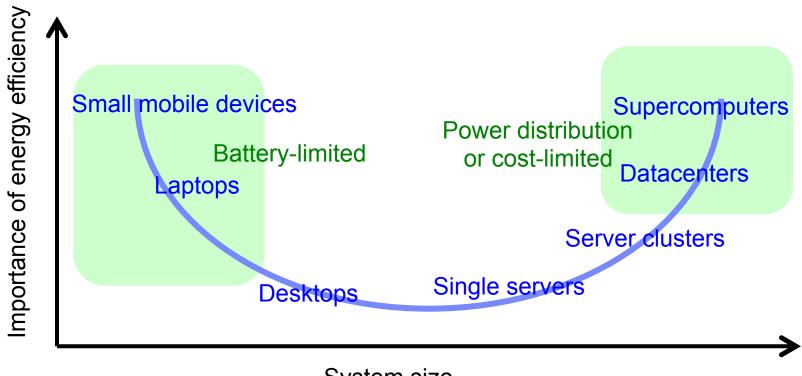
- Cost
- Energy
- Scalable performance
- Reliability

Performance-related challenges

- Message rate, efficiency
- All-to-all performance
- Low latency
- Offload

Next generation HPC network nirvana

- Large HPC customers (e.g., U.S. national labs) have said they desire 0.1 byte/flop or op
 - Total of ingress and egress bandwidth (0.05 + 0.05)
 - Although "fat" nodes make lower ratios acceptable
 - Surface to volume ratio decreases with memory size and computational capability
- For an exa-op system, this would be (50 + 50) PB/s total bandwidth to/from endpoints
- Is nirvana achievable?


HPC network grand challenge #1: Cost

- 15% rule
 - Supercomputer customers are typically willing to pay up to 15% of the system cost for the interconnection network
- Assume \$400M for an exaflop system: \$60M max for the interconnection network
- Assume highly-scalable, bandwidth- and cost-efficient topology:
 - Dragonfly 2.5 bidirectional links/cables per endpoint
 - In the best case, only 0.5 links @ 50 Gb/s signaling per endpoint are optical
 - But this will increase to 1.5 links @ 100 Gb/s signaling
- Assume all network cost is from optical links (a very optimistic assumption)
 - Requires optical link cost ≤ 15¢/Gb/s for 50 Gb/s signaling
 - An ≤ 5¢/Gb/s for 100Gbps signaling
 - But today we are > \$1/Gb/s, resulting in \$400M for optics alone

HPC network grand challenge #2: Energy

System size

HPC network grand challenge #2: Energy

- Example: U.S. Dept. of Energy desires ≤ 30 MW for an exascale system
 - Assume 15% allocation of energy to the network: 4.5 MW
- Again assume a highly-scalable, bandwidth- and cost-efficient topology:
 - Dragonfly 2.5 links per endpoint
 - In the best case, only 0.5 links @ 50 Gb/s signaling per endpoint are optical
 - But this will increase to 1.5 links @ 100 Gb/s signaling
- Assume switches and electrical links consume half of network power
 - It is actually much more than this today for cluster networks
 - Assume other half of energy from the optical links (2.25 MW)
 - Requires 5.6 pJ/bit for the optical links, with 50 Gb/s signaling
 - Requires 1.9 pJ/bit for optical links, with 100 Gb/s signaling
 - Difficult to achieve, but cost is a much bigger challenge

HPC network grand challenge #3: Scalable performance

- Can the interconnect scale performance linearly?
 - Are there limits or inflection points to interconnect scaling?
- Can the system scale incrementally?
- Can be the system be partitioned well?
 - Job isolation, QOS, jitter reduction
- Can messaging software scale to millions of endpoints?

HPC network megatrends

- Ethernet commonality and in general, applicability to Cloud
- Higher switch radix and move to bandwidth-scalable topologies
- Increasing emphasis on offload
- Increasing level of optics integration

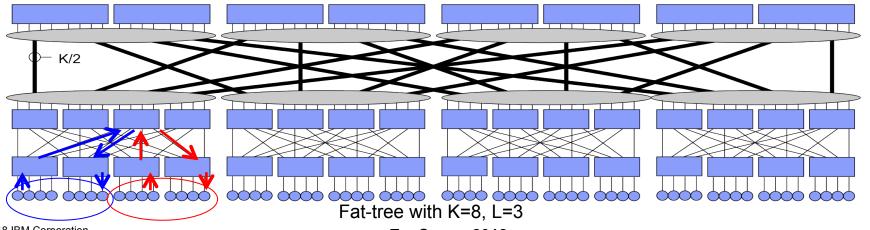
Ethernet commonality

- Increasing commonality with Ethernet
- PHY and I/O macro convergence
 - Signaling rate
 - SERDES, training
 - Error detection and correction techniques
- Main motivation for interface convergence is cost savings
 - Signaling at 50 Gb/s and higher is a huge challenge
 - Shared design, verification, fabrication, and testing costs

Ethernet commonality: one present implication

- The chosen Ethernet path for 50+ Gb/s signaling leverages PAM4 (Pulse Amplitude Modulation with 4 signal levels)
 - Doubles the signaling rate for the same Baud rate as NRZ (Non-Return to Zero)
- However, "eyes" are much narrower, and the impact of noise is relatively more pronounced
- Will typically require Forward Error Correction (FECs) to achieve an acceptable Bit Error Rate (BER)
 - Error detection and link-level retry are insufficient
- Increases latency on every hop, for checking and correction: ?? ns

Interconnect Architecture: topologies



- Desire bandwidth-scalable topologies
- Take advantage of trend towards high-radix switches to flatten network
 - Fewer hops = reduced cost, energy, and latency
 - Disadvantages tori and similar nearest neighbor topologies
- Topology choice heavily influenced by costs and available technologies
 - Optics vs. electrical tradeoffs
 - Ratio of electrical links is decreasing with increasing signaling rate
 - For ≥100 Gb/s signaling, almost all links may be optical
 - Link and switch counts then become a good determiner of relative cost

Topology options: Fat-tree

- Assume K-port switches, and an L-level fat-tree
- Scales to N = 2(K/2)^L endpoints = K³/4 for a 3-level Fat-tree
- Switches traversed = 2L 1 (5 switches for a 3-level fat-tree)
- Links per endpoint = L (3 links for a 3-level fat-tree)
- Switches per endpoint (full tree) = (2L 1)/K
- Bisection bandwidth = BN, where B is the unidirectional link bandwidth
- Partitions: integer multiples of sub-trees with the same "parents"
- Easily accommodates tapering for reduced cost at reduced bandwidth

© 2018 IBM Corporation

ExaComm 2018

Topology options: 2-tier Dragonfly

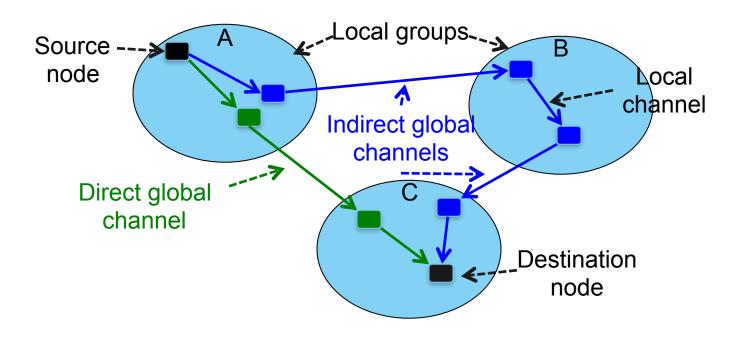
K/4 ports to endpoints

K-port Dragonfly router:

K/4 ports to 2nd tier (global links)

2 tiers, with each tier fully connected

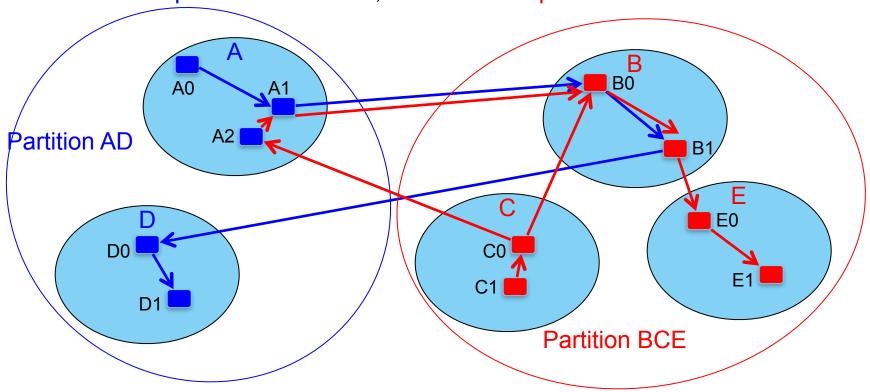
Dragonfly router


K/2 ports to 1st tier (local group)

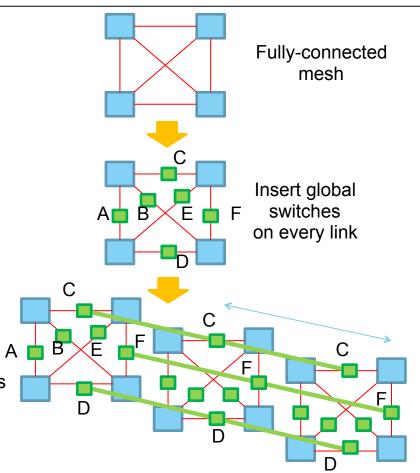
- Scalable to K4/64 endpoints
- 4 or 6 router/switch traversals
- 3 virtual channels per class
- 2.5 links per endpoint
- 4/K switches per endpoint
- Bisection bandwidth scales as BN/2 (half of Fat-tree)
- Global bandwidth comparable to Fat-tree
- Non-interfering partition sizes only up to a full local group

Local group (1st-tier connections)

Full system (local groups connected via global links)


Direct path shown in green, indirect path shown in blue

Dragonfly routing: partitions and indirect paths


Partition AD path shown in blue, Partition BCE path shown in blue

Topology options: stacked full mesh

- Simultaneously discovered by IBM and Fujitsu
- Names "multi-layer full mesh" by Fujitsu
- Scalable to K³/8 endpoints
- 3 or 5 switch traversals
- 2 virtual channels per class
- 2 links per endpoint
- ~3/K switches per endpoint
- Bisection bandwidth scales as ~BN/2 (half of Fat-tree)
- Global bandwidth comparable to Fat-tree
- Many isolated partition sizes possible

= Global switch
= local (TOR)
switch connecting
endpoints

Duplicate up to K/2 times to create K/2 Groups

C switches are really one switch, just as for D and F

A, B, and E lines omitted to avoid figure complexity

© 2018 IBM Corporation

ExaComm 2018

Topology options: stacked full mesh

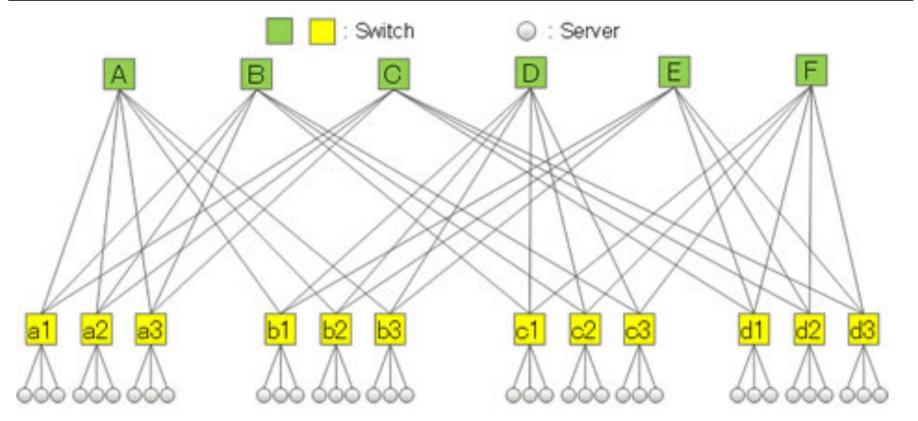
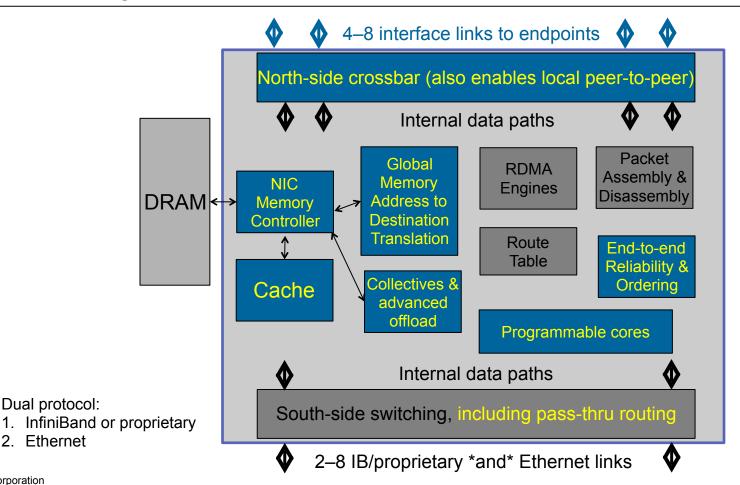


Figure from Fujitsu: http://www.fujitsu.com/global/about/resources/news/press-releases/2014/0715-02.html

© 2018 IBM Corporation

Topology comparison table



Architecture	Approximate Max Scale K=36, 48, 64	Links Per Endpoint	Switch Ports Per Endpoint	Switch Traversals Direct, Worst Case Indirect	Range of partition sizes	Virtual Channels per Traffic Class
2-level Fat-tree	648, 1152, 2048	2	3	3, NA	Good	1
3-level Fat-tree	11664, 27648, 64K	3	5	5, NA	Good	1
4-level Fat-tree	205K, 648K, 2M	4	7	7, NA	Good	1
Stacked full mesh	5184, 12288, 29127	2	3	3, 5	Medium	2
2-tier Dragonfly	26244, 82994, 256K	2.5	4	4, 6	Only within local group	3

- For fat-trees, 3 levels is the sweet spot balancing scale and complexity
- Stacked full mesh attractive within its scale (about half that of a 3-level fat-tree)

Offload: "SuperNIC" architecture

Dual protocol:

2. Ethernet

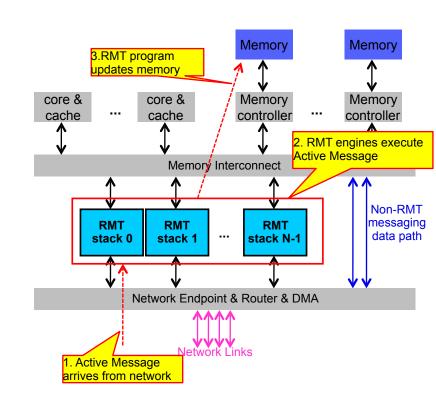
Offload: Active Communications

- Many interesting opportunities for processor offload
 - Active messages/transactions, including remote atomic operations
 - Complex collectives
 - Efficient gather/scatter
 - Message completion handling
 - Message aggregation
 - Send/receive messages without host processor involvement
 - Direct protocol hand-off to GPUs, other accelerators, smart storage, etc.

Active Communication: programmable vs. hardwired

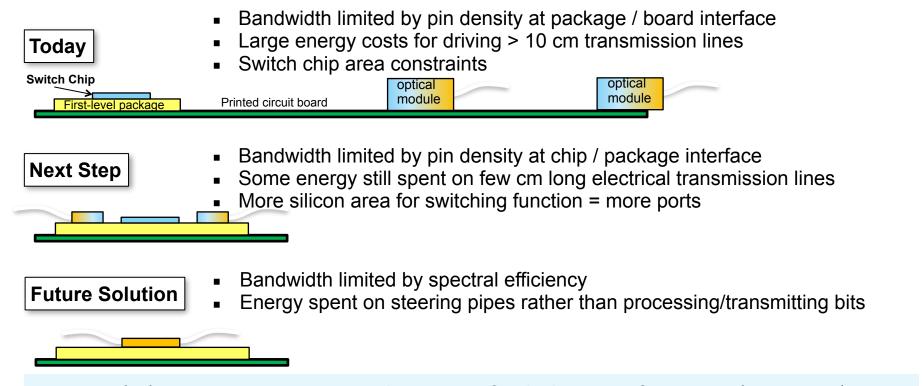
- Programmable/configurable engine advantages:
 - More flexible function
 - More robust if there are design errors or oversights
 - Can support many functions with one unit
- Hardwired:
 - For the given function: more efficient, higher performance
- And FPGAs are in the middle of this spectrum

Active Communication: location, location, location



- In (or attached to) the NIC?
 - Minimizes dependence on host architecture
 - Can upgrade network independently
- Closer to the node memory?
 - Low-latency, high-bandwidth access to host memory
 - Efficient packed gather/scatter packet transfer over NIC-host bus
- Support in switches
 - Collective support provides clear advantages in latency
 - And can provide bandwidth advantages, depending on the implementation

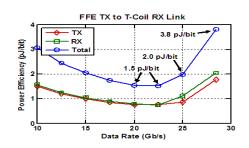
Remote Memory Transaction (RMT) investigation

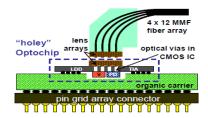


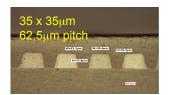
- RMT request = Active Message
 - Initiates program execution on receiver node
 - Updates remote memory user data
- RMT engines in/near network interface
 - Many programmable engines
 - Tiny and power efficient
 - Optimized for data movement
- Network topology agnostic
- Near memory with low-latency, high-bandwidth access to entire address space

Co-packaging: Changing Approach for Building Switches

- Avoid distortion, power, & cost of ASIC-interfacing electrical links
- © 2011 Move beyond chip & module pin-count limits

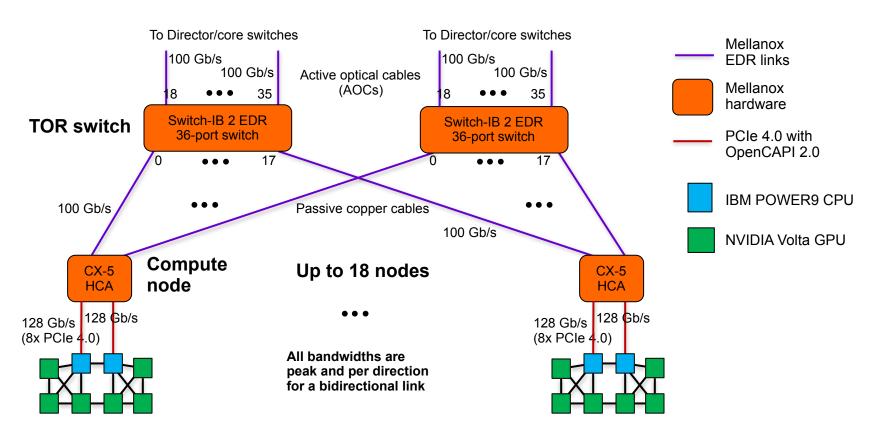

Path to increased network bandwidth per link



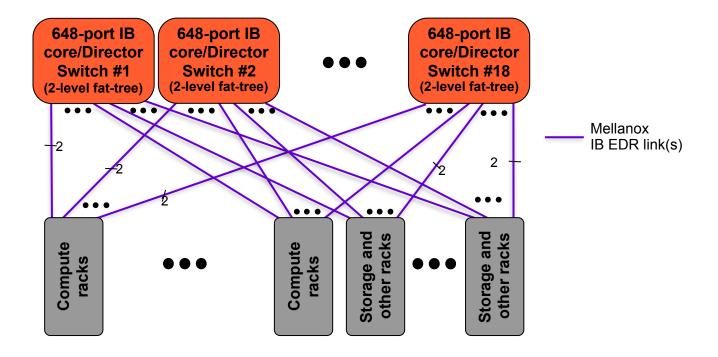

- Data Rate

 - Ultimately limited by powerCan be mitigated by tight packaging
- VCSELs vs. Silicon Photonics
- Number of physical lanes
 - Increase number of fibers
 - Closely packed optical waveguides increases density
 - Multicore fiber can reduce fiber count by 4x or more
- PAM4
 - 4 signaling levels
 - Doubles signaling rate compared to NRZ
- WDM

 - CWDM with multimode possible for ~2-4 wavelengths
 Si Photonics for >4 wavelengths (also multi-km distance)


Summary

- Networks are aggressively targeting future HPC and Analytics challenges
- Scalable performance
 - Technology, topologies, messaging software
- Cost: public enemy number one
 - Technology & topologies
 - Leverage commodity when possible, exploit commonality with ethernet
- Low latency, high messaging rate, offload, collectives
 - Holistic, end-to-end design philosophy with codesigned messaging stack
 - Overlap communication with computation
 - Hardwired and programmable support in NICs, switches, and near-memory
 - Location matters: compute near data to minimize data movement


CORAL: Summit compute rack InfiniBand components

CORAL: complete InfiniBand EDR network

Thanks!

Danke schön!

