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Introduction

» HPC Clusters continue to increase rapidly in size

— Largest systems have hundreds of thousands of cores today

= As clusters grow, there has been increased focus on the

scalability of programming models and libraries
— MPI, PGAS models

— “First class citizens”

= Job launch mechanisms have not received enough
attention and have scaled poorly over the last few years

— Traditionally ignored since the “percentage of time” for launching jobs
on production runs is small

— But increasingly becoming important, especially for extremely large-

scale systems
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Multi-Core Trend

Largest InfiniBand cluster in 2006 Largest general purpose InfiniBand cluster
in 2008

Sandia Thunderbird TACC Ranger
— 8,960 processing cores ﬁ — 62,976 processing cores

— 4,480 compute nodes — 3,936 compute nodes

* The total number of compute cores has increased by a
factor of 7, however, the number of compute nodes has
remained flat

» Job launchers must take advantage of multi-core compute
nodes
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Limitations

= MPI Job launch mechanisms scale poorly over large
multi-core clusters

— Over 3 minutes to launch a MPI job over 10,000 cores (in the
early part of 2008)

— Unable to launch larger jobs

« Exponential increase in job launch time

* These designs run into system limitations
— Limits on the number of open network connections

— Delays due to simultaneous flooding of network
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Job Launch Phases

= Typical parallel job launch involves two phases
— Spawning processes on target cores

— Communication between processes to discover peers

* |n addition to spawning processes, job launcher must
facilitate communication for job initialization
— Point to point

— Collective communication
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ScELA Design

= Designed a Scalable, Extensible Launching Architecture
(ScELA) that takes advantage of increased use of multi-
core compute nodes in clusters
— Presented at Int'l Symposium on High Performance Computing (HiPC ‘08)

= Supported both PMGR_Collectives and PMI

* The design was incorporated into MVAPICH 1.0 and

MVAPICHZ2 1.2

— MVAPICH/MVAPICH2Z - Popular MPI libraries for InfiniBand and
10GigE/IWARP, used by over 975 organizations worldwide

(http://mvapich.cse.ohio-state.edu)

— Significant performance benefits on large-scale clusters

= Many other MPI stacks have adopted this design for their

Jjob launching mechanisms
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ScELA Architecture

Hierarchical launch

— Central launcher launches Node [ Pmi | [PMGR] ... Communication
NLA 5 Protocols
Launch Agents ( ) on target nodes " Cache )
— NLAs launch processes on cores
NLAs interconnect to form a k-ary Communication Primitives

tree to facilitate communication

Common communication
primitives built on NLA tree

Launcher

[ponoron ] (_cotese | - (sutein soar]

Libraries can implement their
protocols (PMI, PMGR, etc.) over ScELA Architecture
the basic framework
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Design:

Launch Mechanism

o Central Launcher starts
NLAs on Target Nodes
o NLAs launch Processes

Central

Launcher
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Evaluation:

Large Scale Cluster

= ScELA compared MVAPICH 200

0.9.9 on the TACC Ranger 180 /"
_ 3,936 nodes with four 2.0 GHz 122 /
Quad-Core AMD “Barcelona” )‘
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— 16 processing cores per node

* Time to launch a simple MPI
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“Hello World” program

= Can scale at least 3X 0

* Order of magnitude faster

Processes
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PMI Bulletin Board on ScELA

= PMI is a startup communication protocol used by
MVAPICHZ2, MPICH2, etc.
* For process discovery, PMI defines a bulletin board

protocol
— PMI_Put (key, val) publishes a key, value pair

— PMI_Get (key) fetches appropriate value

= We define similar operations NLA Put and NLA Get to
facilitate a bulletin board over the NLA tree

= NLA level caches to speedup information access
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Focus in this Paper
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Is it beneficial to cache information in intermediate nodes
in the NLA tree?

How these caches need to be designed?
What trade-offs exist in designing such caches?

How much performance benefits can be achieved with
such caching?



Four Design Alternatives for
Caching

» Hierarchical Cache Simple (HCS)
= Hierarchical Cache with Message Aggregation (HCMA)

» Hierarchical Cache with Message Aggregation and
Broadcast (HCMAB)

» Hierarchical Cache with Message Aggregation,
Broadcast with LRU (HCMAB-LRU)
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PMI Bulletin Board on ScE
with HCS
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Better Caching Mechanisms

= \We've seen a simple
Hierarchical Cache (HCS)

— Slow, due to number of
messages

PMI Put (mykey, myvalue);
PMI Barrier ();

vall = PMI Get (keyl);
val2 = PMI Get (key2);

= Reduce number of

messages with message
aggregation — HCMA 4. Agg. Put

3.Agg.Put 27 KK

1. Put
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Caching Mechanisms (contd)

HCMA still has lots of messages over network during
GETs

* Propose HCMAB
— HCMA + Broadcast

HCS, HCMA, HCMAB are memory inefficient

— Information exchange is in stages — discard old information

* Propose HCMAB-LRU

— Have a fixed size cache with LRU
— HCMAB-LRU
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Comparison of Memory usage

= For n (key, value) pairs exchanged by p processes

Caching Mechanism

MPLIobSize (p)  geg | HOMA | HCMAB [HCMAB-LRU
64 O(64 xn) | O64xn) | O64xn) 0(64)
256 O(256 x n) | O(256 x n) | O(256 x n) ((256)

1024 0(1024 x n) | 0(1024 x n) [ 01024 x n) | O(1024)
4096 0(4096 x n) | O(4096 x n) | O(4096 x n) |  O(4006)
16384 016384 x n)|0(16384 x n)[O(16384 x n)|  O(16384)
65536 |O(65536 x n)|0(65536 x n)|0(65536 x n)|  O(65536)
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Evaluation:

Experimental Setup
= OSU Cluster

— 512-core InfiniBand Cluster
— 64 compute nodes
— Dual 2.33 GHz Quad-Core Intel “Clovertown”

— Gigabit Ethernet adapter for management traffic

= TACC Ranger (62,976-cores)

» [nfiniBand connectivity
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Simple PMI Exchange (1:2)

« Each MPI process publishes one (key, value) pair using PMI_Put
 Retrieves values published by two other MPI processes

0.6 l l
HCS —+— _

HCMA —>—
05 | HCMAB — % — ]
HCMAB-LRU &

04 | .
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Time ()
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# Processor Cores

« HCMAB and HCMAB-LRU are the best
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Heavy PMI Exchange (1:p)

« Each MPI process publishes one (key, value) pair using PMI_Put
* All p processes read values published by all other p processes

4.5 .
HCS —+—
4 + HCMA ——<—
HCMAB ———
3.5 HCMAB-LRU --—-&----

3 |
25

Time (s)

1.5

8x8 16x8 32x8 64x8
# Processor Cores

« HCMAB and HCMAB-LRU are the best with significant performance
improvement

« HCMAB and HCMAB-LRU demonstrate good scalability with increase in

system size
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Software Distribution

= Both HCS and HCMAB have been integrated into
MVAPICHZ2 1.2 and available to the MPlI community for

some time

» Additional enhancements in terms of parallelizing the

startup further have been carried out in MVAPICH2 1.4
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Conclusion and Future Work
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Propose the impact of caching in scalable, hierarchical
job launch mechanisms, especially for emerging multi-
core clusters

Demonstrate design alternatives and their impact on
performance and scalability
Integrated into the latest MVAPICH2 1.4 version

— Basic enhancements are available in MVAPICH versions
(1.0 and 1.1)

Parallelize the job launch phase even further for even
larger clusters with a million of processes



Questions?

{sridharj, panda}@cse.ohio-state.edu
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