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Abstract—In the last decade or so, clusters have observed a
tremendous rise in popularity due to excellent price to perfor-
mance ratio. A variety of Interconnects have been proposed
during this period, with InfiniBand leading the way due to
its high performance and open standard. Increasing size of
the InfiniBand clusters has reduced the mean time between
failures of various components of these clusters tremendously.
In this paper, we specifically focus on the network component
failure and propose a hybrid hardware-software approach to
handling network faults. The hybrid approach leverages the
user-transparent network fault detection and recovery using
Automatic Path Migration (APM), and the software approach
is used in the wake of APM failure. Using Global Arrays as the
programming model, we implement this approach with Aggregate
Remote Memory Copy Interface (ARMCI), the runtime system
of Global Arrays. We evaluate our approach using various
benchmarks (siosi7, pentane, h2o7 and siosi3) with NWChem, a
very popular ab initio quantum chemistry application. Using the
proposed approach, the applications run to completion without
restart on emulated network faults and acceptable overhead for
benchmarks executing for a longer period of time.

I. INTRODUCTION

The computational needs of today’s scientific scientific
applications has led to the augmentation of high performance
computing. Combining commercial off the shelf processors
with commodity interconnects has led to cluster comput-
ing [1], a very effective methodology for achieving excellent
price-to-performance ratio. As the commodity processors con-
tinue to grow, commodity interconnects such as Myrinet [2],
Quadrics [3], and InfiniBand [4] have been introduced to
combine these commodity processors. As reflected by the
TOP500 [5] rankings, InfiniBand in particular has been ob-
serving wide acceptance due to its high performance and open
standard, with 28% of the systems using InfiniBand as their
interconnect. The current largest InfiniBand cluster uses more
than 60000 processor cores at TACC [6], and larger scale
systems are being planned for the near future. 1
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The increasing scale has tremendously reduced the mean
time between failures (MTBF) of various components of these
clusters. In this paper, we specifically focus on the network
component failure, which includes the failure of network
cables and switches. Failure of these network components
breaks the existing path of communication between application
processes, resulting in the execution failure of the application
and requiring re-execution. In our previous work, we have
designed various programming model independent modules
based on InfiniBand Automatic Path Migration [7]. This
approach requires an alternate path to be specified statically,
which is used as an escape route, when the primary path fails.
This approach performs well in the presence of a healthy
alternate path. it is inadequate for unhealthy alternate path
scenarios. Even with popular Constant Bisection Bandwidth
(CBB) Fat Tree topology, it is difficult to find completely non-
intersecting paths. The situation is further exacerbated with
over-subscribed Fat Tree topologies in systems like Atlas [8]
and Chinook [9]. Clearly, APM approach alone is not sufficient
for handling all network faults in the system.

To handle this limitation, we propose a hybrid hardware-
software approach (Hybrid - InfiniBand Network Fault Toler-
ance (IBNFT)) for handling network faults with InfiniBand.
The hybrid approach leverages the user-transparent network
fault detection and recovery using APM as much as possi-
ble. The failure in hardware approach results in notification
being sent to the software based network fault tolerance
module. The hardware and software based approaches are
referred to as Hardware-IBNFT and Software-IBNFT, respec-
tively. Compared to the previously proposed approach, the
Software-IBNFT approach leverages the early network fault
detection and a scalable out-of-band connection management
mechanism for connection re-establishment. Using Global Ar-
rays [10], a widely used shared memory programming model,
we implement our hybrid approach using Aggregate Remote
Memory Copy Interface (ARMCI) [11], the run time system
of Global Arrays. We evaluate our Hybrid-IBNFT using up to
1024 tasks and multiple benchmarks (siosi7, pentane, h2o7
and siosi3) with NWChem [12], a very popular ab initio



quantum chemistry application. Using the proposed approach,
the application runs to completion for different benchmarks
without restart on emulated network faults and acceptable
overhead for benchmarks executing for a longer period of
time. To the best of our knowledge, this is the first design
and implementation of a hybrid hardware-software approach
for network fault tolerance with InfiniBand.

The rest of the paper is organized as follows. In section II,
we present the background of our work. We present the
motivation of our work in section III. In section IV, we present
the design of Hybrid-IBNFT. The performance evaluation of
the approach implemented is presented in section V. We
present the related work in section VI. We conclude and
present our future directions in section VII. We begin with
the description of the background work.

II. BACKGROUND

In this section, we present the background of our work.
We begin with an introduction to InfiniBand [4] and the state
transitions associated with a Queue Pair (QP). We also provide
a brief introduction to Automatic Path Migration, Global
Arrays [10] and Aggregate Remote Memory Copy Interface
(ARMCI) [11].

A. Overview of InfiniBand and QP Transition States

The InfiniBand Architecture (IBA) [4] defines a switched
network fabric for interconnecting processing nodes and I/O
nodes. An InfiniBand network consists of switches, adapters
(called Host Channel Adapters or HCAs) and links for commu-
nication. InfiniBand supports different classes of transport ser-
vices (Reliable Connection, Unreliable Connection, Reliable
Datagram and Unreliable Datagram). In this paper, we focus
on the reliable connection and unreliable datagram model. In
reliable connection model, each process-pair creates a unique
entity for communication, called queue pair. Each queue pair
consists of two queues; send queue and receive queue. Figure 1
shows the communication state transition sequence for a QP.
Each QP has a combination of communication state and path
migration state. Figure 1 shows the communication state of
the QP. Figure 2 shows a combination of communication and
path migration state for the QP.

At the point of QP creation, its communication state is
RESET. At this point, it is assigned a unique number called
qpnum. From this state it is transitioned to the INIT state
by invoking modify qp function. The modify qp function is
provided by the access layer of InfiniBand [4]. During the
RESET-INIT transition, the QP is specified with the HCA
port to use in addition to the atomic flags. Once in the INIT
state, the QP is specified with the destination LID DLID and
the destination QP from which it will receive the messages.
A modify qp call brings it to READY-TO-RCV (RTR) state.
At this point, the QP is ready to receive the data from the
destination QP. Finally, QP is transitioned to READY-TO-
SEND (RTS) state by specifying associated parameters and
making the modify qp call. At this point, the QP is ready
to send and receive data from its destination QP. Should any

error(s) occur on the QP, the QP goes to the ERROR state
automatically by the hardware. At this state, the QP is broken
and cannot communicate with its destination QP. In order to
re-use this QP, it needs to be transitioned back to the RESET
state and the above-mentioned transition sequence (RESET-
RTS) needs to be re-executed. The RTS-SQD transition is
an important mechanism to ensure that the outstanding data
requests have completed. After a QP is in SQD state, it can
be transitioned to RTS state directly to allow messages to be
sent/received from the communicating pair.

1) Data Transfer Requests and Completion Queue: The
data transfer requests are initiated by posting a send/receive
descriptor to the send/receive queue of the QP. Once the
request is completed, an entry is generated at the completion
queue. The completion queue entry can be checked to see if
the request was a success. We use this InfiniBand mechanism
in the design of Softare-IBNFT.

2) Unreliable Datagram: The unreliable datagram model
uses connection-less model for communication. Each process
creates a QP for every other process in the job. The under-
lying layer does not guarantee data delivery, however, it does
guarantee, maximum once delivery of data with checksum. In
this paper, we use the unreliable datagram as the out-of-band
mechanism for connection re-establishment.

3) LID Mask Count and Shared Receive Queue: LID is a
local identifier, which is used for identifying network ports
in a InfiniBand switch. Each port can have more than one
LID depending up on the value of LID Mask Count (LMC).
LMC is an InfiniBand mechanism to provide multi-pathing.
InfiniBand defines a subnet manager, which is responsible for
finding multiple routes and specifying the InfiniBand routing
tables. LMC value 0-7 can be specified by the user and the
subnet manager uses this value to create a maximum of 128
paths between any pair of nodes. In practice, since most
InfiniBand topologies are a variant of Fat Tree [13], multiple
paths typically span multiple switches. The subnet manager
typically creates multiple paths using as many links as possible
in the subnet [14]. We leverage this property for defining an
alternate path for APM.

We presented the queues associated with a QP above.
Shared receive queue is a mechanism by which multiple
QPs can share the same receive queue. This leads to a
much better memory and buffer utilization compared to the
individual receive queues. Sur et al. have presented a design
for MPI, which achieves much better memory utilization than
the previously proposed schemes [15].

B. Overview of Automatic Path Migration

Automatic Path Migration (APM) is a feature provided by
InfiniBand which enables transparent recovery from network
fault(s) by using the alternate path specified by the user.
Automatic path migration is available for Reliable Connected
(RC) and Unreliable Connected (UC) QP Service Type. In
this paper, we have used the RC QP service type. For this
feature, InfiniBand specifies Path Migration States associated
with a QP. A valid combination of communication and path
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migration states are possible. This is shown further in Figure 2.
In the figure, the path migration state of the QP is shown using
oval shape. The possible communication states of the QP are
shown using curly brackets. At any point of time, only one of
the communication states is applicable to a QP.

APM defines a concept of alternate path, which is used as
an escape route should an error occur on the primary path of
communication. The alternate path is specified by the user.
This specification of the alternate path can be done at any
point, beginning the INIT-RTR transition of the QP. Once
this has been specified, the HCA can be requested to begin
loading this path. This is done by specifying the QP’s path
migration state to REARM. Once the path has been loaded,
the path migration state of a QP is ARMED. During this
state, the alternate path can be switched over to function as a
primary path. This can be done by HCA automatically, should
an error occur on the primary path of communication. This
is shown with dotted line in Figure 2. As an alternative, a
user can manually request the alternate path to be used as the
primary path of communication. This is shown with solid line
in Figure 2.

C. Global Arrays and ARMCI

“The Global Arrays programming model provides an ef-
ficient and portable “shared-memory” programming interface
for distributed-memory computers. Each process in a MIMD
parallel program can asynchronously access logical blocks of
physically distributed dense multi-dimensional arrays, without
need for explicit cooperation by other processes. Unlike other
shared-memory environments, the GA model exposes to the
programmer the non-uniform memory access (NUMA) charac-
teristics of the high performance computers and acknowledges
that access to a remote portion of the shared data is slower than
to the local portion. The locality information for the shared
data is available, and a direct access to the local portions of
shared data is provided.” [10]. Global Arrays uses Aggregate
Remote Memory Copy Interface (ARMCI) [16], as the runtime
system for communication.

The purpose of the ARMCI library is to provide a general-
purpose, efficient, and widely portable remote memory access
(RMA) operations (one-sided communication) optimized for
contiguous and non-contiguous (strided, scatter/gather, I/O
vector) data transfers. In addition, ARMCI includes a set
of atomic and mutual exclusion operations. ARMCI exploits
native network communication interfaces and system resources
(such as shared memory) to achieve the best possible per-
formance of the remote memory access/one-sided commu-
nication. It exploits high-performance network protocols on
clustered systems. Optimized implementations of ARMCI
are available for the Cray Portals, Myrinet (GM and MX),
Quadrics, Giganet (VIA) and InfiniBand (using OpenFabrics
and Mellanox Verbs API). It is also available for leadership
class machines including Cray XT4 and BlueGene/P.

III. MOTIVATION

As discussed in the previous section, APM provides user-
transparent network fault detection and failover. Hence, appli-
cations performing long computation phases can benefit from
this feature immensely. The software based approach would
discover the failure of data transfer requests at the end of the
computation phase. Hence, it is almost always beneficial to
use the APM as much as possible.

Figure 3 shows a popular 144-port switch topology for
InfiniBand clusters [17], [18]. In this topology, there are twelve
completely disjoint paths between any pair of nodes, which are
connected to different leaf blocks. In our previous work [14],
we have shown that with LID Mask Count (LMC) mechanism
provided by InfiniBand, multiple disjoint paths are being
configured by the InfiniBand subnet manager. We noticed
that the subnet manager is able to use different spine blocks
completely for creating alternate paths. As an example, to
communicate between a node attached to block 1 and block 2,
the subnet manager is able to define paths traversing blocks 1-
13-2, 1-14-2 . . . , (not necessarily in that order) and so on. Each
of these paths can be used by specifying an identifier (PathID)
during QP creation. We note that these paths are completely
disjoint above the leaf blocks. Hence, faults occurring in the
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spine blocks and links connecting them to leaf blocks can
be handled by APM by specifying an alternate path with a
different PathID than the primary path.

Using the previously shown 144-port switch as the building
blocks, we can realize a larger multi-stage oversubscribed Fat
Tree topology as shown in the Figure 4. We have not shown the
specific inter-connectivity between the leaf 144-port switches
and the spine 144-port switches. A possible realization can be
achieved by connecting the output ports available to the end
nodes of the leaf 144-port switches, to the spine switches. This
variant is used in Chinook [9], where eight output ports of the
leaf switches are available to the end nodes and the other four
output ports are connected to spine switches. Other variants
can be achieved by connecting the spine switch ports of the
leaf 144-ports switches. With these topology variants, it is very
difficult and sometimes impossible to find completely disjoint
paths between end nodes. This problem is exacerbated with
increasing number of nodes, and increasing oversubscription
of Fat Trees.

With an inability to find completely disjoint primary and
alternate path for APM, the chances of APM failure on a
network fault increase significantly, particularly for increased
oversubscription of Fat Trees. To the best of our knowledge,
most large scale InfiniBand clusters use the variant of the
topology discussed in Figure 4. Given the benefits of APM
described above, it is important to design a software based
approach in conjunction with APM for network fault tolerance.
In the next section, we present the design of Hybrid-IBNFT,
which achieves this objective.

IV. HYBRID-IBNFT DESIGN

In this section, we present the design of our Hybrid-
InfiniBand Network Fault Tolerance (Hybrid-IBNFT). We
begin with the description of Automatic Path Migration based
approach [7]. This approach is referred to as Hardware-IBNFT
for the rest of the paper. We also present the design of the
Software-IBNFT approach. Figure 5 shows the overall design
of Hybrid-IBNFT. The Hybrid-IBNFT interfaces between the
InfiniBand Access Layer and ARMCI. The interfaces between
different layers are bi-directional to indicate the data transfer
requests being sent to the InfiniBand Access layer and com-
pletions being sent to the Global Arrays layer.

A. Hardware-IBNFT

The Hardware-IBNFT uses an Alternate Path Specification
Module, Path Loading Request Module and Path Migration
Module for providing network fault tolerance [7]. The Al-
ternate Path Specification Module allows us to specify an
alternate path. The current framework allows to specify an
alternate port/route as an alternate path. The InfiniBand access
layer does not allow an alternate adapter to be used as an
alternate path. The Path Loading Request Module is used
to request the loading of a path in APM state machine, as
discussed in section II. Since invoking Path Loading Request
Module is expensive [7], this module is typically invoked im-
mediately after invoking Alternate Path Specification Module.
The conventional wisdom says to invoke this module as late as
possible. We intend to study the impact of this delay in future,
when the overhead of incurring Path Loading Request Module
is reduced. The interaction of these modules is presented in
Figure 6.

The Path Migration Module can be optionally used by user
to manually transition an alternate path as the primary path for
data transfer. We do not use this module in this paper. With
Hardware-IBNFT, the primary and alternate pathIDs used by a
QP can be represented by using consecutive values in a round
round-robin fashion with respect to the total number of paths
available in the network.

At the occurence of a network fault, InfiniBand Access
layer generates an event at each of the end nodes of the QP,
indicating the successful completion of the path migration. At
the occurence of this event, we query the current attributes
of the QP, and invoke the alternate path specification module
and the path migration module to specify the alternate path
and request the transition. However, as discussed in section III,
Hardware-IBNFT works successfully only if the alternate path
is in healthy state as well. In the next section, we present the
design of Software-IBNFT, which is initiated with the failure
of Hardware-IBNFT.

B. Software-IBNFT

In this section, we present the design of the Software-
IBNFT. We present the mechanisms provided by InfiniBand
for an Early Detection of Network Fault and design for
Scalable Out-of-Band Connection Manager, which Software-
IBNFT uses for connection re-establishment. We also discuss
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the framework for putting these mechanisms altogether in
order to provide Software-IBNFT.

1) Early Detection of Network Fault: InfiniBand provides
mechanisms to register event notification handler with the
adapter. Using this event handler, the registered client can
perform corrective actions, on the occurence of an event.
Events corresponding to the state of the path migration, and
QP state are generated, whenever possible. We leverage this
event generation mechanism provided by InfiniBand for early
detection of network fault(s). As discussed above, the path
migration success generates an event marking success of the
path migration. Similarly, an event is generated on the failure
of path migration. We leverage this event for early detection
of network fault.

There are certain cases, when the failure event in not
generated, particularly when the path loading request module
is active, however the alternate path has not been loaded
completely in the APM state machine. An event is also
generated on the receiver side, when the data transfer has been
initiated and the network fault occurs during the transfer. We
also use this event as much as possible for early detection of
a network fault. These features are not available with uDAPL
based network fault tolerance work done in our previous
paper [19]. Clearly, this limits us to detect the network faults
only at the communication progress by the main thread.

The event generation mechanism requested only increases
with the number of active communication instances, and not
with the number of outstanding data requests on these tasks.
Hence, the overhead observed only increases with the number
of active communication processes.

2) Scalable Out-of-Band Connection Manager: With
Software-IBNFT, we use an unreliable datagram based con-
nection manager, for connection re-establishment. This out-of-
band connection manager is setup at the ARMCI Initialization
phase. The connection manager scales very well, since its
resource usage does not increase linearly with the increasing
number of processes in a job. We use this connection manager
to initiate connection re-establishment protocol, at the detec-
tion of the network fault. To ensure a timely response for
connection-reestablishment, we implement the event listener
portion of the connection manager as a separate thread block-

ing on an event. This thread is activated only in the presence of
a network fault handled unsuccessfully by Hardware-IBNFT.

An important property of reliable connection transport is
that the data transfer request to a QP in error state results
in transition of the initiator QP to be in the error state.
In our previous work with uDAPL [19], this can result in
multiple re-tries before the connection can be re-established
successfully. However, with unreliable datagram, the QP does
not transition to an error state on occurence of a network fault.
This results in a very efficient connection re-establishment
protocol, compared to the previously proposed approach.

C. Putting It All Together

Figure 7 shows the overall design of Software-IBNFT. It
has components which are responssible for detection of error
by checking the completion queue and the early fault detection
mechanisms described above. This component is referred to as
Network Fault Detection module. The network fault detection
module does not add any extra overhead, since the completion
queue is checked for notifying the ARMCI layer of the
completion of data transfer requests.

The message re-transmission module is responsible for re-
issue of previously failed data transfer requests. We maintain
a queue of the failed data transfers and re-issue them once the
QP has been re-established for communication. Figure 8 shows
the overall communication protocol for re-establishment with
software-IBNFT.

We use process A and B to explain the communication re-
establishment protocol. On the occurence of a network fault,
the QP on process A is automatically transitioned to ERROR
state by the hardware. At this point, the QP is transitioned to
the SQD state. This ensures that the all the previously posted
data requests on the QP have been posted to the completion
queue. The QP is recycled to the RTS state at this point, and
a request (REQ) for connection re-establishment is sent to the
process B. This request generates an event at process B. This
process in turn transitions its QP to the SQD state and queries
the state of the QP. The ERROR state of the QP requires a
re-cycling of the QP and reply being sent to process A. Once
process A receives the REP, it sends an ACK to the process
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B. Note that some of these control messages are sent by the
asynchronous thread.

We use a timeout based mechanism to re-send the messages
of the communication protocol. A timer-pop mechanism is
used to re-send the messages, which have not been acknowl-
edged after a timeout. Duplicate messages are silently ignored
in the communication re-establishment protocol.

D. Detailed Design Issues

In this section, we discuss the implementation details of
Hybrid-IBNFT. We focus on the usage of Shared Receive
Queue mechanism provided by InfiniBand and a need for
ordering requirements for Out-of-Band connection manager.

1) Shared Receive Queue: Shared Receive Queue provides
memory utilization benefits, since individual queues are not
required for communication. This property has an important
consequence. At the point of the QP transition to error, the
associated SRQ does not transition to the error state. For
normal receive queues, each of the previously posted receive
buffers are flushed to the receive completion queue. With SRQ,
only the buffers which are currently active in communication
are reported to completion queue with error.

2) Ordering Requirements for Out-of-Band Connection
Manager: In order to different a network fault from the
previous network fault between the same pair of processes,
a sequence ID is maintained for each pair of processes. This
is also required, since unreliable datagram messages are not
guaranteed to be delivered in-order on the receiving side.

V. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
Hybrid-IBNFT. We compare this with the latest release of
Global Arrays, which we refer to as ”Original” for the rest
of the section. We use simple benchmarks to understand the
overheads incurred by our new approach in the absence of
faults. We also discuss the methodology of emulating network
faults, and the behavior of Hybrid-IBNFT in the presence
of emulated network faults. We follow this with the study

of impact of network faults using NWChem with multiple
benchmarks and different number of processors. We have used
Chinook [9], an AMD Barcelona based SuperComputer at
Pacific Northwest National Lab as the experimental tested for
our evaluation.

A. Experimental Testbed

Chinook [9] is a 160 TFlops system that consists of 2310
HP DL185 nodes with dual socket, 64-bit, Quad-core AMD
2.2 GHz Barcelona Processors. Each node has 32 Gbytes of
memory and 365 Gbytes of local disk space. Communication
between the nodes is obtained using an InfiniBand interconnect
from Voltaire [17] Switches and Mellanox [18] Adapters. The
system runs a version of Linux based on Red Hat Linux
Advanced Server. A global 297 Tbyte SFS file system is
available to all the nodes.

B. Methodology for Emulating Network Faults

To evaluate the performance of Hybrid-IBNFT, the best case
would be to have physical access to the supercomputer and
the privilege to unplug a cable during the communication, and
observe the behavior. However, such privilege is prohibitive for
systems like Chinook [9], which continually serve the needs
of scientists at PNNL and worldwide.

Hence we design a software based mechanism to inject a
network fault, which would result in failure of communication,
and initiate the fault recovery mechanism. During the QP
setup phase, we selectively specify incorrect destination LID
for the destination QP. As a result, any data requests on the
QP result in error, initiating the network fault recovery using
Hybrid-IBNFT. The setup at Chinook does not use LMC yet,
which results in only a single path of communication between
any pair of processes. As a result, the emulated network
fault results in APM failure. We are working to remove this
limitation, since usage of LMC does not only benefit network
fault tolerance, it also benefits hot-spot avoidance, as presented
in our previous work [14]. We do not disable the Hardware-
IBNFT path in our implementation. Clearly, this limitation
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only results in worse performance than if Hardware-IBNFT
could be used successfully.

C. Performance Evaluation with Microbenchmarks

In this section, we present the results with microbench-
marks. We measure the increment in the QP state transition
time, as a result of using Hardware-IBNFT. This penalty
is incurred during the QP creation, during the execution
of the Software-IBNFT recovery and successful comple-
tion of Hardware-IBNFT recovery. In addition, we use sim-
ple ARMCI blocking Get (ARMCI Get) and blocking Put
(ARMCI Put) based microbenchmarks, which report the band-
width observed at every iteration and study its performance in
presence of emulated network faults.

Figure 9 shows the time taken in QP transition compar-
ing the Original implementation with Hybrid-NFT. We have
used up to 1024 tasks for the comparison. Leaving small
task count aside, we notice that the QP transition follows a
near linear trend with increasing number of processes. There
is a significant overhead observed in transition time using
Hybrid-IBNFT. This cost is incurred every time an alternate
path is loaded. However, for long running applications, this
cost would be amortized over the length of the application
execution.

Figure 10 shows the results for a unidirectional Get band-
width test at ARMCI level. We compare the results of the
Original implementation with Hybrid-IBNFT using no or one-
fault. The test reports the result at every iteration. For One



Fault case, we take a snapshot of the result and use the
point of failure as the center point in the figure. We see
that the Original, No Fault case shows close to 1500 MB/s
of unidirectional bandwidth. Obviously, the benchmark does
not run to completion in the case of Original, One Fault.
The Hybrid-IBNFT approach shows a very interesting trend
at the point of failure. At the failure, we observe almost
0 MB/s bandwidth. The primary reason is that multiple re-
tries for data transfer are performed before APM transition is
initiated, which results in a failure on our TestBed. We also
use a high value of timeout, which is important to reduce
the false positives of communication failure on large scale
clusters. The timeout typically dominates the total overhead
at communication failure.

We also observe, that there is no overhead incurred by
Hybrid, IBNFT at non-failure iterations. Similar trends in
performance are observed for different implementations using
ARMCI Put unidirectional bandwidth, as shown in Figure 11.

D. Performance Evaluation with NWChem

In this section, we present the normalized execution time of
Hybrid-IBNFT with NWchem [12], using various benchmarks
including h207, pentane, siosi3 and siosi7. We use up to 1024
processors for the performance evaluation. For each of the
benchmarks, we compare the results of the Original case with
Hybrid-IBNFT, No Fault and Hybrid-IBNFT, 1 Fault case.

Figure 12 shows the results for h2o7 benchmark for 256,
512 and 1024 processors respectively. Compared to the orig-
inal implementation, there is a slight overhead incurred by
Hybrid-IBNFT, no fault case. This overhead is due to overhead
incurred in APM transition, as presented in Figure 9. We
observed that this overhead is linear with increasing number of
processes. An overhead is also observed for creating an out-of-
band connection manager. The overhead of creation is constant
with increasing number of processes, due to the connectionless
nature of the unreliable datagram transport of InfiniBand.

The Hybrid-IBNFT, 1 Fault case shows the results with one
network fault. We observe that a slight overhead is observed
for this case, since this case incurs the overhead of no-fault
case, and the overheads of APM failure and multiple re-tries
at the network layer, before software based re-transmission
is initiated. However, the overall overhead for any of the
processor counts is less than 10% with one network fault.

Figure 13 shows the results for h2o7 benchmark for 256,
512 and 1024 processors respectively. We observe an overhead
of less than 5% for Hybrid-IBNFT case for each of the
processor counts. An overhead of 5% is observed with 1
Fault case. For 1024 processors, the benchmark runs for 181
seconds.

Figure 14 shows the results for siosi3 benchmark for 32, 64
and 128 processors respectively. siosi3 is a smaller benchmark
compared to the rest of the benchmarks used in this paper.
We used this benchmark to understand the overhead for
applications potentially running for a small period of time.
The 32 processor run executes for 17 seconds. As shown in
the figure, a considerable overhead is observed for No Fault

and 1 Fault case with Hybrid-IBNFT. It can be concluded
that Hybrid-IBNFT is targetted for applications running for a
longer period of time.

Figure 15 shows the results for siosi7 benchmark for 256,
512 and 1024 processors respectively. This benchmark runs
for 9 minutes and 14 seconds for 1024 processors. As this
can be seen, the overhead observed is negligible for No Fault
and 1 Fault case, compared to the Original execution of time.

Clearly, the inputs running for a longer execution time
do not incur much overhead at the occurence of a network
fault. We notice that the overhead is insignificant even for
an application execution for 181 seconds. The systems at the
current scale have much higher MTBF. Hence, the Hybrid-
IBNFT provides an efficient solution for large scale clusters.

VI. RELATED WORK

Providing Network Fault tolerance with high speed inter-
connnects has been studied by many researchers in last couple
of years. Petrini et al. have provided mechanisms for network
fault tolerance with Quadrics [3], [20]. With Quadrics, failover
with multiple alternate paths are used before communicating
processes are notified of the failure. Myrinet [2] uses a
connectionless approach for communication, and hardware
acknowledgement is not provided on data delivery. In our
previous work, we have designed modules for network fault
tolerance using Automatic Path Migration (APM) over In-
finiBand [7]. However, this approach works fine, only if the
alternate path is healthy. We have also worked on designing
software based network fault tolerance approach with uDAPL
based clusters [19]. However, uDAPL does not provide inter-
face for hardware based support for APM, in addition to the
limited reliable connection based data transfer. uDAPL does
not provide support for Shared Receive Queue.

Aulwes et al. have provided a network fault tolerance with
LA-MPIaulwes:europvm03. However, this approach primarily
focusses on TCP based clusters, and does not leverage the
hardware based APM with InfiniBand. It also does not lever-
age the completion queue semantics provided by high speed
interconnects. Similarly, OpenMPI [21], provides supports
for multiple networks and allows striping by linking these
networks at the Byte Teansport Layer (BTL). OpenMPI is
also not able to leverage the hardware based network fault
tolerance provided by InfiniBand.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a hybrid hardware-software
approach (Hybrid - InfiniBand Network Fault Tolerance (IB-
NFT)) for handling network faults with InfiniBand. The hybrid
approach has used the user-transparent fault detection and
recovery using APM as much as possible. Compared to the
previously proposed approached for software based network
fault tolerance, this approach has leveraged the early network
fault notification and a scalable out-of-band connection man-
agement mechanism for connection re-establishment. Using
Global Arrays, a widely used shared memory programming
model, we have implemented our hybrid approach using



Aggregate Remote Memory Copy Interface (ARMCI), the
run time system of Global Arrays. We evaluated our Hybrid-
IBNFT using up to 1024 tasks and multiple benchmarks
(siosi7, pentane, h2o7 and siosi3) with NWChem [12], a very
popular ab initio quantum chemistry application. Using the
proposed approach, the applications executed to completion
without restart on emulated network faults and acceptable
overhead for datasets executing for a longer period of time.
To the best of our knowledge, this is the first design and
implementation of a hybrid hardware-software approach for
network fault tolerance with InfiniBand.

We plan to evaluate Hybrid-IBNFT on larger processor
counts and use LMC to evaluate the performance of hardware
approach. We also plan to combine the hot-spot avoidance
approach, as proposed in our previous work to decide the
best alternate paths with APM. Performance evaluation with
other emerging Global Arrays applications like sub-surface
transport over multiple phases with Hybrid-IBNFT is also of
an immediate interest to us.
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