High Performance MPI-2

One-Sided Communication
over InfiniBand

W. Jiang J.Liu H.Jin D. K. Panda
W. Gropp R. Thakur

The Ohio State University
Argonne National Laboratory

Presentation Outline

Introduction

Background

Current Send/Receive-Based Design
Proposed RDMA-Based Design
Experimental Results

Conclusions & Future Work

Introduction

MPI-2

o One-Sided Communication
o Process Management

a MPI-I/O

One-Sided Communication

o Send/Receive-Based Implementation

High communication overhead

Dependency between communication progress and remote
process

Motivation

InfiniBand provides Remote Direct Memory
Access (RDMA) operations

How can we design efficient and scalable MPI-2
one-sided communication by taking advantage
of InfiniBand RDMA operations?

Presentation Outline

Introduction

Background
o MPI-2 One-Sided Communication

o InfiniBand

Current Send/Receive-Based Design
Proposed RDMA-Based Design
Experimental Results

Conclusions & Future Work

MPI-2 One-Sided Communication

Origin Target

One-Sided

] Window

A process can access another process’s memory
address space directly

o Origin
o Target
2 Window

MPI-2 One-Sided Communication

Origin Target Origin Target

MPI_Put

F\I/\.

MPI_Get

—

Communication functions

o MPI_Put
o MPI_Get
o MPIl_Accumulate

Origin Target

MPI_Accumulate

F\I/\.

op

MPI-2 One-Sided Communication

- MPI_Win_start

one-sided
Access { communications
Epoch

_ MPI_Win_complete

MPI_Win_post N\

\ Exposure
> Epoch

+ MPI_Win_wait /

Synchronization functions
o Active, involves both sides
o Passive, involves the origin side

Epochs

o Access Epoch MPI_Win_start ~ MPIl_Win_complete
o Exposure Epoch MPI_Win_post ~ MPI_Win_wait

InfiniBand

Open industry standard

Provides high performance communication (5 us,
10Gbps)

Advanced features

o Remote Direct Memory Access (RDMA)
RDMA write
RDMA read

o Atomic operations, Multicast, etc.

Presentation Outline

Introduction

Background

Current Send/Receive-Based Design
Proposed RDMA-Based Design
Experimental Results

Conclusions & Future Work

Send/Receive-Based Design

MPI_Put:

o Origin:
Control message
Data message

o Target:
Receive the control message
Receive the data

MPI_Get and MPI_Accumulate are implemented similarly

Origin Target

send ~\\1zyggy*
d

send atgq — _
\ receive
- receive

Performance Issues in Send/Receive-

Based Design

Protocol overhead

o Handshake in Rendezvous protocol

o Matching between send and receive functions
Unexpected/expected message queue maintenance
Tag matching
Flow control

Heavy dependency on the target to make progress

o Process skew

o Poor computation/communication overlapping

Target Is actively involved
o Performance bottleneck

Presentation Outline

Introduction

Background

Current Send/Receive-Based Design
Proposed RDMA-Based Design
Experimental Results

Conclusions & Future Work

‘ Basic Idea of RDMA-Based Design

= The semantic of InfiniBand RDMA operations
IS similar to that of MPI-2 one-sided
communication.

= We map MPI-2 one-sided functions
directly to InfiniBand RDMA operations.

‘ Implementation on MPICH?2

- Send/Received Based One-Sided Communication

RDMA Based One-Sided Communication

‘ Multi-Method I

‘ Socket I

I Sys V I L I
SHMEM Shared Memory InfiniBand

Mapping One-Sided Communication to
RDMA

MPI1_Put:
2 RDMA write
MPI_Get:
2 RDMA read

MP| _Accumulate:
o RDMA read/write
o Atomic operation

Memory registration

RDMA need registration — Source and
destination memories

Registration Is expensive

Destination memory during window creation
phase

Source memory

o Small message
Pre-registered buffer pool

o Large message
Pin-down cache

‘Mapping MPI_Put to RDMA_Write

Origin Target

‘A
<

MPI_Win_create » MPI_Win_create

User buffer

RDMA _Write

Pre-registered buffer pool

Window

‘ Mapping MPI_Get to RDMA_Read

Origin Target

MPI_Win_create [« » MPI_Win_create

User buffer
RDMA Read
I
< _
Window

Pre-registered buffer pool

Mapping MPI_Accumulate to RDMA

operations

Origin Target
MPI_Win_create [« » MPI_Win_create
RDMA_Read —

%ﬂte%

Advantages of RDMA-Based Design

Avoid protocol overhead of two-sided communication.
o Avoid rendezvous protocol
o No matching between send and receive functions

Do not involve the remote process

o Independent communication progress
Suffer much less from process skew
Better communication/computation overlapping

o Target will not be the bottleneck

Presentation Outline

Introduction

Background

Current Send/Receive-Based Design
Proposed RDMA-Based Design

Experimental Results

o Ping-pong Test

o Bi-Directional Test

o Bandwidth Test

o Communication/Computation Overlap Test
o Process Skew Test

o Scalability Test

Conclusions & Future Work

Experimental Testbed

8 SuperMicro nodes

o dual Intel Xeon 2.40 GHz processors
o PCI-X 64-bit 133MHz interfaces
o 512K L2 cache and a 400 MHz front side bus

Mellanox InfiniHost MT23108 DualPort 4X Host
Channel Adapter

InfiniScale MT43132 Eight 4x Port InfiniBand Switch
Linux Red Hat 7.2 with 2.4.7 kernel, GNU GCC 2.96

‘ Ping-pong Test

Process 1 Process 2
MPI_Win_start MPI_Win_post
MPI_Put

MPI_Win_complete

MPI_Win_post

MPI_Win_wait

B —

MPI_Win_wait

MPI_Win_start

MPI_Put

MPI_Win_complete

‘ Ping-Pong Latency

30 500
Original "
% "_R;f/'l:\a ap || —#0rigna
— - — —— RDVA /
2 0 74
215 — — 200
—10 —
100
5
0 0
Voo 6 W 6 DB I S0 008 00 B9 164 3768 656% 131072 262144
Message Size(Bytes) Message Size(Bytes)

small messages: 15.6 to 12.6 us (19% improvement)
large messages: up to 17 us.

Bi-Directional Test

Process 1

MPI_Win_fence
MPI_Put

MPI_Win_fence

Process 1

MPI1_lsend
MPI_lrecv

MPI1_Waitall

Process 2

MPI_Win_fence
MPI_Put

MPI_Win_fence

Process 2

MPI1_lsend

MPI_lrecv

MPI1_Waitall

Bi-Directional Latency

35 —e— Original

30 | —=— Two-Sided //
__ 25| ——RDMA
SNV e—a—es—o—u 474"/
£ 15 -
=

10 [L L

5 _

4 8 16 32 64 128 256 512 1024 2048 4096
Message Size(Bytes)

Small messages: two sided > RDMA one-sided > Original one-sided
Large messages: RDMA one-sided > two-sided > Original one-sided

‘ Bandwidth Test

Process 1 Process 2
MPI_Win_start MPI_Win_post
~ MPI_Put

Burst Size MPI_Put \
16 \

\ MPLPut \

MPI_Win_completq MPI_Win_wait

Bandwidth (Put)

1000
—e— Original
900
—— RDMA
Q 800 -
)
= 700 - /
= 600
=
; 500 -
© i
= 400
©
C
@
o

300
200 //

100 7‘/

D © 0 © D © ™ © >
Y © <5 v) P > D
R i
. Vv
Message Size(Bytes)

RDMA-Based Implementation: 865MillionB/s
Send/Receive-Based Implementation: 748MillionB/s
For certain message size improvement can be up to 77%

Communication/Computation Overlap
Test

Process 1 Process 2
MPI_Win_start MPI_Win_post
MPI1_Put

Y

Computation

MPI_Win_completq MPI_Win_wait

Communication/Computation Overlap

2400
7))
< 2000 — e e+
o
§ 1600 -
2 1200 = = = = = = = = =
S 800 .
o —e— Original
£ 400 ——— RDMA
l_ O I I I I I
2 4 6 8 10 12 14 16 18 20
Time of Computation(us)

RDMA-Based Implementation: overlaps communication and computation well.
Send/Receive-Based Implementation: shows lower performance when the
amount of computation increases.

Process Skew Test

Process 1 Process 2
MPI_Win_start MPI_Win_post
MPI1_Put

\ Skew
MPI_Put \

MPI_Win_completq MPI_Win_wait

Process Skew

2500
. —e— Original
35 2000 | ——— RDMA
S
© 1500 -
g
g 1000
o
)
£ 500 -
|_

O l l I I I I

20 40 60 80 100 120 140 160 180 200

Time of Skew(us)

RDMA-Based Implementation: not affected by process skew.
Send/Receive-Based Implementation : shows slower performance with the
increase of process skew.

‘ Scalability Test

Origin 1 Origin n Target

MPI_Win_post

MPI_Win_start MPI_Win_start

i \
il \

MPI1_Win_complete MPI1_Win_complete MPI Win wait

Performance with Multiple Origin
Processes

1000

900 ———3 |
800 | '/)/’/zk

700

600 1 /

Aggregated
Bandwidth(Million B/s)

500 —e— Qriginal | |
400
200
100 -
0
1 2 3 4) 6 7

Number of Origins

RDMA-Based Implementation: reaches a peak bandwidth of 920Miliion B/s.
Send/Received-Based Implementation: can only deliver a maximum bandwidth of
895Muillion B/s.

Conclusions

RDMA-Based implementation can achieve:

o Lower overhead and higher communication
performance

Reduce latency up to 19%
Reduce synchronization overhead up to 13%
Increase throughput up to 77%

o Better overlapping between computation and
communication

o Suffer less from process skew
o Better scalability with multiple origin processes

Future Work

Passive target one-sided communication

Non-contiguous data type in one-sided
communication

Thank You

- home page

http://nowlab.cis.ohio-state.edu/

E-mail: {jiangw, liuj, jinhy,panda}
@cis.ohio-state.edu

Mutual Exclusion

Origin 1 Target
enter Compare W\
I Q\/\/an
Compare and
———Swap
leave
Compare W\
I Q\/\/an
\Compare and
Swap

Origin 2

enter

leave

‘ Synchronization overhead Test

Origin 1 Origin n
MPI_Win_start |«-="""_____.---TT
MPI_Win_start 4—-—""'_I_/Ii?I_Win_compIetQ‘_
e >
MPI_Win_complete |---.____
______________ >

Target

MPI_Win_post

MPI_Win_wait

Synchronization overhead

40 -
—e— Original
—~ 30 RDMA
7))
=)
o 20
£ —
~ 10 -
0
1 2 3 4 5 6 7
Number of Origins

RDMA-Based Implementation: 14.78 microseconds (13% improvement)
Send/Receive-Based Implementation: 16.52 microseconds.

Bandwidth (Get)

900
800

—e— Original

RDMA

g 700 74
§ 600
S 500 /
£ 400 VA
g 300
200 -

100
O < l A\ I __A_)/ I I I I I I I I
© p
S S A &fg? ng‘;@ rﬁ)@y‘

4

%
Message Size(Bytes)

The Bandwidth drop is due to the performance difference between InfiniBand
RDMA read and RDMA wrrite.

Target

Origin

Target

Origin

Memory Process

Process Memory

Target

Origin

Target

Origin

L 2
)
]
[V d
el O S
| (O] b}
P =

S
“0
P E
)
(=
1
=
e}
' 5
1

©

=5 8
)]
“%S hust
1
O
1 O
I S
el
1

Target

Origin

Target

Origin

IIIIIIIIIIIIIIIIIIIIIIIIIII

n

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Synchronization

Origin Side

a

Q

Maintain a bit vector (Origin), each bit represents the status
of a target.

Start : Check Origin vector, if one bit is changed, starts
communication to that target

Complete: use RDMA write to change the corresponding bit
at target side (Target vector).

Target side.

a

Maintain a bit vector (Target), each bit represents the
status of a origin.

Post: use RDMA write to change the corresponding bit at
origin side (Origin vector).

Wait: wait until all the bits in the Target vector have been
changed

Synchronization

MPICH2-0.96p1 only supports active
synchronization, this work focused on active
synchronization.

