Implementing TreadMarks on GM over
Myrinet: Challenges, Design Experience
and Performance Evaluation

Ranjit Noronha
And
Dhabaleswar K. Panda
Department of Computer and Info. Science
The Ohio State University
E-mail: {noronha, panda}@cis.ohio-state.edu

Presentation Overview .

»+ Introduction

+ Motivation

» Overview of TreadMarks

» Overview of Myrinet and GM
» Design Challenges

» Performance Evaluation

» Conclusions

Introduction-Distributed
Shared Memory(DSM)

Abstraction of shared memory on physically
distributed machines

Expand the notion of virtual memory to different
nodes

2 types

- Software DSM; eg provides the shared memory
abstraction on a network of workstations like TreadMarks
(Rice), HLRC (Rutgers)

- Hardware DSM; eg use cache consistency protocols to
support shared memory between physically separate
remote memories like SGI origin and Sequent NUMA-Q

Introduction-Software DSM

Software DSM
- Consistency model; lazy release consistency
- Execution divided into intervals

- Allows multiple writers to write to the same page by
dividing it intfo smaller portions and creating diff's when
required by a reader

- Pages in the interval made consistent at synchronization
points like a lock acquire or a barrier

Software DSM Issues
- Depends on user and software layer

- Depends on communication protocols provided by the
system such as TCP, UDP, etc.

- Degraded performance because of false sharing and high
overhead of communication

- Has scaling problems

Motivation .

* Modern Interconnects
- Low Latency (InfiniBand and Myrinet< 10 us)
- High Bandwidth (InfiniBand 10GBps, Myrinet 2 GBps)

User Level Protocols(ULP)

- Can deliver performance close to that of the underlying
hardware

Sofware DSM over ULP

How does Software DSM perform with efficient
communications layers ?

* Can Software DSM outperform/out Scale
Hardware DSM ?

TreadMarks

- Developed at Rice University
- Overview paper:
 TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. P. Keleher, S.
Dwarkadas, A.L. Cox, and W. Zwaenepoel, Proceedings of

the Winter 94 Usenix Conference, pp. 115-131, January
1994,

* Runs in user space (no modification to the kernel)

* Implements lazy release consistency protocol
(LRC)

* User level memory management techniques
+ Communication protocol-UDP

" TreadMarks - Communication .

Model
Node 1 Node 2
Send | Interrupt
Request SIGI0
Request
Handler
Recelve - Send
Response Response

" TreadMarks-Communication
Primitives

Treadmarks Routines
i A
[! Recv Request
L | Send Reques/Response Recv Response ~Contiguous/Noncontiguous
€ | -Contiguous/Noncontiguous - Contiguous/Noncontiguous ~From any user buffer
T ~From any user buffer —From any user buffer ~Connection oriented/Connectionless
E ~Connection oriented/Connectionless | | ~Receiving from any node of a group ~Automatic allocation of temporary buf
i i
SIGIO handler
Y

.| Send Recv Recv_any
g Send, sendto(contig) Recv,recvfrom(contig) Select
E Sendmsg(non-contig) Recvmsg(non-contig)
D

Myrinet and GM

* Myrinet
- Low latency, high bandwidth network
- Full duplex links; 2+2 gigabits per second

- Programmable Myrinet NIC; 200 MHz
processor and upto 4 MB SRAM

- GM
- User level protocol
- Reliable, connectionless data delivery
- Transmits to and from pinned, memory
- No asynchronous notification
- No scatter, gather operations

TreadMarks over GM-
Challenges

* No asynchronous notification
- Polling thread
- Timer based implementation
- Modify GM to generate an interrupt

- Buffer allocation

- Buffer allocation automatic in UDP

- GM buffers have to be allocated before the
message arrives

- TreadMarks disables interrupts

TreadMarks on GM:
Challenges

* GM-Memory registration

* GM-Message length | has to
correspond to size s =log,(l+2)

» TreadMarks uses two ports between
every process-GM allows for a
maximum eight ports

TreadMarks over GM:
Proposed Substrate

Treadmarks Routines

A

i

Recv Request

o y
R - .
= Send Request/Response) Recv R_esponse —Contiguous/Noncontiguous
= —Contiguous/Noncontiguous — Contiguous/Noncontiguous —From any user buffer
= —From any user buffer —From any user buffer —Connection oriented/Connectionless
L —Connection oriented/Connectionless —Receiving from any node of a group —Automatic allocation of temporary buf
— A '} Y
| SIGIO handler
y
Connect Synchronous Synchronous Asynchronous Asynchronous
Send Receive Send Receive
D
2 i i
IS
= ' ‘
8 e ®
)
z ¢
Connection Buffer Preposting Receive Schemes for Handling
Management Management Buffers Async. Messages
i @
= RDMA Write Send Recv Interrupts
(@)
° ° ° ° ° °

TreadMarks over GM: .
Proposed Substrate

- Connection Management

- A single synchronous and asynchronous
port per process

- Allows for selectively generating an
interrupt

- More scalable

TreadMarks over GM:
Proposed Substrate

Treadmarks Routines

A

i

Recv Request

o y
R - .
= Send Request/Response) Recv R_esponse —Contiguous/Noncontiguous
= —Contiguous/Noncontiguous — Contiguous/Noncontiguous —From any user buffer
= —From any user buffer —From any user buffer —Connection oriented/Connectionless
L —Connection oriented/Connectionless —Receiving from any node of a group —Automatic allocation of temporary buf
— A '} Y
| SIGIO handler
y
Connect Synchronous Synchronous Asynchronous Asynchronous
Send Receive Send Receive
D
2 i i
IS
= ' ‘
8 e ®
)
z ¢
Connection Buffer Preposting Receive Schemes for Handling
Management Management Buffers Async. Messages
i @
= RDMA Write Send Recv Interrupts
(@)
° ° ° ° ° °

TreadMarks over GM: .
Proposed Substrate

» Buffer Management
- Send and receive buffers in registered memory

- Messages copied between TreadMarks and GM
buffers

- Allows for message pipelining

- Other solutions, pass a pointer to a buffer
» Complicated-requires modifications to TreadMarks

TreadMarks over GM:
Proposed Substrate

Treadmarks Routines

A

i

Recv Request

o y
R - .
= Send Request/Response) Recv R_esponse —Contiguous/Noncontiguous
= —Contiguous/Noncontiguous — Contiguous/Noncontiguous —From any user buffer
= —From any user buffer —From any user buffer —Connection oriented/Connectionless
L —Connection oriented/Connectionless —Receiving from any node of a group —Automatic allocation of temporary buf
— A '} Y
| SIGIO handler
y
Connect Synchronous Synchronous Asynchronous Asynchronous
Send Receive Send Receive
D
2 i i
IS
= ' ‘
8 e ®
)
z ¢
Connection Buffer Preposting Receive Schemes for Handling
Management Management Buffers Async. Messages
i @
= RDMA Write Send Recv Interrupts
(@)
° ° ° ° ° °

TreadMarks over GM:
Proposed Substrate

- Pre-posting receive buffers

- Asynchronous requests

* (n-1) outstanding requests possible for n processes
» Post (n-1) buffers for sizes 4 (8 bytes) to 15 (32K)
* Requires 64K*(n-1) per process

- Synchronous requests

+ Single buffer for sizes 4 1o 15
» 64K per process

- Total requirement is 64K*(n-1)+64K
- For 256 nodes 16 MB required

- Rendezvous protocol

TreadMarks-Communication
primitives and GM

Treadmarks Routines

A

i

Recv Request

o y
R - .
= Send Request/Response) Recv R_esponse —Contiguous/Noncontiguous
= —Contiguous/Noncontiguous — Contiguous/Noncontiguous —From any user buffer
= —From any user buffer —From any user buffer —Connection oriented/Connectionless
L —Connection oriented/Connectionless —Receiving from any node of a group —Automatic allocation of temporary buf
— A '} Y
| SIGIO handler
y
Connect Synchronous Synchronous Asynchronous Asynchronous
Send Receive Send Receive
D
2 i i
IS
= ' ‘
8 e ®
)
z ¢
Connection Buffer Preposting Receive Schemes for Handling
Management Management Buffers Async. Messages
i @
= RDMA Write Send Recv Interrupts
(@)
° ° ° ° ° °

TreadMarks over GM: .
Proposed Substrate

+ Schemes for handling asynchronous
requests
- On receiving an asynchronous request

from a particular node, don't reply
until a buffer has been pre-posted

TreadMarks-Communication
primitives and GM

Treadmarks Routines

A

i

Recv Request

o y
R - .
= Send Request/Response) Recv R_esponse —Contiguous/Noncontiguous
= —Contiguous/Noncontiguous — Contiguous/Noncontiguous —From any user buffer
= —From any user buffer —From any user buffer —Connection oriented/Connectionless
L —Connection oriented/Connectionless —Receiving from any node of a group —Automatic allocation of temporary buf
— A '} Y
| SIGIO handler
y
Connect Synchronous Synchronous Asynchronous Asynchronous
Send Receive Send Receive
D
2 i i
IS
= ' ‘
8 e ®
)
z ¢
Connection Buffer Preposting Receive Schemes for Handling
Management Management Buffers Async. Messages
i @
= RDMA Write Send Recv Interrupts
(@)
° ° ° ° ° °

TreadMarks over GM: .

Proposed Substrate

» Asynchronous Notification

- Interrupt

* Requires modification to GM Machine Control
Program

* Best performance
- Polling Thread
- Timer

Performance Evaluation

Our implementation (FAST/GM) compared with original
implementation (UDP/GM)

Test bed

- 16 machines with Quad 700 MHz Pentium III, 1Gb main
memory connected by a 2.1 Gbps Myrinet network running
GM 1.5.2.1. Myrinet NIC is a LanAI 9 with 4MB memory
and a 134MHz CPU

Evaluation carried out using

- Microbenchmarks; measure latency of basic operations
like page, diff, barrier and lock

- Applications (Sor, Jacobi, Tsp and 3Dfft)
- Effect of increase in system size on scale measured

- Effect of increase in application size on scale
measured

Time (microseconds)

Performance Evaluation-

Microbenchmarks
-— m UDP/GM B FAST/GM

1000 -
800
600
400
200

o
|

Microbenchmark

*Order of magnitude decrease in time to fetch a
page, diff and lock

Performance Evaluation-

System Size

3Dfft Jacobi

W
\\\\\\
08
W
\\\\\\
s
e
e
g W
\\\\\\\\\\\\\\\
" w
,,,,,
1 W
,,,,,,,,,,,
\\\\\\\\\\\\

Execution Time(sec)
@]
W
a
Execution Time(sec)

ORNWMUOON®O
T

(0] 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14
Number of nodes Number of nodes

Tsp

Execution Time(sec)
000000000
Execution Time(sec)

lllll			

oORNWANONDOR
T

(0] 2 4 6 8 10 12 14 (o) 2 a4 6 8 10 12 14
Number of nodes Number of nodes

-3Dfft, Tsp, for UDP/GM execution time increases, but decreases for FAST/GM
‘For Sor execution time much lower in the case of FAST/GM UDP /GM s

I - - - . | FAST/GM ==

Timing Breakdown-Overall i

B Signal handler

% 3500000

©

S 3000000 - O Sync wait

(&

(¢D)

g 2500000 B Sync recv
é 2000000

?g 1500000 O Sync send
= 1000000 B Async wait
5

(&)

()

x

L

_ [
500008 || EIH Erﬂ = E O Async recv

N N O Async send
é\ qu EN QQ\ P qu KO O y
%g &Q ’\va\@ \(X 0‘@ Q(X QQ B Protocol time
\\ O Q) S 2 I
O.)Q (’.)Q 3@00 5’6’0 S S A A

B Computation

‘Wait time are significantly reduced

Timing breakdown (without
wait times)

_’Ug B Protocol time
S 350000
% 300000 - B Async send
: -
o =0000 == B Async recv
‘£ 200000 - —
g 150000 - MH = ™ | O Sync send
% 100000 - 0 Sync recv
2 50000 —
g O ﬁ l E l l l l l l l l l - Signal
L>|j Q N O N handler
V.@ \)OQ QOQ A QQ\ A \)OQ\ @ Computation
& O N & O 'L time
EIN- - o A A P

‘Recv and send times reduced
-Signal handler time reduced thanks to tighter integration
with the communication layer

Execution Time(sec)

Execution Time(sec)

.Signif.
ica
nt decrease in executi
ion fime

Per formance

3Dfft

0 o =
m P U'I N m

A -

Sor

T
T
T
T
T

m
TR
M T

\
PIRANIIIA

I\ 1Al
\ ‘I““‘\\m'“\‘“ll||||||||||||||"
i

st i
RO
\ “"m\\m\m“w\\\‘\q;\;\m\“
v
\\\\\\“

nt
8 Y \\H\\\H\\\H\\\\\
Lttt
e
it o
v

1
TR
!\\h\\h\h\?\h\\\\\?\\\\\\“\\\\\\m\umm\\ \ -
luuuuuuuuuuunuunnnnn

‘ —>e— ‘ s

1500
200

N o 2500 =00

pplication Size 6 3500

FOU KR ONG WO

000
4000

for 3Dfft, Sor and tsp

Execution Time(sec)

Execution Time(sec)

valuation-

lication Size

Jacobi

35
30 t+
25
20 t+
15 +
10 +

5 t

o) J‘M\v«m

400

T
T
T
T
T
T
T

\u\mm\\\m\m\\\\u

h\h\!\\\\\\\!\\l\

\N\“\\\\\
wl"

------- I

600 8
oo
Appli 1200 1400 1600 "

u\\n\u\mﬂhmn

Tsp

e
nrONOOOADGO

S
2 \w“‘“\\\‘
. w““\“
A
o
k S
1 \\\\N‘
] | o
N
“,\w\\“
““\“‘,\w
un "
s |ul|||II|||||||||||||||I|||||ul|||||||I|||||||l||||I||||||

T
T
T
nln\mm\lvlll\llumi\u\llm

\nmmvummm\mn\mmum

-vmmnmlmn\umm

|||l|||||||||l|lIllllllllll

e

n
L
L

|I||||||||||||lIIllI||II|||

16

16.5
A 17
pplicati 17.5
Itlon size

UDP-16/GM

ASTABICM —m
UDP-1/GM =¥~
FAST-1/GM -3

18

Conclusions

Designed and developed a new framework where software
DSM systems like TreadMarks can exploit low latency, high
bandwidth networks like Myrinet

Performance evaluated in terms of
- Microbenchmarks
* Cost of basic software DSM operations significantly
reduced by order of magnitude
- System Size
+ Speedup upto a maximum of 6.3 for FAST/GM
- Application Size
+ Execution time improved by a maximum factor of 5.5
for FAST/GM over UDP/GM

Future Work .

* Scaling to a large number of nodes

- NIC based implementations-barrier, caching

- Communication optimizations
+ Diff processing constitutes a significant overhead

- Possible to eliminate diff processing

- Ported HLRC (Rutgers) to InfiniBand
* Barrier takes a significant percentage of execution
* Reduce overhead through multicast

- New protocols and challenges

- Eager protocols would have less overhead on a
network like InfiniBand

Additional Information

More information about this paper and other work can be found at:-

Home Page

http://nowlab.cis.ohio-state.edu

Network Based Computing Group
The Ohio State University

- By e-mail

Prof. D.K. Panda - panda®@cis.ohio-state.edu

Ranjit Noronha - noronha@cis.ohio-state.edu

