
Design and Evaluation of Benchmarks for Financial Applications using
Advanced Message Queuing Protocol (AMQP) over InfiniBand*

Hari Subramoni, Gregory Marsh, Sundeep Narravula, Ping Lai, and Dhabaleswar K. Panda
Department of Computer Science and Engineering, The Ohio State University

{subramon, marshgr, narravul, laipi, panda}@cse.ohio-state.edu

Abstract

Message Oriented Middleware (MOM) is a key technol­
ogy in financial market data delivery. In this context we
study the Advanced Message Queuing Protocol (AMQP),
an emerging open standard for MOM communication. We
design a basic suite of benchmarks for AMQP's Direct.
Fanout, and Topic Exchange types. We then evaluate these
benchmarks with Apache Qpid, an open source implemen­
tation ofAMQP. In order to observe how AMQP performs
in a real-life scenario, we also perform evaluations with a
simulated stock exchange application. All our evaluations
are perfonned over InfiniBand as well as I Gigabit Ether­
net networks. Our results indicate that in order to achieve
the high scalability requirements demanded by high perfor­
mance computational finance applications, we need to use
modern communication protocols, like RDMA. which place
less processing load on the host. We also .find that the cen­
tralized architecture ofAMQP presents a considerable bot­
tleneck asfar as scalability is concerned.

Keywords: AMQP Computational Finan,e, InfiniBand

1 Introduction

Message Oriented Middleware (MOM) plays a key role
in financial data delivery. The strength of MOM is that it
allows for communication between applications situated on
heterogeneous operating systems and networks. MOM al­
lows developers to by-pass the costly process of building
explicit connections between these varied systems and net­
works. Instead applications need only communicate with
the MOM. Typical MOM implementations feature asyn­
chronous message delivery between unconnected applica­
tions via a message queue framework. However, there are
prominent MOM implementations that operate without a
queue framework [22].

Advanced Message Queue Protocol (AMQP) originated
in the financial services industry in 2006 [1] [12] [23J.
AMQP is an open standard for MOM communication.
AMQP grew out of the need for MOM system integra­
tion both within and across corporate enterprise boundaries.

'This research is supported in part by DOE grants #DE-FC02­

06ER25749 and #DE -FC02-06ER25755: NSF grants #CNS-0403342 and

#CCF-0702675.

978-1-4244-3311-7/08/$25.00 ©2008 IEEE

Due to the proliferation of proprietary, closed-standard,
messaging systems such integration is considered challeng­
ing. As such, the primary goal of AMQP is to enable better
interoperability between MOM implementations.

In this paper we evaluate, Apache Qpid, an AMQP com­
pliant, open source, MOM distribution [2]. Our evalua­
tion draws on the Message Passing Interface (MPI) [10]
experience of the Network-Based Computing Laboratory
at the Ohio State University. The MPI standard is used
extensivcly in the scientific, High Performance Comput­
ing (HPC) arena. Our laboratory's main software product,
MVAPICH [11], is an open source adaptation of MPI to
HPC networks such as InfiniBand. As such, we are particu­
larly interested in messaging performance with high speed
interconnects. This paper's main contributions are:

• The design of a set of benchmarks for AMQP.

• Implementation of these AMQP benchmarks with the
Apache Qpid C++ API. and their evaluation on Infini­
Band and I Gigabit Ethernet networks.

• Evaluation of a Stock Market Simulation, adapted to
Apache Qpid on these networks.

We designed our benchmarks to evaluate the various
communication models offered by AMQP. Three variables
inherent in any AMQP communication model are the num­
ber of Publishers (senders), the number of Consumers (re­
ceivers), and the Exchange type (message routing engine).
Each of our benchmarks exercises one or more of these vari­
ables. In particular our benchmarks focus on AMQP's Di­
rect, Fanout, and Topic Exchange types. Furthermore our
benchmarks measure performance for data capacity, mes­
sage rate, and speed.

Our experiments achieved 350 MegaBytes per second
throughput using a basic AMQP Direct Exchange using
IPolB (TCP/IP over InfiniBand). With an increased num­
ber of Consumers receiving messages, we found that the
achievable message rate decreases for all Exchange types.
Further investigation showed that an increased CPU utiliza­
tion creates a performance bottleneck on the AMQP Bro­
ker. In our experiments with SDP (Sockets Direct Protocol
over InfiniBand), we found that due to the low Kernel stack
overhead of SDP, we were able to obtain higher throughput.
With the stock exchange application, using the TCP Nagle
algorithm moderately increased IPoIB performance at high

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 02:00 from IEEE Xplore. Restrictions apply.

benchmarks for MPI [15]. One thing to note here is that,
unlike the OSU benchmarks, our benchmarks do not as­
sume a direct, one link, point-to-point network connection.
Within AMQP, a message must always traverse the Broker
host in route to the destination Consumer. This incorporates
at least two network links into any message's travel path.

Three variables inherent in any AMQP operation are the
number of Publishers, the number of Consumers, and the
Exchange type. Each of our benchmarks exercises one or
more of these variables. Furthermore each of our bench­
marks measures performance for data capacity, message
rate, and speed. Data capacity is the amount of raw data
in MegaBytes (MB) that may be transmitted per second, ir­
respective of the number of messages. This is also known
as Bandwidth. Message rate is similar to data capacity, but
measures the number of discrete messages transmitted per
second. Message rate is also known as Throughput. Speed
is the average time one message takes to travel from the
publisher to the consumer. This speed measure is com­
monly referred to as Latency.

3.1 Direct Exchange - Single Publisher
Single Consumer (DE-SPSC) Bench­
mark

This benchmark tests basic Publisher-Consumer mes­
sage transmission across AMQP's direct exchange type.
This test is analogous to a network point-to-point test. The
direct exchange type provides routing of messages to zero
or more queues based on an exact match between the Rout­
ing Key of the message, and the Binding Key used to bind
the Queue to the Exchange. So the Exchange performs a
text string equality computation for each message.

The Publisher sends out a pre-defined number of mes­
sages, with sizes varying from I Byte to I MegaByte (MB),
to a Direct exchange running on a single Broker host. Once
thc Consumer has received thc pre-defined number of mes­
sages of a particular size, it sends back a 0 byte reply to
the Publisher. Upon receiving this reply, the Publisher com­
putes the performance metrics for that message size, and
then starts transmitting the next set of messages to the Con­
sumer. (Note: to receive reply messages from the Con­
sumer, the Publisher is also a Consumer with its own receive
queue. Unlike the Consumer, the publisher only processes
a small number of these reply messages.)

3.2 Direct Exchange - Multiple Publish­
ers Multiple Consumers (DE-MPMC)
Benchmark

This benchmark tests the scalability of the AMQP archi­
tecture with the Direct Exchange type. Here we use mul­
tiple, independent, Publisher-Consumer pairs. These pairs
simultaneously communicate with each other through the
same Direct Exchange residing on a single Broker host.
This increases text string equality computations, as well as
network connection overhead on the Broker host. The op­
erations of this benchmark are the same as DE-SPSC, just
with a higher number of Publishers and Consumers.

978-1-4244-3311-7/08/$25.00 ©2008 IEEE

3.3 Direct Exchange - Ping Pong (DE­
PP) Benchmark

This benchmark tests round trip transmission between a
Publisher-Consumer pair. This test is similar to the sending
of market trade orders and the receipt of order confirma­
tions.

The Publisher sends out a pre-defined number of mes­
sages, with sizes ranging from I Byte to I MegaByte (MB),
to a Direct exchange running on a single Broker host. How­
ever after sending a single message, the publisher waits for
a reply from the Consumer. Upon receiving one message
from the Publisher, the Consumer sends a same sized reply
back to the Publisher. When a reply for each sent message
is received, the Publisher computes the performance met­
rics for that message size, and then starts transmitting the
next set of messages to the Consumer.

3.4 Fanout Exchange - Single Publisher
Multiple Consumers (FE-SPMC)
Benchmark

This benchmark tests Fanout Exchange delivery to a
varying number of Consumers. The Fanout Exchange is
similar to the traditional multi-cast model of network trans­
mission. A Fanout Exchange routes messages to all bound
queues regardless of the message's Routing Key. Therefore
it does not have the text string matching overhead of the
Direct Exchange type.

The Publisher sends out a pre-defined number of mes­
sages, with sizes varying from I Byte to I MegaByte (MB),
to a Fanout exchange running on a single Broker host. Upon
receiving a message, the exchange copies the message to all
queues which have been bound by a pre-defined number
of Consumers. Once each Consumer has received the pre­
defined number of messages of a particular size, it sends
back a reply to the Publisher. After receiving a reply from
all Consumers, the Publisher computes the performance
metrics for that message size, and then starts transmitting
the next set of messages to the Consumers. To understand
how the Fanout Exchange scales, this test may then be re­
peated with an increased number of Consumers.

3.5 Topic Exchange - Single Publisher
Single Consumer (TE-SPSC) Bench­
mark

This benchmark tests Topic Exchange delivery with a
varying amount of Binding Key topics. A Topic Exchange
routes a message to bound queues if the message's Routing
Key matches a pattern provided by the Binding Key. For
example a Routing Key of "news.usa" would match a Bind­
ing Key of "news.*". So the exchange's Broker host incurs
the computational overhead of text string pattern matching
for each message.

The Puhlisher sends out a pre-defined numher of mes­
sages, with sizes varying from I Byte to I MegaByte (MB),
to a Topic exchange running on a single Broker host. Each
message has the same Routing Key. A pre-defined number

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 02:00 from IEEE Xplore. Restrictions apply.

of Consumers have bound their queues to the Exchange us­
ing different Binding Key pattems. However, only one of
these Binding Keys will pattern match the messages' Rout­
ing Key. Therefore only one Consumer will receive mes­
sages. Once this Consumer has received the pre-defined
number of messages of a particular size, it sends back a
reply to the Publisher. Upon receiving this reply, the Pub­
lisher computes the performance metrics for that message
size, and then starts transmitting the next set of messages.
To understand the pattern matching overhead incurred by
the Exchange, the number of non-match, Binding Key pat­
terns may be increased. Therefore the Exchange must work
through an increased number of failed pattern matches to
find the one true match.

4 Experimental Results

In this section, we present results from our evaluation of
Apache Qpid over the InfiniBand and 1 Gigabit Ethernet (1
GigE) networks.

affect basic performance across the Broker host. Our Socket
Benchmark tests established an average maximum band­
width of 550 MegaBytes per second (MBps) using IPoIB
and 650 MBps using SDP for our experimental setup.

4.3 Benchmark Tests

4.3.1 Direct Exchange· Single Publisher Single Con-
sumer (DE-SPSC) Benchmark

Figures 3 (a), (b) and (c) show the speed and message rates
achieved for varying message sizes using the DE-SPSC
Benchmark over IPoIB, 1 GigE and SDP, respectively. As
we can see, for small messages, IPoIB achieves the best la­
tency. For larger messages, SDP achieves better latency.
SDP requires a larger connection setup time as compared
to IPoIB. As a result, the connection setup time dominates
the total data transfer time for smaller messages resulting in
higher latencies when we use SDP. This behavior of SDP
has been well studied in [3].

A discussion of the results in Figure 3 (d) is included in
the next subsection.

4.2 Basic Performance

Figure 2. Experimental Setup

4.1 Experimental Setup

4.3.2 Direct Exchange - Multiple Publishers Multiple
Consumers (DE-MPMC) Benchmark

Figure 4 (a) shows the bandwidth (data capacity) curve with
multiple Publisher-Consumer pairs. The 1 GigE interface
saturates the link early on and hence shows no variation.
For IPoIB, we are able sustain performance up to four si­
multaneous Publisher-Consumer pairs. But, performance
drops drastically as we increase the number of pairs up to
eight.

To gain more insights into this drop in performance, we
looked at the CPU utilization on the Publisher, Consumer
and the Broker while running the DE-MPMC benchmark.
As pointed out in [3], lower CPU utilization is the reason
why SDP is able to maintain performance for larger number
of Publisher-Consumer pairs. Figure 4 (b) shows the nor­
malized CPU utilization with IPoIB for a varying number
of Publisher-Consumer pairs. It is to be noted that our ex­
periments are performed on machines with multiple (8) pro­
cessing cores. Hence, CPU utilization of more than 100% is
not unexpected. As we can see, with an increasing number
of pairs, the CPU utilization on the Broker shows a linear
increase. With the kind of scalability that is expected of
High Performance Finance applications these days, there is
a strong motivation for us to explore better designs for the
Broker, including distributing the functionality of the Bro­
ker among multiple cores/machines.

In this context, modem high performance protocols such
as RDMA, which incurs very low overhead on the host
CPU, will help. Figure 3 (d) compares the MPI level mes­
sage rate achieved over IPoIB as well as IB RDMA. As we
can see, message rates achieved over RDMA are an order
of magnitude higher than what we can achieve using IPoIB.
This coupled with the fact that the communication using
RDMA incurs very low overhead on the host CPU makes
this an ideal choice for the underlying protocol.

......
.....: Binding•

Server
(Broker)

.'
."

."
."

Figure 2 shows the basic setup which we used to conduct
our tests. We use a cluster consisting of Intel Xeon Quad
dual-core processor host nodes. Each node has 6GB RAM
and is equipped with a 1 GigE Network Interface Controller
(NIC), as well as with an InfiniBand Host Channel Adapter
(HCA). The IB HCAs are DDR ConnectX using Open Fab­
rics Enterprise Distribution (OFED) 1.3 [13] drivers. The
operating system for each node is Red Hat Enterprise Linux
4U4. We used Qpid Version M3 Alpha. We started the Bro­
ker with the "TCP no delay" option and set the maximum
allowed size for any queue to be 4,294,967,295 bytes, which
was the maximum allowed to us by the software. The Qpid
Broker ran with a single default virtual host.

To establish the maximum IPoIB performance that we
might achieve in our experimental setup, we first performed
a low-level network test using Socket Benchmarks [20].
This test is independent of AMQP and establishes base­
line network performance. Since the Broker has to service
both the Publisher(s) and Consumer(s) at the same time, the
Socket Benchmarks have each host send and receive pack­
ets to/from the Broker host. This tests how multiple streams

978-1-4244-3311-7/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 02:00 from IEEE Xplore. Restrictions apply.

