Impact of Node Level Caching in MPI
Job Launch Mechanisms

Jaidev Sridhar and D. K. Panda

{sridharj,panda}@cse.ohio-state.edu

Presented by Pavan Balaji, Argonne National Laboratory

Network-Based Computing Lab
The Ohio State University
Columbus, OH USA

OHIO

Presentation Outline

» Introduction and Motivation
» ScELA Design

» |Impact of Node-Level Caching
» Experimental Evaluation

» Conclusions and Future Work

OHIO
SIATE

Introduction

» HPC Clusters continue to increase rapidly in size

— Largest systems have hundreds of thousands of cores today

= As clusters grow, there has been increased focus on the

scalability of programming models and libraries
— MPI, PGAS models

— “First class citizens”

= Job launch mechanisms have not received enough
attention and have scaled poorly over the last few years

— Traditionally ignored since the “percentage of time” for launching jobs
on production runs is small

— But increasingly becoming important, especially for extremely large-

scale systems
OHIO
SIAIE

Multi-Core Trend

Largest InfiniBand cluster in 2006 Largest general purpose InfiniBand cluster
in 2008

Sandia Thunderbird TACC Ranger
— 8,960 processing cores ﬁ — 62,976 processing cores

— 4,480 compute nodes — 3,936 compute nodes

* The total number of compute cores has increased by a
factor of 7, however, the number of compute nodes has
remained flat

» Job launchers must take advantage of multi-core compute
nodes

OHIO
SIATE

Limitations

= MPI Job launch mechanisms scale poorly over large
multi-core clusters

— Over 3 minutes to launch a MPI job over 10,000 cores (in the
early part of 2008)

— Unable to launch larger jobs

« Exponential increase in job launch time

* These designs run into system limitations
— Limits on the number of open network connections

— Delays due to simultaneous flooding of network

OHIO
SIATE

Job Launch Phases

= Typical parallel job launch involves two phases
— Spawning processes on target cores

— Communication between processes to discover peers

* |n addition to spawning processes, job launcher must
facilitate communication for job initialization
— Point to point

— Collective communication

OHIO
SIATE

Presentation Outline

» ScELA Design
» Impact of Node-Level Caching
» Experimental Evaluation

» Conclusions and Future Work

OHIO
SIATE

ScELA Design

= Designed a Scalable, Extensible Launching Architecture
(ScELA) that takes advantage of increased use of multi-
core compute nodes in clusters
— Presented at Int'l Symposium on High Performance Computing (HiPC ‘08)

= Supported both PMGR_Collectives and PMI

* The design was incorporated into MVAPICH 1.0 and

MVAPICHZ2 1.2

— MVAPICH/MVAPICH2Z - Popular MPI libraries for InfiniBand and
10GigE/IWARP, used by over 975 organizations worldwide

(http://mvapich.cse.ohio-state.edu)

— Significant performance benefits on large-scale clusters

= Many other MPI stacks have adopted this design for their

Jjob launching mechanisms

OHIO
SIATE

ScELA Architecture

Hierarchical launch

— Central launcher launches Node [Pmi | [PMGR] ... Communication
NLA 5 Protocols
Launch Agents () on target nodes " Cache)
— NLAs launch processes on cores
NLAs interconnect to form a k-ary Communication Primitives

tree to facilitate communication

Common communication
primitives built on NLA tree

Launcher

[ponoron] (_cotese | - (sutein soar]

Libraries can implement their
protocols (PMI, PMGR, etc.) over ScELA Architecture
the basic framework

OHIO
SIATE

Design:

Launch Mechanism

o Central Launcher starts
NLAs on Target Nodes
o NLAs launch Processes

Central

Launcher

m m m

Process Process Process Process Process Process

go
=
O

Evaluation:

Large Scale Cluster

= ScELA compared MVAPICH 200

0.9.9 on the TACC Ranger 180 /"
_ 3,936 nodes with four 2.0 GHz 122 /
Quad-Core AMD “Barcelona”)‘

-
N
o

<+®-- ScELA
Opteron processors

—&—MVAPICH0.9.9 |
[3

Time (secs)
—
o
o

— 16 processing cores per node

* Time to launch a simple MPI

N

o

4
.

A O ©
o O O
O..
L

“Hello World” program

= Can scale at least 3X 0

* Order of magnitude faster

Processes

OHIO
SIATE

Presentation Outline

» Impact of Node-Level Caching
» Experimental Evaluation

» Conclusions and Future Work

OHIO

PMI Bulletin Board on ScELA

= PMI is a startup communication protocol used by
MVAPICHZ2, MPICH2, etc.
* For process discovery, PMI defines a bulletin board

protocol
— PMI_Put (key, val) publishes a key, value pair

— PMI_Get (key) fetches appropriate value

= We define similar operations NLA Put and NLA Get to
facilitate a bulletin board over the NLA tree

= NLA level caches to speedup information access

OHIO
SIATE

Focus in this Paper

OHIO
SIATE

Is it beneficial to cache information in intermediate nodes
in the NLA tree?

How these caches need to be designed?
What trade-offs exist in designing such caches?

How much performance benefits can be achieved with
such caching?

Four Design Alternatives for
Caching

» Hierarchical Cache Simple (HCS)
= Hierarchical Cache with Message Aggregation (HCMA)

» Hierarchical Cache with Message Aggregation and
Broadcast (HCMAB)

» Hierarchical Cache with Message Aggregation,
Broadcast with LRU (HCMAB-LRU)

OHIO
SIATE

PMI Bulletin Board on ScE
with HCS

L sl])

NLA

Nod
NLA

Process Process
1 2
Nod Gt
Process Process
3 5

Process
4

OHIO

Process
6

Better Caching Mechanisms

= \We've seen a simple
Hierarchical Cache (HCS)

— Slow, due to number of
messages

PMI Put (mykey, myvalue);
PMI Barrier ();

vall = PMI Get (keyl);
val2 = PMI Get (key2);

= Reduce number of

messages with message
aggregation — HCMA 4. Agg. Put

3.Agg.Put 27 KK

1. Put

OHIO

Caching Mechanisms (contd)

HCMA still has lots of messages over network during
GETs

* Propose HCMAB
— HCMA + Broadcast

HCS, HCMA, HCMAB are memory inefficient

— Information exchange is in stages — discard old information

* Propose HCMAB-LRU

— Have a fixed size cache with LRU
— HCMAB-LRU

OHIO
SIATE

Comparison of Memory usage

= For n (key, value) pairs exchanged by p processes

Caching Mechanism

MPLIobSize (p) geg | HOMA | HCMAB [HCMAB-LRU
64 O(64 xn) | O64xn) | O64xn) 0(64)
256 O(256 x n) | O(256 x n) | O(256 x n) ((256)

1024 0(1024 x n) | 0(1024 x n) [01024 x n) | O(1024)
4096 0(4096 x n) | O(4096 x n) | O(4096 x n) | O(4006)
16384 016384 x n)|0(16384 x n)[O(16384 x n)| O(16384)
65536 |O(65536 x n)|0(65536 x n)|0(65536 x n)| O(65536)

OHIO

Presentation Outline

» Experimental Evaluation

» Conclusions and Future Work

OHIO

Evaluation:

Experimental Setup
= OSU Cluster

— 512-core InfiniBand Cluster
— 64 compute nodes
— Dual 2.33 GHz Quad-Core Intel “Clovertown”

— Gigabit Ethernet adapter for management traffic

= TACC Ranger (62,976-cores)

» [nfiniBand connectivity

OHIO
SIAIE

Simple PMI Exchange (1:2)

« Each MPI process publishes one (key, value) pair using PMI_Put
 Retrieves values published by two other MPI processes

0.6 l l
HCS —+— _

HCMA —>—
05 | HCMAB — % —]
HCMAB-LRU &

04 | .

0.3

Time ()

8x8 16x8 32x8 64x8
Processor Cores

« HCMAB and HCMAB-LRU are the best

OHIO
SIATE

Heavy PMI Exchange (1:p)

« Each MPI process publishes one (key, value) pair using PMI_Put
* All p processes read values published by all other p processes

4.5 .
HCS —+—
4 + HCMA ——<—
HCMAB ———
3.5 HCMAB-LRU --—-&----

3 |
25

Time (s)

1.5

8x8 16x8 32x8 64x8
Processor Cores

« HCMAB and HCMAB-LRU are the best with significant performance
improvement

« HCMAB and HCMAB-LRU demonstrate good scalability with increase in

system size

OHIO
SIATE

Software Distribution

= Both HCS and HCMAB have been integrated into
MVAPICHZ2 1.2 and available to the MPlI community for

some time

» Additional enhancements in terms of parallelizing the

startup further have been carried out in MVAPICH2 1.4

OHIO
SIATE

Presentation Outline

» Introduction and Motivation

» ScELA Design

» |Impact of Node-Level Caching
» Experimental Evaluation

» Conclusions and Future Work

OHIO
SIAIE

Conclusion and Future Work

OHIO
SIATE

Propose the impact of caching in scalable, hierarchical
job launch mechanisms, especially for emerging multi-
core clusters

Demonstrate design alternatives and their impact on
performance and scalability
Integrated into the latest MVAPICH2 1.4 version

— Basic enhancements are available in MVAPICH versions
(1.0 and 1.1)

Parallelize the job launch phase even further for even
larger clusters with a million of processes

Questions?

{sridharj, panda}@cse.ohio-state.edu

[y
=— MVAPICH

W

http://mvapich.cse.ohio-state.edu

