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Abstract

Noncontiguous I/O access is the main access pattern in
many scientific applications. Noncontiguity exists both in
access to files and in access to target memory regions on the
client. This characteristic imposes a requirement of native
noncontiguous I/O access support in cluster file systems for
high performance. In this paper, we address noncontiguous
data transmission between the client and the I/O server in
cluster file systems over a high performance network.

We propose a novel approach, RDMA Gather/Scatter, to
transfer noncontiguous data for such I/O accesses. We also
propose a new scheme, Optimistic Group Registration, to
reduce memory registration costs associated with this ap-
proach. We have designed and incorporated this approach
in a version of PVFS over InfiniBand. Through a range of
PVFS and MPI-IO micro-benchmarks, and the NAS BTIO
benchmark, we demonstrate that our approach attains sig-
nificant performance gains compared to other existing ap-
proaches.

1 Introduction
I/O is quickly emerging as the main bottleneck limiting

performance in modern day clusters. The need for scal-
able parallel I/O and file systems is becoming more and
more urgent. There has been a significant amount of work
on parallel and cluster file systems, which has repeatedly
demonstrated that a viable infrastructure consisting of com-
modity storage units connected with commodity networking
technologies can provide high performance and scalable I/O
support in cluster systems [3, 23, 20, 32, 33]. PVFS (Paral-
lel Virtual File System) [3] is a good example of such an
architecture and a leading cluster file system for parallel
computing.

On the other hand, although file systems are designed for
high performance, previous research shows that only about
a tenth or less of the peak I/O performance can be realized
by many applications [26, 14]. One of the main reasons
is that the I/O interfaces available to applications and the
I/O methods supported by file systems do not match well to
applications’ access characteristics. Most file systems are
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optimized for large contiguous file accesses, while in many
applications, each process tends to access a large number of
relatively small regions that are not located sequentially in
the file [2, 17, 22]. Noncontiguity can exist in both the file
itself and in the memory of the client.

Traditionally, noncontiguous access is achieved with a
set of contiguous calls, each of which accesses only a sin-
gle contiguous piece. Several techniques [24, 7, 21, 13, 12]
were proposed to optimize noncontiguous accesses in sit-
uations where only contiguous I/O access support is avail-
able. Thakur et al. [25] noted that native noncontiguous ac-
cess support in file systems themselves is important. They
proposed an interface that describes noncontiguity in both
memory and the file in a simple manner. This interface
not only can be used to implement noncontiguous I/O ac-
cess functions in the upper programming interfaces such
as MPI-IO [16] efficiently, but also allows the file systems
themselves to make further optimization on the noncontigu-
ous accesses. Ching et al. [1] implemented this interface in
PVFS. Their implementation is called list I/O.

There are two important issues in providing efficient
noncontiguous accesses in cluster file systems wherein the
compute nodes and the I/O nodes are connected by high per-
formance networks. First, in a noncontiguous access, data
may be written from or read into a large number of noncon-
tiguous buffers. So high-performance noncontiguous data
transmission between the compute node and the I/O node
is critical in this case. Second, a noncontiguous access may
result in a large number of small file requests that access rel-
atively small pieces of data in a noncontiguous manner. Ef-
ficiently processing these small requests on the I/O nodes is
crucial to application performance. These two issues result
in more serious performance problems when the network is
not the bottleneck in a cluster file system. In this paper, we
focus on the issue of noncontiguous data transmission. Due
to space limitation, we leave the discussion of the second
issue in [31].

The issue of noncontiguous data transmission is often
ignored in conventional networks. The performance differ-
ences between different ways to handle noncontiguous data
transmission might not have much impact on the perfor-
mance of noncontiguous I/O accesses because of the high
overhead and low bandwidth in these networks. We ob-
serve that noncontiguous data transmission becomes an im-
portant factor affecting the performance of noncontiguous



I/O accesses in high performance networks such as Infini-
Band [11].

In this paper, we address the issue of noncontiguous data
transmission by designing PVFS list I/O over the Infini-
Band network. We describe how efficient noncontiguous
data transmission can be achieved for PVFS noncontiguous
I/O accesses. We make the following contributions:

1. We observed that the existing methods to support non-
contiguous data transmission have serious problems
on the performance of noncontiguous I/O accesses in
cluster file systems over high performance networks
for many cases.

2. Gather/Scatter functionality in Remote Direct Memory
Access (RDMA) operations offered by modern high
performance networks can be used to transfer noncon-
tiguous data efficiently.

3. Memory registration and deregistration for networks
with remote DMA capabilities adds a new dimension
to data transport issues. Our new memory registration
scheme, Optimistic Group Registration, permits the ef-
ficient use of RDMA Gather/Scatter for noncontiguous
data transmission.

Our results show that the RDMA Gather/Scatter ap-
proach with Optimistic Group Registration can achieve a
factor of 1.5 improvement on PVFS list I/O performance
compared to other noncontiguous data transmission ap-
proaches. We have also evaluated the performance of the
NAS BTIO benchmark with our implementation. The re-
sults obtained show that our approaches can offer a 20%
improvement over the previous best result.

The rest of the paper is organized as follows. We first
give a brief overview on PVFS, InfiniBand and ROMIO in
Section 2. Section 3 states the issue of noncontiguous data
transmission on noncontiguous I/O accesses over high per-
formance networks. In Section 4, we address noncontigu-
ous data transmission. In Section 5, we describe our im-
plementation of the PVFS list I/O. The performance results
are presented in Section 6. We examine some related work
in Section 7 and draw our conclusions and discuss possible
future work in Section 8.

2 Background
We recently designed and implemented a version of

PVFS over the InfiniBand network. In work [30], we exam-
ined the feasibility of leveraging the InfiniBand technology
to improve I/O performance and scalability of PVFS in clus-
ters connected by the InfiniBand network. We focused on
a software architecture which can take full advantage of In-
finiBand features, efficient transport layer to support PVFS
protocols, and buffer management. Our work shows that the
InfiniBand network with its user-level communication and
RDMA features can improve all aspects of PVFS, includ-
ing throughput, access time, and CPU utilization. In the
following subsections, we give brief overviews of PVFS,
InfiniBand, and ROMIO.

2.1 Overview of PVFS
PVFS is a leading parallel file system for Linux cluster

systems. It was designed to meet increasing I/O demands of

parallel applications in cluster systems. A number of nodes
in a cluster system can be configured as I/O servers and one
of them is also configured to be the metadata manager.

PVFS achieves high performance by striping files across
a set of I/O server nodes to achieve parallel accesses and
aggregate performance. PVFS uses the native file system
on the I/O servers to store individual file stripes. An I/O
daemon runs on each I/O node and services requests from
compute nodes, particularly read and write requests. Thus,
data is transferred directly between I/O servers and com-
pute nodes. A metadata manager provides a clusterwide
consistent name space to applications. In PVFS, the meta-
data manager does not participate in read/write operations.
PVFS supports a set of feature-rich interfaces, including
support for both contiguous and noncontiguous accesses in
both memory and files [4].

2.2 Overview of InfiniBand

The InfiniBand Architecture [11] defines a System Area
Network for interconnecting both processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O.

Both channel and memory semantics are available for
transferring data. In channel semantics, send/receive op-
erations are used for communication. In memory seman-
tics, Remote Direct Memory Access (RDMA) write and
read operations are used. Gather/Scatter are also supported
in RDMA operations. RDMA write operation can gather
multiple data segments together and write all data into a
contiguous buffer on the peer side in one single operation.
RDMA read operation can read data from a contiguous
buffer on the peer side and place all data into several local
buffers in one single operation.

2.3 Overview of ROMIO

MPI-IO, the I/O part of the MPI-2 standard [16], is an in-
terface specifically designed for portable, high-performance
parallel I/O. It acts as a higher-layer client which uses fea-
tures of a parallel file system such as PVFS. MPI-IO uses
MPI Datatype structures to describe the data layouts in the
user’s buffer and also to define the data layout in the file.

ROMIO [25] is a well-known implementation of MPI-
IO with high-performance and portability on different file
systems and platforms, including PVFS. It has four different
methods to handle noncontiguous accesses on PVFS [1]:
Multiple I/O, Data Sieving, Collective I/O and list I/O. MPI-
IO applications can use hints or perform different I/O calls
to choose one of methods.

3 Efficient Noncontiguous Access in PVFS

In this section, we first describe the current design and
implementation of PVFS list I/O. We then show two dif-
ferent ways in which noncontiguous accesses arise, both of
which pose challenges on efficient noncontiguous I/O ac-
cess in PVFS. As illustrated in the example in Figure 1, the
top set of communications shows noncontiguous data trans-
mission between the compute nodes and the I/O nodes. The
second source of noncontiguity is noncontiguous disk ac-
cesses, as shown at the bottom, when I/O nodes access their
local files. In this paper, we focus on the first issue.

2
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Figure 1. A PVFS list I/O example.

3.1 PVFS List I/O

PVFS provides a list I/O interface to applications which
can be used to perform noncontiguous accesses in Figure 1
in a single operation. This interface confirms with the inter-
face proposed by Thakur et al. in [25]. The following is the
PVFS list I/O read interface (the write interface is similar):

pvfs read list(int fd,
int mem list count,
void * mem offsets[],
int mem lengths[],
int file list count,
int64 t file offsets[],
int32 t file lengths[])

This interface allows a set of buffers to be used as read or
write destinations in memory on the client and a set of off-
sets in the file on the I/O node. Noncontiguity in both the
file and the memory is thus possible.

A naive implementation of list I/O would translate a list
I/O request into a set of individual requests, each of which
accesses one contiguous piece separately. Obviously, this
would provide no advantages for list I/O.

PVFS has designed and implemented its list I/O in an ef-
ficient manner as described in [4]. The pvfs read list
and pvfs write list functions take list I/O parameters
and perform the noncontiguous access in a single PVFS op-
eration. The current implementation is based on TCP/IP, a
stream-based transport layer, noncontiguous data transmis-
sion is not considered as an issue due to the stream seman-
tics of TCP/IP.

3.2 Network Support for List I/O

Many conventional communication interfaces, includ-
ing TCP/IP, only support data transmission in contiguous
blocks, defined by a memory address and a length. Based
on these interfaces, to move data from and into a list of
buffers specified in the PVFS list I/O, two schemes are usu-
ally used. The first scheme is to send and receive one mes-
sage for each contiguous block of data. The second scheme
is to pack noncontiguous data into a temporary buffer before
transmitting it, and unpacking it when it has arrived.

Performance issues in noncontiguous data transmission
are often ignored in conventional networks because of their
high overhead and low bandwidth. The message startup
costs or the extra memory copy overheads do not have much

impact on the communication performance when the net-
work is comparatively slow. However, in low overhead and
high bandwidth networks such as InfiniBand, these over-
heads have a significant impact on performance. For ex-
ample, in our InfiniBand testbed, the network bandwidth is
830 MB/s and memory copy bandwidth is 1300 MB/s ( with
cache effect) or 640 MB/s (without cache effect), therefore
a scheme to pack, send, and unpack data can offer an aggre-
gate bandwidth of only 364 MB/s or 230 MB/s.

Due to the emergence of high-performance networks,
traditional methods used for noncontiguous data transmis-
sion become very inefficient. In Section 4, we address how
we can achieve efficient noncontiguous data transmission
for list I/O over high-speed networks.

4 Noncontiguous Data Transmission
PVFS list I/O allows a set of discrete memory buffers

to be used as read or write destinations in memory on the
client. A typical example of such buffers is rows in a subar-
ray of a multidimensional array, separated by gaps (noncon-
tiguous buffers). As previously noticed [30], buffers on the
I/O nodes are usually contiguous. An important issue is to
transfer data between PVFS list I/O buffers on the compute
nodes and buffers on the server nodes.

4.1 Mechanism Tradeoffs
As discussed in section 3.2, two schemes have been

widely used to transfer noncontiguous data: 1) send and
receive one message for each contiguous block of data,
2) pack noncontiguous data into a temporary buffer before
transmitting it, and unpack it after its arrival. We call them
Multiple Message and Pack/Unpack, respectively. The top
two panels in Figure 2 illustrate these schemes.

A third way exists to transfer noncontiguous data in
modern communication networks such as InfiniBand that
support RDMA Gather/Scatter operations. RDMA Write
operations can gather multiple data segments together
within one operation and place them in a single buffer on the
receiver side. RDMA Read operations can read data from
a single buffer on the peer side into multiple buffers on the
local initiator. This gather/scatter functionality is a perfect
match with the requirement of PVFS list I/O noncontiguous
data transfer. The bottom panel in Figure 2 shows an exam-
ple of RDMA gather write. In this RDMA Gather/Scatter
scheme, the message startup costs which occur in the Mul-
tiple Message scheme can be reduced dramatically, since a
large number of data segments can be specified in one op-
eration. It also avoids data copies which are required in the
Pack/Unpack scheme.

There are many tradeoffs among the three schemes, how-
ever, which complicates the design decision about when to
use a particular scheme. These are listed in the following
paragraphs.

Copy or memory registration. Buffers must be registered
before any data transmission occurs in InfiniBand. This
requires that all list I/O buffers be registered in both the
Multiple Message and the RDMA Gather/Scatter schemes,
and that the temporary buffer in the Pack/Unpack scheme
be registered. Sometimes it is desirable to unregister these
buffers after the completion of noncontiguous I/O access
as well. A tradeoff exists between choosing to accept the

3
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Figure 2. Noncontiguous data transfer. Top:
Multiple Message. Middle: Pack/Unpack. Bottom:
RDMA Gather/Scatter.

overhead of an extra copy versus the overhead of memory
registration and possible deregistration.

Communication startup overhead. The number of com-
munication operations is different in these three schemes.
In the Multiple Message scheme, it is equal to the number
of list I/O buffers. In the Pack/Unpack scheme, only one
transfer is required. In the RDMA Gather/Scatter scheme,
some number of segments, 64 currently in InfiniBand, can
be gathered into a single communication. Choosing fewer,
larger messages results in better performance.

Buffer alignment. Networks which use RDMA are sen-
sitive to buffer alignment and can generate large delays to
compensate for misaligned buffers. Since the Pack/Unpack
scheme itself allocates a temporary buffer for RDMA oper-
ations, this buffer can be aligned. However, it is possible
that list I/O buffers given by users may not be aligned and
cause the performance of the Multiple Message and RDMA
Gather/Scatter schemes to suffer.

Application buffer access patterns. The costs of memory
registration and deregistration can be amortized across mul-
tiple operations by registration caching mechanisms such as
pin-down cache [9] and the batched deregistration mecha-
nism [30]. But if the application chooses buffers in such
a way that caching is not very frequent, performance of
the Multiple Message and RDMA Gather/Scatter schemes
might be hurt. It is likely that a Pack/Unpack implementa-
tion will reuse the same buffer and not be affected.

Since it is clear that the Multiple Message scheme will
likely perform poorly compared to the other two, it is ig-
nored now for clarity. From the tradeoffs listed above,
though, it is not clear which of the remaining two schemes
will be better. The answer depends on the total effects of the

above factors in each scheme. We use the following test to
show the performance of noncontiguous data transmission
with these two schemes.
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Figure 3. Bandwidth achieved in various
transfer schemes.

In Figure 3, we show the bandwidth achieved in trans-
ferring a 2-D subarray from a compute node to an I/O node
in our testbed. We consider the following scenario which
is a common case of I/O access patterns in scientific appli-
cations. A 2-D array of varying size is distributed across
4 processes using a block distribution in both dimensions.
One of the subarrays is then sent using different schemes.

In the Pack/Unpack scheme, the temporary buffer can be
allocated from a pre-registered buffer pool or from the sys-
tem. In the former case, registration and deregistration are
not needed. These two cases are termed as pack, no reg
and pack, reg, respectively. In the RDMA Gather/Scatter
scheme, two ways to register list I/O buffers are considered.
One is to register each list I/O buffer separately, termed as
gather, multiple reg in the graph. Another is to register the
memory region which covers all list I/O buffers from a sub-
array, termed as gather, one reg. We also show its best case,
where memory registrations are always found in the cache,
called multiple, no reg in the graph. Finally, the maximum
achievable bandwidth obtained by a single write is labeled
contiguous, no reg in the graph.

Several observations can be made from Figure 3. First,
the packing and memory registration costs have a dramatic
impact on performance. Second, the Pack/Unpack scheme
performs comparatively better when the array size is small,
Third, the RDMA Gather/Scatter scheme has the potential
for high performance if registrations are handled well.

The above test results show that the RDMA
Gather/Scatter scheme is very promising when the
costs of memory registration and deregistration can be
controlled in a certain range. The issue of how we can
reduce the costs of memory registration and deregistration
is addressed in the following subsection.

4.2 Minimizing Memory Registration Overhead
As seen in Figure 3, if the costs of memory registration

and deregistration on the list I/O buffers could be reduced,
noncontiguous data transmission can be done in a very ef-
ficient way by using the RDMA Gather/Scatter scheme.
However, it is not trivial to reduce these costs. The com-
plication comes from the number of registration and dereg-
istration operations on list I/O buffers and the total size of

4



memory space to be registered and deregistered.
A large number of buffer registration and deregistration

events occur for each PVFS list I/O operation without care-
ful design. Reducing the number of buffers needed to be
registered as much as possible is critical to alleviate these
problems. On the other hand, the total size of memory space
to be registered and deregistered should also be considered.
We could register or deregister the whole memory region
which covers all list I/O buffers with a single operation.
However, those unused areas between list I/O buffers may
offset the benefit.

Based on these observations, the reigning design prin-
ciple which dictates how to perform memory registration
and deregistration for PVFS list I/O buffers is to reduce the
number of buffers as much as possible, while also minimiz-
ing the total size of memory regions. There are several de-
sign alternatives, which can be separated into two classes,
depending on whether the application must be changed or
not.

4.2.1 Application-aware memory registration
The first class of design alternatives requires changes to the
application to allow it to take a more active role in memory
registration.

First, the PVFS application can be given explicit control
of this task and must call routines in the PVFS library to
register regions which it plans to use with PVFS. A simi-
lar approach is taken in [6]. This suffers from the obvious
drawback of putting more work into the application layer,
and disallows some optimizations by the library, such as
using inline data transfer where registration would not be
required [29].

Second, one could consider not requiring full control by
applications, but just asking them to specify to the PVFS
library the actual allocation which was used to generate
buffers in a list I/O call. For example, in the above subarray
example, the actual allocation buffer address is the initial
address of the whole two-dimensional array, with length of
the entire array. This permits PVFS to optimize for the com-
mon case of an application using malloc to create an array,
then sending pieces of that array using list I/O. This suffers
the same drawback of requiring application modification,
but is not quite as invasive as the previous scheme.

4.2.2 Library-controlled memory registration
If we reject the above schemes on the grounds that they
change current PVFS semantics and require application
changes, there are still other mechanisms by which the li-
brary itself can try to optimize memory registration. These
require no interface changes, but now the PVFS library
is not aware of how the application memory is arranged:
a valid list I/O operation may use memory regions from
widely disparate areas of the application virtual memory
space.

The PVFS library can deploy several schemes to bal-
ance the number of registration and deregistration calls and
the total size of registered and deregistered regions, as dis-
cussed in [31]. Here we focus on one of them, namely Op-
timistic Group Registration (OGR), due to space limitation.

The OGR scheme first sorts and groups list I/O buffers
into candidate regions for registration. It controls the sizes
of memory regions which are going to be registered and

avoids attempting to register truly large “holes” of memory
between buffers. Then, it optimistically attempts to regis-
ter each memory region. If the operating system denies one
of these registrations due to some holes are not allocated, it
must query the operating system to find out actual bound-
aries of application memory allocation and register exactly
those.

This scheme is expected to be quite efficient in the com-
mon case where all list I/O buffers come from one or more
bigger buffers and unallocated holes are rare, but is also safe
by virtue of relying on queries to the operating system if it
must. This scheme is also transparent to PVFS applications.

5 Implementation

In this section, we briefly describe how we implement
the Optimistic Group Registration scheme and how we
choose different transfer mechanisms for different cases.

5.1 Implementation of OGR

The following equation is used to sort and group list
I/O buffers. The cost of registering a buffer is modeled
as
����������	�


, where
�

is the registration cost per
page,



is the overhead per operation, and

�
is the size of

the buffer in pages. The same cost equation can be applied
to deregister a buffer with different values of

�
and



. In

our testbed, we found the costs per page in buffer regis-
tration and deregistration to be �������� s and �������� s, respec-
tively. The overheads per registration and deregistration op-
erations are �� ����� s and ������ s, respectively. According to
this cost model, a tradeoff can be made between the number
of operations and the buffer size. In our implementation, we
compare the cost to register a large combined region which
includes extra unneeded “holes” against the cost to perform
multiple small regions to determine candidate groupings.

These candidate memory regions are optimistically reg-
istered, one at a time, in the second step. If all registration
operations are successful, the procedure is finished. This is
the common case in most applications.

When an optimistic registration fails, if there are not too
many buffers inside the failed region, we simply register
them as given. But if there are many buffers which would
make that too expensive, we query the operating system to
find the “true” holes in virtual memory space.

5.2 Choices of Transfer Mechanisms

With the Optimistic Group Registration scheme, RDMA
Gather/Scatter works well in most cases, especially for large
data transfers. When the total size of noncontiguous data
regions is not large, decreasing the copy overhead is not im-
portant, but increasing the request size is. We decide to use
the Pack/Unpack to transfer noncontiguous data when the
total size of data is not large than the default PVFS stripe
size (64 kBytes). There are several reasons for this choice.
First, as seen in Figure 3, when the pack size is less than
256 kBytes, i.e. in a 1024

�
1024 array, Pack/Unpack is still

beneficial. Second, in our PVFS implementation over In-
finiBand [30], when the transfer size is less than 64 kBytes,
Fast RDMA is used. Noncontiguous data is packed into
the Fast RDMA buffer on the compute node and then trans-
ferred to the I/O node for writes. For reads, the I/O node
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RDMA writes data into the Fast RDMA buffer on the com-
pute node, then the compute node unpacks data into the list
I/O buffers.

6 Performance Results
This section presents performance results from a range

of benchmarks on our implementation of PVFS over Infini-
Band. Based on our previous work [30], we added noncon-
tiguous data transmission. Our implementation is based on
PVFS version 1.5.6. The InfiniBand interface is VAPI [15],
which is a user-level programming interface developed by
Mellanox and compatible with the InfiniBand Verbs specifi-
cation. We use both PVFS and MPI-IO micro-benchmarks
as well as applications to quantify our design choices in
noncontiguous data transmission. Unless stated otherwise,
the unit megabytes (MB) in this paper is an abbreviation for
2 �

�
bytes, or 1024

�
1024 bytes.

6.1 Experimental setup
Our experimental testbed consists of a cluster system

consisting of 8 nodes built around SuperMicro SUPER
P4DL6 motherboards and GC chipsets which include 64-
bit 133 MHz PCI-X interfaces. Each node has two Intel
Xeon 2.4 GHz processors with a 512 kB L2 cache and a
400 MHz front side bus. The machines are connected with
Mellanox InfiniHost MT23108 DualPort 4x HCA adapter
through an InfiniScale MT43132 Eight 4x Port InfiniBand
Switch. The Mellanox InfiniHost HCA SDK version is
thca-x86-0.1.2-build-001. The adapter firmware version is
fw-23108-rel-1 17 0000-rc12-build-001. Each node has a
Seagate ST340016A, ATA 100 40 GB disk. We used the
Linux RedHat 7.2 operating system.

6.2 Network and File System Performance
Table 1 shows the raw 4-byte one-way latency and band-

width of VAPI. Table 2 shows the read and write bandwidth
of an ext3fs file system on the local 40 GB disk with and
without cache effect. The bonnie [10] file-system bench-
mark is used.

Table 1. Network performance
Latency ( � s) Bandwidth (MB/s)

VAPI RDMA Write 5.8 832
VAPI RDMA Read 11.2 821

Table 2. File system performance
Write (MB/s) Read (MB/s)

without cache 25 20
with cache 303 1391

It can be seen that there is a large difference in bandwidth
realizable over the network compared to that which can be
obtained to a disk-based file system without cache effects.
However, applications can still benefit from fast networks
for many reasons in spite of this disparity.

6.3 Effects of Data Transfer Mechanism
We design a PVFS-level micro-benchmark to show the

effects of the design choice whether to use Pack/Unpack or
RDMA Gather/Scatter to transfer noncontiguous data be-
tween the compute nodes and I/O nodes. In this test, there
are four I/O nodes and four compute nodes. Each process
wants to write or read variable sizes of data using PVFS

list I/O operations. The number of noncontiguous data seg-
ments is set to 128. The size of each segment is equal, and
varies from 128 bytes to 8 kB.

Three design choices are compared: Pack/Unpack,
RDMA Gather/Scatter, and the hybrid scheme which we
use in our final design. Figure 4 shows that Pack/Unpack
works better when the total request size is not large, while
RDMA Gather/Scatter performs better when the request
size is large. The hybrid scheme we choose combines these
two schemes and works well in both cases.

6.4 Optimistic Group Registration Performance
This test is designed to study the impact of Optimistic

Group Registration on the PVFS list I/O performance. The
test writes a 2-D integer array of size 2048

�
2048 into one

file in row-major order. The array is distributed across 4
processes using a block distribution in both dimensions.
Each process writes its subarray into the file contiguously
at different non-overlapping file locations.

Four cases are considered. The first case is the ideal
one where no registration is needed. This happens when
all buffer registrations have been previously cached. The
second case is individual registration and deregistration on
each buffer. The third case is to use the Optimistic Group
Registration scheme to register list I/O buffers that come
from the subarray. The fourth case is similar to the third
case, except that the list I/O buffers are not all part of the
same large array. We take 1024 buffers from several arrays,
and intentionally create 10 holes which are not allocated yet
between these buffers. By this, we can see the costs for reg-
istration failures and querying the operating system in the
Optimistic Group Registration scheme. We call these four
test cases “Ideal”, “Indiv.” “OGR” and “OGR+Q”, respec-
tively.

Table 3 lists the write bandwidth, the number of regis-
trations, and the overhead for registration in each test case.
Compared to the ideal case, the other three cases have 57%,
6% and 13% dregradation, respectively in write without
sync. In write with sync, when disk access time is dominant,
however, the overhead of memory registration and deregis-
tration in the individual case still results in 11% degrada-
tion.

Table 3. Optimistic Group Registration Impact
case no sync sync # reg overhead

(MB/s) (MB/s) ( � s)
Ideal 1010 82 0 0
Indiv. 424 73 1024 5254
OGR 950 � 82 1 227

OGR+Q 879 � 82 11 496

The number of registration operations and their costs are
also shown in the table. It can be observed that Optimistic
Group Registration reduces costs of registration on list I/O
buffers dramatically. In addition, a faster file system leads
to a larger impact from memory registration and deregistra-
tion.

6.5 NAS BTIO Benchmark
The BTIO benchmark was recently added into the 2.4

version of NAS Parallel Benchmarks (NPB) and is used
to test the output capabilities of high-performance comput-
ing systems, especially parallel systems. It is based on the
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Figure 4. Performance of noncontiguous data transfer schemes.

Block-Tridiagonal problem of the NPB Suite. The details
of the numerical algorithm, data partition, and data distri-
bution can be referred to [18].

There is a very high degree of fragmentation in data sets
of the BT problem. The main access pattern in BTIO is non-
contiguous in memory and in the file. Thus, this test can be
used for us to quantify our design choices in noncontigu-
ous data transmission. Results for a class A problem size
are shown in Table 4, where we show the total problem ex-
ecution time and the I/O overhead, which is the amount of
time the benchmark spends performing I/O operations. It
can be seen that list I/O performs best even for this complex
application.

Table 4. BTIO Performance
case Time (s) I/O overhead (s)

no I/O 165.6 0
Multiple I/O 180.0 14.4

Collective I/O 169.6 4.0
List I/O 168.2 2.6

Data Sieving 177.3 11.7

We profiled the I/O characteristics of this test for the
above four I/O methods. In the list I/O case, the number
of request messages is reduced to 1360, a significant reduc-
tion compared to the Multiple I/O method (163840) and the
Data Sieving method (82040). A similar reduction is seen
in the number of memory registration operations due to Op-
timistic Group Registration.

7 Related Work
Noncontiguous data transmission is traditionally imple-

mented with a list of contiguous data transmissions or the
Pack/Unpack scheme [8]. Worringen et al. [28] used remote
memory operations provided in the SCI network to send
noncontiguous datatypes in MPI. Their work is based on
memory copy semantics. We explore an RDMA approach
in this paper.

Memory registration and deregistration are important is-
sues in modern networks which provide RDMA capabili-
ties. Work in [27] and [33] focus on schemes to reduce
overheads of system memory registration and deregistra-
tion operations. Tezuka et al. [9] propose a pin-down cache

to reduce memory registration and deregistration overhead.
In our work, we propose a novel, general scheme, Opti-
mistic Group Registration, to reduce costs of registration
and deregistration on a list of buffers for noncontiguous data
transmission.

We implemented a version of PVFS over InfiniBand in
work [30]. Ching et al. [4, 1] implemented PVFS list I/O
and evaluated their implementation over TCP/IP. Latham et
al. [14] examined the performance problems in PVFS and
ROMIO for noncontiguous I/O access.

8 Conclusions and Future Work
Parallel scientific applications, data mining applications,

and visualization engines all need high performance par-
allel file systems. The access patterns generated by many
of these sometimes tend to be many small accesses scat-
tered widely across a striped file, a model which has to date
not been well supported. The advent of recent intercon-
nects such as InfiniBand which are capable of scatter/gather
remote direct memory access permit the use of new tech-
niques to make such noncontiguous accesses significantly
better.

In this paper, we address one of issues involved in non-
contiguous I/O accesses in cluster file systems over high
performance networks: noncontiguous data transmission.
For noncontiguous data transmission, we propose a novel
approach, RDMA Gather/Scatter, to transfer noncontiguous
data between the clients and the I/O servers. Associated
with this approach, we propose a new registration scheme,
Optimistic Group Registration, to reduce memory registra-
tion costs.

We have designed and incorporated this approach in a
version of PVFS over InfiniBand. Our results show a per-
formance improvement of up to 1.5 times for the RDMA
Gather/Scatter approach with Optimistic Group Registra-
tion on PVFS list I/O performance compared to the other
approaches. Optimistic Group Registration effectively re-
duces memory registration costs. The NAS BTIO bench-
mark performance results show that our approach attains
a 35% improvement compared to the best result across all
other approaches.

As a future work, we plan to combine MPI datatype
structure information and buffer registration information to
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reduce the size of request messages for noncontiguous I/O
accesses. Work in [19] and [5] motivates us to follow this
direction. The approach proposed in this paper for non-
contiguous data transmission in noncontiguous I/O access
can be used elsewhere such as for MPI noncontiguous data
transfer and database multiple data segment transfer.
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