
This paper describes the design and implementation of 
mechanisms for latency tolerance in the remote memory 
access communication on clusters equipped with high-
performance networks such as Myrinet. It discusses 
strategies that bridge the gap between user-level 
requirements and network-specific communication 
interfaces while attempting to increase opportunities for 
latency hiding. Mechanisms for overlapping 
communication with computation and coalescing small 
messages (trading latency for bandwidth) are explored. 
The effectiveness of these techniques is evaluated using 
microbenchmarks and application kernels including the 
NAS parallel benchmark suite. The microbenchmark 
results showed a better degree of overlap for nonblocking 
operations in ARMCI as compared to MPI. Application 
results showed up 30% to 45% improvement over MPI on 
using nonblocking operations. The aggregation of small 
messages yielded performance improvement of up to 78% 
over non-aggregated communication. 

1. Introduction  
Despite the impressive progress in high performance 
interconnect technology achieved during the last decade, 
the gap between processor and interprocessor 
communication performance (especially with respect to 
latency) has been growing. For example, in 1990 on the 
NCUBE/2 massively parallel system employing a 
1MFLOP/s processor, the message-passing latency was 
80� s. Today, the 1GHz Itanium-2 processor is rated at 
4GFLOP/s and is employed in Linux clusters connected 
with networks (e.g., Myrinet) that support ~10� s latency 
at the MPI layer. This growing gap is not specific to the 
commodity clusters. For example, the Cray X1 processor 
is rated at 12.8GFLOP/s (MSP mode), while the MPI 
latency is roughly the same as on the Pentium-4 based 
Linux clusters with Myrinet. Therefore, the growing gap 
between CPU and communication latency is a 
fundamental problem that requires attention in the design 
of all layers of communication protocol stacks as well as 
scalable parallel algorithms. Only by combining quality 
implementation of the communication interfaces with 
algorithms capable of exploiting available mechanisms 
for latency tolerance we can hope to address this issue. 

Remote memory access (RMA) operations facilitate an 
intermediate programming model between message 

passing and shared memory. This model combines some 
advantages of shared memory, such as direct access to 
shared/global data, and the message-passing model, 
namely the control over locality and data distribution. 
Certain types of shared memory applications can be 
implemented using this approach. In some other cases, 
remote memory operations can be used as a high-
performance alternative to message passing. On many 
modern platforms, RMA is directly supported by 
hardware and is the lowest-level and often most efficient 
communication paradigm available. In the context of this 
model, latency hiding can be accomplished through 
different techniques, including overlapping 
communication with computation [11] by the use of 
nonblocking communication (e.g., [5, 17]). Another 
technique is coalescing small put/get messages [13] into 
larger ones to eliminate startup cost [14] for as many 
messages as possible and to improve network utilization. 

We are working on advancing Aggregate Remote 
Memory Copy Interface (ARMCI), a portable RMA 
library used as a part of the run-time system developed by 
the Center for Programming Models for Scalable Parallel 
Computing project (www.pmodels.org) sponsored by the 
U.S. Department of Energy. The current goal is to 
provide efficient communication capabilities that could 
be used for latency hiding and reducing communication 
overhead in language- and library- based programming 
models. The major contributions of this paper are 1) the 
design of efficient nonblocking RMA implementation 
allowing a high level of overlap between communication 
and computation; 2) the concept and development of 
aggregate handle interfaces for coalescing multiple small 
RMA messages; and 3) demonstration of effectiveness of 
the nonblocking communication and aggregation in the 
context of microbenchmarks and application kernels. For 
both nonblocking communication and aggregation, we 
investigate various design issues with respect to request 
handle data structure and management and the buffer 
management layers. For each of these issues, we analyze 
the trade-off between performance advantages while 
exploiting native communication protocols, opportunities 
for overlapping communication and computations, and 
portability across different platforms. Based on these 
trade-offs, we present efficient designs and 
implementation strategies for the new mechanisms. 
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The effectiveness of these mechanisms is evaluated 
across different platforms for microbenchmarks and 
application kernels. For example, the experimental results 
on Myrinet demonstrate that nonblocking operations in 
ARMCI offer a substantially better degree of overlapping 
communication with computation than MPI. The NAS 
MG benchmark using nonblocking ARMCI operations 
achieved 30% to 45% (class C) improvement over the 
reference MPI implementation. In addition, the 
aggregated handle nonblocking communication when 
incorporated into the sparse matrix vector multiplication 
improved performance by 78% over the version based on 
non-aggregated get communication on 32 Itanium-2 
processors connected with Myrinet.  

The paper is organized as follows: Section 2 describes the 
nonblocking and aggregated RMA functionality that is 
instrumental for reducing communication overhead. 
Section 3 discusses issues involved in designing portable 
and efficient implementation of these capabilities on 
modern networks. Section 4 presents experimental results 
that evaluate effectiveness of our design in the context of 
microbenchmarks as well as application kernels. Finally, 
conclusions are given in Section 5. 

2. Nonblocking and Aggregated RMA 
Communication 
Aggregate Remote Memory Copy Interface (ARMCI) [3] 
is a portable RMA communication library compatible 
with message-passing libraries such as MPI or PVM. It 
has been used for implementing distributed array libraries 
such as Global Arrays, other communication libraries 
such as Generalized Portable SHMEM [15], and compiler 
run-time systems such as PCRC Adlib [3] or the portable 
Co-Array Fortran compiler at Rice University. ARMCI 
offers an extensive set of functionality in the area of 
RMA communication: 1) data transfer operations; 2) 
atomic operations; 3) memory management and 
synchronization operations; and 4) locks. In scientific 
computing, applications often require transfers of 
noncontiguous data that corresponds to fragments of 
multidimensional arrays, sparse matrices, or other more 
complex data structures. With remote memory 
communication APIs that support only contiguous data 
transfers, it is necessary to transfer noncontiguous data 
using multiple communication operations. This often 
leads to inefficient network utilization and involves 
increased overhead. ARMCI, however, offers explicit 
noncontiguous data interfaces: strided and generalized 
I/O vector that allow description of the data layout so that 
it could, in principle, be transferred in a single message. 
Of course, the effectiveness of actual transfers depends 
on the ability of underlying networks to deal with 
noncontiguous data (e.g., scatter/gather operations). 
However, even when scatter/gather operations are not 
supported by the network, the ARMCI strided and vector 

operations take advantage of the information -- for 
example, at level of data packing/unpacking -- so that the 
overall number of messages and network packets is 
reduced. Although the explicit message aggregation 
accomplished through the use of strided and vector 
interfaces is an effective mechanism for reducing 
communication overhead, it does not exploit all the 
available opportunities for optimization. Our work 
focuses on developing techniques that could help for 
latency tolerance -- nonblocking RMA and implicit 
communication aggregation.  

2.1 Nonblocking Operations 
Nonblocking operations initiate a communication call and 
then return control to the application. The user who 
wishes to exploit nonblocking communication as a 
technique for latency hiding by overlapping 
communication with computation implicitly assumes that 
progress in communication can be made in a purely 
computational phase of the program execution when no 
communication calls are made. Unfortunately, that 
assumption is often not satisfied in practice -- the 
availability of nonblocking API does not guarantee that 
overlapping communication with computation is always 
possible [6]. Because the RMA model is simpler than 
MPI (e.g., does not involve message tag matching or 
dealing with early arrival of messages), in principle more 
opportunities for overlapping communication with 
computation are available. However, we found that these 
opportunities are not automatically exploited by deriving 
implementations of nonblocking APIs from their 
blocking counterparts. For example, the communication 
protocols used to optimize blocking transfers of data from 
non-registered memory by pipelined copy and network 
communication through a set of registered memory 
buffers [1] can achieve very good performance by tuning 
the message fragmentation in the pipeline [8]. However, 
the memory copy requires the active host CPU 
involvement and therefore reduces the potential for 
effective overlapping communication with computation. 
To increase the overlap, we expanded the use of direct 
(zero-copy) protocols on networks that require memory 
registration, such as Myrinet. 

In ARMCI, a return from a nonblocking operation call 
indicates a mere initiation of the data transfer process, 
and the operation can be completed locally by making a 
call to the wait routine. Waiting on a nonblocking put or 
an accumulate operation ensures that data was injected 
into the network and the user buffer can be now be 
reused. Completing a get operation ensures that data has 
arrived into the user memory and is ready for use. A wait 
operation ensures only local completion. The library 
imposes a limit on the number of outstanding requests 
allowed (if necessary, it can transparently complete an 
old request and free up the resources for a new request). 
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For performance reasons [12], ARMCI supports only a 
weak consistency for operations targeting remote 
memory. Unlike their blocking counterparts, the 
nonblocking operations are not ordered with respect to 
the destination. Performance is one reason; the other is 
that by ensuring ordering, we incur additional and 
possibly unnecessary overhead on applications that do not 
require ordered operations. When necessary, ordering can 
be done by calling a fence operation. The fence operation 
is provided to the user to confirm remote completion if 
needed.  

2.2 Request handle 
The request handle structure is central to the APIs 
associated with the latency hiding mechanisms in 
ARMCI. This opaque object is stored in the application 
memory and is used to 1) assign a unique identity to a 
nonblocking RMA operation, 2) facilitate aggregation of 
multiple operations, and 3) optionally store certain 
control information. Before the handle is used, it must be 
initialized with the ARMCI_INIT_HANDLE macro and 
can be reused after the associated nonblocking operation 
completes. The user passes a reference to a request handle 
structure. As a convenience to the user, a NULL value for 
the handle address can be specified. The library keeps 
track of these so-called “ implicit handle requests”  and 
assigns a handle to them from an internal pool of handles. 
This type of requests can be completed using either the 
wait operation associated with a particular remote 
processor (see Figure 1) or another wait operation to 
complete all pending implicit handle requests.  

2.3 Implicit and Explicit Aggregation 
Aggregation of requests is another mechanism for 
improving latency tolerance. Multiple nonblocking data 
transfer (put/get) requests can be aggregated into a single 
data transfer operation in order to improve the data 

transfer rate. Especially if there are multiple data transfer 
requests of small message sizes, aggregating those 
requests into a single large request reduces the latency, 
thus improving performance. This technique is unique in 
its ability to sustain high bandwidth utilization and 
enables high throughput. Each of these requests can be of 
a different size and independent of data type. The 
aggregate data transfer operation is independent also of 
the type of put/get operation; that is, it can be a 
combination of regular, strided, or vector put/get 
operations. There are two types of aggregation available: 
1) explicit aggregation, where the multiple requests are 
combined by the user through the use of the strided or 
generalized I/O vector data descriptor, and 2) implicit 
aggregation, where the combining of individual requests 
is performed by ARMCI. The implicit aggregation 
involves the nonblocking request handle that is marked as 
“aggregate handle”  using the 
ARMCI_SET_AGGREGATE_HANDLE macro. 

Users can rely on a single aggregate handle to represent 
multiple requests. Any number of operations to/from the 
same processor can use the same aggregate handle. A 
wait on such a handle completes all the aggregated 
requests. For multiple small sends, aggregating is usually 
much faster and gives better performance. Figure 2 
illustrates the aggregate data transfer. It shows that the 
descriptors of multiple put requests are stored in an 
aggregate buffer and, once the wait call is issued, the data 
transfer is completed.  

3. Design and Implementation Approach 
Designing a portable RMA communication layer involves 
addressing multiple issues: 1) the functionality must be 
implementable across a wide variety of platforms; 2) 
performance advantages of the native communication 
protocols must be exploited; 3) opportunities for 
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overlapping communication and computations should be 
provided; and 4) as much of the code as possible must be 
shared to minimize the maintenance efforts across 
different platforms. On networks like the IBM SP 
interconnect and Quadrics, the underlying RMA layer 
provides most of the required capabilities. Hence, on 
these systems, most of the nonblocking calls can be 
implemented as thin wrappers to the native protocols. We 
are referring to these protocols as direct. In the case of 
some networks, direct protocols are zero-copy (GM, VIA, 
Quadrics Elan), but others where the native 
communication interface involves copying the data (IBM 
LAPI) internally are not. Some networks like GM, VIA, 
and Infiniband require data to be transmitted from/to 
special memory. This can be accomplished either by 1) 
copying the data into a set of special registered/pinned 
buffers for transmission; 2) allocating registered memory 
for the user; or 3) by on-demand registration of the user’s 
memory. ARMCI uses all three schemes, depending on 
the platform, operation type, or size of the data transfer. 
Protocols that use memory copy scheme are referred to as 
buffered. Although the goal is to generalize most of the 
design, doing so should not adversely affect the 
performance in cases where an underling network 
provides direct support.  

Multiple requirements can be satisfied by a buffer 
management layer. First, on networks that allow data 
transfers between registered buffers, the data can be 
copied in, sent, received, and copied out from the internal 
set of buffers allocated in registered memory. In this 
manner, data can be transferred between nonregistered 
memory locations. Note that on-demand memory 

registration of user buffers might not always be available 
or can be very costly (e.g. GM) [1], [16].  Second, buffers 
are useful for packing/unpacking noncontiguous data 
transfers when the underlying network has support only 
for contiguous data transfers (for example, GM) [1]. 
Third, in the case of nonblocking communication, data 
descriptors might be required to be stored in persistent 
memory. For example, the data descriptors in the I/O 
vector format for IBM LAPI vector interfaces can be very 
large, and they must be saved in persistent memory until 
the request is completed.  

One of the design goals is to make most of the handle 
management code and buffer management code platform- 
independent, thus making the architecture portable while 
avoid the unnecessary overhead. This is accomplished, as 
seen in Figure 3, by switching to a direct protocol when 
possible at the very beginning of the request processing. 
Interaction between the platform-independent layer and 
platform/network-specific layer is only to either inject the 
data into the network or check for the completion of an 
operation. 

3.1 Handle Management 

Every nonblocking call is associated with a nonblocking 
request handle. For explicit handle nonblocking calls and 
aggregate handle nonblocking calls, this handle is passed 
by the user as a parameter. An implicit handle call is 
associated with a handle from a static list of handles, 
maintained internally. The handle provided by the user is 
internally mapped to a data structure that in turn carries 
all the information required to identify and complete, or 
test completion of a nonblocking operation.  

Figure 3: Nonblocking request transition  
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Because a common handle is used to represent a request 
on all platforms, for portability reasons it stores only the 
most generic information, including unique identifier of 
the request, the type of operation, and the remote 
processor number. Other fields include completion 
information required by the underlying network for 
request completion. For example, on IBM SP when using 
LAPI as the communication protocol, “Req completion 
information”  field carries a LAPI counter that is updated 
by LAPI on request completion. For buffered client-
server protocols [1] or protocols based on Active 
Messages, “bufid”  field in the handle carries the identifier 
of the buffer used for this request. This field can be used 
also to indicate use of multiple buffers. 

3.2 Communication buffers 

The communication buffer is represented by a data 
structure that stores information about the associated 
request. In nonblocking operations, it also carries a 
unique request identifier for the request, see Figure 3. For 
the buffered implementation of the get operation, it stores 
the destination address for the data. For strided and vector 
operations, the destination information is represented by a 
more complex descriptor of variable size.  The buffer data 
structure has a fixed space allocated to store destination 
data descriptors. For a larger descriptor, extra memory is 
allocated, and the corresponding address is stored in the 
buffer. That memory is freed when the operation 
associated with this buffer is completed. The “protocol”  
field in the buffer structure carries more detailed 
information. For example, the “protocol”  field in the 
buffer management phase of Figure 4 carries the value 
“sdescr_in_p” , which indicates that this buffer is being 
used for a strided data transfer and the destination data 
descriptor is in place (sdescr_in_p) inside the buffer data 
structure. This information is needed to complete a 
request. 

ARMCI does not impose a limit on the number of 
outstanding operations. Hence, when the buffer 

management layer runs out of buffers, it completes an old 
request associated with a buffer currently in use to free a 
buffer. Because a request can be using more than one 
buffer, freeing a buffer might complete only a part of the 
request. A communication buffer is also freed as a part of 
the wait operation on the request using that buffer. 

3.3 Nonblocking request processing 
The goal of the design was to make the algorithms for 
operation processing as generic as possible without 
compromising the performance. In the first step, a 
protocol selector (Figure 3) decides which protocol to use 
for that particular request. If the protocol to be used is 
direct, then the request is sent via a thin wrapper directly 
to the platform-dependent code and is thereby injected 
into the network without any additional overhead. For 
example, the protocol selector for GM checks if the 
source and destination memories used in that request are 
in registered memory. If they are, then the protocol 
selector indicates that the request is a direct request, and 
it is thus sent directly to the platform-specific layer. The 
platform-specific layer, after updating the request 
completion information, injects the request in to the 
network. Similarly, with LAPI, depending on the 
operation and the size of data involved, the protocol 
selector decides if the request will go via the active 
message/buffered protocol or the direct protocol. The 
request handle passed by the user carries no information. 
Information is filled in and updated as the handle transits 
through the various phases of protocol processing, as 
shown in Figure 3. If the request needs a buffer, the 
information in the request handle is passed to the buffer 
management layer, where the information about the 
buffer associated with the request is recorded in the 
handle.  

If there are no free buffers available as described in 
Section 3.2, a request associated with the least recently 
used buffer from the buffer pool is completed, and the 
buffer is reassigned. The buffer management phase fills 
the buffer with the information obtained from the request 
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handle (e.g., request identifier) for this request. 
Correspondingly, the identifier of the buffer allocated for 
this request is filled in the request handle to represent the 
association between a request handle and a buffer used 
for it. When a wait operation is called on a request 
handle, the associated buffer(s) is identified.  

The request completion information in the handle is also 
updated in the platform-specific layer. For direct 
protocol, the request bypasses the buffer management and 
directly transitions into the platform-specific layer, where 
the platform-specific request information inside the 
handle is updated. The control returns to the user program 
once the platform-specific layer issues the request. 

3.4 Waiting on a request 

The wait on a request handle completes the request. 
Whether the request used buffers or not can be 
determined by looking at the value stored in the bufid 
field of the request handle. In Figure 4, this is shown in 
the handle management phase. For the direct protocol, the 
platform-specific layer verifies request completion based 
on the information it stored in the “Req completion info”  
field. If buffers were used for the request (buffered 
protocol or for storing a data descriptor), then the buffer 
management layer checks to see if the buffers used for 
this request were completed already as a part of freeing 
resources. If they have not yet been completed, then the 
data from the buffer is copied into the appropriate 
destination based on the destination descriptor 
information stored in the buffer. To be able to verify if 
the data has already arrived in the buffer, the buffer 
management layer may check for data arrival via the 
platform-specific layer. 

3.5 Aggregation 
The implicit aggregation of data transfers is implemented 
using the generalized I/O vector operations available in 
ARMCI [3]. This interface enables the representation of a 
data transfer as a combination of multiple sets of equally 
sized contiguous data segments. When the first call 
involving aggregate nonblocking handle is executed, the 
library starts building a vector descriptor stored in one of 
the preallocated internal buffers. The actual data transfer 
takes place when the user calls wait operation or the 
buffer storing the vector descriptor fills up. 

3.6 Optimizing Overhead and Overlap 
As discussed in Section 2, the overhead introduced due to 
the additional processing and resource management 
incurred by a nonblocking call should be minimized. In 
our implementation, this goal is achieved in multiple 
ways:  

• Before returning, all nonblocking operations always 
initiate data transfer so that the network interface 

card (NIC) can process a request while the host CPU 
is available to carry out the computations. 

• When a nonblocking GET operation returns, either 
the buffered or direct protocols ensure that all the 
requested data will be received without explicit 
involvement of the host CPU. In the buffered 
protocol, the request is broken into pieces that fit the 
available buffer space. For very large buffered 
requests, some initial portion of the data might be 
received before the nonblocking operation returns. 

• The direct protocol is switched to when possible, as 
described in section 3.3.  

• The platform-specific protocols that involve 
extensive blocking time are avoided. For example, on 
the IBM SP for larger messages, the nonblocking 
vector get operation LAPI_Getv blocks for up to 
90% of the data transfer time. Therefore, this 
operation is used by ARMCI for only the blocking 
operations. The nonblocking operations that need 
vector or strided format are implemented by 
executing LAPI_Putv (vector put) from the active 
message handler so that the nonblocking call returns 
to the application in the shortest time possible. 

4. Performance Evaluation  
The primary platform for the experiments was a Linux 
cluster with dual 2.4GHz Pentium-4 nodes and Myrinet-
2000 (M3F-PCI64C-2 Myrinet interface) located at the 
State University of New York at Buffalo. It employs the 
most recent versions of GM (1.6.4) and MPICH-GM 
libraries provided by Myricom. The experiments included 
several microbenchmarks to evaluate different parameters 
of the communication operations. In addition, two of the 
NAS benchmarks and sparse matrix vector multiplication 
code were used to determine the effectiveness of 
nonblocking and aggregated communication in the 
application contexts. 

4.1 Microbenchmarks 
The motivation for the experiments described in this 
section was to demonstrate the performance of the 
implementation at the system level. The next section 
shows how much of these gains can be leveraged at the 
application level. Experiments discussed in the current 
section have been conducted for the nonblocking get 
operation since they explicitly demonstrate the overhead 
and overlap factors.  

Overhead test 
The first experiment demonstrates the efficiency of the 
implementation as compared with a base case GM 
implementation. For this purpose, a nonblocking 
operation is simulated at the GM level in the following 
fashion. The client issues a gm_send_with_callback (with 
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the details of the required data) and then polls on a flag 
set when the data reaches this node. On the other end, the 
server does a GM_receive, processes the request, and 
issues the RDMA put operation with the data using the 
gm_directed_send_with_callback function. The ARMCI 
layer is actually built on this basic scheme to implement 
the nonblocking get. This experiment tries to evaluate the 
efficiency of the implementation. Figure 5 shows the 
latency at the base GM and ARMCI levels. The timings 
have been averaged over 1000 iterations. They show that 
the ARMCI layer adds very little overhead to the base 
level and thus provides a very efficient interface to the 
applications. 

Overlap Test 
The second experiment deals with overlapping 
communication with computation, and it was performed 
in the context of ARMCI and MPI. In the ARMCI 
version, the computation is incorporated in the program 
in the form of a delay. Increasing computation is 
gradually inserted between the initiating nonblocking get 
call and the wait completion call. As we keep increasing 
the computation, at some point the sum of the 
nonblocking call issue overhead and computation would 
exceed the idle CPU time, so the total benchmark running 
time would increase. This point gives us the maximum 
possible overlap. We performed this experiment on two 
nodes, with one node issuing the nonblocking get for data 
located on the other and then waiting for the transfer to be 
completed in the ARMCI_Wait call. The timings were 
averaged over 1000 iterations. We have developed 
versions of this microbenchmark for direct and buffered 
protocols. We also implemented an MPI version of the 
above benchmark because our motivation was to compare 
the overlap in ARMCI and in the MPI nonblocking 
send/receive operations. In MPI, if the node needs a 
portion of data from another node, it sends a request and 
waits on a nonblocking receive for the response.  We can 
overlap the time duration between these two calls with 

computation. We measured the computation overlap for 
both the ARMCI and MPI versions of the benchmark, 
and results are plotted in Figure 6. The percentage 
overlap is measured as the amount of time of a 
nonblocking (data transfer) call that can be overlapped 
with useful computation without increasing the overall 
benchmark time. 

We observe that ARMCI offers a higher level of overlap 
than MPI. The buffered protocol is able to achieve about 
90% overlap. For large messages, this percentage drops 
because of time involved in copying to the destination 
buffer. In the direct protocol, we are able to overlap 
almost the entire time (greater than 99%). The exception 
(1%) was the time involved in issuing the nonblocking 
get. The MPI version does reasonably well up to message 
size 16kb. At 16kb and beyond, the MPI implementation 
switches to the rendezvous protocol. This has a serious 
impact on the computation overlap because the 
handshake involved in the protocol occurs in MPI_Wait. 
Consequently, the only part that can be overlapped is till 
the receipt of ‘ request to send’  and not until the actual 
data transfer is completed. Several studies have tried to 
analyze and benchmark the MPI overlap. Paper [7] 
describes some experiments to analyze and test the 
overlap for basic asynchronous MPI calls for MPI 
implementations on different platforms. Another related 
paper [8] provides a portable benchmark suite for 
assessing overlap. One of the methods relies on polling to 
advance progress, and they use another metric 
(‘availability’ ) for their assessment. Our benchmark does 
not introduce additional MPI library calls for making 
progress, looks for plain overlap performance gains, and 
is probably more representative of how real applications 
use nonblocking communication. 

Aggregation Test 
A simple benchmark test was written to compare the 
performance of regular, vector, and implicit aggregate 
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Figure 9: Time spent on communication on each 
processor in the sparse matrix-vector multiplication 
in the 32-processor case 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Processor

C
om

m
un

ic
at

io
n 

T
im

e 
[s

]. 
   

   Regular

Aggregate

put/get operations. In the test, 1000 values of type 
double- located in nonadjacent memory locations were 
transferred using 1000 calls to regular put and get calls, 
with and without enabling aggregation. Also, 1000 
doubles were stored in a vector descriptor and transferred 
in a single vector operation to show that aggregation of 
1000 calls is as good as a single vector call. The 
experiments were performed on the 500MHz Pentium-III 
Linux cluster with Giganet cLAN (VIA) at PNNL, a 
Power-3 IBM-SP at NERSC, and a 2.4GHz Pentium-4 
Linux cluster with Myrinet at SUNY Buffalo. Figure 7 
shows that enabling aggregation significantly 
outperforms the regular put/get operation. The figure also 
indicates that aggregating multiple data transfer requests 
performs almost as well as a single vector operation.  

4.2 Sparse Matrix-Vector Multiplication 
Sparse matrix-vector multiplication is one of the common 
computational kernels, for example in solving linear 
systems using conjugate gradient method. It is described 
as Ax = b, where A is an nxn nonsingular sparse matrix, b 
is an n-dimensional vector, and x is an n-dimensional 
vector of unknowns. In this benchmark, one of the sparse 
matrices (Figure 8a) from the Harwell-Boeing collection 
is used [9] to test the matrix-vector multiplication. The 
sparse matrix size is 41092 and has 1683902 (~.1%) non-
zero elements. The experiments were conducted on the 
Linux cluster (dual node, 1GHz Itanium-2, Myrinet-2000 
interconnect) at PNNL. Sparse matrix-vector 
multiplication was done with aggregation enabled and 
disabled. The sparse matrix and the vector are distributed 
among processors. Instead of gathering the entire vector, 
each process caches the vector elements corresponding to 
the non-zero element columns of its locally owned part of 
the matrix. When aggregation is enabled, all the get calls 
corresponding to a single processor are aggregated into a 
single request, thus reducing the overall latency and 
improving the data transfer rate. Figure 8b shows that 
aggregation outperforms the regular put/get version of the 
code in all cases and scales well. Figure 9 provides 

explanation of the performance gaps resulting from the 
large and nonuniform communication overhead 
effectively addressed by aggregation.  

4.3 NAS benchmarks 
The Numerical Aerodynamic Simulation (NAS) parallel 
benchmarks (NPB) are a set of programs designed at 
NASA. Our starting point was NPB 2.3 [4] 
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implementation written in MPI and distributed by NASA. 
We modified two of the five NAS kernels, MultiGrid 
(MG) and Conjugate Gradient (CG), to replace point-to-
point blocking and nonblocking message-passing 
communication calls with first blocking and then 
nonblocking RMA communication. This is just a mere 
replacement of the point-to-point message passing 
communications part of the current message-passing 
version of CG and MG NAS kernels using ARMCI RMA 
blocking and nonblocking operations [18]. Other 
benchmarks (e.g., FFT, IS) rely on collective 
communication thus limiting appropriateness of RMA 
(point-to-point) communication without reformulating the 
underlying mathematical algorithms. We ran our MG 
tests for classes A, B, and C. They are three production- 
grade problem sizes for the MG benchmark: Class A 
(grid 256x256x256, 4 iterations), Class B (grid 
256x256x256, 20 iterations), and Class C (grid 
512x512x512, 20 iterations). 

For Class A, a smaller problem size with the fewest 
iterations, the ARMCI blocking code outperforms the 
reference MPI implementation by 7% to 30%. ARMCI 
nonblocking version achieves an additional improvement 
of 10% to 23% over the ARMCI blocking 
implementation and a 28% to 46% improvement over the 
reference MPI implementation. Most of the improvement 
achieved over the blocking implementation is just by 
mere issue of the update in the next dimension while 
working on the current one. For Class B, with the same 
problem size as class A but more iterations, ARMCI 
blocking implementation outperforms MPI by 10% to 
37% (see Figure 10 (left)). The ARMCI nonblocking 
implementation achieves an additional improvement of 
5% to 20% over the blocking version and shows a 30% to 
45% improvement over the reference MPI 
implementation. For Class C, the ARMCI blocking 
implementation outperforms MPI by 10% to 32%. 
ARMCI nonblocking implementation achieves an 
additional improvement of 2% to 21% over the blocking 

implementation and shows a 30% to 40% improvement 
over MPI. Since coarser levels of multi grid do not carry 
enough work to hide all the communication, for small 
processor configurations any improvement achieved by 
using a nonblocking over blocking API is limited. With 
an increased processor count for the fixed problem size, 
the improvement is amplified. 

Due to the synchronous nature of data transfers in the CG 
algorithm, the performance improvement over MPI, 
although consistent is rather limited (see Figure 11). As 
expected, the main source of performance improvement is 
the increased efficiency of RMA operations over the 
message passing (e.g., due to overheads associated with 
tag-matching, early message arrival that MPI must do). 
However, the nonblocking RMA offers an additional 
performance improvement. For example, for 128 
processors, it exceeds 10% over MPI. 

7. Summary and Conclusions 
This paper describes design and implementation of 
mechanisms for latency tolerance in the context of remote 
memory access communication on clusters equipped with 
high-performance networks. They include nonblocking 
RMA communication and aggregation of small messages. 
The design maximizes the potential for overlapping 
communication with computations and minimizes the 
overhead while preserving the portability. The 
experimental results showed that nonblocking operations 
in ARMCI show a better degree of overlap in comparison 
to MPI. Application kernels using nonblocking ARMCI 
operations showed 30%-45% improvement over MPI. In 
addition, aggregation has been shown to be an effective 
technique for latency tolerance, giving as much as 78% 
improvement over non-aggregated communication.  
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Figure 11: Performance improvement in NAS CG class B (left) and class C (right) 


