
Group-based Coordinated Checkpointing

for MPI: A Case Study on InfiniBandfor MPI: A Case Study on InfiniBand

Qi Gao, Wei Huang, Matthew J. Koop, and Dhabaleswar K. Panda

Network Based Computing Laboratory (NBCL) *

The Ohio State University

Outline

• Introduction, Background, and Motivation

• Main Idea and Design

• Experimental Platform

• Performance Results• Performance Results

• Conclusions

Introduction

• Fault tolerance becomes increasingly

important for scientific applications

• When scaling up:• When scaling up:

– Mean Time Between Failure (MTBF) goes down

– Cost of failure goes up

• How to achieve fault tolerance in large scale

is a challenge.

Background: Checkpointing

• Checkpointing and rollback recovery:
– A commonly used method to achieve fault tolerance

– Save intermediate execution state of the application

– Upon failure, restart from previous saved state (checkpoint)

• Checkpointing MPI programs• Checkpointing MPI programs
– Need to maintain global consistency among processes. Lost

messages or orphan messages must be avoided.

– Main categories of checkpointing protocols: Coodinated and
Uncoordinated

• Cost of checkpointing
– Dominating delay for checkpointing is storage access (over 95%)

– In real world, large scale applications use shared central storage

Comparison between
Checkpointing Protocols

Coordinated

• Use global coordination to

guarantee consistency

• Processes save their states

at relatively same time.

Uncoordinated

• Processes save their states

mostly independently

• Use message logging to

guarantee consistencyat relatively same time.

• Storage bottleneck when

saving process states

guarantee consistency

• Message logging incurs

overhead in communication

Very expensive on high speed

networks e.g. InfiniBand

We choose to improve

coordinated checkpointing

Storage Bottleneck

40

80

120

160

200

40

80

120

160

200
Bandwidth per Client
Aggregated Throughput

B
an

d
w

id
th

 p
er

 C
li

en
t

(M
B

/s
)

A
g

g
re

g
at

ed
 B

an
d

w
id

th
(M

B
/s

)

0

40

0

40

1 2 4 8 16 32
Number of Clients

B
an

d
w

id
th

 p
er

 C
li

en
t

(M
B

/s
)

A
g

g
re

g
at

ed
 B

an
d

w
id

th
(M

B
/s

32 Processes share 140MB/s aggregated bandwidth (4.38 MB/s per Proc)

• In real deployment of large clusters, the per process

bandwidth to file system is even smaller than this.

• Sandia Thunderbird cluster: 8960 CPUs with 6.0 GB/s storage
bandwidth: (0.69 MB/s per Proc)

Summary of Motivation

• Scalability limitation of coordinated

checkpointing

– Large number of processes concurrently take

checkpoint Less bandwidth per process

Longer checkpointing delayLonger checkpointing delay

• Goals of this work

– Combine the advantages of uncoordinated

checkpointing to improve coordinated protocol.

– Alleviate storage bottleneck to improve scalability in

real-world scenario

– Minimize failure-free overhead

Outline

• Introduction, Background, and Motivation

• Main Idea and Design

• Experimental Platform

• Performance Results• Performance Results

• Conclusions

Main Idea

• Carefully schedule the MPI processes to take

checkpoints at slightly different time to avoid

storage bottleneck.

• Allow processes which are not currently • Allow processes which are not currently

taking checkpoints to proceed with

computation.

• Maintain global consistency by a coordination

protocol to avoid message logging overhead.

Design: Running Scenario

0

1

2

Checkpoint Request

3

4

5

• Only a small group of processes save their states at

same time, while other processes proceed computation

• Delay some messages to ensure global consistency

Detailed Design Issues

• Group formation

– Statically or dynamically using heuristics

• Connection management

– Disconnect/Reconnect to a specific set of processes– Disconnect/Reconnect to a specific set of processes

• Message and request buffering

– Buffer the message content or the meta-info of the

messages (MPI request)

• Asynchronous progress

– Passive coordination when other groups are taking

checkpoint

Outline

• Introduction, Background, and Motivation

• Main Idea and Design

• Experimental Platforms

• Performance Results• Performance Results

• Conclusions

Experimental Platform

• 32 Compute nodes

– Intel 64-bit Xeon 3.6 GHz CPU, 2 GB memory

– Mellanox MT25208 InfiniBand HCA

• 4 Storage nodes• 4 Storage nodes

– AMD Operton 2.8 GHz CPU, 4 GB memory

– Mellanox MT25208 InfiniBand HCA

– PVFS2 on EXT3 using local SATA disks (File system

performance is shown in previous graph)

• Software:

– BLCR 0.5.0 to take checkpoints of individual

processes.

MVPAICH Project

• MVAPICH2

– High Performance MPI-1/MPI-2 implementation over InfiniBand

– Has powered many supercomputers in TOP500 supercomputing

rankings

– Currently being used by more than 545 organizations (academia

and industry worldwide)

– http://mvapich.cse.ohio-state.edu/

• MVAPICH2-0.9.8 is currently integrated with

coordinated checkpointing.
Q. Gao, W. Yu, W. Huang, and D. K. Panda. Application-Transparent Checkpoint/Restart for
MPI Programs over InfiniBand. In proc of ICPP 06

Outline

• Introduction, Background, and Motivation

• Main Idea and Design

• Experimental Platforms

• Performance Results• Performance Results

• Conclusions

High Performance Linpack

HPL: Solving dense
linear system

Configuration:
32 processes, (8 X 4)
Group size is four

120

160

200

D
e
la

y
 (

s
e
c
o
n
d
s
) All(32) Group(16)

Group(8) Group(4)

Group(2) Individual(1)

Group size is four
larger block size.

Up to 78% reduction in
effective ckpt delay

Note: process has
different sizes of
memory footprint at
different time points

0

40

80

50 100 150 200 250 300 350 400

E
ff
e
c
ti
v
e
 C

k
p
t

D
e
la

y
 (

Issuance Time of Checkpoint (seconds)

High Performance Linpack

60

80

100

120

140

160

60

80

100

120

140

160

E
ff
e
c
ti
v
e
 C

k
p
t
D

e
la

y
(S

e
c
o
n
d
s
)

0

20

40

60

0

20

40

60

All(32) 16 8 4 2 1

E
ff
e
c
ti
v
e

Checkpoint Group Size

Average reduction in delay for group-size 2, 4, 8, 16 are
37%, 46%, 46%, 35%, respectively

Parallel Version of MotifMiner

80

120

160

D
e
la

y
 (

s
e
c
o
n
d
s
) All(32) Group(16)

Group(8) Group(4)

Group(2) Individual(1)

MotifMiner: A data
mining toolkit that can
mine for structural
motifs in a wide area of
biomolecular datasets.

0

40

80

30 60 90 120

E
ff
e
c
ti
v
e
 C

k
p
t

D
e
la

y
 (

Issuance Time of Checkpoint (seconds)

Chao Wang and Srinivasan
Parthasarathy. “Parallel
Algorithms for Mining Frequent
Structural Motifs in Scientific
Data”. In proc of ICS’04

Up to 70% reduction in

effective ckpt delay

Parallel Version of MotifMiner

80

100

120

140

160

80

100

120

140

160

E
ff
e
c
ti
v
e
 C

k
p
t
D

e
la

y
(S

e
c
o
n
d
s
)

0

20

40

60

0

20

40

60

All (32) 16 8 4 2 1

E
ff
e
c
ti
v
e
 C

k
p
t
D

e
la

y
(S

e
c
o
n
d
s
)

Checkpoint Group Size

Average reduction in delay for group-size 2, 4, 8, 16 are
14%, 27%, 32%, 28%, respectively

Outline

• Introduction, Background, and Motivation

• Main Idea and Design

• Experimental Platforms

• Performance Results• Performance Results

• Conclusions

Conclusions

• We analyze the scalability limitation of coordinated

checkpointing caused by storage bottleneck.

• We present a design of group-based checkpointing to

address the scalability limitation.

• We implement the design based on MVAPICH2 and • We implement the design based on MVAPICH2 and

evaluated it using settings similar to production clusters.

• Experimental results show that effective checkpoint

delay can be reduced significantly by group-based

checkpointing, up to 78% for HPL and 70% for

MotifMiner

Acknowledgements

Our research is supported by the following organizations

• Current Funding support by

22

• Current Equipment support by

http://nowlab.cse.ohio-state.edu/

NBCL home page

Web Pointers

http://nowlab.cse.ohio-state.edu/

home page

http://mvapich.cse.ohio-state.edu/

Backup Slides

Level to Implement
Checkpointing

• Application level V.S. system level

Application level:

• Application programmers

save/restore running states, and

handle consistency

• Application specific

System level:

•System provide interfaces to

save/restore running states, and

automatically handle consistency

• Application independent• Application specific

• Can only save states at certain

points.

• Application independent

• Can save states in any given

point.

• Compiler assisted application level checkpointing:

application gives hints and library performs

checkpoint

Related Works

• Other checkpointing protocols/designs
– Uncoordinated checkpointing

– Causal checkpointing

– Staggered checkpointing

• Other techniques to reduce checkpoint delay
– Diskless checkpointing

– Incremental checkpointing

• On MPI
– MPICH-V, V2, Vcl, Vcausal, etc.

– OpenMPI (LAM/MPI, FT-MPI)

– Charm++ and AMPI

Performance Analysis

• Performance metrics
– Effective ckpt delay: the increase in application running

time caused by taking a checkpoint

– Individual ckpt time: the downtime of individual processes

for checkpointing, lower bound of effective delayfor checkpointing, lower bound of effective delay

– Total ckpt time: the time from ckpt request to ckpt finish,

upper bound of effective delay.

• Two main factors affecting performance
– How checkpointing group size matches with

communication group size

– Checkpoint placement: issuance time of checkpoint

request

Checkpoint Group Size

20

30

40

50

60

E
ff

ec
ti

v
e

C
k
p
t

D
el

ay

(s
ec

o
n
d
s)

Comm. Group Size 16 Comm. Group Size 8

Comm. Group Size 4 Comm. Group Size 2

Embarrasingly Parallel

0

10

20

All (32) 16 8 4 2 1

E
ff

ec
ti

v
e

(s
ec

o
n
d
s)

Checkpoint Group Size

• Processes communicate only within groups continuously with
various group sizes.
• When checkpoint group covers more than one communication
groups, reducing checkpointing group size will reduce the delay

Checkpoint Placement

20

40

60

80

T
im

e
(s

ec
o
n
d
s)

Effective Ckpt Delay
Individual Ckpt Time
Total Ckpt Time

0

20

5 15 25 35 45 55 65 75 85 95 105 115

T
im

e
(

Issuance Time of Checkpoint (seconds)

• 32 processes, checkpoint group size = communication group
size = 8, global barrier every minute.
• When checkpoint is placed close to synchronization
point, group-based checkpointing reduces individual ckpt time
greatly, but less in effective checkpoint delay.

