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Abstract

In this paper, we present a detailed study of how to
design efficient and scalable flow control mechanisms in
MPI over the InfiniBand Architecture. Two of the central
issues in flow control are performance and scalability in
terms of buffer usage. We propose three different flow con-
trol schemes (hardware-based, user-level static and user-
level dynamic) and describe their respective design issues.
We have implemented all three schemes in our MPI im-
plementation over InfiniBand and conducted performance
evaluation using both micro-benchmarks and the NAS Par-
allel Benchmarks. Our performance analysis shows that
in our testbed, most NAS applications only require a very
small number of pre-posted buffers for every connection to
achieve good performance. We also show that the user-level
dynamic scheme can achieve both performance and buffer
efficiency by adapting itself according to the application
communication pattern. These results have significant im-
pact in designing large-scale clusters (in the order of 1,000
to 10,000 nodes) with InfiniBand.

1 Introduction

During the last decade, the research and industry com-
munities have been proposing and implementing user-level
communication systems to address some of the problems
associated with legacy networking protocols [22, 20, 3].
The Virtual Interface Architecture (VIA) [8] was proposed
to standardize these efforts. More recently, InfiniBand Ar-
chitecture [11] has been introduced which combines I/O
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with Inter-Processor Communication (IPC).

In the area of high performance computing, MPI has
been the de facto standard for writing parallel applica-
tions. Although InfiniBand was initially proposed as a
generic interconnect for inter-processor communication and
I/O, its rich feature set, high performance and scalabil-
ity make it also attractive as a communication layer for
high performance computing. Currently, there are multi-
ple MPI implementations over InfiniBand publicly avail-
able [19, 13, 18, 21].

One of the key issues in designing MPI over Infini-
Band is flow control. Since current MPI implementations
are based on InfiniBand Reliable Connection (RC) service,
multiple receive buffers have to be posted for each con-
nection in order for the sender to have multiple outstand-
ing messages. However, if the sender sends too fast, these
buffers can be exhausted. The flow control mechanism is to
prevent a fast sender from overwhelming a slow receiver
and exhausting its resources such as buffer space in this
case. Flow control is an important issue in MPI design be-
cause it affects both the performance and the scalability of
an MPI implementation.

Two central issues in flow control are performance and
scalability in terms of buffer usage. In this paper, we pro-
pose three flow control schemes: hardware-based, user-
level static and user-level dynamic to address these issues.
All three schemes are implemented in our MPI implemen-
tation over InfiniBand [14]. We have evaluated them us-
ing both micro-benchmarks and the NAS Parallel Bench-
marks [17]. Performance analysis shows that for most NAS
applications, only a very small number of pre-posted buffers
are required for every connection in order to achieve good
performance. For those applications that need more buffers,
our results show that the user-level dynamic scheme can
achieve both performance and buffer efficiency by adapting
itself according to the application communication pattern.
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The main contributions of this paper are:

1. We have proposed three different flow control schemes
in MPI over InfiniBand (hardware-based, user-level
static and user-level dynamic). We provide detailed
discussions about the design issues in these schemes
and their potential for achieving scalability with good
performance.

2. We have implemented all three scheme in our MPI im-
plementation over InfiniBand.

3. We have evaluated different schemes in terms of run-
time overhead and buffer efficiency using both micro-
benchmarks and NAS Parallel Benchmarks. We have
also studied the impact of buffer space on application
performance, an issue which is important to the scala-
bility of an MPI implementation.

The rest of the paper is organized as follows: In Section
2, we present an overview of the InfiniBand Architecture.
In Section 3, we describe our MPI implementation over In-
finiBand and the flow control issue associated with it. We
discuss designs and implementations of different flow con-
trol schemes in Section 4 and Section 5, respectively. We
present performance evaluation in Section 6. Related work
is discussed in Section 7. In Section 8, we conclude and
briefly mention some of the future directions.

2 InfiniBand Overview

The InfiniBand Architecture (IBA) [11] defines a high-
performance network architecture for interconnecting pro-
cessing nodes and I/O nodes. It provides the communi-
cation and management infrastructure for inter-processor
communication and I/O. In an InfiniBand network, pro-
cessing nodes and I/O nodes are connected to the fab-
ric by Channel Adapters (CA). Channel Adapters usually
have programmable DMA engines with protection features.
They generate and consume IBA packets. There are two
kinds of channel adapters: Host Channel Adapter (HCA)
and Target Channel Adapter (TCA). HCAs are connected
to processing nodes. Their semantic interface to consumers
is specified in the form of InfiniBand Verbs. TCAs connect
I/O nodes to the fabric. Their interface to consumers are
usually implementation specific and thus not defined in the
InfiniBand specification.

2.1 Communication Model

The InfiniBand communication stack consists of differ-
ent layers. The interface presented by Channel adapters to
consumers belongs to the transport layer. A queue-based

model is used in this interface. A queue pair in the In-
finiBand Architecture consists of a send queue and a re-
ceive queue. The send queue holds instructions to trans-
mit data and the receive queue holds instructions that de-
scribe where received data is to be placed. Communication
operations are described in Work Queue Requests (WQR),
or descriptors, and submitted to the queue pair. Once sub-
mitted, a Work Queue Request becomes a Work Queue El-
ement (WQE). WQEs are executed by Channel Adapters.
The completion of work queue elements is reported through
Completion Queues (CQs). Once a work queue element is
finished, a completion queue entry is placed in the associ-
ated completion queue. Applications can check the com-
pletion queue to see if any work queue request has been
finished. In InfiniBand, before a buffer can be used for com-
munication, it must be registered. After communication, the
buffer can be de-registered.

InfiniBand supports multiple transport services. In the
current hardware, Reliable Connection (RC) and Unreliable
Datagram (UD) services are implemented. In the Reliable
Connection service, a connection must be set up between
the queue pairs at the two parties before they can communi-
cate. InfiniBand hardware guarantees reliability of the com-
munication for the Reliable Connection service.

InfiniBand Architecture supports both channel and mem-
ory semantics. In channel semantics, send/receive opera-
tions are used for communication. To receive a message,
the programmer posts a receive descriptor which describes
where the message should be put at the receiver side. At
the sender side, the programmer initiates the send operation
by posting a send descriptor. The send descriptor describes
where the source data is but does not specify the destination
address at the receiver side. When the message arrives at
the receiver side, the hardware uses the information in the
receive descriptor to put data in the destination buffer. Mul-
tiple send and receive descriptors can be posted and they are
consumed in FIFO order.

In memory semantics, RDMA write and RDMA read
operations are used instead of send and receive operations.
These operations are one-sided and transparent to the soft-
ware layer at the remote side.

2.2 InfiniBand Flow Control Mechanisms

InfiniBand provides flow control mechanisms at differ-
ent level. At the link level, it defines different link rates such
as 1x (2.5Gbps), 4x (10Gbps) and 12x (30Gbps). To prevent
a high speed link from overrunning a low speed link, Infini-
Band provides a Static Rate Control mechanism at the link
level.

InfiniBand also has an End-to-End Flow Control mech-
anism for Reliable Connection service. When a sender is
sending too fast and receive buffers are running out, the
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sender HCA will slow down. If a message arrives and
there is no receive buffer posted yet, the receiver will issue
a Receiver-Not-Ready message (RNR NAK). The sender
HCA will wait for a time-out and retry the send operation
until corresponding receive operation is posted. The upper
layer software can control this behavior by specifying pa-
rameters such as retry count and retry time-out for different
queue pairs. However, these parameters must be set during
initialization time and cannot be changed afterward.

3 MPI over InfiniBand

In this section, we first present a design of MPI over In-
finiBand, which uses send/receive operations for transfer-
ring small data and control messages and RDMA write op-
erations for transferring large data messages. Then we in-
troduce the flow control issues associated with this design.

3.1 Basic MPI Design

MPI defines four different communication modes: Stan-
dard, Synchronous, Buffered, and Ready. Two internal pro-
tocols, Eager and Rendezvous, are usually used to imple-
ment these four communication modes. In Eager protocol,
the message is pushed to the receiver side regardless of its
current state. In Rendezvous protocol, a handshake happens
between the sender and the receiver via control messages
before the data is sent to the receiver side. Usually, Eager
protocol is used for small messages and Rendezvous proto-
col is used for large messages. Figure 1 shows examples of
typical Eager and Rendezvous protocols.

Send

Receive

Rendezvous Procotol

Start
Rendezvous

Reply
Rendezvous

Rendezvous
Data

Finish
Rendezvous

Eager Protocol

Send

Receive

Eager Data

Figure 1. MPI Eager and Rendezvous Proto-
cols

When we are transferring large data buffers, it is bene-
ficial to avoid extra data copies. A zero-copy Rendezvous
protocol implementation can be achieved by using RDMA
write. In this implementation, the buffers are pinned down
in memory and the buffer addresses are exchanged via the

control messages. After that, the data can be written di-
rectly from the source buffer to the destination buffer by
using RDMA write. Similar approaches have been used for
implementing MPI over different interconnects [12, 7, 1].

In our basic design [14], InfiniBand Reliable Connection
transport service is used. Eager protocol messages and con-
trol messages in Rendezvous protocol are transfered using
send/receive operations. To achieve zero-copy, data trans-
fer in Rendezvous protocol uses RDMA write operation. In
the MPI initialization phase, a reliable connection is set up
between every two processes. For each process, the send
and receive queues of all connections are associated with
a single CQ. Through this CQ, the completion of all send
and RDMA operations can be detected at the sender side.
The completion of receive operations (or arrival of incom-
ing messages) can also be reported through the CQ.

The InfiniBand Architecture requires that the buffers
be pinned during communication. For eager protocol, the
buffer pinning and unpinning overhead is avoided by using
a pool of pre-pinned, fixed size buffers for communication.
For sending an Eager data message, the data is copied to
one of the buffers first and the sent out. At the receiver side,
a number of buffers from the pool are pre-posted. After
the message is received, the payload is copied to the des-
tination buffer. The buffer is then re-posted to the receive
queue. The communication of control messages in Ren-
dezvous protocol also uses this buffer pool. In Rendezvous
protocol, user data buffers are pinned on-the-fly and trans-
ferred directly using RDMA write operations. The buffer
pinning and unpinning overheads can be reduced by using
the pin-down cache technique [10].

3.2 Flow Control in MPI over InfiniBand

In Figure 1 we have shown different type of messages
in Eager and Rendezvous protocols. Among these mes-
sages, Eager Data and Rendezvous Start messages are sent
to the receiver regardless of its current state. Therefore,
these messages are unexpected with respect to the receiver.
Since the sender can potentially initiate a large number of
send operations in MPI, it is possible that the receiver can
be overwhelmed by too many unexpected messages because
each of these messages consumes resources such as buffer
space at the receiver side. This issue is even more impor-
tant for InfiniBand because communication buffers must be
pinned down and they cannot be swapped out during com-
munication.

To accommodate unexpected messages, every process
can pre-post a number of receiver buffers for each con-
nection. Every message will be received into one of these
buffer. After the receiver finishes processing a buffer, it im-
mediately re-posts the buffer. As long as the number of out-
standing unexpected messages for a connection is less than
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the number of pre-posted buffer, these messages can always
be received safely. However, if the number of outstanding
unexpected messages is too large, a flow control mechanism
needs to be implemented to stall or slow down the sender so
that the receiver can keep up.

Thus, there are two important problems in flow control.
First, we need to study the impact of the number of pre-
posted receiver buffers. Using too many buffers will ad-
versely affect application performance and limit the scala-
bility of the MPI implementation. However, if the number is
too small, senders may have to stall or slow down frequently
and wait for the remote process to re-post the buffers. As a
result, the sender and the receiver become tightly coupled in
communication, leading to degraded performance. Ideally,
the number should be determined by application communi-
cation pattern to achieve both performance and scalability.
The second issue is what mechanism we use to stall or slow
down the sender when the receiver cannot keep up. This
mechanism should be effective and have negligible run-time
overhead during normal communication.

4 Flow Control Design Schemes

We propose several designs to address the flow control
issue. Flow control can be handled in the MPI implemen-
tation. In this case, we call it a user-level scheme. How-
ever, since InfiniBand itself provides end-to-end flow con-
trol, an alternative is to let InfiniBand hardware handle this
task. We call this a hardware-based scheme. Flow control
schemes can also be classified by the way they choose the
number of pre-posted buffers. In a static scheme, this num-
ber is determined at compilation or initialization time and
remains unchanged during execution of the application. On
the other hand, in a dynamic scheme, this number can be
changed during program execution. Next, we discuss these
design alternatives in detail.

4.1 Hardware-Based Flow Control

In hardware-based schemes, there is no flow control at
the MPI level. All outgoing messages are submitted imme-
diately to the send queue. If too many send operations are
posted, the HCA at the sender side will reduce its sending
rate because of the InfiniBand end-to-end flow control. At
the receiver side, when there is no posted receive for an in-
coming message, this message will be dropped and RNR
Nak will be issued. The sender will then wait for a time-
out and re-transmit the message. To ensure reliability at
the MPI level, the retry count can be set to infinite. Thus
eventually the message will be delivered to the receiver side
when the receive buffer is posted.

One of the advantages in using hardware-based flow con-
trol is that it incurs almost no run-time overhead in normal

communication when there are enough pre-posted receiver
buffers. This is because there is no need to keep track of
flow control information in the MPI implementation. This
also means that flow control processing can be done regard-
less of the communication progress of applications. There-
fore, hardware-based schemes also achieves better “appli-
cation bypass” [4, 5]. However, InfiniBand provides very
little flexibility to adjust the behavior of hardware based
flow control. Since the flow control algorithm used by In-
finiBand may not be optimal for every MPI application, this
lack of flexibility may result in performance degradation for
some applications. Further, the end-to-end flow control and
transmission retries are largely transparent to the software
layer and there is no information feedback for the MPI im-
plementation to adjust its behavior. The lack of information
feedback makes it very hard to implement dynamic flow
control schemes in which the MPI implementation can ad-
just the number of pre-posted buffers for each connection
based on application communication pattern.

4.2 User-Level Static Flow Control

In this subsection we discuss how to implement user-
level flow control at the MPI level. First we will describe
static schemes currently used in [12] and [14].

The basic idea of user-level flow control is to use a credit-
based scheme. During MPI initialization, a fixed number
of receive buffers are pre-posted for each connection. Ini-
tially, the number of credits for each sender is equal to the
number of pre-posted buffers at the corresponding receiver.
Whenever a sender sends out a message that will consume a
receiver buffer, its credit count will be decremented. When
the credit count reaches zero, the sender can no longer post
send operations that consume credits. Instead, these oper-
ations will be stored in a backlog queue. The operations
in the backlog queue will be processed later in FIFO order
when credits are available.

At the receiver side, the receiver will re-post a receive
buffer after it has finished processing it. The credit count for
the corresponding sender will then be incremented. How-
ever, since this information about new credits is only avail-
able at the receiver side, we must have some kind of mech-
anism to transfer it to the sender side. Two methods can
be used for this purpose: piggybacking and explicit credit
messages. To use piggybacking, we add a credit informa-
tion field to each message. An MPI process can use this
field to notify the other side about credit availability. If the
communication pattern is symmetric, each sender will get
credit information updates frequently and be able to make
communication progress. Explicit credit messages can be
used when the communication pattern is asymmetric. When
a process has accumulated a certain number of credits and
there is still no message sent by the MPI layer to the other
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side, a special credit message can be sent to transfer the
credit information. In the MPI implementation, small mes-
sages are usually transferred using Eager protocol. How-
ever, when there are no credits, only Rendezvous protocol
is used. Because of the handshaking process in Rendezvous
protocol, credit information can be exchanged through pig-
gybacking, which can speed up the processing of the send
operations in the backlog queue.

Because of possible deadlock situation, explicit credit
messages must be used carefully. In [12] and [14], these
messages themselves will consume credits because they
are implemented using send operations. To prevent dead-
lock, we proposed an optimistic scheme for credit mes-
sages. Basically, we do not impose flow control for ex-
plicit credit messages. Thus, explicit credit messages are
not subject to user-level flow control. These messages are
always posted directly without going through the backlog
queue even though no credit is available. In this case, the
hardware-level flow control mechanism will ensure that the
message will be delivered. Since credit messages can al-
ways be sent, deadlock will not happen.

Using user-level flow control requires the MPI imple-
mentation to manage credit information and take appropri-
ate actions. Therefore, it may have larger run-time overhead
than hardware-based schemes. The use of explicit credit
messages may increase network traffic in some cases. (We
should note that hardware-based schemes may also increase
network traffic because of NAK and re-transmission.) How-
ever, these overheads can be reduced by an optimized im-
plementation. Another disadvantage of user-level schemes
is that flow control processing relies on communication
progress. Therefore, it achieves less “application bypass”
compared with hardware-based schemes. The major advan-
tage of user-level flow control is that various information re-
garding flow control is available to the MPI layer. Based on
this information, an MPI implementation can adjust its be-
havior to achieve better performance and scalability. Next,
we will discuss a dynamic user-level flow control scheme
that takes advantage of this information.

4.3 User-Level Dynamic Flow Control

To achieve both performance and scalability, we propose
a dynamic user-level flow control scheme. This scheme
uses credit-based flow control at the MPI level, which
is similar to the static scheme. The difference is that
each connection starts with a small number of pre-posted
buffers. During program execution, the number of pre-
posted buffers can be gradually increased based on the com-
munication pattern using a feedback-based control mech-
anism. In this scheme, two important issues must be ad-
dressed:�

How to provide feedback information?

�

What to do when feedback information is received?

The feedback mechanism should notify the receiver
when more pre-posted buffers are needed. We notice that if
there are not enough credits, a message will enter the back-
log queue and be processed later. Therefore, this informa-
tion can be used to provide feedback. We add a field to each
message indicating whether it has gone through the backlog.
When a process receives a message that has gone through
the backlog queue, it takes action to increase the number
of pre-posted buffers for the corresponding sender. The in-
crease can be linear or exponential depending on the ap-
plication. If communication pattern changes are relatively
slow compared with the time to increase the number of pre-
posted buffers, this mechanism can achieve both good per-
formance and buffer efficiency.

In addition to increasing the number of buffers, a dy-
namic scheme can also decrease the number of buffers when
the application no longer needs so many buffers. This may
be beneficial to long-running, multi-phase MPI applications
whose communication pattern changes in different phases.
Currently we only allow increasing the number of buffers.
We plan to investigate more along this direction in the fu-
ture.

5 Implementation

Currently one of the most popular MPI implementations
is MPICH [9]. The platform dependent part of MPICH is
encapsulated by an interface called Abstract Device Inter-
face (ADI), which allows MPICH to be ported to differ-
ent communication architectures. Our MPI implementation
over InfiniBand is essentially an ADI2 (the second gener-
ation of Abstract Device Interface) implementation which
uses InfiniBand as the underlying communication interface.
Our implementation [14] is also derived from MVICH [12],
which is an ADI2 implementation for VIA.

Our original MPI implementation over InfiniBand [14]
uses a user-level static flow control scheme. We incorpo-
rated our optimistic scheme for deadlock avoidance. We
have also implemented the hardware-based scheme and
the user-level dynamic scheme. In the user-level dynamic
scheme, linear increasing is used when more pre-posted
buffers are needed. In all implementations, the size of each
pre-posted buffer is 2 KBytes.

6 Performance Evaluation

In this section, we present performance evaluation of dif-
ferent flow control schemes using both micro-benchmarks
and applications. The micro-benchmarks are latency and
bandwidth tests. The applications we use are the NAS
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Parallel Benchmarks [17]. In the performance evalua-
tion, we concentrate on two aspects of different flow con-
trol schemes: normal condition (with plenty of pre-posted
buffers or credits) and flow control condition (when the
number of outstanding messages exceeds the number of
pre-posted buffers or there are not enough credits). Another
issue we are interested in is how many pre-posted buffers
are generally needed by applications in order to achieve best
performance.

6.1 Experimental Testbed

Our experimental testbed consists of a cluster system of
8 SuperMicro SUPER P4DL6 nodes. Each node has dual
Intel Xeon 2.40 GHz processors with 512K L2 cache and
400 MHz front side bus. The machines are connected by
Mellanox InfiniHost MT23108 DualPort 4X HCA adapters
through an InfiniScale MT43132 Eight 4x Port InfiniBand
Switch [15]. The HCA adapters work under the PCI-X 64-
bit 133MHz interfaces. We used the Linux Red Hat 7.2
operating system. The compilers we used for the tests are
Intel(R) C++ and FORTRAN Compilers for 32-bit applica-
tions Version 6.0.1 Build 20020822Z.

6.2 Micro-Benchmarks

6.2.1 Latency

The latency test is carried out in a ping-pong fashion. The
sender sends a message of a certain data size to the receiver
and waits for a reply of the same size. Many iterations of
this ping-pong test are carried out and average one-way la-
tency numbers are obtained. Blocking version of MPI func-
tions (MPI Send and MPI Recv) are used in the tests.

In the latency test, the communication pattern is very
symmetric. Since the sender and the receiver send back a
message only after processing the previous one, there are al-
ways enough receive buffers posted at both sides. For user-
level schemes, the credit information is always transferred
in time through piggybacking. Therefore, this test shows
how different schemes perform under normal conditions.

In the latency test, the hardware-level scheme has the
least overhead because there is no need to keep track of in-
formation related to flow control. However, from Figure 2
we can see that this bookkeeping overhead is negligible and
all three schemes perform comparably1.

1In this paper, we have based our study on the Send/Recv based MPI
implementation, which does not use RDMA for small and control mes-
sages. Our RDMA-based MPI implementation described in [13] achieves
a latency of 6.8 � s.

6.2.2 Bandwidth

The bandwidth tests are carried out by having the sender
send out a number of back-to-back messages to the receiver
and then waiting for a reply from the receiver. The number
of back-to-back messages is referred to as window size. The
receiver sends the reply only after it has received all mes-
sages. The above procedure is repeated multiple times and
the bandwidth is calculated based on the elapsed time and
the number of bytes sent by the sender. We use two dif-
ferent versions of bandwidth tests. In the blocking version,
MPI Send and MPI Recv functions are used. MPI Isend
and MPI Irecv are used in the non-blocking version.

In the first group of our tests, we have chosen a fixed
message size (4 bytes). The tests are conducted for both
blocking version and non-blocking version. The numbers
of pre-posted buffers we have chosen for the tests are 10 and
100. Different results are obtained by varying the window
size of the bandwidth tests.

Figures 3 and 4 show the results with 100 pre-posted
buffers for small message transfers. In these tests the win-
dow size does not exceed the number of pre-posted buffers.
We can see that with enough buffers or credits, all three
schemes perform comparably for both blocking and non-
blocking version.

Figures 5 and 6 show the results with only 10 pre-posted
buffers. We can observe that when the window size exceeds
the number of pre-posted buffers, the user-level dynamic
scheme achieves the best performance because it is able to
adapt to the communication pattern and increase the number
of buffers. On the other hand, user-level static scheme per-
forms the worst because the communication is stalled when
there are not enough credits. We also notice that for user-
level schemes, blocking version of bandwidth tests achieve
better performance. This is because in user-level schemes,
when there is no credit available, Rendezvous protocol will
be used even for small messages. In the blocking tests, the
sender waits for the send operation to finish and therefore is
able to get more credits through the handshaking procedure
of Rendezvous protocol.

Figures 7 and 8 show the results with 10 pre-posted
buffers for large messages (32K bytes). Since large mes-
sages always go through Rendezvous protocol, the commu-
nication pattern in these tests becomes more symmetric be-
cause of the handshaking procedure. As a result, all three
schemes are able to perform well even with less number
of buffers. The non-blocking version performs much better
than the blocking version because it achieves better com-
munication overlap.

6.3 NAS Parallel Benchmarks

To better understand the impact of different flow control
schemes on application performance, we have conducted
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experiments using the NAS Parallel Benchmarks (Class A).
IS, FT, LU, CG and MG tests were carried out using 8 pro-
cesses on 8 nodes. Since SP and BT tests require the num-
ber of processes to be a square number, they were conducted
using 16 processes on 8 nodes.

6.3.1 Impact of Flow Control on Normal Communica-
tion

First, we study the impact of different flow control schemes
on normal communication where there are always enough
pre-posted buffers or credits. We carried out the exper-
iments with 100 pre-posted buffers, which are more than
any of the application will need. The results are shown in
Figure 9. We notice that the three flow control schemes
perform comparably for almost all the applications, with at
most 2%–3% difference due to random fluctuation. One
exception is the LU application. (There are also some dis-
crepancies in the running time of BT. We are currently in-
vestigating this issue.) For LU, the hardware-based scheme
is the best, which outperforms both user-level schemes by
around 5%–6%. The reason why user-level schemes per-
forms worse is that they use explicit credit messages. If
the application communication pattern is very asymmetric,
these messages have to be generated frequently in order to
transfer credit information and the performance will be de-
graded. Table 1 shows the average number of explicit credit
messages (ECM) for each connection at each process and
the total number of messages (including data and control
messages). We can see that for LU, explicit credit messages
make up for a significant percentage of the total number of
messages (18%). However, there are almost no explicit flow
control messages for other applications. We should also
note that the number of explicit credit messages depends
on a threshold credit value, which suppresses any explicit
credit messages if the number of credit to be transferred is

below the threshold. Currently we use a relatively small
threshold value of 5. Performance can be improved by in-
creasing this value for LU.

6.3.2 Impact of Number of Pre-Posted Buffers

As we have discussed, the number of pre-posted buffers has
significant impact on the scalability of applications. In this
subsection, we consider an extreme case where there is only
one pre-posted buffer for every connection at each process.
Figure 10 shows the percentage of performance drop when
we change the pre-post value from 100 to 1. This case can
serve as an “upper bound” of the impact of changing the
number of pre-posted buffers.

One surprising findings from Figure 10 is that most ap-
plications perform quite well even in this extreme condition.
For IS, FT, SP and BT, the maximum performance degrada-
tion for all three schemes is only 2%. For the hardware-
based scheme, performance drops significantly for LU and
MG. This drop is due to the large number of time-out and
re-transmission happening at the hardware level. For the
user-level static scheme, the largest performance drops are
for LU (13%) and CG (6%). Since the user-level dynamic
scheme is able to adapt its behavior according to the ap-
plication communication pattern, there is almost no per-
formance degradation. In Table 2, we show the maximum
number of posted buffers for every connection at every pro-
cess in the user-level dynamic scheme after program execu-
tion. We can see that for all applications except LU, only a
very small number of buffers (no more than 7) are needed
for each connection. Therefore, the user-level dynamic flow
control scheme can potentially achieve both performance
and buffer efficiency. If this communication pattern remains
unchanged for large number of processes, buffer space will
not be the limitation of scalability. We plan to investigate
this direction further in the future on large-scale clusters.

Figure 9. NAS Benchmarks (Pre-Post = 100)
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Figure 10. NAS Benchmarks (Performance
Degradation from Pre-Post=100 to Pre-
Post=1)

Table 1. Explicit Credit Messages for User-
Level Static Scheme

App # ECM Msg # Total Msg
IS 0 383
FT 0 193
LU 9002 48805
CG 0 4202
MG 1 1595
BT 0 28913
SP 0 14531

Table 2. Maximum Number of Posted Buffers
for User-Level Dynamic Scheme

App # Buffer
IS 4
FT 4
LU 63
CG 3
MG 6
BT 7
SP 7

7 Related Work

Flow control is an important issue in cluster comput-
ing and has been studied in the literature. Similar to our
schemes, Flow control in FM [20] is also credit-based. In
[2], a reliable multicast scheme is implemented by exploit-
ing link-level flow control in Myrinet. GM [16] is a mes-
saging layer over Myrinet developed by Myricom. In GM,
a sender can only send a message when it owns a send to-
ken. This is essentially a credit-based flow control scheme.
Unlike the above, our work concentrates on flow control
schemes in MPI over InfiniBand.

MVICH [12] is an MPI implementation over VIA [6].
It uses a user-level static flow control scheme. Our orig-
inal MPI implementation over InfiniBand [14] was based
on it and used a similar flow control scheme. In this pa-
per, we carry out a detailed study and comparison of dif-
ferent flow control schemes. For static schemes, we im-
plemented two more methods to avoid deadlock: optimistic
approach and RDMA approach. Our performance evalu-
ation also shows that instead of using static schemes, we
can use dynamic schemes to achieve both performance and
scalability. We have also evaluated the hardware-based flow
control scheme.

Recently we have developed a new MPI implementation
over InfiniBand by exploiting RDMA write operations for
small and control messages [13]. In this paper, our original
implementation [14] is used as the basis for studying differ-
ent flow control schemes. However, the results in this pa-
per are directly applicable to the RDMA-based MPI imple-
mentation. The difference is that in the RDMA-based im-
plementation, the user-level dynamic scheme is more com-
plicated because cooperation between both the sender and
the receiver is necessary in order to increase the number of
posted buffers.

In order to improve the scalability of MPI implemen-
tations, an on-demand connection set-up scheme was pro-
posed in [23]. In this scheme, connections are set up be-
tween two processes when they communicate with each
other for the first time. If there is no communication be-
tween them, no connection will be set up and therefore no
buffer space will be used. Our proposed dynamic flow con-
trol scheme can be combined with on-demand connection
setup to further improve the scalability of MPI implementa-
tions.

8 Conclusions and Future Work

In this paper, we present a detailed study of the flow con-
trol issue in implementing MPI over the InfiniBand Archi-
tecture with Reliable Connection service. We categorize
flow control schemes into three classes: hardware-based,
user-level static and user-level dynamic. These schemes
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differ in their run-time overhead and how their decide the
number of pre-posted buffers for each connection. The
hardware-based scheme has the least overhead under nor-
mal conditions. However, in user-level schemes, MPI im-
plementation can have more control over the system com-
munication behavior when the receiver is overloaded. In
particular, the user-level dynamic scheme is able to adjust
the number of pre-posted buffers according to the applica-
tion communication pattern. Therefore, it can potentially
achieve both good performance and high scalability in terms
of buffer usage.

We have implemented all three schemes in our MPI im-
plementation over InfiniBand and conducted performance
evaluation on our 8-node InfiniBand cluster. We use both
micro-benchmarks and the NAS Parallel Benchmarks for
the evaluation. We have shown that the overheads of user-
level schemes are very small. Our results have also shown
that the user-level dynamic scheme can achieve both perfor-
mance and buffer efficiency by adapting to the communica-
tion pattern. Another finding in our performance evalua-
tion is that for most NAS applications, only a small number
of pre-posted buffers are required to achieve good perfor-
mance.

In future, we plan to extend our study to large-scale clus-
ters and carry out more in-depth analysis of application scal-
ability. We also plan to include more applications in our
study. Although in this paper we concentrate on flow con-
trol issues in MPI, we believe that many of our results are
applicable to the design of other middleware layers over In-
finiBand, such as Distributed Shared Memory (DSM) sys-
tems and parallel file systems. We will investigate similar
problems in these systems. Another direction we intend to
pursue is to study flow control issues in using other Infini-
Band transport services such as Reliable Datagram.
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