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Abstract
It has been well acknowledged in the research community that in order to

design a data-center environment which is efficient and offers high perfor-
mance, one of the critical issues that needs to be addressed is the effective
reuse of cache content stored away from the origin server. However, for
caching dynamically changing content (e.g., content involved in online
banking, Internet auctions, etc.), consistency and coherency issues need
to be addressed. In addition, most current real world requests have multi-
ple dynamic dependencies, i.e., these requests might depend on multiple
data objects. Further, these requests are not entirely independent; sev-
eral requests might have common dependencies. While there have been
previous research solutions on maintaining coherent caches for dynamic
content, these solutions have several shortcomings including inability to
adapt to server load or handle multiple dynamic dependencies. In this
paper, we propose a load resilient architecture using one sided operations
supported by several high performance interconnects such as InfiniBand,
while maintaining multiple dynamic dependencies per response. Our ex-
perimental results show that our schemes to tackle the multi-dependency
issue efficiently and significantly outperform the existing approaches.
Further, our results demonstrate that the proposed load resilient archi-
tecture can possibly improve the performance of loaded data-centers by
over an order of magnitude.

Keywords: Multi-Tier Data-Center, InfiniBand, Caching, Dynamic Con-
tent Caching, Coherency

1 Introduction
The unprecedented growth of Internet has deeply infiltrated all

of today’s society. With more and more people using the Internet
for a wide range of purposes, Internet use has become an absolute
necessity for businesses to survive and grow. Electronic commu-
nications, e-commerce, online services, etc. have become ubiqui-
tous and are growing in complexity in terms of both raw data con-
tent and processing required. Consequently, high performance and
scalable web-servers have become critical tools to deliver these re-
quirements.

On the other hand, Cluster systems have become the main system
architecture for a number of environments mainly due to their high
performance-to-cost ratio. In the past, they had replaced main-
stream supercomputers as a cost-effective alternative in a number
of scientific domains. During the last few years, research and in-
dustry communities have been proposing and implementing sev-
eral high performance communication systems to address some of
the problems associated with the traditional networking protocols
for cluster-based systems. InfiniBand Architecture (IBA) [2] has
been recently standardized by the industry in the light of next gen-
eration high-end clusters designs.

�
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IBA is envisioned as the default interconnect for several environ-
ments in the near future. IBA provides two key features, namely
User-level Networking and One-Sided Communication Opera-
tions. User-level Networking allows applications to directly and
safely access the network interface without going through the op-
erating system. One-sided communication allows the network in-
terface to transfer data between local and remote memory buffers
without any interaction with the operating system and the proces-
sor. It also provides features for performing network based atomic
operations on the remote memory regions. These can be leveraged
in providing efficient support for multiple environments [15, 22].

Based on these two trends, several researchers [21, 1] have pro-
posed the feasibility and potential of cluster-based multi-tier data-
centers to become the fundamental instruments to providing these
Internet services.

Figure 1 shows a typical cluster-based multi-tier data-center. The
various nodes in the typical data-center are logically partitioned to
provide various related services including web and messaging ser-
vices, transaction processing, business logic, databases, etc. End
user requests are processes as a collective effort by these nodes.

These services include online services like personalized services,
e-commerce based services, etc. which have recently increased
several folds in volume. Scenarios like online banking, auctions,
etc. are constantly adding to the complexity of content being
served on the Internet. The responses generated for these can
change depending on the request and are typically known as dy-
namic or active content. Multi-tier data-centers process these com-
plex requests by breaking-up the request processing into several
stages with each data-center tier handling a different stage of re-
quest processing. With the current processing needs and growth
trends in mind, the scalability of data-centers has become an im-
portant issue.

Traditionally, caching has been an important technique to im-
prove scalability and performance of data-centers. However, sim-
ple caching methods are clearly not applicable for dynamic con-
tent caching. Documents of dynamic nature are typically gener-
ated by processing one or more data objects stored in the back-end
database, i.e., these documents are dependent on several persistent
data objects. These persistent data objects can also be a part of
multiple dynamic documents. So in effect these documents and
data objects have several many to many mappings between them.
Thus, any change to one individual object can potentially affect
the validity of multiple cached requests.

In our previous work [17], we have presented a simple architec-
ture that supports strong cache coherency for proxy caches. How-
ever, [17] presents a simplistic scheme for strong cache coherency
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Figure 1. A Typical Multi-Tier Data-Center (Cour-
tesy CSP Architecture design [21])

which only deals with a file level granularity for coherency, i.e.,
each update affects an object which can be a part of one or more
cached requests. However, most data-centers allow and support
more complex web documents comprising of multiple dynamic
objects. These additional issues necessitate more intricate proto-
cols to enable dynamic content caching and make the design of
strongly coherent caches extremely challenging. Further, since an
updated object can potentially be a part of multiple documents
across several servers, superior server coordination protocols take
a central role in these designs.

In this paper, we present a complete architecture to support strong
cache coherency for dynamic content caches. Our architecture
is designed to handle caching of responses composed of multi-
ple dynamic dependencies. We propose a complete architecture
to handle two issues: (i) caching documents with multiple depen-
dencies and (ii) being resilient to load on servers. We also study
the effect of varying dependencies on these cached responses. Our
experimental results show more than 20 times improvement for
the overall data-center throughput using our caching techniques.
Also, our design can sustain high performance for overall data-
center requests while maintaining strong coherency with multiple
object dependencies even under heavy load.

The rest of the paper is organized as follows: Section 2 gives
a brief background on multi-tier data-centers and web cache co-
herency and consistency. Section 3 elaborates the design of the
basic architecture. The experimental results are presented in sec-
tion 4. Section 5 briefly covers related research work, followed by
conclusions and future work.

2 Background
In this section, we provide a brief background of Multi-Tier Data-

Centers and Web-Cache Coherency and Consistency.

2.1 Multi-Tier Data-Centers
A typical data-center architecture consists of multiple tightly in-

teracting layers known as tiers. Each tier can contain multiple
physical nodes. Figure 1 shows a typical Multi-Tier Data-Center.
Requests from clients are load-balanced by the edge services tier
on to the nodes in the proxy tier. This tier mainly does caching of
content generated by the other back-end tiers. The other function-
alities of this tier can include data-center security and balancing
the request load sent to the back-end based on certain pre-defined
algorithms.

The second tier consists of two kinds of servers. First, those
which host static content such as documents, images, music files
and others which do not change with time. These servers are typ-
ically referred to as web-servers. Second, those which compute
results based on the query itself and return the computed data
in the form of a static document to the users. These servers, re-
ferred to as application servers, usually handle compute intensive
queries which involve transaction processing and implement the
data-center business logic.

The last tier consists of database servers. These servers hold
a persistent state of the databases and data repositories. These
servers could either be compute intensive or I/O intensive based
on the query format. Queries involving non key searches can be
more I/O intensive requiring large data fetches into memory. For
more complex queries, such as those which involve joins or sorting
of tables, these servers can be more compute intensive.

2.2 Web Cache Consistency and Coherence

Traditionally, frequently accessed static content was cached at
the front tiers to allow users a quicker access to these documents.
In the past few years, researchers have come up with approaches of
caching certain dynamic content at the front tiers as well [9]. In the
current web, many cache eviction events and uncachable resources
are driven by two server application goals: First, providing clients
with a recent or coherent view of the state of the application (i.e.,
information that is not too old); Secondly, providing clients with
a self-consistent view of the application’s state as it changes (i.e.,
once the client has been told that something has happened, that
client should never be told anything to the contrary). Depending
on the type of data being considered, it is necessary to provide
certain guarantees with respect to the view of the data that each
node in the data-center and the users get. These constraints on the
view of data vary based on the application requiring the data.

Consistency: Cache consistency refers to a property of the re-
sponses produced by a single logical cache, such that no response
served from the cache will reflect older state of the server than that
reflected by previously served responses, i.e., a consistent cache
provides its clients with non-decreasing views of the server’s state.
So, either every client sees an update or no client sees that partic-
ular update.

Researchers have proposed several different schemes providing
several different levels of consistency. TTL [12], Adaptive TTL
[10] and MONARCH [16], present schemes for lazy or delayed
consistency. Schemes for strong cache consistency are detailed in
[6, 9, 17].

Coherence: Cache coherence refers to the average staleness of
the documents present in the cache, i.e., the time elapsed between
the current time and the time of the last update of the document in
the back-end. A cache is said to be strong coherent if its average
staleness is zero, i.e., a client would get the same response whether
a request is answered from cache or from the back-end.

On lines similar to web-cache consistency, two popular co-
herence models are used: immediate or strong coherence and
bounded staleness. With strong coherence, caches are forbidden
from returning a response other than that which would be returned
were the origin server contacted. Since, in effect, the origin server
is contacted for each request, as a side effect, Strong Cache Co-
herency also guarantees Strong Cache Consistency.



2.2.1 Maintaining Cache Coherence
Strong cache coherency can be maintained by two popularly used
methods: (i) No Cache scheme and (ii) Client Polling

No Cache Scheme: In this scheme no caching is performed in
the data-center. The no-cache based scheme has several disadvan-
tages. Firstly, each request has to be processed at the home node
tier, ruling out any caching at the other tiers. Secondly, propaga-
tion of these requests to the back-end nodes over traditional pro-
tocols can be very expensive and lastly, for data which does not
change frequently, the amount of computation and communica-
tion overhead incurred to maintain strong coherence could be very
high, requiring more resources.

Client Polling: These disadvantages are overcome to some ex-
tent by the client-polling mechanism. In this approach, the proxy
server, on getting a request, checks its local cache for the avail-
ability of the required document. If it is not found, the request is
forwarded to the appropriate application server in the inner tier and
there is no cache coherence issue involved at this tier. If the data
is found in the cache, the proxy server checks the coherence status
of the cached object by contacting the back-end server(s). If there
were updates made to the dependent data, the cached document is
discarded and the request is forwarded to the application server tier
for processing. The updated object is now cached for future use.
Even though this method involves contacting the back-end for ev-
ery request, it benefits from the fact that the actual data processing
and data transfer is only required when the data is updated at the
back-end. This scheme can potentially have significant benefits
when the back-end data is not updated very frequently.

Client
Request

Cache
Hit

Client
Response

Version Check

Response

Version Response

Actual Request

Proxy Module
Module

Application Server

Figure 2. Strong Cache Coherence Protocol
However, this scheme also has significant disadvantages: (i) Ev-

ery data document is typically associated with a home-node in the
data-center back-end. Frequent accesses to a document can result
in all the front-end nodes sending in coherence status requests to
the same nodes potentially forming a hot-spot at this node, (ii) Tra-
ditional protocols require the back-end nodes to be interrupted for
every cache validation event generated by the front-end, and (iii)
The agents on the back-end nodes need to keep track of validity
of the cache entities for further references by forward caches. In
particular, coordination of back-end nodes is needed to propagate
the information regarding object updates. In our previous work
[17], we have shown that very efficient client polling by proxies
can be performed with the use of one sided operations, addressing
the first two disadvantages listed above very effectively.

In this paper, we focus on the issues and challenges posed by the
need to maintain cache validity at the back-end with object level
granularity. So we present an efficient client polling architecture

that can provide strong cache coherence with object level granu-
larity using the advanced features of InfiniBand.

3 Design and Implementation Details

In this section, we describe all aspects of our design. We detail
each of the requirements along with the corresponding design so-
lution. We broadly divide this section into three parts: (i) Section
3.1: The basic protocol for the cache coherency, (ii) Section 3.2:
Application server interaction and (iii) Section 3.3: The study of
the effect of multiple dependencies on cached documents.

Cachable Requests: Data-center serving dynamic data, usually
have HTTP requests that may be reads (select based queries to the
database) or writes (update or insert based queries to the database).
While read based queries are cachable, writes cannot be cached at
the proxies. Since, caching the popular documents gives the max-
imum benefits, its a popular practice to cache these. Most simple
caching schemes work on this principle. Similarly, in our design, a
certain number of top most frequent requests are marked down for
caching. Naturally, caching more requests leads to better perfor-
mance but requires higher system resources. The actual number
of requests that are cached are chosen based on the availability of
resources. Based on these constraints, for each request the proxy
server decides if the request is cachable. And if it is cachable,
the proxy decides if caching that particular request is beneficial
enough. Significant amount of research has been done on cache
replacement policies [11, 13, 19]. Our work is complimentary to
these and can leverage those benefits easily.

External Module Based Design: Traditional Data-Center ap-
plications have been developed over a long period of time. It is
highly cumbersome and infeasible to make major re-designing of
these applications for possible benefits. In view of this restriction,
we use external helper modules to enable caching in our architec-
ture. This approach requires minimal changes to the existing ap-
plications. We use the native InfiniBand user-level communication
protocol Verbs API (VAPI) for our all module internode commu-
nications. Figure 3 shows the typical setup of each node in our
design. For all cache related operations, the data-center applica-
tions contact the external module running on the same node. This
module in-turn contacts other modules in the system as required
and replies back to the application.

Data−Center Node

Data−Center
Application

IPC

TCP
To Other

Applications

External
Module

Modules
To Other 

VAPI

Figure 3. External Module based Design

3.1 Caching Documents with Multiple Dependencies

In our approach we divide the entire operation into two parts
based on the tier functionalities. Proxy servers that maintain the
cache need to validate the cache entity for each request. The appli-
cation servers need to maintain the current version of the cached
entity for the proxies to perform validations.



3.1.1 RDMA based Strong Cache Coherence
Caches in our design are located on the proxy server nodes. On
each request, the primary issues for a proxy are as follows: (i) Is
this request cachable? (ii) Is the response currently cached? and
(iii) Is this cached response valid?

These services are provided to the proxy server by our module
running on the proxy node. The apache proxy server is installed
with a small handler that contacts the local module with an IPC-
Verify message and waits on the IPC queue for a response. The
module responds with a use cache or do not use cache depending
on the choices. If the request is not cachable or if the cache is
not present or invalid, the module responds with do not use cache.
And if the request is cachable, cache is present and valid, the mod-
ule responds with use cache.

The module verifies the validity of the cached entry by contact-
ing the home node application server module which keeps track
of the current version for this particular cache file. InfiniBand’s
one sided operation (RDMA Read) is used to obtain the current
version from the shared version table on the home node applica-
tion server thereby avoiding interrupts at that application server.
Figure 4 shows the basic protocol. The information on cachability
and presence of cache are available locally on each proxy.

Client
Request

Cache
Hit

Client
Response

RDMA Read

Version Check

Response

Actual Request

Application Server
ModuleProxy Module

Figure 4. RDMA based Strong Cache Coherence
Each proxy maintains a version number for each of the cached

entries. The same cache files also have a current version number
maintained on the home node application server modules. When
necessary, the application server modules increment their cache
version numbers. For each proxy verify message, if the application
server cache file version number and the proxy’s local cache file
version number match, then it implies that the cache file is current
and can be used to serve the request. This basic protocol was
proposed in our previous work [17].

3.1.2 Multi-Dependency Maintenance
All cache misses from the proxies are serviced by application
servers. Since all accesses to the database need to be routed
through an application server and since an application server (un-
like a proxy) has the capability to analyze and process database
level queries, we handle all coherency issues at this tier.

An application server module needs to cater to two cases: (i)
version reads from the proxy server and (ii) version updates from
local and other application servers. The main work of the applica-
tion server module lies in updating the shared version table read-
able by the proxy server modules based on the updates that occur

to the data in the system.
As mentioned, a single cached request contains multiple dynamic

objects which can get updated. For any version updates to take
place, it is necessary to know the following: (i) Which updates
affect which dynamic objects? and (ii) Which dynamic objects af-
fect which cache files? Since, typically dynamic objects are gener-
ated as results of queries to a database, knowledge of the database
records that a query depends on is sufficient to answer the above.

There are three cases that arise in this context: (i) The appli-
cation server understands the database schema, constraints, each
query and its response thereby knowing all the dependencies of a
given request, (ii) Each query response contains enough informa-
tion (e.g. list of all database keys) to find out the dependencies or
(iii) The application server is incapable of gauging any dependen-
cies (possibly for cases with very complex database constraints).
The first two cases can be handled in the same manner by the ap-
plication server module since the dependencies for all requests can
be obtained. The third case needs a different method. We present
the following two sample schemes to handle these cases. It is to
be noted that these schemes are merely simple schemes to show
proof of concept. These can be further optimized or be replaced
by complex schemes to handle these cases.

Scheme - Invalidate All: For cases where the application servers
are incapable of getting any dependency information, the applica-
tion servers modules can invalidate the entire cache for any update
to the system. This makes sure that no update is hidden from the
clients. But this also leads to a significant number of false invali-
dations. However, the worst performance by this scheme is lower
bounded by the base case with no caching.

Scheme - Dependency List: In cases where all the dependencies
of the required queries are known, the application server module
maintains a list of dependencies for each cached request (for which
it is a home node) along with the version table. In case the appli-
cation server module is notified of any update to the system, it
checks these lists for any dependencies matching the update. All
cache files that have at least one updated dependency are then in-
validated by incrementing the version number on the shared ver-
sion table. This scheme is very efficient in terms of the number of
false invalidations but involves slightly higher overhead as com-
pared to the Invalidate All scheme.

3.2 Protocol for Coherent Invalidations

In addition to the issues seen above, requests comprising multiple
dynamic objects in them involve additional issues. For example,
two different cache files with different home nodes might have a
common dependency. So, any update to this dependency needs
to be sent to both these home nodes. Similarly, the application
server modules need to communicate all updates with all other ap-
plication server modules. And the update can be forwarded to the
database for execution only after all the application server modules
invalidate all the dependent cache files.

Figure 5 shows the interaction between the application servers
and the database for each update. As shown, the application server
on getting an update, broadcasts the same to all the other applica-
tion server modules. These modules then perform their local in-
validations depending on the scheme chosen (Invalidate All or De-
pendency List search). After the invalidations, the modules send
an acknowledgment to the original server, which forwards the re-
quest to the database and continues with the rest as normal.



Application
Server

Application
Server

Application
Server

Database
   Server

HTTP
Request

DB Query (TCP)

Notification

Update

HTTP
Response

DB Response

Ack (Atomic)

(Vapi Send)

          Search  and
Coherant 
invalidate

Local  

Figure 5. Protocol for Coherent Invalidations

In our design, we use VAPI-SEND/VAPI-RECEIVE for the initial
broadcasts. The acknowledgments are accumulated by the origi-
nal process using VAPI-ATOMIC-FETCH-AND-ADD : poll : yield
cycle. For each application server module, an acknowledgment
collection variable is defined and set to zero for each update. All
the other application server modules perform a VAPI-ATOMIC-
FETCH-AND-ADD incrementing the value of this variable by one.
The original server module checks this ack collection variable to
see if all the remaining modules have performed this operation. If
the value of the ack collection variable is less than the number of
other servers, then the original application server module process
yields the CPU to other processes in the system using the system
call sched yield(). This kind of polling cycle makes sure that the
module process does not waste any CPU resources that other pro-
cesses on that node could have used.

3.3 Impact of Multiple Dependencies on Caching

We have seen that there is significant complexity in managing
multiple dependencies per cache file on strong coherency caching.
In addition, having multiple dependencies also affect the overall
cache. Typically, caching is expected to yield maximum benefits
when the number of updates is low and the benefits of caching are
linked with the number of updates in all calculations.

However, the actual value that affects caching is the number of
invalidations that occur to the cached entries. The main difference
between the number of invalidations and the number of updates
to an object is the magnification factor for updates. This magni-
fication factor represents the average number of dependencies per
cached entry. Hence, the cache effectiveness is dependent on the
product of system update rate and average dependency magnifica-
tion factor.

In our design each application server module maintains its own
set of cache file versions and the corresponding dependency lists.
So, for each update, the number of messages between the appli-
cation servers is not affected by this magnification factor. Each
application server module is just notified once for each update,
and all the invalidations on that node are taken care of locally by
the corresponding module. However, the overall cache hit ratio
remains directly affected by this factor.

4 Experimental Results
In this section, we describe our experimental testbed and a set of

relevant micro-benchmark results followed by overall data-center
results.

Experimental Testbed: For all our experiments we used two
clusters whose descriptions are as follows:

Cluster 1: A cluster system consisting of 8 nodes built around
SuperMicro SUPER P4DL6 motherboards and GC chipsets which
include 64-bit 133 MHz PCI-X interfaces. Each node has two
Intel Xeon 2.4 GHz processors with a 512 kB L2 cache and a
400 MHz front side bus and 512 MB of main memory. We used
the RedHat 9.0 Linux distribution.

Cluster 2: A cluster system consisting of 8 nodes built around
SuperMicro SUPER X5DL8-GG motherboards with ServerWorks
GC LE chipsets which include 64-bit 133 MHz PCI-X interfaces.
Each node has two Intel Xeon 3.0 GHz processors with a 512 kB
L2 cache and a 533 MHz front side bus and 512 MB of main mem-
ory. We used the RedHat 9.0 Linux distribution.

The following interconnect was used to connect all the nodes in
Clusters 1 and 2.

Interconnect: InfiniBand network with Mellanox InfiniHost
MT23108 DualPort 4x HCA adapter through an InfiniScale
MT43132 twenty-four 4x Port completely non-blocking Infini-
Band Switch. The Mellanox InfiniHost HCA SDK version is
thca-x86-3.2-rc17. The adapter firmware version is fw-23108-
rel-3 00 0002. The IPoIB driver for the InfiniBand adapters was
provided by Mellanox Incorporation as a part of the Golden CD
release 0.5.0.

Cluster 1 was used for all the client programs and Cluster 2 was
used for the data-center servers. In our experiments, we used
apache servers 2.0.48 as proxy servers, apache 2.0.48 with PHP
4.3.7 as application servers and mysql 4.1 as the database. Our
system was configured with five proxy servers, two application
servers and one database server.

4.1 Micro-benchmarks
We show the basic micro-benchmarks that characterize our ex-

perimental testbed. We present the latency, bandwidth and CPU
utilizations for the communication primitives used in our design.
Figure 6 shows the performance achieved by VAPI RDMA read
and TCP/IP over InfiniBand (IPoIB).

The latency achieved by the VAPI RDMA Read communication
model and IPoIB (round-trip latency) for various message sizes
is shown in Figure 6a. RDMA Read, using the polling based ap-
proach, achieves a latency of 11.89 � s for 1 byte messages com-
pared to the 53.8 � s achieved by IPoIB. The event based approach,
however, achieves a latency of 23.97 � s. Further, with increas-
ing message sizes, the difference between the latency achieved by
VAPI and IPoIB tends to increase significantly. The figure also
shows the CPU utilized by RDMA Read (notification based) and
IPoIB. The receiver side CPU utilization for RDMA as observed
is negligible and close to zero, i.e., with RDMA, the initiator can
read or write data from the remote node without requiring any in-
teraction with the remote host CPU. In our experiments, we benefit
more from the one sided nature of RDMA and not just due to the
raw performance improvement of RDMA over IPoIB.

Figure 6b shows the uni-directional bandwidth achieved by
RDMA Read and IPoIB. RDMA Read is able to achieve a peak
bandwidth of 839.1 MBps as compared to a 231 MBps achieved



Figure 6. Micro-Benchmarks for RDMA Read and IPoIB: (a) Latency and (b) Bandwidth

by IPoIB. Again, the CPU utilization for RDMA is negligible on
the receiver side.

In Figure 7, we present performance results showing the impact
of the loaded conditions in the data-center environment on the
performance of RDMA Read and IPoIB on Cluster 2. We emu-
late the loaded conditions in the data-center environment by per-
forming background computation and communication operations
on the server while the read/write test is performed by the proxy
server to the loaded server. This environment emulates a typi-
cal cluster-based multiple data-center environment where multiple
server nodes communicate periodically and exchange messages,
while the proxy, which is not as heavily loaded, attempts to get
the version information from the heavily loaded machines. Fig-
ure 7 shows that the performance of IPoIB degrades significantly
with the increase in the background load. On the other hand, one-
sided communication operations such as RDMA show absolutely
no degradation in the performance. These results show the ca-
pability of one-sided communication primitives in the data-center
environment.

4.2 Coherent Active Caching
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In this section, we present the basic performance benefits
achieved by the strong coherency dynamic content caching as
compared to a traditional data-center which does not have any such
support. To measure and make these comparisons, we use the fol-
lowing traces: (i) Trace 1: Trace with 100% reads, (ii) Trace 2 -
Trace 5: Traces with update rates increasing in the order of mil-
liseconds to seconds. (iii) Trace 6: Zipf like trace [8, 23] with
medium update rate.
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4.2.1 Overall Performance and Analysis
In this section, we present results for overall data-center perfor-
mance with dynamic content caching. We also analyze these re-
sults based on the actual number of cache misses and cache hits.
All results presented in this section are taken in steady state (i.e.
eliminating the effects of cold cache misses, if any). We non-
cached data-center throughput of about 1700 TPS for Trace 1 and
15000 TPS for a fully cached data-center. These values roughly
represent the minimum and maximum throughput achievable for
our setup.

Figure 8a compares the throughput achieved by dynamic content
caching schemes and the base case with no caching. We observe
that the caching schemes always perform better than the no cache
schemes. The best case observed is about 8.8 times better than the
no cache case.

Figure 8a also shows the two schemes (Invalidate All and De-
pendency Lists) for the traces 2 - 5. We observe that Invalidate All
scheme drops in performance as the update rate increases. This
is due to the false invalidations that occur in the Invalidate All
scheme. On the other hand, we observe that Dependency Lists
scheme is capable of sustaining performance even for higher up-
date rates. The latter sustains a performance of about 14000 TPS
for our setup. Figure 8b shows the response time results for the
above three cases. We observe similar trends in these results as
above. No Cache case has a response time of about 4 millisec-
onds where as the best response time for dynamic content caching
schemes is about 1.2 milliseconds.

Figure 9 shows the cache misses that occur in each of the runs
in the throughput test. The No Cache scheme obviously has 100%
cache misses and represents the worst case scenario. We clearly
observe that the cache misses for Invalidate All scheme increase
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Figure 8. Performance of Data-Center with Increasing Update Rate: (a) Throughput and (b) Response Time

drastically with increasing update rate, leading to the drop in per-
formance. Data-center scenarios in which application servers can-
not extract dependencies from the requests can take advantage of
our dynamic content caching architecture for lower update rates.
For higher update rates, Invalidate All performs slightly better than
or almost equal to the performance of No Cache case. The differ-
ence in the number of cache misses between Invalidate All and
Dependency Lists is the number of false invalidations occurring in
the system for the Invalidate All scheme.

Selective Caching: As mentioned earlier, in real scenarios only
a few popular files are cached. In Figure 10, we present the results
of an experiment showing the overall data-center performance for
varying cache sizes. We used Trace 6 for this experiment. We ob-
serve that even for very small cache sizes the performance is sig-
nificantly higher than the No Cache case. The throughput achieved
by caching 10% of the files is close to the maximum achievable.
Hence, data-centers with any amount of resources can benefit from
our schemes.

Effect of Varying Dependencies on Overall Performance:
Figure 11 shows the effect of increasing the number of depen-
dencies on the overall performance. The throughput drops signif-
icantly with the increase in the average number of dependencies
per cache file. This is because the number of coherent cache in-
validations per update request increase with the average number
of dependencies tending toward Invalidate All in the worst case.
We see that as the ratio of object updates to file invalidations rep-
resenting the dependency factor increases to 64 in Figure 11 the
throughput achieved drops by about a factor of 3.5.

4.2.2 Effect on Load

In this section, we study the effect of increased back-end server
load on the data-center aggregate performance. In this experi-

ment, we emulate artificial load as described in section 4.1. We
use Trace 5 (trace with higher update rate) to show the results for
the Dependency Lists scheme. Figure 12 shows the results.

We observe that our design can sustain high performance even
under heavy back-end load. Further, the factor of benefit for the
Dependency Lists scheme to the No Cache scheme increases from
about 8.5 times to 21.9 times with load. This clearly shows that
our approach is much more resilient to back-end load than the No
Cache scheme. In addition, since loaded back-end servers can
support the proxy caching with negligible overhead, our approach
can scale to bigger data-centers with significantly higher number
of caching servers. The results in [17] show that these benefits
are largely due to the one-sided communication in the basic client
polling protocols.
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5 Related Work
Several researchers have focused on the aspect of dynamic con-

tent caching. Popular approaches like TTL [12], Adaptive TTL
[10], MONARCH [16], etc. deal with lazy consistency and co-
herency caches. These cannot handle strong cache coherency.
Approaches like [6, 7] deal with strong cache consistency. Other
approaches like get-if-modified-since specified in [12] can handle
coherent changes to the original source file, but are not designed to
handle highly dynamic data. These essentially will cause the file
to be re-created for each request negating the benefits of caching.
Solutions proposed in [18] handle the strong cache coherency but
use two-sided communication and are less resilient to load.

Shah, Kim, Balaji, et. al., have done significant research in User
Level High Performance Sockets implementations [20, 14, 4, 5, 3].
In one of our previous works [3], we had evaluated the capabilities
of such a pseudo-sockets layer over InfiniBand in the data-center
environment. However, as we had observed in [17], the two-sided
nature of Sockets API becomes an inherent bottleneck due to the
high load conditions common in data-center environments. Due to
this, we focused on the one-sided nature of InfiniBand to develop
our external modules. Further, the existing data-center framework
(Apache, PHP, etc.,) is still based on the sockets API and can ben-
efit from such high-performance sockets implementations. Thus,
these approaches can be used in a complimentary manner with our
reconfigurability technique to make better utilization of system re-
sources and provide high performance in a data-center environ-
ment.

6 Conclusions
Caching has come to be an important tool in the scalability of

multi-tier data-centers. However, for content used in online bank-
ing, Internet auctions, e-commerce, etc. issues like cache co-
herency and consistency requirements and the dynamics of data
involved can preempt a majority of caching schemes. Caching of
dynamic content with strong cache coherency and consistency has
been studied by few researchers and is a subject of high interest.
Web responses that involve multiple dynamic dependencies add
additional constraints to the designing of strongly coherent caches.

In this paper, we have presented a load resilient architecture that
supports caching of dynamic requests with multiple dynamic de-
pendencies in multi-tier data-centers. Our architecture is designed
to support existing data-center applications with minimal modi-
fications. We have used one sided operations like RDMA and
Remote Atomics in our design to enable load resilient caching.
We have performed our experiments using native InfiniBand Verbs

Layer (VAPI) for all protocol communications. Further, we have
presented two schemes Invalidate All and Dependency Lists to
suite the needs and capabilities of different data-centers. Our ex-
perimental results show that in all cases the usage of our schemes
yield better performance as compared to No Cache case. Under
loaded conditions, our architecture can sustain high performance
better than the No Cache case, and in some cases being more than
an order of magnitude better. The results also demonstrate that
our design can scale well with increasing number of nodes and
increasing system load.

While our scheme is well suited for small to medium clusters, for
large scale clusters, we propose to utilize InfiniBand’s one-sided
operations and hardware based multicast operations to design ad-
vanced caching capabilities with better performance.

References
[1] Breaking through the Bottleneck. http://www.voltaire.com.
[2] Infiniband Trade Association. http://www.infinibandta.org.
[3] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D. K.

Panda. Sockets Direct Protocol over InfiniBand in Clusters: Is it Beneficial?
In ISPASS 2004.

[4] P. Balaji, P. Shivam, P. Wyckoff, and D.K. Panda. High Performance User
Level Sockets over Gigabit Ethernet. In Cluster Computing, 2002.

[5] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda, and J. Saltz. Impact of
High Performance Sockets on Data Intensive Applications. In HPDC, 2003.

[6] A. D. Bradley and A. Bestavros. Basis Token Consistency: Extending and
Evaluating a Novel Web Consistency Algorithm. In WC3, 2002.

[7] A. D. Bradley and A. Bestavros. Basis token consistency: Supporting strong
web cache consistency. In Global Internet Worshop, 2002.

[8] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
caching and Zipf-like distributions: Evidence and implications. In INFO-
COM, 1999.

[9] Pei Cao, Jin Zhang, and Kevin Beach. Active cache: Caching dynamic con-
tents on the Web. In Middleware Conference, 1998.

[10] Michele Colajanni and Philip S. Yu. Adaptive ttl schemes for load balancing
of distributed web servers. SIGMETRICS, 1997.

[11] John Dilley, Martin Arlitt, and Stephane Perret. Enhancement and validation
of the Squid cache replacement policy. In WCW, 1999.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP 1.1. RFC 2616. June,
1999.

[13] Terence P. Kelly, Yee Man Chan, Sugih Jamin, and Jeffrey K. MacKie-
Mason. Biased replacement policies for Web caches: Differential quality-
of-service and aggregate user value. In WCW, 1999.

[14] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-level Sockets Layer over
Virtual Interface Architecture. In Cluster Computing, 2001.

[15] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dha-
baleswar K. Panda. High Performance RDMA-Based MPI Implementation
over InfiniBand. In SC, 2003.

[16] Mikhail Mikhailov and Craig E. Wills. Evaluating a New Approach to Strong
Web Cache Consistency with Snapshots of Collected Content. In WWW,
2003.

[17] Sundeep Narravula, Pavan Balaji, Karthikeyan Vaidyanathan, Savitha Krish-
namoorthy, Jiesheng Wu, and Dhabaleswar K. Panda. Supporting strong
cache coherency for active caches in multi-tier data-centers over infiniband.
In SAN, 2004.

[18] Jin Zhang Pei Cao and Kevin Beach. Active Cache: Caching Dynamic Con-
tents on the Web. In Distributed Systems Platforms and Open Distributed
Processing, 2002.

[19] Luigi Rizzo and Lorenzo Vicisano. Replacement policies for a proxy cache.
Technical Report RN/98/13, UCL-CS, 1998.

[20] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High Performance Sock-
ets and RPC over Virtual Interface (VI) Architecture. In CANPC workshop,
1999.

[21] Hemal V. Shah, Dave B. Minturn, Annie Foong, Gary L. McAlpine, Ra-
jesh S. Madukkarumukumana, and Greg J. Regnier. CSP: A Novel System
Architecture for Scalable Internet and Communication Services. In USITS,
2001.

[22] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. PVFS over Infini-
Band: Design and Performance Evaluation. In ICPP, 2003.

[23] George Kingsley Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley Press, 1949.


