
Implementing TreadMarks on GM over
Myrinet: Challenges, Design Experience

and Performance Evaluation

Ranjit Noronha
And

Dhabaleswar K. Panda
Department of Computer and Info. Science

The Ohio State University
E-mail: {noronha,panda}@cis.ohio-state.edu

• Introduction
• Motivation
• Overview of TreadMarks
• Overview of Myrinet and GM
• Design Challenges
• Performance Evaluation
• Conclusions

Presentation Overview

Introduction-Distributed
Shared Memory(DSM)

• Abstraction of shared memory on physically
distributed machines

• Expand the notion of virtual memory to different
nodes

• 2 types
– Software DSM; eg provides the shared memory

abstraction on a network of workstations like TreadMarks
(Rice), HLRC (Rutgers)

– Hardware DSM; eg use cache consistency protocols to
support shared memory between physically separate
remote memories like SGI origin and Sequent NUMA-Q

• Software DSM
– Consistency model; lazy release consistency
– Execution divided into intervals
– Allows multiple writers to write to the same page by

dividing it into smaller portions and creating diff’s when
required by a reader

– Pages in the interval made consistent at synchronization
points like a lock acquire or a barrier

• Software DSM Issues
– Depends on user and software layer
– Depends on communication protocols provided by the

system such as TCP, UDP, etc.
– Degraded performance because of false sharing and high

overhead of communication
– Has scaling problems

Introduction-Software DSM

Motivation

• Modern Interconnects
– Low Latency (InfiniBand and Myrinet< 10 us)
– High Bandwidth (InfiniBand 10GBps, Myrinet 2 GBps)

• User Level Protocols(ULP)
– Can deliver performance close to that of the underlying

hardware
• Sofware DSM over ULP
• How does Software DSM perform with efficient

communications layers ?
• Can Software DSM outperform/out Scale

Hardware DSM ?

TreadMarks
• Developed at Rice University

– Overview paper:
• TreadMarks: Distributed Shared Memory on Standard

Workstations and Operating Systems. P. Keleher, S.
Dwarkadas, A.L. Cox, and W. Zwaenepoel, Proceedings of
the Winter 94 Usenix Conference, pp. 115-131, January
1994.

• Runs in user space (no modification to the kernel)
• Implements lazy release consistency protocol

(LRC)
• User level memory management techniques
• Communication protocol-UDP

TreadMarks – Communication
Model

Node 2Node 1

Send
Request

Receive
Response

Send
Response

Interrupt
SIGIO

Request
Handler

TreadMarks-Communication
Primitives

RecvSend Recv_any
SelectRecv,recvfrom(contig)

Recvmsg(non−contig)
Send, sendto(contig)
Sendmsg(non−contig)

SIGIO handler

T
re

a
d

m
a
rk

s

 Treadmarks Routines

Send Request/Response
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless

Recv Response
− Contiguous/Noncontiguous
−From any user buffer
−Receiving from any node of a group

Recv Request
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless
−Automatic allocation of temporary buf

U
D

P
/T

C
P

Myrinet and GM
• Myrinet

– Low latency, high bandwidth network
– Full duplex links; 2+2 gigabits per second
– Programmable Myrinet NIC; 200 MHz

processor and upto 4 MB SRAM
• GM

– User level protocol
– Reliable, connectionless data delivery
– Transmits to and from pinned, memory
– No asynchronous notification
– No scatter, gather operations

TreadMarks over GM-
Challenges

• No asynchronous notification
– Polling thread
– Timer based implementation
– Modify GM to generate an interrupt

• Buffer allocation
– Buffer allocation automatic in UDP
– GM buffers have to be allocated before the

message arrives
– TreadMarks disables interrupts

TreadMarks on GM:
Challenges

• GM-Memory registration
• GM-Message length l has to

correspond to size s =log2(l+2)
• TreadMarks uses two ports between

every process-GM allows for a
maximum eight ports

TreadMarks over GM:
Proposed Substrate

SIGIO handler

Connect Synchronous
Send

Synchronous
Receive

Asynchronous
Send

Asynchronous
Receive

Connection
Management

Buffer
Management

Preposting Receive Schemes for Handling
Async. Messages

Tr
ea

dm
ar

ks
Su

bs
tra

te
G M

RDMA Write

Buffers

Send Recv Interrupts

 Treadmarks Routines

Send Request/Response
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless

Recv Response
− Contiguous/Noncontiguous
−From any user buffer
−Receiving from any node of a group

Recv Request
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless
−Automatic allocation of temporary buf

TreadMarks over GM:
Proposed Substrate

• Connection Management
– A single synchronous and asynchronous

port per process
– Allows for selectively generating an

interrupt
– More scalable

TreadMarks over GM:
Proposed Substrate

SIGIO handler

Connect Synchronous
Send

Synchronous
Receive

Asynchronous
Send

Asynchronous
Receive

Connection
Management

Buffer
Management

Preposting Receive Schemes for Handling
Async. Messages

Tr
ea

dm
ar

ks
Su

bs
tra

te
G M

RDMA Write

Buffers

Send Recv Interrupts

 Treadmarks Routines

Send Request/Response
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless

Recv Response
− Contiguous/Noncontiguous
−From any user buffer
−Receiving from any node of a group

Recv Request
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless
−Automatic allocation of temporary buf

TreadMarks over GM:
Proposed Substrate

• Buffer Management
– Send and receive buffers in registered memory
– Messages copied between TreadMarks and GM

buffers
– Allows for message pipelining
– Other solutions, pass a pointer to a buffer

• Complicated-requires modifications to TreadMarks

TreadMarks over GM:
Proposed Substrate

SIGIO handler

Connect Synchronous
Send

Synchronous
Receive

Asynchronous
Send

Asynchronous
Receive

Connection
Management

Buffer
Management

Preposting Receive Schemes for Handling
Async. Messages

Tr
ea

dm
ar

ks
Su

bs
tra

te
G M

RDMA Write

Buffers

Send Recv Interrupts

 Treadmarks Routines

Send Request/Response
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless

Recv Response
− Contiguous/Noncontiguous
−From any user buffer
−Receiving from any node of a group

Recv Request
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless
−Automatic allocation of temporary buf

TreadMarks over GM:
Proposed Substrate

– Pre-posting receive buffers
– Asynchronous requests

• (n-1) outstanding requests possible for n processes
• Post (n-1) buffers for sizes 4 (8 bytes) to 15 (32K)
• Requires 64K*(n-1) per process

– Synchronous requests
• Single buffer for sizes 4 to 15
• 64K per process

– Total requirement is 64K*(n-1)+64K
– For 256 nodes 16MB required
– Rendezvous protocol

TreadMarks-Communication
primitives and GM

SIGIO handler

Connect Synchronous
Send

Synchronous
Receive

Asynchronous
Send

Asynchronous
Receive

Connection
Management

Buffer
Management

Preposting Receive Schemes for Handling
Async. Messages

Tr
ea

dm
ar

ks
Su

bs
tra

te
G M

RDMA Write

Buffers

Send Recv Interrupts

 Treadmarks Routines

Send Request/Response
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless

Recv Response
− Contiguous/Noncontiguous
−From any user buffer
−Receiving from any node of a group

Recv Request
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless
−Automatic allocation of temporary buf

TreadMarks over GM:
Proposed Substrate

• Schemes for handling asynchronous
requests
– On receiving an asynchronous request
from a particular node, don’t reply
until a buffer has been pre-posted

TreadMarks-Communication
primitives and GM

SIGIO handler

Connect Synchronous
Send

Synchronous
Receive

Asynchronous
Send

Asynchronous
Receive

Connection
Management

Buffer
Management

Preposting Receive Schemes for Handling
Async. Messages

Tr
ea

dm
ar

ks
Su

bs
tra

te
G M

RDMA Write

Buffers

Send Recv Interrupts

 Treadmarks Routines

Send Request/Response
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless

Recv Response
− Contiguous/Noncontiguous
−From any user buffer
−Receiving from any node of a group

Recv Request
−Contiguous/Noncontiguous
−From any user buffer
−Connection oriented/Connectionless
−Automatic allocation of temporary buf

TreadMarks over GM:
Proposed Substrate

• Asynchronous Notification
– Interrupt

• Requires modification to GM Machine Control
Program

• Best performance
– Polling Thread
– Timer

Performance Evaluation
• Our implementation (FAST/GM) compared with original

implementation (UDP/GM)
• Test bed

– 16 machines with Quad 700 MHz Pentium III, 1Gb main
memory connected by a 2.1 Gbps Myrinet network running
GM 1.5.2.1. Myrinet NIC is a LanAI 9 with 4MB memory
and a 134MHz CPU

• Evaluation carried out using
– Microbenchmarks; measure latency of basic operations

like page, diff, barrier and lock
– Applications (Sor, Jacobi, Tsp and 3Dfft)

• Effect of increase in system size on scale measured
• Effect of increase in application size on scale

measured

Performance Evaluation-
Microbenchmarks

•Order of magnitude decrease in time to fetch a
page, diff and lock

0
200
400
600
800

1000

Bar
rie

r(2
)

Bar
rie

r(4
)

Bar
rie

r(8
)

Bar
rie

r(1
6)

Lo
ck

 D
ire

ct
Lo

ck
 In

dir
ec

t

Pag
e

Diff
(S

mall
)

Diff
(L

ar
ge

)

Microbenchmark

Ti
m

e
(m

ic
ro

se
co

nd
s)

UDP/GM FAST/GM

Performance Evaluation-
System Size

•3Dfft, Tsp, for UDP/GM execution time increases, but decreases for FAST/GM
•For Sor execution time much lower in the case of FAST/GM

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0 2 4 6 8 10 12 14 16

Ex
ec

uti
on

 Ti
me

(se
c)

Number of nodes

3Dfft

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10 12 14 16

Ex
ec

uti
on

 Ti
me

(se
c)

Number of nodes

Jacobi

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16

Ex
ec

uti
on

 T
im

e(
se

c)

Number of nodes

Tsp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16

Ex
ec

uti
on

 Ti
me

(se
c)

Number of nodes

Sor

Timing Breakdown-Overall

•Wait time are significantly reduced

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

3Dfft
(FAST)

3Dfft
(U

DP)
Ja

co
bi(F

AST)

Ja
co

bi(U
DP)

Sor (F
AST)

Sor(U
DP)

Tsp
(FAST)

Tsp
(U

DP)

Ex
ec

ut
io

n
tim

e(
m

ic
ro

se
co

nd
s)

Signal handler

Sync wait

Sync recv

Sync send

Async wait

Async recv

Async send

Protocol time

Computation

Timing breakdown (without
wait times)

•Recv and send times reduced
•Signal handler time reduced thanks to tighter integration
with the communication layer

0

50000

100000

150000

200000

250000

300000

350000

3D
fft

 (F
AS

T)
3D

fft
 (U

DP)
Ja

co
bi(

FA
ST

)
Ja

co
bi(

UDP)
So

r (
FA

ST
)

So
r(U

DP)

Ts
p(

FA
ST

)
Ts

p(
UDP)Ex

ec
ut

io
n

tim
e

(m
ic

ro
se

co
nd

s) Protocol time

Async send

Async recv

Sync send

Sync recv

Signal
handler
Computation
time

Performance Evaluation-
Scaling with Application Size

0

5

10

15

20

25

30

35

400 600 800 1000 1200 1400 1600 1800 2000

Ex
ec

uti
on

 T
im

e(
se

c)

Application Size

Jacobi

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 1500 2000 2500 3000 3500 4000

Ex
ec

uti
on

 Ti
me

(se
c)

Application Size

Sor

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

16 16.5 17 17.5 18

Ex
ec

uti
on

 Ti
me

(se
c)

Application size

Tsp

•Significant decrease in execution time
for 3Dfft, Sor and tsp

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

Ex
ec

uti
on

 Ti
me

(se
c)

Application size

3Dfft

Conclusions
• Designed and developed a new framework where software

DSM systems like TreadMarks can exploit low latency, high
bandwidth networks like Myrinet

• Performance evaluated in terms of
– Microbenchmarks

• Cost of basic software DSM operations significantly
reduced by order of magnitude

– System Size
• Speedup upto a maximum of 6.3 for FAST/GM

– Application Size
• Execution time improved by a maximum factor of 5.5

for FAST/GM over UDP/GM

Future Work
• Scaling to a large number of nodes

– NIC based implementations-barrier, caching
– Communication optimizations

• Diff processing constitutes a significant overhead
– Possible to eliminate diff processing

– Ported HLRC (Rutgers) to InfiniBand
• Barrier takes a significant percentage of execution
• Reduce overhead through multicast

– New protocols and challenges
• Eager protocols would have less overhead on a
network like InfiniBand

Additional Information
– More information about this paper and other work can be found at:-

http://nowlab.cis.ohio-state.edu

Network Based Computing Group
The Ohio State University

– By e-mail

Prof. D.K. Panda – panda@cis.ohio-state.edu

Ranjit Noronha – noronha@cis.ohio-state.edu

NBC Home Page

