Architecture for Caching Responses
with Multiple Dynamic
Dependencies in Multi-Tier Data-
Centers over InfiniBand

S. Narravula, P. Balaji, K. Vaidyanathan,
H.-W. Jin and D. K. Panda

The Ohio State University

Presentation Outhine

= Introduction/Motivation
= Design and Implementation
= Experimental Results

= Conclusions

Introduction

Fast Internet Growth

2 Number of Users
o Amount of data
0 Types of services

Several uses
o E-Commerce, Online Banking, Online Auctions, etc

Web Server Scalabllity
o Multi-Tier Data-Centers
o Caching — An Important Technique

Presentation Outline

Introduction/Motivation
a Multi-Tier Data-Centers
o Active Caches

Design and Implementation
Experimental Results
Conclusions

A Typical Multi-Tier Data-Center

Clients

0000
0000

WAN

Tier O

Proxy Nodes

0000
0000

Web Apache
Servers
o O |
O O Tier 2
Database
S < Servers
©_© O O
Tier 1 O O
» | Application > o O
Servers N O O
O O
O O
O O
PHP | © ©

A

S

N

v

InfiniBand

High Performance

o Low latency
o High Bandwidth

Open Industry Standard

Provides rich features
2 RDMA, Remote Atomic operations, etc

Targeted for Data-Centers
Transport Layers

o VAPI
o |IPolB

Presentation Outline

Introduction/Motivation
o Multi-Tier Data-Centers
o Active Caches

Design and Implementation
Experimental Results
Conclusions

Caching

Can avoid re-fetching of

content
Beneficial if requests ‘ /Front_End
a

repeat Number of iers
Important for scalability Requests

_ _ Decrease
Static content caching l — Bck End
o Well studied in the past Tiers

o Widely used

Active Caching

Dynamic Data
o Stock Quotes, Scores, Personalized Content, etc
o Complexity of content

Simple caching methods not suited
Issues

o Consistency
o Coherency

User Request

Proxy Node Back-End

Cache Data
___________ N Update

Cache Coherency

Refers to the average staleness of the
document served from cache

Strong or immediate (Strong Coherency)
0 Required for certain kinds of data

o Cache Disabling
o Client Polling

Basic Client Polling *

Front-End Back-End
Request
q o
Version Read

Cache Hit :

4 \
Response

Cache Miss —
< —

* SANO4: Supporting Strong Cache Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. Narravula, et. Al.

Multiple Object Dependencies

Cache documents contain multiple objects

A Many-to-Many mapping

o Single Cache document can contain Multiple Objects
o Single Object can be a part of multiple Documents

Complexity!!

Cache _
Documents Oblects

Client Polling

Front-End Back-End
R t :
eques g
Version Read Single (_:heCk
Cache Hit : Possible
< \
Response
Cache Miss I
< e

Single Lookup counter essential for correct and efficient design

Objective

To design an architecture that very
efficiently supports strong cache
coherency with multiple dynamic
dependencies on InfiniBand

Presentation Outline

= Introduction/Motivation
= Design and Implementation
= Experimental Results

= Conclusions

‘ Basic System Architecture

. Application
Proxy . .
Servers . Cooperation Servers

Cache Lookup Counter maintained on the Application Servers

Basic Design

Home Node based Client Polling
o Cache Documents assigned home nodes

Proxy Server Modules
o Client polling functionality

Application Server Modules
o Support “Version Reads” for client polling
o Handle updates

Many-to-Many Mappings

Mapping of updates to dynamic objects

Mapping of dynamic objects with Lookup
counters

Efficiency
o Factor of dependency

Lookup < Objects < Updates
counters

Mapping of updates

Non-Trivial solution

Three possibilities

o Database schema, constraints and dependencies
are known

o Per query dependencies are known
o No dependency information known

Mapping Schemes

Dependency Lists
o Home node based
0 Complete dependency lists

Invalidate All

0 Single Lookup Counter for a given class of
gueries

o Low application server overheads

Handling Updates

Update | Notiﬂ-c_allt\(_)n_
Local P o : _——
Search and [¢ VAPI Send |4~
Coherent [™™*™*=eseee [T
nvalidate | ~ TTTTttrpe, A ?.’f.(’.‘\.tom:c) o
............ R
HTTP l_ DB ResP
Response
Application Application Application
Server Server Server

HTTP
Request

L

2B Query (TCP)
—

-

onse

Database
Server

Presentation Outhine

= Introduction/Motivation
= Design and Implementation

s Experimental Results
= Conclusions

Experimental Test-bed

Cluster 1: Eight Dual 3.0 GHz Xeon processor nodes with 64-bit
133MHz PCI-X interface, 512KB L2-Cache and 533 MHz Front
Side Bus

Cluster 2: Eight Dual 2.4 GHz Xeon processor nodes with 64-bit
133MHz PCI-X interface, 512KB L2-Cache and 400 MHz Front
Side Bus

Mellanox InfiniHost MT23108 Dual Port 4x HCAS
MT43132 eight 4x port Switch
Mellanox Golden CD 0.5.0

Experimental Outline

Basic Data-Center Performance
Cache Misses in Active Caching

Im
Im
m

pact of Cache Size
pact of Varying Dependencies

nact of Load in Backend Servers

Traces Used

o Traces 1-5 with increasing update rate

o Trace 6: Zipf like trace

Basic Data-Center Performance

Data-Center Throughput Data-Center Response Time
20000 _6
15000 - A — ES
(<] 4 |
wn e
o 10000 - i 3
5000 - § 9]
0 . T . T T §1 |
Trace2 Trace3d Trace4 Traceb =0
Traces with Increasing Update Rate Tace2 Traced Traced Traced
. . Traces with Increasing Update Rate
—o—No Cache —m—Invalidate All —&—Dependency Lists —e—No Cache —s— Invalidate All —— Dependency Lists

» Maintaining Dependency Lists perform significantly well for all traces

‘ Cache Misses in Active Caching

Cache Misses
120

100 -
80 -
60 -
40 -
20 -

Cache Miss %

Trace 2 Trace 3 Trace 4 Trace 5

Traces with Increasing Update Rate

@ No Cache m Invalidate All O Dependency Lists

» Cache misses for Invalidate All increases drastically with increasing
update rates

Impact of Cache Size

Throughput Vs Cache Size

25000
20000 { @— —— \
15000

10000 \

5000 ‘\‘\‘\‘

0 I I I I I
100% 50% 10% 5% 1% 0.10% 0%

TPS

Relative Cache Size

» Maintaining Dependency Lists perform significantly well for all traces
» Possible to cache a select few and still extract performance

‘ Impact of Varying Dependencies

Effect of Varying Dependencies

16000
14000

12000
10000
8000
6000
4000
i n
0 - ‘ ‘ ‘ ‘ ‘ ‘
X 2X 4x 8x 16x 32X 64X

Factor of Dependencies

TPS

» Throughput drops significantly with increase in the average number of
dependencies per cache file

‘ Impact of L.oad 1n Backend Servers

Effect of Load

16000

14000 | B——1m w—
12000 -
10000

8000 -
6000 -|
4000 -
2000 1 o ¢

TPS

—&— No Cache —m— Dependency List

F I I I I I *’
0 1 2 4 8 16 32 64
Compute Threads

» Our design can sustain high performance even under high loaded
conditions with a factor of improvement close to 22

Conclusions

An architecture for supporting Strong Cache
Coherence with multiple dynamic
dependencies

Efficiently handle multiple dynamic
dependencies

o Supporting RDMA-based Client polling
Resilient to load on back-end servers

Web Pointers

- home page

http:/ /nowlab.cis.ohio-state.edu/

E-mail: {narravul, balaji, vaidyana, jinhy, panda}
@cse.ohio-state.edu

Back-up Slides

Cache Consistency

Non-decreasing views of system state
Updates seen by all or none

Proxy Nodes

Back-End Nodes

User Requests - Update

Performance

Throughput (RDMA Read)

25

- 20

- 15

- 10

- 5

0

7000
6000 [l = M m o [- [1 m
A
2 5000 - B
=
~ 4000
2
£ 3000]
(@)}
>
© 2000 - /
=
1000 - |'|
O*‘th* T T T T T T T \DS\D=\I:|=\
1 4 16 64 256 1K 4K 16K 64K
Message Size (bytes)
—— Send CPU ——1 Recv CPU
— &— Throughput (Poll) —@— Throughput (Event)

* Receiver side CPU utilization is very low

» Leveraging the benefits of One sided communication

'RDMA based Client Polling *

DataCenter: Throughput

N
a1
o
o

e e - "A - -k - cp -k -h--h-op--a--h--A

2000 -

1500 -

1000 -

500 -

Transactions per second (TPS)

o

0O 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

—e—No Cache — »— [IP0OIB - -a- - VAPI

* The VAPI module can sustain performance even with heavy load on the
back-end servers

* SANO4: Supporting Strong Cache Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. Narravula, et. Al.

Mechanism

Cache Hit:
o Back-end Version Check
a If version current, use cache

o Invalidate data for failed version check
o Use of RDMA-Read

Cache Miss
o Get data to cache
o Initialize local versions

Other Implementation Details

Requests to read and update are mutually
excluded at the back-end module to avoid
simultaneous readers and writers accessing
the same data.

Minimal changes to existing application
software

