
High Performance MPI-2
One-Sided Communication
over InfiniBand

W. Jiang J. Liu H. Jin D. K. Panda
W. Gropp R. Thakur

The Ohio State University
Argonne National Laboratory

Presentation Outline

Introduction

Background

Current Send/Receive-Based Design

Proposed RDMA-Based Design

Experimental Results

Conclusions & Future Work

Introduction

MPI-2
One-Sided Communication
Process Management
MPI-I/O

One-Sided Communication
Send/Receive-Based Implementation

High communication overhead
Dependency between communication progress and remote
process

Motivation

InfiniBand provides Remote Direct Memory
Access (RDMA) operations

How can we design efficient and scalable MPI-2
one-sided communication by taking advantage
of InfiniBand RDMA operations?

Presentation Outline

Introduction

Background
MPI-2 One-Sided Communication

InfiniBand

Current Send/Receive-Based Design

Proposed RDMA-Based Design

Experimental Results

Conclusions & Future Work

MPI-2 One-Sided Communication

A process can access another process’s memory
address space directly

Origin
Target
Window

One-Sided
Communication

Origin Target

Window

MPI-2 One-Sided Communication

Communication functions
MPI_Put
MPI_Get
MPI_Accumulate

MPI_Put

Origin Target

MPI_Get

Origin Target

MPI_Accumulate

Origin Target

op

MPI-2 One-Sided Communication

MPI_Win_post

MPI_Win_start

MPI_Win_complete

MPI_Win_wait

one-sided
communications …

Synchronization functions
Active, involves both sides
Passive, involves the origin side

Epochs
Access Epoch MPI_Win_start ~ MPI_Win_complete
Exposure Epoch MPI_Win_post ~ MPI_Win_wait

Access
Epoch

Exposure
Epoch

InfiniBand
Open industry standard
Provides high performance communication (5 us,
10Gbps)
Advanced features

Remote Direct Memory Access (RDMA)
RDMA write
RDMA read

Atomic operations, Multicast, etc.

Presentation Outline

Introduction

Background

Current Send/Receive-Based Design

Proposed RDMA-Based Design

Experimental Results

Conclusions & Future Work

Send/Receive-Based Design

MPI_Put:
Origin:

Control message
Data message

Target:
Receive the control message
Receive the data

MPI_Get and MPI_Accumulate are implemented similarly

Origin Target

control
data

send

send
receive

receive

Performance Issues in Send/Receive-
Based Design

Protocol overhead
Handshake in Rendezvous protocol
Matching between send and receive functions

Unexpected/expected message queue maintenance
Tag matching
Flow control

Heavy dependency on the target to make progress
Process skew
Poor computation/communication overlapping

Target is actively involved
Performance bottleneck

Presentation Outline

Introduction

Background

Current Send/Receive-Based Design

Proposed RDMA-Based Design

Experimental Results

Conclusions & Future Work

Basic Idea of RDMA-Based Design

The semantic of InfiniBand RDMA operations
is similar to that of MPI-2 one-sided
communication.

We map MPI-2 one-sided functions
directly to InfiniBand RDMA operations.

Implementation on MPICH2

ADI3ADI3

CH3CH3 Multi-MethodMulti-Method

SocketSocket SHMEMSHMEM RDMA
Channel
RDMA

Channel

InfiniBandInfiniBandSys V
Shared Memory

Sys V
Shared MemorySHMEMSHMEM

MPI-2MPI-2

Send/Received Based One-Sided Communication

RDMA Based One-Sided Communication

CH3’CH3’

Mapping One-Sided Communication to
RDMA

MPI_Put:
RDMA write

MPI_Get:
RDMA read

MPI_Accumulate:
RDMA read/write
Atomic operation

Memory registration

RDMA need registration – Source and
destination memories
Registration is expensive
Destination memory during window creation
phase
Source memory

Small message
Pre-registered buffer pool

Large message
Pin-down cache

Mapping MPI_Put to RDMA_Write

RDMA_Write

Origin Target

Window

MPI_Win_create MPI_Win_create

User buffer

Pre-registered buffer pool

Mapping MPI_Get to RDMA_Read

Origin Target

Window

MPI_Win_create MPI_Win_create

Pre-registered buffer pool

RDMA_Read
User buffer

Mapping MPI_Accumulate to RDMA
operations

Origin Target

Window

MPI_Win_create MPI_Win_create

computation

RDMA_Write

RDMA_Read

Advantages of RDMA-Based Design

Avoid protocol overhead of two-sided communication.
Avoid rendezvous protocol
No matching between send and receive functions

Do not involve the remote process
Independent communication progress

Suffer much less from process skew
Better communication/computation overlapping

Target will not be the bottleneck

Presentation Outline

Introduction

Background

Current Send/Receive-Based Design

Proposed RDMA-Based Design

Experimental Results
Ping-pong Test

Bi-Directional Test

Bandwidth Test

Communication/Computation Overlap Test

Process Skew Test

Scalability Test

Conclusions & Future Work

Experimental Testbed

8 SuperMicro nodes
dual Intel Xeon 2.40 GHz processors
PCI-X 64-bit 133MHz interfaces
512K L2 cache and a 400 MHz front side bus

Mellanox InfiniHost MT23108 DualPort 4X Host
Channel Adapter
InfiniScale MT43132 Eight 4x Port InfiniBand Switch
Linux Red Hat 7.2 with 2.4.7 kernel, GNU GCC 2.96

Ping-pong Test

MPI_Win_postMPI_Win_start

MPI_Win_complete
MPI_Win_wait

MPI_Put

Process 1 Process 2

MPI_Win_start

MPI_Win_complete

MPI_Put

MPI_Win_post

MPI_Win_wait

Ping-Pong Latency

0

5

10

15

20

25

30

4 8 16 32 64 128 256 512 1024 2048 4096

Message Size(Bytes)

Ti
m

e(
us

)

Original

RDMA

0

100

200

300

400

500

8192 16384 32768 65536 131072 262144

Message Size(Bytes)
Ti

m
e(

us
)

Original

RDMA

small messages: 15.6 to 12.6 us (19% improvement)
large messages: up to 17 us.

Bi-Directional Test

MPI_Win_fenceMPI_Win_fence

MPI_Put

Process 1 Process 2

MPI_Win_fence

MPI_Put

MPI_Win_fence

MPI_Isend

Process 1 Process 2

MPI_WaitallMPI_Waitall

MPI_Irecv

MPI_Isend

MPI_Irecv

Bi-Directional Latency

0

5
10

15

20

25
30

35

4 8 16 32 64 128 256 512 1024 2048 4096

Message Size(Bytes)

Ti
m

e(
us

)

Original
Two-Sided
RDMA

Small messages: two sided > RDMA one-sided > Original one-sided
Large messages: RDMA one-sided > two-sided > Original one-sided

Bandwidth Test

MPI_Win_postMPI_Win_start

MPI_Put

Process 1 Process 2

MPI_Win_waitMPI_Win_complete

MPI_Put

MPI_Put

…
. …

.

Burst Size
16

Bandwidth (Put)

0
100

200
300

400
500

600
700

800
900

1000

4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

Message Size(Bytes)

Ba
nd

w
id

th
(M

ill
io

n
B/

s)
Original
RDMA

RDMA-Based Implementation: 865MillionB/s
Send/Receive-Based Implementation: 748MillionB/s
For certain message size improvement can be up to 77%

Communication/Computation Overlap
Test

MPI_Win_postMPI_Win_start

MPI_Put

Process 1 Process 2

MPI_Win_waitMPI_Win_complete

MPI_Put

…
. …

.

Computation

Communication/Computation Overlap

0

400

800

1200

1600

2000

2400

2 4 6 8 10 12 14 16 18 20

Time of Computation(us)

Ti
m

e
pe

r
Ite

ra
tio

n(
us

)

Original
RDMA

RDMA-Based Implementation: overlaps communication and computation well.
Send/Receive-Based Implementation: shows lower performance when the
amount of computation increases.

Process Skew Test

MPI_Win_postMPI_Win_start

MPI_Put

Process 1 Process 2

MPI_Win_waitMPI_Win_complete

MPI_Put

…
. …

.

Skew

Process Skew

0

500

1000

1500

2000

2500

20 40 60 80 100 120 140 160 180 200

Time of Skew(us)

Ti
m

e
pe

r
Ite

ra
tio

n(
us

) Original
RDMA

RDMA-Based Implementation: not affected by process skew.
Send/Receive-Based Implementation : shows slower performance with the
increase of process skew.

Scalability Test

MPI_Win_post

MPI_Win_start

MPI_Win_complete MPI_Win_wait

MPI_Win_start

MPI_Win_complete

Origin 1 Origin n Target

MPI_Put

MPI_Put

Performance with Multiple Origin
Processes

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7

Number of Origins

A
gg

re
ga

te
d

B
an

dw
id

th
(M

ill
io

n
B

/s
)

Original
RDMA

RDMA-Based Implementation: reaches a peak bandwidth of 920Miliion B/s.
Send/Received-Based Implementation: can only deliver a maximum bandwidth of
895Million B/s.

Conclusions

RDMA-Based implementation can achieve:
Lower overhead and higher communication
performance

Reduce latency up to 19%
Reduce synchronization overhead up to 13%
Increase throughput up to 77%

Better overlapping between computation and
communication
Suffer less from process skew
Better scalability with multiple origin processes

Future Work

Passive target one-sided communication

Non-contiguous data type in one-sided
communication

Thank You

http://nowlab.cis.ohio-state.edu/

E-mail: {jiangw, liuj, jinhy,panda}
@cis.ohio-state.edu

NBC home page

Mutual Exclusion

0

Origin 1 Target Origin 2

1

Compare and
Swap

Compare and
Swap

Compare and
Swap

0

Compare and
Swap

enter

leave

enter

leave

1

Synchronization overhead Test

MPI_Win_post

MPI_Win_start

MPI_Win_complete

MPI_Win_wait

MPI_Win_start

MPI_Win_complete

Origin 1 Origin n Target

Synchronization overhead

0

10

20

30

40

1 2 3 4 5 6 7

Number of Origins

Ti
m

e
(u

s)

Original
RDMA

RDMA-Based Implementation: 14.78 microseconds (13% improvement)
Send/Receive-Based Implementation: 16.52 microseconds.

Bandwidth (Get)

0

100

200

300

400

500

600

700

800

900

4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

Message Size(Bytes)

B
an

dw
id

th
(M

ill
io

n
B

/s
)

Original
RDMA

The Bandwidth drop is due to the performance difference between InfiniBand
RDMA read and RDMA write.

Origin

Memory Process

Target

send

recv

Process Memory

recv send

Origin

Memory Process

Target

RDMA
read

Process Memory

Origin

Memory Process

Target

send

recv

Process Memory

computation

Origin

Memory Process

Target

Process Memory

computation

RDMA
read

RDMA
write

Memory Process

Target

recv

Origin

send

Process Memory Memory Process

TargetOrigin

RDMA
write

Process Memory

Synchronization

Origin Side
Maintain a bit vector (Origin), each bit represents the status
of a target.
Start : Check Origin vector, if one bit is changed, starts
communication to that target
Complete: use RDMA write to change the corresponding bit
at target side (Target vector).

Target side.
Maintain a bit vector (Target), each bit represents the
status of a origin.
Post: use RDMA write to change the corresponding bit at
origin side (Origin vector).
Wait: wait until all the bits in the Target vector have been
changed

Synchronization

MPICH2-0.96p1 only supports active
synchronization, this work focused on active
synchronization.

