
Impact of Node Level Caching in MPI
Job Launch Mechanisms

Jaidev Sridhar and D. K. Panda
{sridharj,panda}@cse.ohio-state.edu

Presented by Pavan Balaji, Argonne National Laboratory

Network-Based Computing Lab

The Ohio State University

Columbus, OH USA

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

Introduction
  HPC Clusters continue to increase rapidly in size

–  Largest systems have hundreds of thousands of cores today

  As clusters grow, there has been increased focus on the
scalability of programming models and libraries
–  MPI, PGAS models

–  “First class citizens”

  Job launch mechanisms have not received enough
attention and have scaled poorly over the last few years
–  Traditionally ignored since the “percentage of time” for launching jobs

on production runs is small

–  But increasingly becoming important, especially for extremely large-
scale systems Courtesy Intel Corp.

Multi-Core Trend

 Sandia Thunderbird
– 8,960 processing cores

– 4,480 compute nodes
Courtesy Intel Corp.

TACC Ranger
– 62,976 processing cores

– 3,936 compute nodes

  The total number of compute cores has increased by a
factor of 7, however, the number of compute nodes has
remained flat

  Job launchers must take advantage of multi-core compute
nodes

Largest InfiniBand cluster in 2006 Largest general purpose InfiniBand cluster
in 2008

Limitations
  MPI Job launch mechanisms scale poorly over large

multi-core clusters
–  Over 3 minutes to launch a MPI job over 10,000 cores (in the

early part of 2008)
–  Unable to launch larger jobs

•  Exponential increase in job launch time

  These designs run into system limitations
–  Limits on the number of open network connections

–  Delays due to simultaneous flooding of network

Job Launch Phases
  Typical parallel job launch involves two phases

–  Spawning processes on target cores

–  Communication between processes to discover peers

  In addition to spawning processes, job launcher must
facilitate communication for job initialization
–  Point to point

–  Collective communication

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

ScELA Design
  Designed a Scalable, Extensible Launching Architecture

(ScELA) that takes advantage of increased use of multi-
core compute nodes in clusters
–  Presented at Int’l Symposium on High Performance Computing (HiPC ‘08)

  Supported both PMGR_Collectives and PMI
  The design was incorporated into MVAPICH 1.0 and

MVAPICH2 1.2
–  MVAPICH/MVAPICH2 - Popular MPI libraries for InfiniBand and

10GigE/iWARP, used by over 975 organizations worldwide
 (http://mvapich.cse.ohio-state.edu)
–  Significant performance benefits on large-scale clusters

  Many other MPI stacks have adopted this design for their
job launching mechanisms Courtesy Intel Corp.

Design:

ScELA Architecture
  Hierarchical launch

–  Central launcher launches Node
Launch Agents (NLA) on target nodes

–  NLAs launch processes on cores

  NLAs interconnect to form a k-ary
tree to facilitate communication

  Common communication
primitives built on NLA tree

  Libraries can implement their
protocols (PMI, PMGR, etc.) over
the basic framework

Launcher

NLA Interconnection Layer

Cache

PMI PMGR … Communication
Protocols

Communication Primitives
Point to Point Collective Bulletin Board

ScELA Architecture

Design:
Launch Mechanism

Central
Launcher

NLA
Node 1

Process
1

Process
2

NLA
Node 2

Process
3

Process
4

NLA
Node 3

Process
5

Process
6

o  Central Launcher starts
NLAs on Target Nodes
o  NLAs launch Processes

Evaluation:
Large Scale Cluster

  ScELA compared MVAPICH
0.9.9 on the TACC Ranger
–  3,936 nodes with four 2.0 GHz

Quad-Core AMD “Barcelona”
Opteron processors

–  16 processing cores per node

  Time to launch a simple MPI
“Hello World” program

  Can scale at least 3X

  Order of magnitude faster

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(s

ec
s)

Processes

ScELA

MVAPICH 0.9.9

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

PMI Bulletin Board on ScELA
  PMI is a startup communication protocol used by

MVAPICH2, MPICH2, etc.
  For process discovery, PMI defines a bulletin board

protocol
–  PMI_Put (key, val) publishes a key, value pair

–  PMI_Get (key) fetches appropriate value

  We define similar operations NLA_Put and NLA_Get to
facilitate a bulletin board over the NLA tree

  NLA level caches to speedup information access

Focus in this Paper
  Is it beneficial to cache information in intermediate nodes

in the NLA tree?
  How these caches need to be designed?

  What trade-offs exist in designing such caches?

  How much performance benefits can be achieved with
such caching?

Four Design Alternatives for
Caching
  Hierarchical Cache Simple (HCS)

  Hierarchical Cache with Message Aggregation (HCMA)

  Hierarchical Cache with Message Aggregation and
Broadcast (HCMAB)

  Hierarchical Cache with Message Aggregation,
Broadcast with LRU (HCMAB-LRU)

PMI Bulletin Board on ScELA
with HCS

NLA
Node 2

Process
4

Process
3

NLA
Node 1

Process
1

Process
2 NLA

Node 3

Process
5

Process
6

PMI_Put (key, val) NLA_Put (key, val) PMI_Get (key) Value NLA_Get (key)

Cache

Cache

Cache

Better Caching Mechanisms
  We’ve seen a simple

Hierarchical Cache (HCS)
–  Slow, due to number of

messages

  Reduce number of
messages with message
aggregation – HCMA

PMI_Put (mykey, myvalue);
PMI_Barrier ();
...
val1 = PMI_Get (key1);
val2 = PMI_Get (key2);
...

Caching Mechanisms (contd)
  HCMA still has lots of messages over network during

GETs
  Propose HCMAB

–  HCMA + Broadcast

  HCS, HCMA, HCMAB are memory inefficient
–  Information exchange is in stages – discard old information

  Propose HCMAB-LRU
–  Have a fixed size cache with LRU

–  HCMAB-LRU

Comparison of Memory usage
  For n (key, value) pairs exchanged by p processes

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

Evaluation:
Experimental Setup
  OSU Cluster

–  512-core InfiniBand Cluster

–  64 compute nodes

–  Dual 2.33 GHz Quad-Core Intel “Clovertown”

–  Gigabit Ethernet adapter for management traffic

  TACC Ranger (62,976-cores)
  InfiniBand connectivity

Simple PMI Exchange (1:2)
•  Each MPI process publishes one (key, value) pair using PMI_Put
•  Retrieves values published by two other MPI processes

•  HCMAB and HCMAB-LRU are the best

Heavy PMI Exchange (1:p)
•  Each MPI process publishes one (key, value) pair using PMI_Put
•  All p processes read values published by all other p processes

•  HCMAB and HCMAB-LRU are the best with significant performance
improvement
•  HCMAB and HCMAB-LRU demonstrate good scalability with increase in
 system size

Software Distribution

  Both HCS and HCMAB have been integrated into

MVAPICH2 1.2 and available to the MPI community for

some time

  Additional enhancements in terms of parallelizing the

startup further have been carried out in MVAPICH2 1.4

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

Conclusion and Future Work
  Propose the impact of caching in scalable, hierarchical

job launch mechanisms, especially for emerging multi-
core clusters

  Demonstrate design alternatives and their impact on
performance and scalability

  Integrated into the latest MVAPICH2 1.4 version
– Basic enhancements are available in MVAPICH versions

(1.0 and 1.1)

  Parallelize the job launch phase even further for even
larger clusters with a million of processes

http://mvapich.cse.ohio-state.edu

Questions?

{sridharj, panda}@cse.ohio-state.edu

