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Introduction

• Fault tolerance becomes increasingly 

important for scientific applications

• When scaling up:• When scaling up:

– Mean Time Between Failure (MTBF) goes down

– Cost of failure goes up

• How to achieve fault tolerance in large scale 

is a challenge.



Background: Checkpointing

• Checkpointing and rollback recovery:
– A commonly used method to achieve fault tolerance

– Save intermediate execution state of the application

– Upon failure, restart from previous saved state (checkpoint)

• Checkpointing MPI programs• Checkpointing MPI programs
– Need to maintain global consistency among processes. Lost 

messages or orphan messages must be avoided.

– Main categories of checkpointing protocols: Coodinated and 
Uncoordinated

• Cost of checkpointing
– Dominating delay for checkpointing is storage access (over 95%)

– In real world, large scale applications use shared central storage



Comparison between 
Checkpointing Protocols

Coordinated

• Use global coordination to 

guarantee consistency

• Processes save their states 

at relatively same time.

Uncoordinated

• Processes save their states 

mostly independently

• Use message logging to 

guarantee consistencyat relatively same time.

• Storage bottleneck when 

saving process states

guarantee consistency

• Message logging incurs 

overhead in communication

Very expensive on high speed

networks e.g. InfiniBand

We choose to improve 

coordinated checkpointing



Storage Bottleneck
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32 Processes share 140MB/s aggregated bandwidth (4.38 MB/s per Proc)

• In real deployment of large clusters, the per process 

bandwidth to file system is even smaller than this.

• Sandia Thunderbird cluster: 8960 CPUs with 6.0 GB/s storage 
bandwidth: (0.69 MB/s per Proc)



Summary of Motivation

• Scalability limitation of coordinated 

checkpointing

– Large number of processes concurrently take 

checkpoint     Less bandwidth per process

Longer checkpointing delayLonger checkpointing delay

• Goals of this work

– Combine the advantages of uncoordinated 

checkpointing to improve coordinated protocol.

– Alleviate storage bottleneck to improve scalability in 

real-world scenario

– Minimize failure-free overhead
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Main Idea

• Carefully schedule the MPI processes to take 

checkpoints at slightly different time to avoid 

storage bottleneck.

• Allow processes which are not currently • Allow processes which are not currently 

taking checkpoints to proceed with 

computation.

• Maintain global consistency by a coordination 

protocol to avoid message logging overhead.



Design: Running Scenario
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• Only a small group of processes save their states at 

same time, while other processes proceed computation

• Delay some messages to ensure global consistency



Detailed Design Issues

• Group formation

– Statically or dynamically using heuristics 

• Connection management

– Disconnect/Reconnect to a specific set of processes– Disconnect/Reconnect to a specific set of processes

• Message and request buffering

– Buffer the message content or the meta-info of the 

messages (MPI request)

• Asynchronous progress

– Passive coordination when other groups are taking 

checkpoint
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Experimental Platform

• 32 Compute nodes

– Intel 64-bit Xeon 3.6 GHz CPU, 2 GB memory

– Mellanox MT25208 InfiniBand HCA

• 4 Storage nodes• 4 Storage nodes

– AMD Operton 2.8 GHz CPU, 4 GB memory

– Mellanox MT25208 InfiniBand HCA

– PVFS2 on EXT3 using local SATA disks (File system 

performance is shown in previous graph)

• Software:

– BLCR 0.5.0 to take checkpoints of individual 

processes.



MVPAICH Project

• MVAPICH2

– High Performance MPI-1/MPI-2 implementation over InfiniBand

– Has powered many supercomputers in TOP500 supercomputing 

rankings

– Currently being used by more than 545 organizations (academia 

and industry worldwide)

– http://mvapich.cse.ohio-state.edu/ 

• MVAPICH2-0.9.8 is currently integrated with 

coordinated checkpointing.
Q. Gao, W. Yu, W. Huang, and D. K. Panda. Application-Transparent Checkpoint/Restart for 
MPI Programs over InfiniBand. In proc of ICPP 06
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High Performance Linpack

HPL: Solving dense 
linear system 

Configuration:
32 processes, (8 X 4)
Group size is four
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Group size is four
larger block size.

Up to 78% reduction in 
effective ckpt delay

Note: process has 
different sizes of 
memory footprint at 
different time points
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High Performance Linpack
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Checkpoint Group Size

Average reduction in delay for group-size 2, 4, 8, 16 are 
37%, 46%, 46%, 35%, respectively



Parallel Version of MotifMiner
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MotifMiner: A data 
mining toolkit that can 
mine for structural 
motifs in a wide area of 
biomolecular datasets.
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Chao Wang and Srinivasan 
Parthasarathy. “Parallel 
Algorithms for Mining Frequent 
Structural Motifs in Scientific 
Data”. In proc of ICS’04

Up to 70% reduction in 

effective ckpt delay



Parallel Version of MotifMiner
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Checkpoint Group Size

Average reduction in delay for group-size 2, 4, 8, 16 are 
14%, 27%, 32%, 28%, respectively
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Conclusions

• We analyze the scalability limitation of coordinated 

checkpointing caused by storage bottleneck.

• We present a design of group-based checkpointing to 

address the scalability limitation.

• We implement the design based on MVAPICH2 and • We implement the design based on MVAPICH2 and 

evaluated it using settings similar to production clusters.

• Experimental results show that effective checkpoint 

delay can be reduced significantly by group-based 

checkpointing, up to 78% for HPL and 70% for 

MotifMiner



Acknowledgements

Our research is supported by the following organizations

• Current Funding support by

22

• Current Equipment support by



http://nowlab.cse.ohio-state.edu/

NBCL home page

Web Pointers

http://nowlab.cse.ohio-state.edu/

home page

http://mvapich.cse.ohio-state.edu/



Backup Slides



Level to Implement 
Checkpointing

• Application level V.S. system level

Application level:

• Application programmers 

save/restore running states, and 

handle consistency

• Application specific

System level:

•System provide interfaces to 

save/restore running states, and 

automatically handle consistency

• Application independent• Application specific

• Can only save states at certain 

points.

• Application independent

• Can save states in any given 

point.

• Compiler assisted application level checkpointing: 

application gives hints and library performs 

checkpoint



Related Works

• Other checkpointing protocols/designs
– Uncoordinated checkpointing

– Causal checkpointing 

– Staggered checkpointing

• Other techniques to reduce checkpoint delay
– Diskless checkpointing

– Incremental checkpointing

• On MPI
– MPICH-V, V2, Vcl, Vcausal, etc.

– OpenMPI (LAM/MPI, FT-MPI)

– Charm++ and AMPI



Performance Analysis

• Performance metrics
– Effective ckpt delay: the increase in application running 

time caused by taking a checkpoint

– Individual ckpt time: the downtime of individual processes 

for checkpointing, lower bound of effective delayfor checkpointing, lower bound of effective delay

– Total ckpt time: the time from ckpt request to ckpt finish, 

upper bound of effective delay.

• Two main factors affecting performance
– How checkpointing group size matches with 

communication group size

– Checkpoint placement: issuance time of checkpoint 

request



Checkpoint Group Size
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Comm. Group Size 16 Comm. Group Size 8

Comm. Group Size 4 Comm. Group Size 2

Embarrasingly Parallel
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Checkpoint Group Size

• Processes communicate only within groups continuously with 
various group sizes.
• When checkpoint group covers more than one communication 
groups, reducing checkpointing group size will reduce the delay



Checkpoint Placement
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• 32 processes, checkpoint group size = communication group 
size = 8, global barrier every minute.
• When checkpoint is placed close to synchronization 
point, group-based checkpointing reduces individual ckpt time 
greatly, but less in effective checkpoint delay.


