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Abstract. The advent of Graphics Processing Unit (GPU)-enabled Open-
POWER architectures are empowering the advancement of various High-
Performance Computing (HPC) applications from dynamic modular sim-
ulation to deep learning training. GPU-aware Message Passing Interface
(MPI) is one of the most efficient libraries used to exploit the computing
power on GPU-enabled HPC systems at scale. However, there is a lack
of thorough performance evaluations for GPU-aware MPI libraries to
provide insights into the varying costs and benefits of using each one on
GPU-enabled OpenPOWER systems. In this paper, we provide a detailed
performance evaluation and analysis of point-to-point communication
using various GPU-aware MPI libraries including SpectrumMPI, Open-
MPI+UCX, and MVAPICH2-GDR on OpenPOWER GPU-enabled sys-
tems. We demonstrate that all three MPI libraries deliver approximately
95% of achievable bandwidth for NVLink communication between two
GPUs on the same socket. For inter-node communication where the In-
finiBand network dominates the peak bandwidth, MVAPICH2-GDR and
SpectrumMPI attain approximately 99% achievable bandwidth, while
OpenMPI delivers close to 95%. This evaluation is useful to determine
which MPI library can provide the highest performance enhancement.

Keywords: OpenPOWER · MPI · GPU · NVLink · RDMA.

1 Introduction

With an increasing demand for higher computing power for end applications,
the adoption of GPU is becoming more prevalent in the HPC community [25].
This is an obvious trend in the recent Top500 supercomputer list [4], where
126 out of 500 supercomputers, i.e., 25.2%, are equipped with NVIDIA GPUs
(8.4% higher than the previous year). This is further demonstrated by the fact
that #1 Summit and #2 Sierra (as of Nov ’18) are adopting a GPU-enabled
OpenPOWER architecture with high-speed interconnects, including NVIDIA
NVLink [12, 21] and InfiniBand networks [22].
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On the software side, MPI is a standard programming model for develop-
ing parallel applications in the HPC community. The MPI standard provides
high-level primitives for application developers to hide the complexity of han-
dling data movement through various interconnects under different configura-
tions, e.g., non-uniform memory access (NUMA) effect. Compute Unified Device
Architecture (CUDA), which is an extension of C/C++, is the parallel comput-
ing platform to harness GPU’s high-bandwidth memory (HBM) and massive
parallelism. To efficiently perform parallel computing tasks on multiple GPU
nodes, the concept of CUDA-aware MPI [28] has been introduced and widely
adopted in many production MPI libraries. It is worth noting that an intelligent
CUDA-aware MPI implementation, which leverages the cutting-edge hardware
technologies, can transparently provide significant performance improvement to
the end applications [23, 24]. As a result, the use of MPI for parallel applications
significantly increases productivity and improves performance.

The advent of the GPU-enabled OpenPOWER systems not only brings new
opportunities, but also introduces additional challenges due to the variety of
interconnects. Many studies have been presented to provide the performance
evaluation on an OpenPOWER system from different angles [6, 19, 9, 27]. How-
ever, the performance of CUDA-aware MPI libraries on GPU-enabled Open-
POWER architectures remains ambiguous due to the lack of thorough and com-
prehensive performance evaluations. The broad research question is: Can the
state-of-the-art MPI libraries fully leverage the various interconnects
on GPU-enabled OpenPOWER architectures? To the best of our knowl-
edge, this is the first work to provide a comprehensive evaluation of multiple
CUDA-aware MPI libraries and make the following contributions:

– Evaluate the state-of-the-art CUDA-aware MPI libraries in a systematic
manner on Sierra-like and Summit OpenPOWER Systems

– Present comprehensive evaluation results with various configurations to un-
derstand the achievable performance of MPI libraries through different in-
terconnects

– Provide insight into the expected performance of MPI libraries for the end
applications

We elaborate on the importance and motivation of having a comprehensive evalu-
ation of MPI performance on GPU-enabled OpenPOWER systems in Section 2.
Section 3 describes the necessary background knowledge related to this work.
The experimental setup is thoroughly detailed, including information on the
hardware and software used in Section 4. To conclude, we present the evaluation
results with various configurations and provide a thorough analysis of how the
results compare to each other based on the context in sections 5 and 6.

2 Motivation

With advancement in technology and an ever more prevalent interest in par-
allel computing, it has become increasingly vital to optimize communication
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Fig. 1. Hardware configuration of cutting-edge OpenPOWER GPU-enabled systems

libraries such as MPI. Optimizing MPI communication entails being able to
handle upgraded performance requirements in an increasingly efficient manner.
On a GPU-enabled OpenPOWER system, as exhibited in Figure 1, there are
four primary interconnects being deployed: 1) NVLink between CPU and GPU
and between GPUs, 2) X-Bus between two IBM POWER9 (P9) processes, i.e.,
NUMA nodes, 3) Peripheral Component Interconnect express (PCIe) between
CPU to Mellanox InfiniBand EDR Host Channel Adapter (HCA), and 4) Infini-
Band networks between multiple OpenPOWER nodes. This architecture with
such powerful interconnects undeniably entails a performance boost [27]. On the
other hand, it also poses a great challenge to MPI library developers to optimize
communication protocols for the different data paths that can be selected be-
tween a pair of processes. The data path(s) selected varies in different use cases
to provide the best performance.

Although previous studies provide a detailed evaluation of the achievable
performance of various interconnects on the OpenPOWER systems [27, 19], it
is unclear whether the state-of-the-art CUDA-aware MPI can achieve the peak
performance that underlying interconnects provide when moving data within
GPUs, between GPUs, between CPU and GPU and between GPU nodes. Ta-
ble 1 presents the theoretical and achievable peak bandwidth of various inter-
connects on OpenPOWER systems (refer to Sections 4 and 5 for experimen-
tal configurations). Based on the table, the achievable bandwidths range from
85.43% to 94.56% of theoretical peak bandwidths due to the overhead of hard-
ware, firmware and software protocols, and other factors like cache effect. It
is critical to understand how much overhead the CUDA-aware MPI implemen-
tations have when using various interconnects and how it would reflect to the
end applications. Through generating a comprehensive evaluation and analysis,
we can develop knowledge about the MPI libraries that can obtain the high-
est bandwidth closest to the theoretical peak bandwidth of all interconnects in
an OpenPOWER GPU-enabled system. By understanding the performance, re-
strictions, and drawbacks of different CUDA-aware MPI implementations, we
generate a thorough analysis of the factors that need to be considered in future
adjustments to the communication libraries and end applications.
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Table 1. Theoretical and Achievable Peak Bandwidth of Data Movement over Inter-
connects in a Sierra-like and Summit OpenPOWER Systems

Sierra-Like System Summit

GPU HBM2
3-lane NVLink2
CPU-GPU

3-lane NVLink2
GPU-GPU

2-lane NVLink2
CPU-GPU

2-lane NVLink2
GPU-GPU

X-Bus InfiniBand EDR

Theoretical Peak
Bandwidth
(Uni-directional)

900 GB/s 75 GB/s 75 GB/s 50 GB/s 50 GB/s 64 GB/s 12.5 GB/s

Achievable Peak
Bandwidth
(Uni-directional)

768.91 GB/s 68.78 GB/s 70.56 GB/s 45.9 GB/s 47 GB/s 58.01 GB/s 11.82 GB/s

Fraction of Peak 85.43% 91.7% 91.81% 91.8% 94% 90.64% 94.56%

3 Background

In this section, we describe background information related to the content of the
analysis and evaluation performed.

3.1 GPU and NVIDIA GPUDIRECT Technology

General-purpose GPU has been widely adopted in the HPC community due
to its high bandwidth memory and ultra-high throughput of computing. The
cutting-edge NVIDIA Tesla Volta V100 GPU has 16GB HBM2 with theoret-
ically 900 GB/s bandwidth [21] for 80 streaming multiprocessors and 4 copy
engines. GPUDirect technology provided by NVIDIA enables faster handling of
compute-intensive applications through the various features it provides. These
features range from peer-to-peer memory access and transfers between GPUs
to improving bandwidth and reducing latency through remote direct memory
access (RDMA). GPUDIRECT RDMA allows the third-party devices, e.g., Mel-
lanox InfiniBand HCA, to access GPU memory without intervention from the
CPU, reducing the overhead of additional memory copies. Direct memory access
enables copying data between the memory of GPUs on the same PCIe bus or
NVLink. Through GPUDirect technology, a pinned buffer shared by the GPU
and third party devices eliminates the need to copy memory multiple times in
CUDA host memory[20].

3.2 Message Passing Interface

MPI is a programming paradigm often used in parallel applications that provides
a mechanism for processes to communicate with each other. This communica-
tion can happen in different forms: point-to-point, one-sided, or collective. These
various communication patterns involve a different number of processes commu-
nicating with each other and various restrictions on synchronization between the
processes involved. The ability to apply the MPI standard to heterogeneous sys-
tems has evolved with support for inter-process and intra-process communication
through the CUDA-aware feature. CUDA-aware MPI enables communication
between the host and the GPU, further optimizing applications by introducing
this level of GPU support. Some modern MPI libraries that provide support for
CUDA-aware MPI include SpectrumMPI, OpenMPI (with and without UCX),
and MVAPICH2.
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SpectrumMPI, provided by IBM, is a default CUDA-aware MPI library
deployed on many OpenPOWER systems including Summit and Sierra, as pre-
viously mentioned. This library takes advantage of various optimizing schemes
such as GPUDirect RDMA and CUDA Inter-process communication (IPC) to
enhance the efficiency of GPU based communication.

OpenMPI is a CUDA-aware library implementation of MPI with similar
support for GPU based point-to-point and collective communication as noted
above [13, 17]. Unified Communication X (UCX) is an open-source com-
munication framework for HPC applications and also supports CUDA-aware
point-to-point communication [5]. It was developed as a result of a collaboration
between academia, government, and industry and presents an optimized com-
munication layer for MPI. It is often recommended to build and use OpenMPI
with UCX support for GPU-based communication.

MVAPICH2 is an MPI library implementation with support for Infiniband,
Omni-Path, Ethernet/iWarp, and RoCE. Various versions of the library include
additional features for a more specific application of the library [2]. MVAPICH2-
GDR is optimized with features to support clusters with NVIDIA GPUs and
is used for GPU-enabled HPC and deep learning applications [10, 11, 7]. It ex-
ploits the advantages of GPUDirect RDMA to optimize data movement between
nodes and to offload communication between GPUs on clusters with NVIDIA
GPUs [23, 24]. It is also enhanced with support for OpenPOWER with NVLink
interconnect, CUDA-aware managed memory, and MPI-3 one-sided communi-
cation, among many features.

4 Experimental Setup

In this section, we elaborate on the hardware and software environment used
in our evaluation. We also describe the methods used to evaluate MPI libraries
in various configurations. The experiments were conducted on a GPU-enabled
OpenPOWER system similar to the one presented in Figure 1(b). Each node is
equipped with two NUMA nodes, where each one has a 22-core IBM POWER9
and 2 NVIDIA Volta GPUs. Each NUMA node has 128GB system memory, and
each GPU has 16GB HBM. The nodes run Red Hat Enterprise Linux Server
release 7.5 with a kernel version of 4.14.0-49.18.1. Mellanox OFED 4.3, NVIDIA
driver version 418.39 and CUDA toolkit 9.2.148 are used on all nodes.

In this paper, we first present the achievable peak bandwidth of interconnects
based on benchmarks using the low-level primitives. Next, we conduct a perfor-
mance evaluation of CUDA-aware MPI libraries to perform the data movement
through desired interconnects between MPI processes.

Evaluating Achievable Native Performance of Interconnects To build
a proper baseline, i.e., upper bound, we use different software tools to obtain
the achievable bandwidth of various interconnects as shown in Table 1. Each
tool performs the corresponding data movement 1,000 times, and we report the
average in this paper. The following points summarize the details of the tests:
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1. NVLink between CPU and GPU: We used a modified bandwidthTest test
from NVIDIA CUDA sample to obtain the bandwidth of NVLink between
CPU and GPU by performing multiple cudaMemcpyAsync back-to-back be-
tween system memory to GPU memory (i.e., with copy type cudaMemcpy-
DeviceToHost and cudaMemcpyHostToDevice).

2. GPU HBM2 and NVLink between GPUs: Similarly, we used the simpleIPC
test from NVIDIA CUDA sample to fork two CPU processes to perform data
transfer within one GPU and between GPUs to measure the bandwidth of
HBM2 and NVLink, respectively, (i.e., with copy type cudaMemcpyDevice-
ToDevice with CUDA P2P feature enabled).

3. X-Bus: STREAM benchmark [15] is used to measure the bandwidth of ac-
cessing system memory from the CPU. We manually bind the memory and
CPU on different NUMA nodes by using numactl tool to measure the achiev-
able bandwidth of X-Bus.

4. InfiniBand: We use an ib read bw test in InfiniBand Verbs Performance
Tests [1] to measure the bandwidth of the IB network by moving data be-
tween two physical nodes. To have a comprehensive and fair analysis, we
measured two data movement paths: 1) from system memory to remote sys-
tem memory, and 2) from one GPU to remote GPU memory using GPUDi-
rect RDMA technology.

Evaluating MPI-Level Performance The OSU Micro-benchmark (OMB)
suite is a benchmark used to evaluate the performance of various MPI libraries.
Bureddy et al. [8] extend OMB to support evaluating point-to-point, multi-pair,
and collective communication on GPU clusters. This extended version of OMB
includes latency, bandwidth, and bidirectional bandwidth benchmarks for point-
to-point communication. Each of these tests takes two parameters to indicate
the location of the buffers being passed into the communication at different
processes. The buffer can either be on the device, i.e., GPU, or on the host. The
various configurations of the buffer locations at each rank determine whether the
benchmark is evaluating inter-node or intra-node communication on the host,
on the device, or between the host and the device.

In this work, we use OMB v5.6.1 and focus on the evaluation of point-to-
point communication and report the most representative metrics including la-
tency, uni-directional bandwidth, and bi-directional bandwidth. The latency test
is performed in a ping-pong manner by using MPI Send and MPI Recv primi-
tives. In the uni-directional bandwidth configuration, a set number of back-to-
back messages are sent from the sender by calling MPI Isend. The sender then
waits for a reply from the receiver after receiving all the messages by calling
MPI Waitall. To receive the data, it uses MPI Irecv on the receiver process. The
bi-directional bandwidth benchmark is different than the bandwidth benchmark
in that it measures the maximum overall bandwidth between the two processes.
It does this through sending back-to-back messages from both the sender and
the receiver and waiting for both processes to send a reply only after obtaining
all the messages.
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To evaluate data movement on different interconnects, we used the environ-
ment variable CUDA VISIBLE DEVICES to force MPI processes to select the
desired GPU(s). This can be summarized as follows:

1. (Section 5.1) Evaluating NVLink between GPUs (NVLink GPU-GPU): This
is a common case where each CPU process uses different physical GPUs, and
NVLink is available between GPUs. We use CUDA VISIBLE DEVICES=0,1
to make only two GPUs, which are connected by the NVLink, visible to MPI
processes and processes can bind to different GPUs.

2. (Section 5.2) Evaluating HBM2 (GPU HBM2): Resulting from Multi-Process
Service (MPS) capabilities in NVIDIA GPUs, multiple processes can be using
the same GPU concurrently. This proves to be a benefit in scenarios where
a single process cannot fully utilize the GPU compute capacity. To evaluate
this scenario, we set the environment variable CUDA VISIBLE DEVICES=0
to make only one GPU visible to all processes; this results in all MPI pro-
cesses using the same GPU through MPS transparently.

3. (Section 5.3) Evaluating NVLink between CPU and GPU (NVLink CPU-
GPU): In a heterogeneous system, applications may exploit both CPU and
GPU to maximize the parallelism. This is where a CPU process may require
transfer of data from system memory to a GPU owned by another CPU
process. In this case, we place two MPI processes on the same NUMA node;
thus, a NVLink is available between CPU and GPU.

4. (Section 5.4) Evaluating X-Bus and NVLink (X-Bus): In a multi-GPU sys-
tem, communication between GPUs across NUMA node is inevitable. To
evaluate this scenario, we use CUDA VISIBLE DEVICES=0,3 to make two
GPUs, which physically reside on different NUMA nodes, visible to the MPI
processes.

5. (Section 5.5) Evaluating GPU transfer across nodes via InfiniBand network
(Infiniband): MPI processes are launched on different nodes. By default, each
MPI process selects the first discovered GPU in the same socket (GPU 0 in
our case).

In this paper, we evaluated the following three CUDA-aware MPI libraries:
1) SpectrumMPI 10.3.0.01, which is the default library installed on the Open-
POWER system (labeled SpectrumMPI ) [14], 2) OpenMPI 4.0.1 + UCX 1.6
(labeled OpenMPI+UCX ) [3], and 3) MVAPICH2-GDR 2.3.2 pre-release version
(labeled MVAPICH2-GDR) [2]. We ran the experiments with settings recom-
mended by the user guides provided by the MPI libraries.

5 Evaluation and Analysis

In this section, we present the experimental results based on the environmental
setup described in Section 4 and provide an analysis of these results. There are
five primary scenarios presented: 1) Communication through NVLink between
GPUs, 2) Communication through GPU HBM2, 3) Communication through
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Fig. 2. Latency comparison of MPI libraries on moving data between GPUs on the
same socket (i.e., via NVLink interconnect) on a Sierra-like system
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Fig. 3. Bandwidth comparison of MPI libraries on moving data between GPUs on the
same socket (i.e., via NVLink interconnect) on a Sierra-like system

NVLink between CPU and GPU, 4) Communication through NVLink and X-
Bus, and 5) Communication through InfiniBand Network. Note that we only
present the most representative results to avoid repetition.

5.1 Communication through NVLink between GPUs

One MPI process using one single GPU is the most common configuration for
MPI+CUDA applications. Here, we bind MPI processes to two GPUs with
NVLink connection on the same socket to evaluate if MPI libraries can effi-
ciently utilize the NVLink. Figure 2 shows a comparison of the MPI libraries
through communication via the NVLink interconnect. MVAPICH2 outperforms
SpectrumMPI by a factor of up to 4 for message sizes up to 32KB for latency
and outperforms OpenMPI by a factor of up to 5. Both SpectrumMPI and
MVAPICH2 libraries generally depict the same range for bandwidth and bi-
bandwidth. These bandwidth numbers are close to the theoretical peak band-
width of NVLink as shown in Figure 3. OpenMPI is relatively within a sim-
ilar range for uni-bandwidth but slightly outperforms the other libraries for
bi-bandwidth, whereas latency is higher than both comparing libraries from
message sizes between 4 and 126KB. Similar trends are also observed on the
Summit system for latency in Figure 4. In contrast to the 75 GB/s theoreti-
cal peak bandwidth on a Sierra-like OpenPOWER System, the theoretical peak
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Fig. 4. Latency comparison of MPI libraries on moving data between GPUs on the
same socket (i.e., via NVLink interconnect) on Summit system
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Fig. 5. Bandwidth comparison of MPI libraries on moving data between GPUs on the
same socket (i.e., via NVLink interconnect) on Summit system

for uni-directional bandwidth on the Summit system is 50 GB/s as depicted in
Figure 5.

5.2 Communication through GPU HBM2

To evaluate the performance of MPI libraries when moving data within a GPU,
i.e., through GPU’s HBM2, we map two MPI processes into the same GPU.
Figure 6 depicts a comparison of latency obtained from SpectrumMPI, Open-
MPI, and MVAPICH2-GDR for moving data within a single GPU. MVAPICH2-
GDR drastically outperforms SpectrumMPI for message sizes between 1 byte
and 16KB then depicts similar latency behavior for larger message sizes. The
latency provided by OpenMPI is also drastically higher than MVAPICH2 and
SpectrumMPI for large message sizes. The same communication pattern is also
compared for bandwidth and bidirectional bandwidth in Figure 7. MVAPICH2
outperforms SpectrumMPI for both bi-directional bandwidth and uni-directional
bandwidth, while OpenMPI does not have comparable bandwidth numbers for
any of the large message sizes. After profiling further to determine the cause of
this performance, we found that OpenMPI does not use CUDA IPC for intra-
node, intra-GPU communication, unlike MVAPICH2-GDR and SpectrumMPI.
However, all MPI libraries can only achieve about half of the peak bandwidth
provided by the GPU HBM2, which is 768.91 GB/s. We suspect this is due to
the limitation of GPU’s MPS feature when sharing a single GPU with multiple
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processes, i.e., the bandwidth of GPU memory is also shared. Additionally, the
bidirectional bandwidth is only slightly higher and sometimes lower than the
uni-directional bandwidth because it already reaches the peak in one direction.
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Fig. 6. Latency comparison of MPI libraries on moving data within one single GPU
on a Sierra-like system
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Fig. 7. Bandwidth comparison of MPI libraries on moving data within one single GPU
on a Sierra-like system

5.3 Communication through NVLink between CPU and GPU

In a hybrid application, it is common to utilize the computing power of both
CPU cores and GPUs. Therefore, data transfer from system memory to another
process’s GPU memory may be required. To evaluate such a scenario, we per-
form the tests on two MPI processes, where one process uses a communication
buffer on system memory, and the communication buffer of another process is on
GPU memory (i.e., Host-to-Device communication). Figure 8 provides a latency
comparison of Host-to-Device communication between the MPI libraries. For
small message sizes, MVAPICH-GDR and OpenMPI perform in a similar range
while SpectrumMPI is up to 10× higher. SpectrumMPI also depicts a jump in
latency between 2KB and 8KB message sizes.

As shown in Figure 9, the achievable uni-directional peak bandwidth of Spec-
trumMPI, OpenMPI, and MVAPICH2-GDR are 21.74 GB/s, 23.63 GB/s, and
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Fig. 8. Latency comparison of MPI libraries on moving data from the Host to the
Device on a Sierra-like system
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Fig. 9. Bandwidth comparison of MPI libraries on moving data from the Host to the
Device on a Sierra-like system. The peak achievable uni-directional bandwidth in this
case is approximately 68.78 GB/s.

26.84 GB/s, respectively. Clearly, none of the MPI libraries efficiently utilize the
NVLink between CPU and GPU as they are only able to attain between 31% to
39% achievable peak bandwidth. MVAPICH2-GDR may push the data through
InfiniBand HCA as their peak uni- and bi-bandwidth are close to the peak band-
width 8-lane PCIe Gen4 provides. Based on these results, we can conclude that
the current CUDA-aware MPI libraries do not have good locality support to
efficiently move data between CPU and GPU. Similar results can be expected
for Device-to-Host communication, which is not shown to avoid repetition.

5.4 Communication through NVLink and X-Bus

Similar to Section 5.1, communication can happen between GPUs without di-
rect connection via NVLink. On a GPU-enabled OpenPOWER system, the data
needs to be moved not just through NVLink between CPU and GPU but also
through X-Bus between the NUMA nodes. Figure 10 displays a latency compari-
son where the data is being moved between GPUs on different sockets. Compared
to Figure 2, we can see that latency is similar for small messages but significantly
higher for large messages. This indicates that the X-bus becomes the perfor-
mance bottleneck when moving data across sockets. Figure 11 indicates that
SpectrumMPI and MVAPICH2-GDR can achieve comparable uni-bandwidth
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Fig. 10. Latency comparison of MPI libraries on moving data between GPUs on dif-
ferent sockets on a Sierra-like system
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Fig. 11. Bandwidth comparison of MPI libraries on moving data between GPUs on
different sockets on a Sierra-like system

and bi-bandwidth, where OpenMPI is 25% lower than the peak bandwidth that
can be attained. However, the peak bandwidth MPI libraries can achieve is only
around 80% of achievable bandwidth of X-bus as exhibited in Table 1. We ob-
served that it is because these MPI libraries rely on moving GPU-resident data
using CUDA driver or runtime APIs. In this case, it is using CUDA IPC fea-
ture since peer-to-peer access is possible across the socket due to the Address
Translation Service provided by NVLink2 technology. However, CUDA IPC can
only achieve around 41 GB/s, which is only 64% of theoretical peak bandwidth,
when data needs to be moved across NUMA-node. Taking this into account,
SpectrumMPI and MVAPICH2-GDR are both achieving within a range of 80%
to 95% of achievable peak bandwidth over the various message sizes shown. Nev-
ertheless, the bidirectional bandwidth shown in Figure 11(b) indicates that MPI
libraries are not able to fully utilize the bi-directional X-bus.

5.5 Communication through InfiniBand Network

Moving GPU-resident data across nodes is common for HPC applications in
order to achieve higher performance at scale. It is critical to understand if MPI
libraries can saturate the bandwidth provided by InfiniBand networks. Here,
we conducted latency, uni- and bi-bandwidth tests between two GPU nodes.
Figure 12 provides a latency comparison of inter-node communication between
the MPI libraries. As can be seen, MVAPICH2-GDR and OpenMPI provide the
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Fig. 12. Latency comparison of MPI libraries on moving data between GPU Nodes on
a Sierra-like system
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Fig. 13. Bandwidth comparison of MPI libraries on moving data between GPU nodes
on a Sierra-like system

lowest latency across all message sizes. The latency of SpectrumMPI increases
at 256KB after steadily maintaining latency about 30% higher than that of
OpenMPI and MVAPICH2-GDR.

In terms of bandwidth as shown in Figure 13(a), it indicates that the libraries
are leveraging both IB EDR adapters, i.e., so-called multi-rail support, efficiently
in the system to achieve almost twice peak bandwidth of a single IB EDR, i.e.,
single-rail. The bandwidth and bi-bandwidth shown in Figure 13(b) reveals a
performance degradation issue in OpenMPI when the message size is larger than
2MB. Spectrum-MPI achieves approximately 50% of the bandwidth achieved by
OpenMPI and MVAPICH2-GDR until 1MB message size.

By default, multi-rail support is not enabled for GPU resident data when
using OpenMPI+UCX, therefore, HCA selection is crucial at run-time in or-
der to achieve comparable performance to that of MVAPICH2-GDR and Spec-
trumMPI.

6 Discussion

Based on the experiments presented above, Table 2 summarizes the peak band-
width the CUDA-aware MPI libraries can achieve over various interconnects on
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Fig. 14. Latency comparison of MPI libraries on moving data between GPU Nodes on
Summit system
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Fig. 15. Bandwidth comparison of MPI libraries on moving data between GPU nodes
on Summit system

a GPU-enabled OpenPOWER system. It is worth noting that the achievable
peak bandwidths of HBM2 and X-Bus are further reduced due to the overhead
or limitation of the CUDA driver when inter-process communication is involved,
e.g., MPS and CUDA IPC.

As show in Table 2 SpectrumMPI, OpenMPI+UCX, and MVAPICH2-GDR
provide 99.20%, 95.40%, and 99.70% achievable peak bandwidth, respectively, for
inter-node communication by utilizing the achievable bandwidth of two IB EDR
adapters. This can significantly improve the performance of HPC applications at
scale. All three libraries achieve in the range of 31% to 39% of the NVLink which
is available to be used when moving data between system and GPU memory.
This is an open performance issue for all CUDA-aware MPI libraries. Finally,
both SpectrumMPI and MVAPICH2-GDR outperform OpenMPI + UCX when
the communication is limited by HMB2 or when the communication is through
NVLink and X-Bus.

Through the results and analysis presented in Section 5, we highlight the sev-
eral limitations of the existing MPI libraries on the OpenPOWER architectures
as follows:

1. Limited bandwidth of HBM2 when sharing a memory
2. Host-to-Device and Device-to-Host communications are not efficiently uti-

lizing NVLink
3. MPI Libraries are not able to fully utilize the bi-directional X-bus
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Table 2. Summary of achievable peak bandwidth of MPI libraries and fraction of peak
over Interconnects on a Sierra-like GPU-enabled OpenPOWER System

GPU HBM2
3-lane NVLink2
CPU-GPU

3-lane NVLink2
GPU-GPU

X-Bus InfiniBand EDR×2

SpectrumMPI
329 GB/s 21.74 GB/s 67.14 GB/s 39.16 GB/s 23.45 GB/s
(36.55%) (31.61%) (95.20%) (94.60%) (99.20%)

OpenMPI+UCX
0.457 GB/s 23.63 GB/s 67.22 GB/s 31.77 GB/s 22.55 GB/s
(0.05%) (34.35%) (95.40%) (76.73%) (95.40%)

MVAPICH2-GDR
390.88 GB/s 26.84 GB/s 67.15 GB/s 39.28 GB/s 23.56 GB/s
(43.43%) (39.02%) (95.30%) (94.97%) (99.70%)

4. Multi-rail support is a pertinent feature for high-performance GPU-to-GPU
communication

It is worth noting that these limitations may become the performance bottle-
neck of collective operations as many collectives are implemented based on the
point-to-point primitives. To address these limitations, the CUDA-aware MPI
libraries need to be further optimized with new features and designs under dif-
ferent communication patterns.

7 Related Work

In [18], Mojumder et al. generate a performance analysis of training Deep Neu-
ral Networks with peer-to-peer data transfer and with the NVIDIA Collective
Communications library on a DGX-1 system. This analysis was used to identify
any bottlenecks in the system architecture and to conclude that various factors
such as the neural network architecture, and the GPU-to-GPU communication
method can heavily influence performance. In the work done by Acun et al. [9],
a parallel molecular dynamics application referred to as Nanoscale Molecular
Dynamics (NAMD) is optimized for enhancement in performance on the IBM
Newell platform (Power9 processors and NVIDIA Volta V100 GPUs). Various
approaches were incorporated to achieve improved performance including im-
proving GPU offload efficiency, load balancing, and vectorizing NAMD routines
on Power9.

In [16], Li et al. evaluate the various modern GPU interconnects including:
PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect, on various systems to de-
velop an analysis of their impact on multi-GPU application performance. They
determine that GPU communication efficiency is heavily influenced by selecting
a correct GPU combination. Talle et al. [26] contrast the performance of a PCIe
based GPU interconnect with NVIDIA’s NVLink interconnect to determine the
performance impact each can entail. They use NVIDIA DGX-1 and Cirrascale
GX8 to develop this comparison, leading them to conclude that DGX-1 is at-
tributed with higher performance due to the additional links and higher per-link
bandwidth associated with the NVLinks.
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8 Conclusion

With enhancing GPU-enabled OpenPOWER architectures, HPC applications
are achieving higher performance through exploiting the various features that
enable such efficiency. CUDA-aware MPI is the communication standard that
is able to exploit these features. In order to optimize HPC applications, take
advantage of the enhanced support provided, and achieve peak performance, we
need detailed evaluation of the most efficient communication libraries to use.

In this paper, the following three MPI libraries: SpectrumMPI, OpenMPI,
and MVAPICH2-GDR were evaluated based on the latency, uni-directional band-
width, and bi-directional bandwidth of point-to-point communication. The eval-
uation results show that all three MPI libraries deliver approximately 95% of
achievable bandwidth for NVLink communication between two GPUs on the
same socket. Most notably, for inter-node communication where the InfiniBand
network determines the peak bandwidth, MVAPICH2-GDR and SpectrumMPI
attain approximately 99% achievable bandwidth, while OpenMPI delivers close
to 95%. Through our evaluation of these MPI libraries on GPU-enabled Open-
POWER architectures, we witnessed varying performance associated with each
library based on the interconnects selected.

Finally, we have identified the following performance limitations for the state-
of-the-art CUDA-aware MPI libraries: 1) communication between the CPU and
GPU is not utilizing NVLink efficiently, 2) the bi-directional X-bus is not fully
utilized by the MPI libraries, and 3) bandwidth is limited when MPI processes
are sharing the GPU. In the future, we plan to conduct a comprehensive evalua-
tion to include MPI collectives for GPU-resident data on OpenPOWER systems
and their impact on applications.
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