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Introduction-Distributed
Shared Memory(DSM)

Abstraction of shared memory on physically
distributed machines

Expand the notion of virtual memory to different
nodes

2 types

- Software DSM; eg provides the shared memory
abstraction on a network of workstations like TreadMarks
(Rice), HLRC (Rutgers)

- Hardware DSM; eg use cache consistency protocols to
support shared memory between physically separate
remote memories like SGI origin and Sequent NUMA-Q



Introduction-Software DSM

Software DSM
- Consistency model; lazy release consistency
- Execution divided into intervals

- Allows multiple writers to write to the same page by
dividing it intfo smaller portions and creating diff's when
required by a reader

- Pages in the interval made consistent at synchronization
points like a lock acquire or a barrier

Software DSM Issues
- Depends on user and software layer

- Depends on communication protocols provided by the
system such as TCP, UDP, etc.

- Degraded performance because of false sharing and high
overhead of communication

- Has scaling problems



Motivation .

* Modern Interconnects
- Low Latency (InfiniBand and Myrinet< 10 us)
- High Bandwidth (InfiniBand 10GBps, Myrinet 2 GBps)

User Level Protocols(ULP)

- Can deliver performance close to that of the underlying
hardware

Sofware DSM over ULP

How does Software DSM perform with efficient
communications layers ?

* Can Software DSM outperform/out Scale
Hardware DSM ?




TreadMarks

- Developed at Rice University
- Overview paper:
 TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. P. Keleher, S.
Dwarkadas, A.L. Cox, and W. Zwaenepoel, Proceedings of

the Winter 94 Usenix Conference, pp. 115-131, January
1994,

* Runs in user space (no modification to the kernel)

* Implements lazy release consistency protocol
(LRC)

* User level memory management techniques
+ Communication protocol-UDP




" TreadMarks - Communication .

Model
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" TreadMarks-Communication
Primitives
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Myrinet and GM

* Myrinet
- Low latency, high bandwidth network
- Full duplex links; 2+2 gigabits per second

- Programmable Myrinet NIC; 200 MHz
processor and upto 4 MB SRAM

- GM
- User level protocol
- Reliable, connectionless data delivery
- Transmits to and from pinned, memory
- No asynchronous notification
- No scatter, gather operations




TreadMarks over GM-
Challenges

* No asynchronous notification
- Polling thread
- Timer based implementation
- Modify GM to generate an interrupt

- Buffer allocation

- Buffer allocation automatic in UDP

- GM buffers have to be allocated before the
message arrives

- TreadMarks disables interrupts



TreadMarks on GM:
Challenges

* GM-Memory registration

* GM-Message length | has to
correspond to size s =log,(l+2)

» TreadMarks uses two ports between
every process-GM allows for a
maximum eight ports



TreadMarks over GM:
Proposed Substrate
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TreadMarks over GM: .
Proposed Substrate

- Connection Management

- A single synchronous and asynchronous
port per process

- Allows for selectively generating an
interrupt

- More scalable
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TreadMarks over GM: .
Proposed Substrate

» Buffer Management
- Send and receive buffers in registered memory

- Messages copied between TreadMarks and GM
buffers

- Allows for message pipelining

- Other solutions, pass a pointer to a buffer
» Complicated-requires modifications to TreadMarks
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TreadMarks over GM:
Proposed Substrate

- Pre-posting receive buffers

- Asynchronous requests

* (n-1) outstanding requests possible for n processes
» Post (n-1) buffers for sizes 4 (8 bytes) to 15 (32K)
* Requires 64K*(n-1) per process

- Synchronous requests

+ Single buffer for sizes 4 1o 15
» 64K per process

- Total requirement is 64K*(n-1)+64K
- For 256 nodes 16 MB required

- Rendezvous protocol




TreadMarks-Communication
primitives and GM
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TreadMarks over GM: .
Proposed Substrate

+ Schemes for handling asynchronous
requests
- On receiving an asynchronous request

from a particular node, don't reply
until a buffer has been pre-posted



TreadMarks-Communication
primitives and GM
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TreadMarks over GM: .

Proposed Substrate

» Asynchronous Notification

- Interrupt

* Requires modification to GM Machine Control
Program

* Best performance
- Polling Thread
- Timer



Performance Evaluation

Our implementation (FAST/GM) compared with original
implementation (UDP/GM)

Test bed

- 16 machines with Quad 700 MHz Pentium III, 1Gb main
memory connected by a 2.1 Gbps Myrinet network running
GM 1.5.2.1. Myrinet NIC is a LanAI 9 with 4MB memory
and a 134MHz CPU

Evaluation carried out using

- Microbenchmarks; measure latency of basic operations
like page, diff, barrier and lock

- Applications (Sor, Jacobi, Tsp and 3Dfft)
- Effect of increase in system size on scale measured

- Effect of increase in application size on scale
measured
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Performance Evaluation-
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Performance Evaluation-

System Size
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Timing Breakdown-Overall i
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Timing breakdown (without
wait times)
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Conclusions

Designed and developed a new framework where software
DSM systems like TreadMarks can exploit low latency, high
bandwidth networks like Myrinet

Performance evaluated in terms of
- Microbenchmarks
* Cost of basic software DSM operations significantly
reduced by order of magnitude
- System Size
+ Speedup upto a maximum of 6.3 for FAST/GM
- Application Size
+ Execution time improved by a maximum factor of 5.5
for FAST/GM over UDP/GM



Future Work .

* Scaling to a large number of nodes

- NIC based implementations-barrier, caching

- Communication optimizations
+ Diff processing constitutes a significant overhead

- Possible to eliminate diff processing

- Ported HLRC (Rutgers) to InfiniBand
* Barrier takes a significant percentage of execution
* Reduce overhead through multicast

- New protocols and challenges

- Eager protocols would have less overhead on a
network like InfiniBand




Additional Information

More information about this paper and other work can be found at:-

Home Page

http://nowlab.cis.ohio-state.edu

Network Based Computing Group
The Ohio State University

- By e-mail

Prof. D.K. Panda - panda®@cis.ohio-state.edu

Ranjit Noronha - noronha@cis.ohio-state.edu




