
Design Alternatives for Implementing Fence Synchronization in MPI-2

One-sided Communication for InfiniBand Clusters ∗

G. Santhanaraman, T. Gangadharappa, S. Narravula, A. Mamidala and D. K. Panda

Department of Computer Science and Engineering,

The Ohio State University,

{santhana, gangadha, narravul,mamidala, panda}@cse.ohio-state.edu

Abstract

Scientific computing has seen an immense growth in recent

years. The Message Passing Interface (MPI) has become the

de-facto standard for parallel programming model for dis-

tributed memory systems. As the system scale increases, ap-

plication writers often try to increase the overlap of computa-

tion and communication. The MPI-2 standard expanded MPI

to include one-sided communication semantics that has the

potential for overlapping computation with communication.

In this model synchronization between processes needs to be

done explicitly to ensure completion before using the data.

Fence is one of the mechanisms of providing such synchro-

nization in the one-sided model.

In this paper, we study a set of different alternatives for de-

signing the fence synchronization mechanisms. We analyze

the various trade-offs of these designs on networks like Infini-

Band that provide Remote Direct Memory Access (RDMA)

capabilities. We propose a novel design for implementing

fence synchronization that uses RDMA write with Immedi-

ate mechanism (Fence-Imm-RI) provided by InfiniBand net-

works. We then characterize the performance of different de-

signs with various one-sided communication pattern micro-

benchmarks for both latency as well as overlap capability.

The new Fence-Imm-RI scheme performs the best in scenar-

ios that require low synchronization overhead as well as good

overlap capability (close to 90% overlap for large messages)

as opposed to the other designs that can provide either low

synchronization overhead or good overlap capability.

1 Introduction

Scientific computing has seen a dramatic growth in the past

decade. The demand for computing cycles in scientific sim-

ulation is growing faster than processor speed. As we ad-

vance into an era of petascale science, High End Computing

(HEC) systems are continuing to meet the requirements of

several grand challenge applications. At the same time there

has been greater emphasis on parallel programming models

∗This work was supported in part U.S. Department of Energy grants #DE-

FC02-06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-0403342,

#CCF-0702675 and #CCF-0833169; grant from Wright Center for Innova-

tion #WCI04-010-OSU-0; grants from Intel, Mellanox, Cisco, Qlogic and

Sun Microsystems;.

as well as the middleware that supports these models in or-

der to extract maximum performance. One of the key features

desired from these programming models and middleware li-

braries is the ability for an application to overlap computation

and communication.

One-sided communication is emerging as a promising parallel

programming model especially for applications with irregular

communication patterns. In this model, the data transfer oper-

ations are asynchronous in nature. The sender (origin process)

alone is involved in the data transfer using a get or a put oper-

ation and there is no explicit synchronization with the receiver

process for every data transfer. This model aims to improve

performance by decoupling synchronization from data move-

ment. This inherently allows the programs to be less syn-

chronizing, the synchronization being limited only to indicate

when the memory is available for reading/writing by the re-

mote process, as well as to indicate when the data transfer

has been completed from or into the remote process’s mem-

ory. To reduce synchronization, the applications also com-

municate in cliques, near neighbor communication (e.g., PDE

solvers, molecular dynamics simulations) and cartesian grids

(e.g., FFT solvers) [1, 7, 2].

MPI (Message Passing interface) [10] has been the de-facto

parallel programming model for distributed memory systems.

The MPI-2 [16] standard added the one-sided communication

model, also known as the Remote Memory Access (RMA)

model. This kind of model provides the potential to overlap

computation with communication. MPI-2 RMA supports two

modes of synchronization: (i) active: the target process is

actively involved in the synchronization and (ii) passive: the

target process is oblivious to the on-going synchronization.

The active mode is of two types: (i) post-start-complete-wait

where only a subset of processes need to synchronize and (ii)

fence in which all the processes associated with the memory

window needs to synchronize.

The MPI implementations use different methods to optimize

these data transfer operations and synchronizations [20, 14,

22]. Some optimizations are geared towards improving the

latency of small messages. However, some of these optimiza-

tions in which data transfers are combined with synchroniza-

tion operations could result in reduced scope for computa-

tion/communication overlap. In this paper, we study the dif-

1

ferent alternatives for designing and implementing an efficient

fence method of synchronization for one-sided operations.

In the area of high performance networking, InfiniBand [13]

has emerged as a popular choice and is currently powering

several of the top supercomputers. The InfiniBand Architec-

ture (IBA) provides Remote Direct Memory Access (RDMA)

capability with which we can directly access the remote ad-

dress space. This is a perfect semantic fit for the one-sided

data transfer operations and provides low latency. However,

RDMA operations pose a challenge in implementing the syn-

chronization operations. The semantics of a fence synchro-

nization state that all the data operations complete locally

and all the issued operations complete remotely before the

remote process can come out of the synchronization phase.

In the context of RDMA operations, checking for remote

completion pose challenges. Some of the existing fence de-

signs circumvent this by sending completion or finish notifi-

cation messages that indicate that all previous messages on

this channel have been received. However this can lead to

message flooding especially in large scale deployments. In-

finiBand also provides RDMA write with Immediate mech-

anism (RI) which is an extended RDMA operation. In this

paper, we leverage this mechanism to signal remote comple-

tions to implement fence synchronization.

In particular, we make the following contributions in this pa-

per:

• Evaluate various design choices for implementing fence

synchronization on modern interconnects.

• Design a novel fence synchronization that leverages In-

finiBand’s RDMA Write with Immediate primitives.

• Characterize the performance of the designs with several

one-sided communication pattern benchmarks.

We perform a detailed performance evaluation of the different

designs with various one-sided communication pattern micro-

benchmarks for both latency as well as overlap capability.

The new Fence-RI scheme performs the best in scenarios that

require low synchronization overhead as well as good overlap

capability (up to 90% overlap for large messages) as opposed

to the other designs that can provide either low synchroniza-

tion overhead or good overlap capability.

The rest of this paper is organized as follows: In Section 2 we

provide the background for our work. The design issues are

discussed in detail in Section 3. The experimental evaluations

are presented in Section 4. The related work is discussed in

Section 5. Conclusions and future work are presented in Sec-

tion 6.

2 Background

In this section we briefly describe the required background for

our work. In particular, we describe the necessary details of

InfiniBand, MPI-2 One-sided communication, fence synchro-

nization mechanism and MVAPICH2.

2.1 InfiniBand

The InfiniBand Architecture (IBA) [13] is an industry stan-

dard that defines a System Area Network (SAN) to design

clusters offering low latency and high bandwidth. IBA sup-

ports two types of communication semantics: Channel Se-

mantics (Send-Receive communication model) and Memory

Semantics (RDMA communication model). Remote Direct

Memory Access (RDMA) [12] operations allow processes to

access the memory of a remote node process without inter-

vention by the remote node CPU. These operations are trans-

parent at the remote end since they do not involve the remote

CPU in the communication. IBA supports both RDMA Write

and RDMA Read. These operations offer a good semantic

match for MPI-2 one-sided Put and Get operations. In ad-

dition to these, InfiniBand also provides RDMA Write with

Immediate operations which offers the flexibility of provid-

ing notification that the data has reached the memory in addi-

tion to directly placing the data in the remote memory. In this

paper we explore using this remote notification capability to

optimize the fence synchronization.

2.2 MPI-2 One-Sided Communication

In MPI one-sided communication (also referred to as remote

memory access or RMA), the origin process (the process that

issues the RMA operation) can access a target process’ remote

address space directly. In this model, the origin process pro-

vides all the parameters needed for accessing the memory area

on the target process (also referred to as window) using an

MPI Put, MPI Get or MPI Accumulate operation. The com-

pletion of these operations is guaranteed by explicit synchro-

nization calls. One-sided semantics require that these mem-

ory accesses happen within an access epoch and an exposure

epoch on the origin and target process, respectively. MPI-2

semantics mandate that these data transfer operations must

be used with one of the following synchronization mecha-

nisms: (i) fence synchronization, (ii) post-start-wait-complete

and (iii) lock-unlock. The first and second mechanisms are re-

ferred to as active synchronization since the target process is

actively involved during synchronization. The third mecha-

nism using lock-unlock is referred to as passive synchroniza-

tion since the target process is not involved during synchro-

nization. In this paper we focus on one-sided communication

with fence synchronization mechanism.

2.3 Fence Synchronization

Fence is an active synchronization method which is collec-

tive over the communicator associated with the window ob-

ject. Fig. 1 shows a typical fence usage scenario. The first

fence call makes sure that the window on the remote process

2

Fence FenceFence

Fence FenceFence

Fence FenceFence

Put (2) Put (0)

Put (0) Put (1)

START: Epoch_0

END: Epoch_1

END: Epoch_0

&

START: Epoch_1

Process: 2Process: 1Process: 0

Put (2)

Put (0)

Put (1)

Figure 1: An Example of Fence Usage

is ready to be accessed. A process may issue one-sided op-

erations after the first call to fence returns. The next call to

fence or the second fence completes the one-sided operations

issued by this process as well as the operations targeted at this

process by other processes. An implementation of fence syn-

chronization must support the following semantics: A one-

sided operation cannot access a process’s window until that

process has called fence, and the second fence on a process

cannot return until all processes needing to access that pro-

cess’s window have completed doing so. In addition, the sec-

ond fence also needs to start the next access epoch as shown

in Fig. 1. The one-sided Put operations are issued within the

fence epochs. In the figure Put(x) indicates a Put operation to

Process:(x).

2.4 MVAPICH2

MVAPICH2 is a high performance implementation of MPI-2

over InfiniBand. The implementation is based on MPICH2.

As a successor of MPICH [9], MPICH2 [3] supports MPI-1

as well as MPI-2 extensions including one-sided communi-

cation. In addition MVAPICH2 supports efficient one-sided

communication by taking advantage of InfiniBand RDMA

Write and RDMA Read operations. MVAPICH2 is available

as an open source distribution and is currently being used by

more than 940 organizations worldwide including several sev-

eral high end computing platforms [18].

3 Design Alternatives

In this section we discuss the design choices for implementing

fence mechanisms, identify the limitations and propose our

optimizations.

In the MPI implementations derived from MPICH2 [3, 18,

22], there are two options for implementing fence: i) De-

ferred and ii) Immediate. In the Deferred approach, all the

operations and synchronizations are deferred till the subse-

quent fence. In the Immediate method, the synchronization

and communication operations happen as they are issued. We

explore the design issues involved in both these approaches.

As described in the previous section, a fence call needs to pro-

vide two functionalities, (i) it completes the previous epoch

i.e. it ensures that all the preceding RMA operations have

completed and (ii) it begins the next exposure epoch.

Next we describe the design for implementing fence using the

Deferred Approach.

3.1 Deferred Method using two-sided communi-

cation (Fence-Def)

In this design, the first fence call does nothing and returns im-

mediately. All the ensuing one sided operations are queued up

locally. All the work is done in the second fence, where each

process goes through its list of queued operations to determine

its target processes. This information is stored in an array and

in the second fence operation a MPI Reduce scatter operation

is performed to let every other process know if it is the target

of RMA operations from this process. The remote process

can then wait for the RMA operations from these nodes. The

last RMA operation from each process is conveyed to the re-

mote process by setting a flag in that RMA message. Since the

deferred approach is based on two-sided, the remote process

is involved in receiving the RMA message and by looking at

the flag, it ensures that it has received all the messages from

that process. Since all the RMA messages are queued and is-

sued during the fence, certain optimizations can be done that

can improve the latency of the messages as well as reduce the

overhead of the fence operations. However, there is no scope

for providing overlap using this approach. In this design there

is a notion of a remote agent that can handle incoming one-

sided and synchronization messages and we refer to this two

sided based design as Fence-Def.

3

3.2 Immediate Method using RDMA Semantics

Next we discuss fence implementations those use immediate

approach and RDMA semantics of the interconnects for com-

munication operations. This is the main focus of our work

since we are interested in fence implementation on networks

that support RDMA semantics.

One of the main challenges in designing fence for RDMA

operations is the detection of remote completion of the Put

operations.

One approach to handle remote completion is to wait for local

completions and then issue a Barrier operation. This seems

perfectly plausible as the Barrier is called after all the Puts

are issued and completed. However this does not completely

guarantee correctness as shown in Fig. 2. There is scope for

the Barrier messages to overtake the Put issued to process 3

as the Barrier can be implemented in a hierarchical fashion

and can complete earlier than the Put. If there is a hardware

implementation of Barrier and the underlying hardware guar-

antees that the messages are not overtaken, only then this is a

valid solution but not otherwise.

Process: 0 Process: 1

Process: 3Process: 2

Barrier: step 1

Barrier: step 2Barrier: step 2

Barrier: step 1

PUT: from 0 to 3
(Arrives After step 2)

Figure 2: Barrier Messages overtaking Put

Another method of handling remote completion is by sending

completion or finish notification messages that indicate that

all messages on this channel have been received. There are

some limitations of this approach with increasing scale.

3.2.1 Basic Design for Fence (Fence-Imm-Naive)

The MVAPICH2 library takes advantage of RDMA Read and

Write operations to improve the performance of contiguous

Get and Put operations. These one-sided operations are is-

sued immediately. The one-sided based implementation pro-

vides higher bandwidth for large put and get messages than

the two sided based design (Deferred method) and also pro-

vides greater potential for overlap of computation and com-

munication. The current fence implementation is based on

this design and is shown in Fig. 3. In order to completely im-

plement the fence usage semantics shown earlier in Fig. 1, we

need to support the following two functionalities: i) ensure lo-

cal and remote completion of operations in the current epoch

and ii) indicate the beginning of the next access epoch.

In this approach, polling for local completions are done to

make sure that the issued one-sided operations are completed

locally. For Get operations which are implemented on top of

RDMA Read, local completion is sufficient to indicate that

the Get operations are complete. The Put operations which

are based on RDMA Write need remote completions. To han-

dle this, a finish message is sent on each channel on which a

put operation is issued to indicate that it has sent all the mes-

sages on that channel. Since the RDMA write operations on

the same channel are ordered, when the finish message is re-

ceived, all the RMA operations issued previously to that node

are assured to be completed. Polling for local completions is

done to make sure that all the messages sent have completed

locally. A Reduce scatter operation is used to let a process

know if it is the target of RMA operations. The target node

then waits for finish messages from all these nodes. At this

point, the fence has finished completion of messages for that

epoch. The next part is to indicate to all the other processes

that the next epoch can begin and it is safe to access the win-

dow. The current design posts a flag to every other process

to indicate that the window can now be safely accessed for

the next epoch. This results in all pair-wise synchronization

of the processes. This is a naive approach and leads to flood

of messages in the network. We will refer to this approach as

Fence-Imm-Naive.

This design has several drawbacks that need to be addressed.

From the description of the design in the previous section, we

can see that there could be two potential floods of messages

during the fence. The first is a flood of finish messages to han-

dle remote completion if the process is communicating with

several peers. The second flood is the flood of messages to

post a flag to indicate that the window can be accessed for the

next epoch.

3.2.2 Fence Immediate with Optimization (Fence-Imm-

Opt)

As an optimization to this approach, we use a barrier instead

of the pair-wise synchronization to indicate the beginning of

the next epoch. This alleviates the second flood of messages

described above. Fig. 4 describes this approach and is a more

scalable solution since it uses O(logn) communication steps.

We refer to this approach as Fence-Imm-Opt.

These approaches described above still has the issue of com-

pletion messages being sent on all the channels. As the num-

ber of processes scale to large number, this could become a

bottleneck. We propose a new design that uses the remote

notification provided by the InfiniBand networks to design a

novel and scalable fence implementation.

4

P0 P1 P2 P3

PUT
PUT

PUT

Finish message

REDUCE SCATTER

epoch 1

starting

completing

epoch 0

epoch 0

finish mesg
completion

completion
local

Fence begin

Fence end

Figure 3: Fence-Imm-Naive

3.2.3 New Scalable Fence Design With Remote Notifica-

tion (Fence-Imm-RI)

In this section we describe our new scheme which is also an

Immediate method, but offers greater scalability. The new

fence implementation is shown in Fig. 5. The main design

and implementations issues are as follows:

Remote notification of one-sided operations: As described

earlier, one approach to handle remote notifications is by

flushing all the channels using a finish message. However,

this approach is not scalable as it could lead to a flood of mes-

sages. In this design, we use the RDMA Write with Imme-

diate operations to issue Put operations which creates a com-

pletion entry on the remote node. After polling for local com-

pletions, the remote node is informed of the number of such

operations from all the processes through an MPI AllReduce

call. The remote node then polls till it receives completion

notifications for that many number of RDMA write with Im-

mediate operations. The completion of the Get operations is

handled by waiting for local completions for the RDMA Read

operations. This eliminates the first flood of messages.

Notification of beginning of next epoch: The next part is

to indicate the beginning of the next epoch, i.e., to make sure

that it is safe to access the window for the next epoch. It is to

be noted that MPI calls provide assertions that can be used to

give hints if there are no preceding or succeeding one-sided

operations and in that case the fence can be optimized. Here

we do not handle the assertions, but look at the general case.

In our design, we use a MPI Barrier call to indicate the begin-

ning of the next epoch. As mentioned earlier, typical Barrier

implementation uses log(n) communication steps leading to a

scalable solution. One trade-off of using this approach is that

it forces everyone in the group to synchronize and we might

lose out on some finer grain synchronization between a subset

of members of the fence group.

Preposting Receive Descriptors: One issue with using

RDMA Write with immediate functionality is the need to pre-

post receiver descriptors. We currently handle this issue by

preposting a fixed number of receive descriptors initially and

repost additional descriptors in the fence synchronization call.

We post additional receives on receiving RDMA write com-

pletions. However, in cases where the fence synchronization

is not called often and there are extremely large number of

Put operations, there is a scenario in which we might run out

of receive descriptors. One solution to this approach is to

use the InfiniBand Shared Receive Queue (SRQ) mechanism

[21] which allows efficient sharing of receive buffers across

many connections. When the number of available buffers in

the shared queue drops below a low watermark threshold, an

interrupt can be generated and additional buffers are posted.

Another approach is to use an asynchronous thread that can

post the receives.

Henceforth we will refer to this approach as Fence-Imm-RI. In

this work we have focused on InfiniBand Architecture. How-

ever, similar designs can be proposed for other interconnects

as well as modern architectures for petascale systems that can

provide remote completion mechanisms for RDMA opera-

tions.

5

P0 P1 P2 P3

PUT
PUT

PUT

Finish message

REDUCE SCATTER

epoch 1

starting

completing

epoch 0

epoch 0

finish mesg
completion

completion
local

Fence begin

BARRIER

Fence end

Figure 4: Optimized Design (Fence-Imm-Opt)

4 Experimental Results

In this section we present the experimental evaluation of the

different fence designs. We characterize the performance of

the proposed designs with the different micro-benchmarks

representing various communication patterns.

4.1 Experimental testbed

Our experimental testbed is a 64 node (512-core) Intel clus-

ter. Each node of our testbed is a dual processor (2.33 GHz

quad-core) system with 4 GB main memory. The CPUs sup-

port the EM64T technology and run in 64 bit mode. The

nodes support 8x PCI Express interfaces and are equipped

with MT25208 HCAs with PCI Express interfaces. A Silver-

storm 144 port switch is used to connect all the nodes. The

operating system used is RedHat Linux AS4. All the experi-

ments are run with one process per node configuration.

4.2 Methodology

In this section we describe the methodology for our evalu-

ation. First we demonstrate the overlap capabilities of one

sided based implementations as compared to one sided com-

munication over two sided based implementations. Next, we

focus on the synchronization overhead of our new Fence-

Imm-RI design comparing it with implementations through a

set of micro benchmarks and finally we compare the different

designs for a Halo communication pattern benchmark.

4.2.1 Overlap

In this section we demonstrate the overlap potential for our

one-sided immediate approaches compared with the two sided

implementation. Each process issues Put calls to its neighbor

between two fence synchronization calls. Increasing amount

of computation is inserted after the Put call and before the

second fence call. The overlap is measured as the amount of

computation that can be inserted without affecting the overall

latency. The experiment was run for varying message sizes.

The results are shown in Fig. 6. We observe that the two sided

Deferred implementation shows virtually no overlap. This is

expected because all the Put operations are deferred and is-

sued inside the second fence and hence there is no scope for

overlap. Whereas for all the Immediate approaches using one

sided implementation good overlap can be achieved for mes-

sage sizes beyond 16K and close to 90% overlap for message

sizes larger than 64k. In the following sections we concen-

trate on comparing the synchronization overhead of our new

fence design (Fence-Imm-RI) as compared to all the other ap-

proaches.

4.2.2 Basic Collectives Performance

Since the fence designs use some of the collectives in its im-

plementation in order to exchange the number of remote oper-

ations as well as to synchronize for the next epoch, we show

the baseline performance of the collective operations: Bar-

rier, All-Reduce and Reduce scatter first in this section. This

would help us in understanding the performance of various

fence designs. Table1 shows the results for up to 64 processes,

for these collectives. The All-Reduce and Reduce scatter

numbers are shown for 256 bytes message size. These col-

lectives show good scalability with 40-50 usecs latencies on

64 processes.

6

P0 P1 P2 P3

PUT

BARRIER

ALL REDUCE

(RDMA write with imm)

complete

Start Epoch 1

Epoch 0

Epoch 0

local

completion

RDMA Immediate

Remote

completion

Fence begin

Fence end

(RDMA write with imm) (RDMA write with imm)

PUT PUT

Figure 5: New design (Fence-Imm-RI)

 0

 20

 40

 60

 80

 100

16 64 256 1k 4k 16k 64k 256k

P
e

rc
e

n
ta

g
e

 o
v
e

rl
a

p

Message size

Fence-Def
Fence-Imm-Naive

Fence-Imm-Opt
Fence-Imm-RI

Figure 6: Overlap performance

Numprocs Barrier Allreduce Reduce Scatter

2 3.66 7.75 6.84

4 10.79 13.78 11.27

8 18.65 20.9 16.26

16 27.21 30.34 21.99

32 37.89 43.15 29.19

64 44.13 51.9 33.18

Table 1: Basic Collectives Performance (usecs)

4.2.3 Fence Synchronization Performance

In this section we evaluate the performance of the fence alone

without any one-sided communication operations. This mea-

sures the overhead involved in a fence synchronization. The

results are shown in Fig. 7. Since there are no data trans-

fer operations, there is no overhead of the data messages in

terms of local and remote completions for one-sided opera-

tions. We still need to use the collectives to inform the other

processes that the fence can complete and also that the next

fence epoch can begin. The Fence-Imm-Naive performs the

worst, because of the all pair-wise synchronization happen-

ing to indicate the end of the epoch. The Fence-Imm-Opt and

Fence-Imm-RI perform close to each other since both of them

use Barrier to indicate the start of next epoch. The Fence-

Imm-Opt performs slightly better than the Fence-Imm-RI, the

reason for this is because the Fence-Imm-Opt uses Reduce

Scatter collective as opposed to the AllReduce collective used

by the Fence-Imm-RI scheme. From Table1 we can see that

the Reduce Scatter collective has a lower latency than that of

AllReduce. We see that the Fence-Def which uses the two

sided approach performs the best, since it does not need to

use additional collective to indicate the start of an epoch.

4.2.4 Fence Synchronization with Communication Perfor-

mance

In the previous section, we evaluated the different schemes

for just the fence synchronization overhead. In this section

we evaluate the scalability of our fence implementations with

communication operations which is more reflective of us-

age in a one-sided application. First we evaluate the per-

formance of fence with a single Put of 16 bytes message

size issued by all the processes. The results are shown in

Fig. 8. For this pattern, we observe that Fence-Imm-Naive

performs very badly. However it is interesting to compare the

performance of Fence-Imm-Opt and Fence-Imm-RI. We now

7

��
��
��
��

��
��
��
��

����

����

Fence−Def

Fence−Imm−Naive

Fence−Imm−Opt

Fence−Imm−RI

��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

���� �
�
�
�

�
�
�
� ��

��
��
��

 0

 200

 400

 600

 800

 1,000

 1,200

8

1
6

3
2

6
4

L
at

en
cy

 (
u
s)

Num of procs

Figure 7: Fence Performance for Zero Put

����

��
��
��
��

����

����

Fence−Def

Fence−Imm−Naive

Fence−Imm−Opt

Fence−Imm−RI

���� �
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

���� ��
�
�
�
�

��
��
��
��

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

8

1
6

3
2

6
4

L
at

en
cy

 (
u
s)

Num of procs

Figure 8: Fence Performance for Single Put

see that the Fence-Imm-RI outperforms the Fence-Imm-Opt

scheme. The reason for this is the Fence-Imm-RI relies on

the hardware RDMA-Write with immediate for remote com-

pletions, whereas the Fence-Imm-Opt has to issue completion

messages which increases the overhead. This difference is

magnified further in the next experiment where each process

issues Puts to 8 neighbors and hence the number of comple-

tion messages increases further for the Fence-Imm-Opt. The

results for this experiment is shown in Fig. 9. The two-sided

approach still performs the best because it has lower overhead

for small messages and can combine the data transfer and syn-

chronization message. But it needs to be noted that it has poor

overlap capability.

4.2.5 Halo Exchange Communication Pattern

Scientific applications often communicate in a regular pat-

tern. Halo exchange of messages is a very popular model

in which each node communicates with a fixed number (4, 8,

26, etc) of neighbors. These usually correspond to the parallel

processing of multi-dimensional data in which each compute

process handles a certain section of this data set. The neigh-

bors exchange messages to handle border conditions. This

communication pattern is more representative of real world

applications. We simulate this halo exchange pattern for 4

and 8 neighbors and evaluate the two schemes. Every process

����

��
��
��
��

����

����

Fence−Def

Fence−Imm−Naive

Fence−Imm−Opt

Fence−Imm−RI

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

8

1
6

3
2

6
4

L
at

en
cy

 (
u
s)

Num of procs

Figure 9: Fence Performance for Multiple Puts

initiates the one-sided operation with its neighbor and simul-

taneously performs a fixed amount of computation.

The results for 4 and 8 neighbors are shown in Fig. 10(a) and

Fig. 10(b), respectively. Here we observe that our new Fence-

Imm-RI scheme outperforms all the other schemes. All the

immediate approaches have good computation/ communica-

tion overlap, whereas the two-sided deferred approach has

very poor computation/communication overlap. The Fence-

Imm-RI has reasonably low synchronization overhead and

very good computation/communication overlap and hence

shows the best performance.

5 Related Work

There are several studies regarding implementing one-sided

communication in MPI-2. Some of the MPI-2 implementa-

tions that support one-sided communication are MPICH2 [3,

11], OpenMPI [4], WMPI [17], NEC [23], SUN-MPI [6].

Designs and optimizations to implement fence synchroniza-

tion for MPI-2 one-sided communication using deferred ap-

proach are discussed in [22]. The NEC implementation [23]

uses Allreduce and Barrier to implement fence synchroniza-

tion. However they do not use RDMA Write with Immediate

mechanism for remote notifications. The RDMA Write with

Immediate mechanism has been explored in [15] for design-

ing MPI Alltoall over InfiniBand. In our work we are using

this mechanism to design a scalable fence synchronization us-

ing RDMA capabilities of the network. Besides MPI, there

are other programming models that use one-sided communi-

cation. ARMCI [19], GASNET [5] and BSP [8] are some

examples of this model.

6 Conclusions

Remote completions for one-sided operations pose challenges

for implementing synchronization operations. In this paper

we analyzed a set of different design choices for implement-

ing fence synchronizations on modern iterconnects. We pro-

posed a scalable design for implementing fence synchroniza-

8

����

��
��
��
��

����

��
��
��
��

Fence−Def

Fence−Imm−Naive

Fence−Imm−Opt

Fence−Imm−RI

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

8

1
6

3
2

6
4

L
at

en
cy

 (
u
s)

Num of procs

����

��
��
��
��

����

����

Fence−Def

Fence−Imm−Naive

Fence−Imm−Opt

Fence−Imm−RI

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

 0

 500

 1,000

 1,500

 2,000

8

1
6

3
2

6
4

L
at

en
cy

 (
u
s)

Num of procs

Figure 10: Fence performance with Halo Exchange: (a) 4 neighbors and (b) 8 neighbors

tion that uses RDMA write with Immediate mechanism for

handling remote completions. We then characterized the per-

formance of the design with different one-sided communica-

tion pattern micro benchmarks. Our evaluation shows signif-

icant improvement for the new Fence-Imm-RI design for the

different communication patterns. Our design shows good

overlap of close to 90% for large message sizes. We show

good scalability for increasing number of nodes. The new

Fence-Imm-RI design performs the best in scenarios that re-

quire overlap capability as well as fast synchronization.

For future work we would like to rewrite popular benchmarks

to use one-sided communication with fence synchronization

in an effective manner. We plan to study the impact of our

designs on these benchmarks as well as on real world appli-

cations.

References

[1] GROMACS. http://www.gromacs.org/.

[2] PETSc. http://www-unix.mcs.anl.gov/petsc/.

[3] Argonne National Laboratory. MPICH2. http://www-

unix.mcs.anl.gov/mpi/mpich2/.

[4] Brian W. Barrett, Galen M. Shipman, and Andrew Lumsdaine. Analysis

of Implementation Options for MPI-2 One-Sided. In Proceedings, Euro

PVM/MPI, Paris, France, October 2007.

[5] D. Bonachea. GASNet Specification, v1.1. Technical Report

UCB/CSD-02-1207, Computer Science Division, University of Cali-

fornia at Berkeley, October 2002.

[6] S. Booth and F. E. Mourao. Single Sided MPI Implementations for

SUN MPI. In Supercomputing, 2000.

[7] M. Frigo and S.G. Johnson. The Design and Implementation of

FFTW3. Proceedings of the IEEE, 2005.

[8] M. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsantilas. Portable

and Effcient Parallel Computing Using the BSP Model. IEEE Transac-

tions on Computers, pages 670–689, 1999.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance,

Portable Implementation of the MPI Message Passing Interface Stan-

dard. Parallel Computing, 22(6):789–828, 1996.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel

Programming with the Message Passing Interface, 2nd edition. MIT

Press, Cambridge, MA, 1999.

[11] William D. Gropp and Rajeev Thakur. An Evaluation of Implementa-

tion Options for MPI One-Sided Communication. In PVM/MPI, pages

415–424, 2005.

[12] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA Protocol

Verbs Specification (Version 1.0). Technical report, RDMA Consor-

tium, April 2003.

[13] InfiniBand Trade Association. InfiniBand Architecture Specification,

Release 1.0, October 24 2000.

[14] W. Jiang, J.Liu, H. W. Jin, D. K. Panda, D. Buntinas, R.Thakur, and

W.Gropp. Efficient Implementation of MPI-2 Passive One-Sided Com-

munication on InfiniBand Clusters. EuroPVM/MPI, September 2004.

[15] A. Mamidala, S. Narravula, A. Vishnu, G. Santhanaraman, and D. K.

Panda. On using Connection-Oriented and Connection-Less transport

for Performance and Scalability of Collective and One-sided opera-

tions: Trade-offs and Impact. In PPoPP, 2007.

[16] Message Passing Interface Forum. MPI-2: A Message Passing Interface

Standard. High Performance Computing Applications, 12(1–2):1–299,

1998.

[17] F. E. Mourao and J. G. Silva. Implementing MPI’s One-Sided Commu-

nications for WMPI. In EuroPVM/MPI, September 1999.

[18] Network-Based Computing Laboratory. MPI over InfiniBand Project.

http://mvapich.cse.ohio-state.edu/.

[19] J. Nieplocha and B. Carpenter. ARMCI: A Portable Remote Memory

Copy Library for Distributed Array Libraries and Compiler Run-Time

Systems. Lecture Notes in Computer Science, 1586, 1999.

[20] G. Santhanaraman, S. Narravula, and D. K. Panda. Designing Pas-

sive Synchronization for MPI-2 One-Sided Communication to Maxi-

mize Overlap. In IPDPS, 2008.

[21] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive Queue

based Scalable MPI Design for InfiniBand Clusters. In International

Parallel and Distributed Processing Symposium (IPDPS), 2006.

[22] R. Thakur, W. Gropp, and B. Toonen. Minimizing Synchronization

Overhead in the Implementation of MPI One-Sided Communication.

In EuroPVM/MPI, September 2004.

[23] J. Traff, H. Ritzdorf, and R. Hempel. The Implementation of MPI-2

One-Sided Communication for the NEC SX. In Proceedings of Super-

computing, 2000.

9

