Architecture for Caching Responses
with Multiple Dynamic
Dependencies in Multi-Tier Data-
Centers over InfiniBand

S. Narravula, P. Balaji, K. Vaidyanathan,
H.-W. Jin and D. K. Panda

The Ohio State University



Presentation Outhine

= Introduction/Motivation
= Design and Implementation
= Experimental Results

= Conclusions




Introduction

Fast Internet Growth

2 Number of Users
o Amount of data
0 Types of services

Several uses
o E-Commerce, Online Banking, Online Auctions, etc

Web Server Scalabllity
o Multi-Tier Data-Centers
o Caching — An Important Technique
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A Typical Multi-Tier Data-Center
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InfiniBand

High Performance

o Low latency
o High Bandwidth

Open Industry Standard

Provides rich features
2 RDMA, Remote Atomic operations, etc

Targeted for Data-Centers
Transport Layers

o VAPI
o |IPolB
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Caching

Can avoid re-fetching of

content
Beneficial if requests ‘ /Front_End
a

repeat Number of iers
Important for scalability Requests

_ _ Decrease
Static content caching l — Bck End
o Well studied in the past Tiers

o Widely used



Active Caching

Dynamic Data
o Stock Quotes, Scores, Personalized Content, etc
o Complexity of content

Simple caching methods not suited
Issues

o Consistency
o Coherency

User Request

Proxy Node Back-End

Cache Data
___________ N Update




Cache Coherency

Refers to the average staleness of the
document served from cache

Strong or immediate (Strong Coherency)
0 Required for certain kinds of data

o Cache Disabling
o Client Polling



Basic Client Polling *
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* SANO4: Supporting Strong Cache Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. Narravula, et. Al.




Multiple Object Dependencies

Cache documents contain multiple objects

A Many-to-Many mapping

o Single Cache document can contain Multiple Objects
o Single Object can be a part of multiple Documents

Complexity!!

Cache _
Documents  Oblects




Client Polling

Front-End Back-End
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Single Lookup counter essential for correct and efficient design




Objective

To design an architecture that very
efficiently supports strong cache
coherency with multiple dynamic
dependencies on InfiniBand
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‘ Basic System Architecture

. Application
Proxy . .
Servers . Cooperation Servers

Cache Lookup Counter maintained on the Application Servers




Basic Design

Home Node based Client Polling
o Cache Documents assigned home nodes

Proxy Server Modules
o Client polling functionality

Application Server Modules
o Support “Version Reads” for client polling
o Handle updates



Many-to-Many Mappings

Mapping of updates to dynamic objects

Mapping of dynamic objects with Lookup
counters

Efficiency
o Factor of dependency

Lookup < Objects < Updates
counters




Mapping of updates

Non-Trivial solution

Three possibilities

o Database schema, constraints and dependencies
are known

o Per query dependencies are known
o No dependency information known



Mapping Schemes

Dependency Lists
o Home node based
0 Complete dependency lists

Invalidate All

0 Single Lookup Counter for a given class of
gueries

o Low application server overheads




Handling Updates
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Experimental Test-bed

Cluster 1: Eight Dual 3.0 GHz Xeon processor nodes with 64-bit
133MHz PCI-X interface, 512KB L2-Cache and 533 MHz Front
Side Bus

Cluster 2: Eight Dual 2.4 GHz Xeon processor nodes with 64-bit
133MHz PCI-X interface, 512KB L2-Cache and 400 MHz Front
Side Bus

Mellanox InfiniHost MT23108 Dual Port 4x HCAS
MT43132 eight 4x port Switch
Mellanox Golden CD 0.5.0



Experimental Outline

Basic Data-Center Performance
Cache Misses in Active Caching

Im
Im
m

pact of Cache Size
pact of Varying Dependencies

nact of Load in Backend Servers

Traces Used

o Traces 1-5 with increasing update rate

o Trace 6: Zipf like trace



Basic Data-Center Performance
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» Maintaining Dependency Lists perform significantly well for all traces




‘ Cache Misses in Active Caching

Cache Misses
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» Cache misses for Invalidate All increases drastically with increasing
update rates




Impact of Cache Size

Throughput Vs Cache Size
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» Maintaining Dependency Lists perform significantly well for all traces
» Possible to cache a select few and still extract performance



‘ Impact of Varying Dependencies

Effect of Varying Dependencies
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» Throughput drops significantly with increase in the average number of
dependencies per cache file




‘ Impact of L.oad 1n Backend Servers

Effect of Load
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» Our design can sustain high performance even under high loaded
conditions with a factor of improvement close to 22




Conclusions

An architecture for supporting Strong Cache
Coherence with multiple dynamic
dependencies

Efficiently handle multiple dynamic
dependencies

o Supporting RDMA-based Client polling
Resilient to load on back-end servers



Web Pointers

- home page

http:/ /nowlab.cis.ohio-state.edu/

E-mail: {narravul, balaji, vaidyana, jinhy, panda}
@cse.ohio-state.edu
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Cache Consistency

Non-decreasing views of system state
Updates seen by all or none

Proxy Nodes

Back-End Nodes

User Requests - Update




Performance

Throughput (RDMA Read)
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* Receiver side CPU utilization is very low

» Leveraging the benefits of One sided communication




'RDMA based Client Polling *

DataCenter: Throughput
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* The VAPI module can sustain performance even with heavy load on the
back-end servers

* SANO4: Supporting Strong Cache Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. Narravula, et. Al.




Mechanism

Cache Hit:
o Back-end Version Check
a If version current, use cache

o Invalidate data for failed version check
o Use of RDMA-Read

Cache Miss
o Get data to cache
o Initialize local versions




Other Implementation Details

Requests to read and update are mutually
excluded at the back-end module to avoid
simultaneous readers and writers accessing
the same data.

Minimal changes to existing application
software



