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Abstract
In the past few years several researchers have proposed and

configured data-centers providing multiple independent services,
known as shared data-centers. For example, several ISPs and other
web service providers host multiple unrelated web-sites on their
data-centers allowing potential differentiation in the service pro-
vided to each of them. Such differentiation becomes essential in
several scenarios in a shared data-center environment. In this pa-
per, we extend our previously proposed scheme on dynamic re-
configurability to allow service differentiation in the shared data-
center environment. In particular, we point out the issues associ-
ated with the basic dynamic reconfigurability scheme and propose
two extensions to it, namely (i) Dynamic Reconfiguration with Pri-
oritization and (ii) Dynamic Reconfiguration with Prioritization
and QoS. Our experimental results show that our extensions can al-
low the dynamic reconfigurability scheme to attain a performance
improvement of up to five times for high priority websites irrespec-
tive of any background low priority requests. Also, these exten-
sions are able to significantly improve the performance of low pri-
ority requests when there are minimal or no high priority requests
in the system. Further, they can achieve a similar performance as
a static scheme with up to 43% lesser nodes in some cases.

1 Introduction
Cluster computing systems are becoming increasingly

popular for providing cost-effective and affordable comput-
ing environments for a wide range of applications. These
systems are typically built by interconnecting a set of com-
modity PCs or workstations using high-speed interconnect
architectures. InfiniBand Architecture (IBA) [2] is one such
architecture that has been recently standardized by the in-
dustry to design next generation high-end clusters. IBA
relies on two key features, namely User-level Networking
and One-Sided Communication Operations. User-level Net-
working allows applications to directly and safely access
the network interface without going through the operating
system. One-sided communication allows the network in-
terface to transfer data between local and remote memory
buffers without any interaction with the operating system or
the host processor. It also provides features for performing
network based atomic operations on the remote memory re-
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gions.
On the other hand, with the increasing adoption of Inter-

net as the primary means of interaction and communication,
highly scalable and available web servers have become a
critical requirement. Based on these two trends, researchers
and industries have proposed the feasibility and potential of
cluster-based data-centers [22, 11, 4, 17].
The various nodes in a traditional cluster-based data-center

are logically partitioned to provide various related services
including web and messaging services, transaction process-
ing, business logic, databases, etc. These nodes interact
with each other depending on the query to provide the ser-
vice requested by the end user. In the past few years sev-
eral researchers have proposed and configured data-centers
providing multiple independent services, known as shared
data-centers [8, 9]. For example, several ISPs and other web
service providers host multiple unrelated web-sites on their
data-centers allowing potential differentiation in the service
provided to each of them. Such differentiation becomes es-
sential in several scenarios in a shared data-center environ-
ment.
For example, a data-center may want to give a higher prior-

ity to all requests pertaining to website A (a high paying cus-
tomer) as compared to website B (a low paying customer).
Similarly, a data-center might guarantee a certain Quality
of Service (QoS) guarantees in the resources provided to
each service or website it is hosting. In the context of data-
centers, we classify QoS guarantees into two classes: Hard
QoS guarantees and Soft QoS guarantees.
Hard QoS guarantees require that the resources guaranteed

be available to the website at all times, i.e., there will not
be any time instance that the website is provided lesser re-
sources than what it was initially guaranteed. On the other
hand, Soft QoS guarantees rely on the average load on the
website and client workload pattern studies. For example,
though traffic to a website could be bursty at times requir-
ing a large number of nodes, the average load on the website
could be much lesser requiring fewer nodes. In this case, if
a website is provided a soft QoS guarantee of N resources,
it is guaranteed these resources if they are not already allo-
cated to other higher priority websites.
Statically assigning the nodes in the shared data-center for

each service provided depending on the priority or the QoS
guarantees given to the website is a widely used approach.

1



Though this approach is easily capable of meeting the pri-
ority or QoS requirements given by the data-center, it might
incur severe under utilization of resources especially when
the traffic is bursty and directed to a single web-site.

In our previous work [6], we presented a novel design to
provide dynamic reconfigurability of the nodes in the data-
center environment. This technique enables the nodes in the
data-center environment to efficiently adapt their functional-
ity based on the system load and traffic pattern. However, as
we will see in Section 3, the basic dynamic reconfigurability
scheme does not have any concept of service differentiation
per se. Thus, it cannot be directly used in a shared data-
center environment having different service requirements
for different websites. In this paper, we extend the basic
dynamic reconfigurability scheme to allow service differen-
tiation in the shared data-center environment. In particular,
we point out the issues associated with the basic dynamic
reconfigurability scheme and propose two extensions to it,
namely (i) Dynamic Reconfiguration with Prioritization and
(ii) Dynamic Reconfiguration with Prioritization and QoS.

We evaluated our proposed schemes on an InfiniBand
based cluster and attempted to bring out the benefits and
issues associated with these schemes. Our experimental re-
sults show that our extensions can allow the dynamic recon-
figurability scheme to attain a performance improvement of
up to five times for high priority websites irrespective of any
background low priority requests. Also, these extensions are
able to significantly improve the performance of low prior-
ity requests when there are minimal or no high priority re-
quests in the system. Further, they can achieve a similar
performance as a static scheme with up to 43% lesser nodes
in some cases.

The remaining part of the paper is organized as follows: In
Section 2, we describe the details about the design and im-
plementation of our basic dynamic reconfiguration scheme.
In Section 3 we describe the provisioning of prioritization
and soft QoS guarantees in shared data-centers and our ex-
tensions to the dynamic reconfigurability approach to pro-
vide these. We describe our experimental results in Sec-
tion 4, present some previous related work in Section 5 and
draw our conclusions and possible future work in Section 6.

2 Dynamic Reconfiguration Overview

In our previous work [6], we presented a novel design to
provide dynamic reconfigurability of the nodes in the data-
center environment. This technique enables the nodes in the
data-center environment to efficiently adapt their function-
ality based on the system load and traffic pattern. Dynamic
reconfigurability attempts to provide benefits in several di-
rections: (i) cutting down the time needed for configuring
and assigning the resources available by dynamically trans-
ferring the traffic load to the best available node/server, (ii)
improving the performance achievable by the data-center
by reassigning under-utilized nodes to loaded services, (iii)
cutting down the cost of the data-center by reducing over-
provisioning of nodes and improving the utilization of the

resources available inside the data-center and several oth-
ers.
While reconfigurability is a widely used technique for clus-

ters, the data-center environment poses several interesting
challenges for the design and implementation of such a
scheme. In this section, we describe some of the chal-
lenges involved in implementing dynamic reconfigurability
in the data-center environment and the details about the im-
plementation of this scheme using the native Verbs layer
over InfiniBand (VAPI). In Section 3, we propose several
extensions to the basic dynamic reconfigurability scheme to
allow service differentiation in the shared data-center envi-
ronment.

2.1 Dynamic Reconfigurability Support
Request patterns seen over a period of time, by a shared

data-center, may vary significantly in terms of the ratio of
requests for each co-hosted web-site. For example, interest-
ing documents or dynamic web-pages becoming available
and unavailable might trigger bursty traffic for some web-
site at some time and for some other web-site at a different
time. This naturally changes the resource requirements of a
particular co-hosted web site from time to time.
Statically assigning the nodes in the shared data-center for

each service provided depending on the priority or the QoS
guarantees given to the website is a widely used approach.
In this approach, nodes are alloted to each service depending
either on the worst case estimates of the load expected or on
the QoS guarantees provided together with the nodes avail-
able in the data-center. It is easy to see that this approach is
easily capable of meeting the priority of QoS requirements
given by the data-center. However, this approach has sev-
eral disadvantages. First, it might incur severe under uti-
lization of resources especially when the traffic is bursty and
directed to a single web-site. Second, this approach restricts
the QoS guarantees provided by the data-center based on the
number of nodes present. Third, this approach can result in
a poor performance for the low priority requests even when
there are no high priority requests available in the system.
Dynamic Reconfigurability attempts to tackle these issues

with the static assignment scheme. The basic idea of recon-
figurability is to utilize the idle nodes of the system to satisfy
the dynamically varying resource requirements of each of
the individual co-hosted web-sites in the shared data-center.
Depending on the current demands (e.g., due to a burst of
requests to one web-site), nodes reconfigure themselves to
support these demands.
Support for Existing Applications: A number of appli-

cations have been developed in the data-center environment
over the span of several years to process requests and pro-
vide services to the end user. To avoid making cumbersome
changes to such existing applications, our design makes use
of external helper modules which work alongside the appli-
cations to provide effective dynamic reconfiguration. Tasks
related to system load monitoring, maintaining a global
state information, reconfiguration, etc. are handled by these
helper modules in an application transparent manner. These
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modules, running on each node in the shared data-center, re-
configure the data-center depending on current request and
load patterns. They use the run-time configuration files of
the data-center applications to reflect these changes.
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Figure 1. RDMA based Protocol for Dynamic
Reconfigurability

Load-Balancer Based Reconfiguration: Two different
approaches could be taken for reconfiguring the nodes:
Server-based reconfiguration and Load-balancer based re-
configuration. In server-based reconfiguration, when a par-
ticular server detects a significant load on itself, it tries to
reconfigure a relatively free node that is currently serving
some other web-site content. Though intuitively the loaded
server itself is the best node to perform the reconfiguration
(based on its closeness to the required load information),
performing reconfiguration on this node adds a significant
amount of load to an already loaded server. Due to this
reason, reconfiguration does not happen in a timely man-
ner and the overall performance is affected adversely. On
the other hand, in a load-balancer based reconfiguration, the
edge servers (functioning as load-balancers) detect the load
on the servers, find a free server to alleviate the load on the
loaded server and perform the reconfiguration themselves.
Since the shared information like load, server state, etc. is
closer to the servers, this approach incurs the cost of requir-
ing more network transactions for its operations.

Remote Memory Operations Based Design: As men-
tioned earlier, by their very nature, the server nodes are com-
pute intensive. Execution of CGI-Scripts, business-logic,
servlets, database processing, etc. are typically very taxing
on the server CPUs. So, the helper modules can potentially
be starved for CPU on these servers. Though in theory the
helper modules on the servers can be used to share the load
information through explicit two-sided communication, in
practice, such communication does not perform well [17].
InfiniBand, on the other hand, provides one-sided remote
memory operations (like RDMA and Remote Atomics) that
allow access to remote memory without interrupting the re-
mote node. In our design, we use these operations to per-

form load-balancer based server reconfiguration in a server
transparent manner. Since the load-balancer is performing
the reconfiguration with no interruptions to the server CPUs,
this RDMA based design is highly resilient to server load.
Figure 1 shows the RDMA based protocol used by Dynamic
Reconfigurability. As shown in the figure, the entire clus-
ter management and dynamic reconfiguration is performed
by the lightly loaded load-balancer nodes without disturb-
ing the server nodes using the RDMA and remote atomic
operations provided by InfiniBand.
Some of the other major design challenges and issues in-

volved in dynamic adaptability and reconfigurability of the
system are: (i) Providing a System Wide Shared State, (ii)
Concurrency Control to avoid Live-locks and Starvation,
(iii) Avoiding server thrashing through history aware recon-
figuration and (iv) Tuning the reconfigurability module sen-
sitivity. Further details about the other design issues can be
found in [6].

3 Service Differentiation with Reconfigura-
bility

In this section, we point out the issues associated with the
dynamic reconfigurability scheme and propose extensions
to this scheme to allow service differentiation in a shared
data-center environment.

3.1 Service Differentiation
As mentioned earlier, differentiation in service becomes

essential in several scenarios in a shared data-center envi-
ronment. For example, a data-center may want to give a
higher priority to all requests pertaining to website A (a high
paying customer) as compared to website B (a low paying
customer). Similarly, a data-center might guarantee a cer-
tain Quality of Service (QoS) guarantees in the resources
provided to each service or website it is hosting.
Issues with Dynamic Reconfigurability: In the dynamic

reconfigurability approach the nodes in the data-center envi-
ronment adapt their functionality based on the system load
and traffic pattern. This allows a higher utilization of the
system resources and essentially improves the overall per-
formance of the system. However, this scheme does not
have concept of service differentiation per se. Thus, it can-
not be directly used in a shared data-center environment
having different service requirements for different websites.
The scheme performs reconfiguration only based on the load
on the physical nodes and does not consider any prioritiza-
tion and QoS guarantees the website might have to meet.
This means that a burst of requests to one website would

result in all the nodes in the data-center to be re-assigned
to this website. Now, while this website is still loaded, if
there is a burst of requests to another higher priority web-
site, the reconfigurability scheme will not be able to find a
lightly loaded physical node and thus will not perform any
additional reconfigurations to handle the new burst of high
priority requests. Figure 2 depicts this issue with the ba-
sic dynamic reconfigurability mechanism in a shared data-
center environment hosting two websites where one of the
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Figure 2. Basic Dynamic Reconfigurability: (a) Step 1, (b) Step 2 and (c) Step 3

websites is a high priority website and the other is a lower
priority website.

Figure 2a shows the initial state of the system where both
the websites have a small amount of requests coming in.
Both websites are initially configured with four nodes each.
Figure 2b shows a state where there is a heavy load of re-
quests to website B. Since website A is not heavily loaded,
the nodes servicing this website are reconfigured to serve
website B. Figure 2c shows a state where there is a heavy
load of requests for website A, while website B is still heav-
ily loaded. In this scenario, since website A cannot find any
lightly loaded servers, it does not perform any reconfigura-
tion of nodes, causing a degradation of performance for the
high priority website. However, ideally we would like this
burst of high priority requests to reconfigure the nodes from
the lower priority website to handle the requests on the high
priority website.

3.2 Schemes to provide Service Differentiation

In this section, we briefly describe two approaches to pro-
vide service differentiation in shared data-centers, namely
(i) Rigid and (ii) Dynamic Reconfiguration based Service
Differentiation.

3.2.1 Rigid Approach

In the rigid approach, the data-center statically assigns the
available nodes in the data-center as requested by the web-
sites. For example, if the data-center has eight nodes and
hosts two websites (website A and website B), the number
of nodes it can commit to both the websites together cannot
exceed eight nodes. For example, six nodes to website A
and two nodes to website B is one possible node guarantee
the data-center can give in this model.

We use two instances of this scheme in our evaluation:
Rigid-Small and Rigid-Large. Both instances are similar ex-
cept that Rigid-Large uses a larger number of physical nodes
as compared to Rigid-Small.

3.2.2 Reconfiguration based Service Differentiation

We propose two extensions to the basic dynamic reconfig-
urability scheme, namely (i) Dynamic Reconfiguration with
Prioritization and (ii) Dynamic Reconfiguration with Prior-
itization and QoS to allow dynamic reconfigurability to do
re-allocation of nodes while considering the service differ-
entiation requirements provided by the data-center.

Dynamic Reconfiguration with Prioritization: In the
prioritization scheme, the reconfigurability modules keep

track of the priority-level to which each website belongs.
On detecting a high load, the scheme allows reconfiguring
another node if either it is lightly loaded or it belongs to a
lower priority level. Figure 3 depicts the previous example
with this scheme.
Figure 3a shows the initial state of the system where

both the websites have a small amount of requests com-
ing in. Again, both websites are initially configured with
four nodes each. Figure 3b shows a state where there is a
heavy load of requests to website B. Similar to the basic
reconfigurability scheme, since website A is not that heav-
ily loaded at this time, the nodes servicing this website are
reconfigured to serve website B. Figure 3c shows a state
where there is a heavy load of requests for website A, while
website B is still heavily loaded. Unlike the basic reconfig-
urability scheme, in this scenario since website B is a low
priority website, with the dynamic reconfiguration with pri-
oritization scheme the nodes can be reconfigured to serve
website A. So, as the figure depicts, the nodes are recon-
figured to serve website A thus improving the performance
of the high priority website. Now however, website B only
has one node left to serve its pertinent incoming requests;
this could lead to starvation for requests for website B. In
summary, though the dynamic reconfigurability with prior-
itization scheme can give a higher performance to the high
priority websites as compared to the basic reconfigurabil-
ity scheme, it might result in starvation for the low priority
requests.
Dynamic Reconfiguration with Prioritization and QoS:

The dynamic reconfiguration with prioritization scheme al-
lows the higher priority requests to reconfigure nodes from
the lower priority sites and thus increase the performance of
these requests. However, just shifting the nodes based on
priorities might cause lower priority requests to be starved.
For example, in Figure 3c, the lower priority requests only
have one node to send requests to.
In the dynamic reconfiguration with prioritization and QoS

scheme, each website has two kinds of QoS guarantees: (i)
A Hard QoS guarantee which specifies the minimum num-
ber of resources allotted to the website at any point of time
(this guarantee represents the amount of resources allotted
to the website in a rigid manner and that cannot be recon-
figured) and (ii) A Soft QoS guarantee which specifies the
number of resources allotted to the website when the re-
sources are available and have not been already allotted
to a higher priority website (this guarantee represents the
amount of resources that are allotted to the website in an
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optimistic manner; these resources can be reconfigured to
other websites, but when the load on this website increases
the resources that had been reconfigured to other lower pri-
ority websites are taken back as long as the Hard QoS guar-
antees of the other websites are maintained).

This scheme converts nodes from lower priority websites
only if the soft QoS guarantee of the higher priority website
is not met. If the soft QoS guarantee of the higher priority
website is already met, no further reconfiguration is done.
Figure 4 depicts the behavior of this scheme in the previous
example with each website having a hard QoS guarantee of
two nodes and a soft QoS guarantee of six nodes.

Figure 4a shows the initial state of the system where
both the websites have a small amount of requests coming
in. Again, both websites are initially configured with four
nodes each; each website is provided a soft QoS guaran-
tee of six nodes. Figure 4b shows a state where there is a
heavy load of requests to website B. Similar to the previ-
ous schemes, since website A is not that heavily loaded at
this time, the nodes servicing this website are reconfigured
to serve website B. Figure 4c shows a state where there is
a heavy load of requests for website A, while website B is
still heavily loaded. This scheme is similar to the previ-
ous scheme in the sense that when the high priority requests
arrive, the scheme reconfigures nodes serving the lower pri-
ority website B to serve the higher priority website A. How-
ever, the scheme reconfigures nodes only till the soft QoS
guarantee of website A is met, i.e., it reconfigures nodes till
website A has six nodes serving it. This ensures that the
lower priority website (website B) is ensured of having at
least its Hard QoS guarantee of two nodes (in this example).
It is to be noted that, by changing the soft QoS guarantees of
the website A, the amount of starvation of website B can be
controlled in this scheme (e.g., if website A was only pro-
vided with a QoS guarantee of five nodes, website B could
utilize three nodes in such a scenario).

4 Experimental Results

In this section, we present various performance results.
First, in Section 4.1, we present the ideal case raw perfor-
mance achievable by the native Verbs API (VAPI) over In-
finiBand and TCP/IP over InfiniBand (IPoIB) using micro-
benchmark results. In Section 4.2, we present the impact
of the load conditions in the data-center environment on the
performance achievable by VAPI and IPoIB. In Section 4.3

we present the evaluation of our VAPI based reconfiguration
schemes in a shared data-center environment.
For all our experiments we used two clusters whose de-

scriptions are as follows:
Cluster1: A cluster system consisting of 8 nodes built

around SuperMicro SUPER P4DL6 motherboards and GC
chipsets which include 64-bit 133 MHz PCI-X interfaces.
Each node has two Intel Xeon 2.4 GHz processors with a
512 kB L2 cache and a 400 MHz front side bus and 512 MB
of main memory. We used the RedHat 9.0 Linux distribu-
tion and Linux-2.4.22smp kernel.org kernel.
Cluster2: A cluster system consisting of 8 nodes

built around SuperMicro SUPER X5DL8-GG motherboards
with ServerWorks GC LE chipsets which include 64-bit
133 MHz PCI-X interfaces. Each node has two Intel Xeon
3.0 GHz processors with a 512 kB L2 cache and a 533 MHz
front side bus and 512 MB of main memory. We used the
RedHat 9.0 Linux distribution and Linux-2.4.22smp ker-
nel.org kernel.
The following interconnect was used to connect all the

nodes in Clusters 1 and 2.
Interconnect: InfiniBand network with Mellanox Infini-

Host MT23108 DualPort 4x HCA adapter through an In-
finiScale MT43132 twenty-four 4x Port completely non-
blocking InfiniBand Switch. The Mellanox InfiniHost HCA
SDK version is thca-x86-3.2. The adapter firmware version
is fw-23108-rel-3 2 0-rc4-build-001. The IPoIB driver for
the InfiniBand adapters was provided by Mellanox Corpo-
ration. The driver was obtained from Mellanox Golden CD
version 0.5.0.
Cluster 2 was used to represent the software load-balancers

and Cluster 1 was used to represent the server nodes in the
data-center environment. We used Apache version 2.0.50
in all our data-center experiments. For dynamic content
requests, the application server was configured using PHP
version 4.3.7 and the database used was MySQL version
4.1 with Master-Slave clustering for INNODB table type.
Requests from the software load-balancers were generated
using sixteen threads on each load-balancer.

4.1 Basic Micro-benchmarks

VAPI provides multiple communication models for trans-
ferring data, namely: (a) Send-Receive, (b) RDMA write,
(c) RDMA write with immediate data and (d) RDMA Read.
RDMA Read achieves a latency of 11.89 � s for 1 byte mes-

sages compared to the round trip latency of 53.8 � s achieved
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Figure 4. Dynamic Reconfigurability with Prioritization and QoS: (a) Step 1, (b) Step 2 and (c) Step 3

by IPoIB. Also, RDMA Read achieves a peak bandwidth of
839.1 MBps as compared to a 231 MBps achieved by IPoIB.
More detailed results for other message sizes, the other com-
munication models and the CPU utilization for these tests
for the various message sizes is skipped in this paper due to
space restrictions and can be found in [3].

4.2 Impact of Background Threads

In this section, we present performance results showing
the impact of the loaded conditions in the data-center envi-
ronment on the performance of RDMA Read and IPoIB on
Cluster 1. The results for the other communication models
can be found in [3].

We emulate the loaded conditions in the data-center envi-
ronment by performing background computation and com-
munication operations on the server while the load-balancer
performs the test with a separate thread on the server. This
environment emulates a typical cluster-based shared data-
center environment where multiple server nodes commu-
nicate periodically and exchange messages, while the load
balancer, which is not as heavily loaded, attempts to get the
load information from the heavily loaded machines.

The performance comparison of RDMA Read and IPoIB
for this experiment is shown in Figure 5. We observe that
the performance of IPoIB degrades significantly with the
increase in the background load. On the other hand, one-
sided communication operations such as RDMA show ab-
solutely no degradation in the performance. These results
show the capability of one-sided communication primitives
in the data-center environment.

4.3 Evaluation of Dynamic Reconfigurability

In this section, we evaluate the basic Dynamic Reconfig-
urability scheme as well as our extensions to the scheme,
namely Dynamic Reconfigurability with Prioritization and
Dynamic Reconfigurability with Prioritization and QoS in
several different scenarios. We first show the basic perfor-
mance achieved by the dynamic reconfigurability scheme in
Section 4.3.1. In Section 4.3.2, we evaluate the capabilities
of the basic dynamic reconfigurability scheme in a shared
data-center hosting multiple websites of different priority
levels and compare it with the performance of the two ex-
tensions we proposed in this paper.

For our evaluations, we used three different traces. We
used a single file trace with a request file which is 1KB, 4KB
or 16KB in size in order to understand the impact of various

schemes without being diluted by other system parameters.
We also show the applicability of our scheme in a real envi-
ronment using the Zipf workload benchmark trace [25] and
a real-world WorldCup trace [1]. In this paper, we show the
evaluation results with a single file trace of 1KB file size and
some selected results with the Zipf and WorldCup traces.
The rest of the results are skipped due to space constraints
and can be found in [3].

4.3.1 Basic Dynamic Reconfigurability

In this section, we present the basic performance achieved
by the dynamic reconfigurability scheme in a shared data-
center hosting two websites with equal priorities and no
QoS guarantees. We evaluate two instances of rigid or
static node allocation: Rigid-Small and Rigid-Large. Rigid-
Small considers a data-center with eight nodes and allots
four nodes to each website (both websites are of equal pri-
ority). Rigid-Large considers a data-center with fourteen
nodes and allots seven nodes to each website. We com-
pare these schemes with the basic dynamic reconfigurability
scheme; this scheme considers a data-center with only eight
nodes and tries to emulate the capabilities of a larger data-
center (Rigid-Large) by dynamically moving around nodes
based on the request pattern.
The extensions for dynamic reconfigurability proposed in

this paper make the scheme QoS and prioritization capable.
However, in this experiment we are only considering equal
priority websites with no QoS guarantees, thus these exten-
sions would have no additional impact as compared to the
basic dynamic reconfigurability scheme. Due to this reason,
we present results only for the basic dynamic reconfigura-
bility scheme in this section and refer the reader to [3] for
the performance numbers for the other schemes.
Figure 6 shows the performance achieved by these

schemes. The x-axis depicts the length of requests to each
website. For example, a burst length of 2K means that the
data-center receives a burst of 2K requests for the first web-
site followed by a burst of 2K requests for the second web-
site and so on in a round-robin manner. We see that for
small burst lengths the dynamic reconfigurability scheme
performs comparably with the Rigid-Small scheme. As the
burst length increases, its performance increases and con-
verges with that of the Rigid-Large scheme. This is be-
cause, for small burst lengths the dynamic reconfigurabil-
ity scheme does not have enough time to shift the nodes
from the lightly loaded website to the heavily loaded web-
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Figure 5. Performance of IPoIB and RDMA Read with background load: (a) Latency, (b) Bandwidth

site. As the burst length increases, the scheme has more
time to move the nodes according to the load on the web-
sites. Further, for burst lengths of close to 16K requests, the
time taken to shift the nodes is negligible compared to the
time for which the requests arrive. This reflects in a better
performance for the dynamic reconfigurability schemes for
large burst lengths.
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Figure 6. Reconfigurability Performance

To further understand the behavior of dynamic reconfig-
urability with burst length, we show the node utilization
in the data-center for burst lengths of 1K and 16K in Fig-
ure 7. As seen in the figure, for a small burst length of
1K requests, the number of nodes used fluctuates rapidly
and stays close to four nodes which is the initial number of
nodes provided for the dynamic reconfigurability scheme as
well as the Rigid-Small scheme. However, for a large burst
length of 16K, the node utilization is high and close to the
maximum.

4.3.2 Service Differentiation with Reconfiguration

In this section, we evaluate the Dynamic Reconfigurability
with Prioritization and Dynamic Reconfigurability with Pri-
oritization and QoS schemes and compare the performance
achieved with that of the basic Dynamic Reconfigurability
scheme. We carry out these evaluations in a shared data-
center hosting two websites where one of the websites is a
higher priority website compared to the other; each website
has a hard QoS guarantee of two nodes and a soft QoS guar-
antee of six nodes. We compare the performance attainable
for both the high priority as well as the low priority requests
based on two metrics: (i) the number of transactions the

data-center can support per second and (ii) the percentage
of times it is able to meet the provided hard QoS guarantee.
Results for the percentage of times the schemes are able to
meet the soft QoS guarantees are available in [3].
In order to evaluate different aspects of the three schemes

mentioned, we created three test case scenarios. Though
several other scenarios are possible in a production data-
center, we believe that these three scenarios would capture
the bulk of the characteristic differences between the three
schemes.

1. Case 1: A load of high priority requests arrives when
a load of low priority requests already exists.

2. Case 2: A load of low priority requests arrives when a
load of high priority requests already exists.

3. Case 3: Both the high priority requests and low priority
requests arrive simultaneously.

Figure 8 shows the basic performance achieved by the
three schemes for the high priority as well as low priority
website. In the figure, legend “Reconf” refers to the basic
reconfigurability scheme, “Reconf-P” refers to the reconfig-
urability with prioritization scheme and “Reconf-PQ” refers
to the reconfigurability with prioritization and QoS scheme.
The analysis of these results for the different cases are as
follows:
Case1: As mentioned above, in this case, the data-center

first experiences a burst of requests for the low-priority web-
site. While, this burst of low-priority requests is still on, we
study the performance of a new burst of requests for the
high-priority website. Figure 9 shows the variation in the
number of nodes allocated to the low-priority website for
the basic reconfigurability, prioritization and prioritization
with QoS schemes respectively.
Initially, when there is a burst of low-priority requests, all

three schemes allocate more nodes to serve these low prior-
ity requests since the load on the high priority server nodes
is initially low. However, the basic reconfigurability scheme
and the prioritization scheme allocate the maximum number
of nodes possible to the low-priority website, while the pri-
oritization with QoS scheme allocates nodes up to the soft
QoS guaranteed to that website. In our experiment, the pri-
oritization with QoS scheme allocates up to six nodes to
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Figure 7. Node Utilization for Reconf (a) Burst Length = 1K and (b) Burst Length = 16K

each website, while the other two schemes can allocate up
to seven nodes.

Now, when there is a burst of high priority requests, each
scheme takes a different path. The basic reconfigurability
scheme does not have any concept of differentiated service
and cannot find any lightly loaded server in the system; thus
it does not do any additional reconfiguration. This would
result in a degradation of performance of the high prior-
ity requests. The prioritization and prioritization with QoS
schemes, however, allow service differentiation and would
reconfigure the nodes from the lower priority website to the
higher priority website. Again, the prioritization scheme al-
locates the maximum number of nodes possible to the high
priority website; the prioritization with QoS scheme on the
other hand allocates nodes only till the soft QoS require-
ment of the website is met, i.e., it allocates a maximum of
only six nodes in our experiment. We see that our exten-
sion schemes can achieve up to a factor of five improvement
in performance as compared to the basic reconfigurability
scheme.

Case2: In this case, the data-center first experiences a burst
of requests for the high-priority website. While these re-
quests are on, we study the impact of a burst of low-priority
requests on the performance of the high-priority requests.
On a burst of high-priority requests, all three schemes ini-
tially allocate more nodes to service the high priority web-
site (prioritization with QoS only allocates up to the QoS
guarantee, while the other schemes allocate up to the maxi-
mum possible number of nodes).

Now, when a burst of low-priority requests arrive, the basic
reconfigurability scheme does not perform any additional
reconfigurations; thus the performance of the high priority
requests will not be affected. Similarly, for the prioritiza-
tion and prioritization with QoS schemes, since the incom-
ing requests are of a lower priority, there is no additional
re-allocation of nodes. Thus, we expect all three schemes
to perform in a similar manner in this case. However, it is
to be noted that for the prioritization scheme, the incoming
low-priority requests have only one node remaining to ser-
vice them, while the prioritization with QoS scheme has two
nodes to service the low priority requests.

Case 3: In this case, the data-center experiences a burst
of both high priority and low priority requests at the same
time. For the basic dynamic reconfigurability scheme, since

all the nodes in the data-center are heavily loaded, there is
no re-allocation of nodes. For the prioritization scheme,
the maximum possible nodes are re-allocated to the high-
priority website. Similarly, for the prioritization with QoS
scheme, nodes are re-allocated to the high-priority website
till the soft QoS guarantee for the high priority website is
met. The results for the node allocation time line are for
Cases 2 and 3 can be found in [3].

QoS Meeting Capability: As mentioned earlier, the prior-
itization with QoS scheme reconfigures the available nodes
to the loaded websites only till their soft QoS requirements
are fulfilled. Thus, it might incur some amount of degra-
dation in the peak performance it can provide to the high
priority websites. However, this allows it to maintain the
hard QoS requirements guaranteed to the high priority as
well as the low priority websites.
Figure 10 compares the QoS meeting capabilities of each

of the schemes for the three cases. We see that the ba-
sic reconfigurability and the prioritization schemes perform
well in some cases for the high priority requests and in
some other cases for the low priority requests. However,
these schemes lack the consistency in providing the guaran-
teed QoS requirements to both the websites. The prioriti-
zation with QoS scheme on the other hand meets the guar-
anteed QoS requirements in all cases for both the websites.
We also evaluated the three models discussed above for the
Zipf workload benchmark trace and a real-world WorldCup
trace. We see similar trends in performance for the three
models as shown in Figure 11.

5 Related Work
Several researchers have focused on the design of adap-

tive systems that can manage clusters and/or react to chang-
ing workloads in the context of web servers [16, 12, 21, 7,
19, 10, 13, 24]. There has been some previous research
which focus on dynamism in the data-center environment
by HP labs and IBM Research [15, 18]. These are no-
table in the sense that they were the first to show the ca-
pabilities of a dynamic allocation of system resources in the
data-center environment. However, while these approaches
are quite intuitive, in a real data-center scenario, the high
server loads can make them inefficient and potentially un-
usable. Our approach of placing the onus of reconfigurabil-
ity on the relatively lightly loaded edge servers by utilizing
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Figure 8. Reconfigurability Performance: (a) High Priority Requests and (b) Low Priority Requests
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Figure 10. QoS Meeting capability: (a) High Priority Requests, (b) Low Priority Requests
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Figure 11. QoS Meeting capability for Low Priority Requests: (a) Zipf and (b) WorldCup Traces
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the remote memory operations offered by InfiniBand tries
to tackle these challenges in an efficient manner.

Ranjan, et. al., have also previously looked at the prob-
lem of providing QoS guarantees in data-center environ-
ments [20]. However, this work does not deal with shared
data-centers. Also, while the approach suggested in this
paper are suitable and efficient for several data-centers, it
might not be potentially usable for highly loaded or com-
pute intensive data-centers due to the two sided nature of
communication used.

Shah, Kim, Balaji, et. al., have done significant re-
search in User Level High Performance Sockets implemen-
tations [23, 14, 5]. In our previous work [4], we had eval-
uated the capabilities of such a pseudo-sockets layer over
InfiniBand in the data-center environment. However, as we
had observed in [17], the two-sided nature of Sockets API
becomes an inherent bottleneck due to the high load con-
ditions common in data-center environments. Due to this,
we have focused on the one-sided nature of InfiniBand to
develop our external modules. Further, the existing data-
center framework (Apache, PHP, etc.,) is still based on the
sockets API and can benefit from such high-performance
sockets implementations. Thus, these approaches can be
used in a complementary manner with our reconfigurabil-
ity technique to make better utilization of system resources
and provide high performance in a data-center environment.

6 Concluding Remarks

In this paper, we have extended our previously proposed
work on dynamic reconfigurability to allow service differen-
tiation in the shared data-center environment. In particular,
we have pointed out the issues associated with the basic dy-
namic reconfigurability scheme and propose two extensions
to it, namely (i) Dynamic Reconfiguration with Prioritiza-
tion and (ii) Dynamic Reconfiguration with Prioritization
and QoS. We have evaluated the benefits and issues associ-
ated with these schemes on an InfiniBand based cluster. Our
experimental results show that our extensions can allow the
dynamic reconfigurability scheme to attain a performance
improvement of up to five times for high priority websites
irrespective of any background low priority requests. Also,
we have shown a significant improvement in the perfor-
mance of low priority requests when there are minimal or
no high priority requests in the system. Further, our exten-
sions show a similar performance as a static scheme with up
to 43% lesser nodes in some cases.

We are currently working on multi-stage reconfigurations.
In the scheme presented, the least loaded node reconfigures
itself to belong to the highest loaded tier in an attempt to
share the load. However, due to the heterogeneity (hard-
ware components available) in the cluster, this might not be
the optimal solution. On the other hand, a multi-stage re-
configuration, where a sequence of changes in the different
tiers allowing the most appropriate node be reconfigured to
the high load tier, could be more beneficial.
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