
Optimizing MPI Communication
on Multi-GPU Systems using

 CUDA Inter-Process Communication

 Sreeram Potluri* Hao Wang* Devendar Bureddy*

 Ashish Kumar Singh* Carlos Rosales+ Dhabaleswar K. Panda*

*Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University

+Texas Advanced Computing Center

1

Outline

•  Motivation

•  Problem Statement

•  Using CUDA IPC

•  CUDA IPC based Designs in MVAPICH2

–  Two Sided Communication

–  One-sided Communication

•  Experimental Evaluation

•  Conclusion and Future Work

2

•  GPUs are becoming a common component of modern clusters – higher
compute density and performance/watt

•  3 of the top 5 systems in the latest Top 500 list use GPUs

•  Increasing number of HPC workloads are being ported to GPUs - many
of these use MPI

•  MPI libraries are being extended to support communication from GPU
device memory

GPUs for HPC

3

4

At Sender: !
!

cudaMemcpy (sbuf, sdev)!
MPI_Send (sbuf, . . .)!
!

At Receiver:!
!

MPI_Recv (rbuf, . . .)!
cudaMemcpy (rdev, rbuf)!

MVAPICH/MVAPICH2 for GPU Clusters

Earlier

At Sender: !
!

MPI_Send (sdev, . . .)!
!

At Receiver:!
!

MPI_Recv (rdev, . . .)!

Now

PCIe

GPU

CPU

NIC

Switch

inside
MVAPICH2

•  Efficient overlap copies over the PCIe with RDMA transfers over the network

•  Allows us to select efficient algorithms for MPI collectives and MPI datatype
processing

•  Available with MVAPICH2 v1.8 (http://mvapich.cse.ohio-state.edu)
4

Motivation

5

CPU

GPU 1 GPU 0

Memory

I/O Hub

Process 0 Process 1 •  Multi-GPU node architectures are
becoming common

•  Until CUDA 3.2
–  Communication between processes

staged through the host

–  Shared Memory (pipelined)

–  Network Loopback [asynchronous)

•  CUDA 4.0
–  Inter-Process Communication (IPC)

–  Host bypass

–  Handled by a DMA Engine

–  Low latency and Asynchronous

–  Requires creation, exchange and
mapping of memory handles - overhead

HCA

6

Comparison of Costs

C
op

y
La

te
nc

y
(u

se
c)

50

100

150

200

CUDA IPC
Copy

Copy
Via Host

CUDA IPC Copy +
Handle Creation &
Mapping Overhead

49 usec

3 usec

228 usec

•  Comparison of bare copy costs between two processes on one node,
each using a different GPU (outside MPI)

•  8 Bytes

Outline

•  Motivation

•  Problem Statement

•  Basics of CUDA IPC

•  CUDA IPC based Designs in MVAPICH2

–  Two Sided Communication

–  One-sided Communication

•  Experimental Evaluation

•  Conclusion and Future Work

7

Problem Statement

8

•  Can we take advantage of CUDA IPC to improve performance of MPI
communication between GPUs on a node?

•  How do we address the memory handle creation and mapping
overheads?

•  What kind of performance do the different MPI communication
semantics deliver with CUDA IPC?
–  Two-sided Semantics

–  One-sided Semantics

•  How do CUDA IPC based designs impact the performance of end-
applications?

Outline

•  Motivation

•  Problem Statement

•  Basics of CUDA IPC

•  CUDA IPC based Designs in MVAPICH2

–  Two Sided Communication

–  One-sided Communication

•  Experimental Evaluation

•  Conclusion and Future Work

9

Basics of CUDA IPC
Process 0 Process 1

cudaIpcGetMemhandle
(&handle, base_ptr)

cudaIpcOpenMemhandle
(&base_ptr, handle)

IPC handles

cudaMemcpy
(rbuf_ptr, base_ptr + displ)

cudaEventRecord
(&ipc_event, event_handle)

cudaIpcGetEventHandle
(&event_handle, event)

cudaStreamWaitEvent
(0, event)

other CUDA calls that can
modify the sbuf

IPC memory handle should be
closed at Process 1 before the
buffer is freed at Process 0

cudaIpcOpenEventhandle
(&ipc_event, event_handle)

 cuMemGetAddressRange
(&base_ptr, sbuf_ptr)

Done

sbuf_ptr rbuf_ptr

10

Outline

•  Motivation

•  Problem Statement

•  Basics of CUDA IPC

•  CUDA IPC based Designs in MVAPICH2

–  Two Sided Communication

–  One-sided Communication

•  Experimental Evaluation

•  Conclusion and Future Work

11

Design of Two-sided Communication
•  MPI communication costs

–  synchronization

–  data movement

•  Small message communication
–  minimize synchronization overheads

–  pair-wise eager buffers for host-host communication

–  associated pair-wise IPC buffers on GPU

–  synchronization using CUDA Events

•  Large message communication
–  minimize number for copies - rendezvous protocol

–  minimize memory mapping overheads using a mapping cache

12

Design of One-sided Communication

13

•  Separates communication from synchronization

•  Window

•  Communication calls - put, get, accumulate

•  Synchronization calls
–  active - fence, post-wait/start-complete

–  passive – lock-unlock

–  period between two synchronization calls is a communication epoch

•  IPC memory handles created and mapped during window creation

•  Put/Get implemented as cudaMemcpyAsync

•  Synchronization using CUDA Events

Outline

•  Motivation

•  Problem Statement

•  Basics of CUDA IPC

•  CUDA IPC based Designs in MVAPICH2

–  Two Sided Communication

–  One-sided Communication

•  Experimental Evaluation

•  Conclusion and Future Work

14

•  Intel Westmere node

–  2 NVIDIA Tesla C2075 GPUs

–  Red Hat Linux 5.8 and CUDA Toolkit 4.1

•  MVAPICH/MVAPICH2 - High Performance MPI Library for IB,

10GigE/iWARP and RoCE

–  Available since 2002

–  Used by more than 1.930 organizations (HPC centers, Industries and Universities)

in 68 countries

–  More than 111,000 downloads from OSU site directly

–  Empowering many TOP500 clusters

•  5th ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of Technology

•  7th ranked 111,104-core cluster (Pleiades) at NASA

•  25th ranked 62,976-core cluster (Ranger) at TACC

–  http://mvapich.cse.ohio-state.edu

Experimental Setup

15

0
1000
2000
3000
4000
5000
6000

1 16 256 4K 64K 1M

B
an

dw
id

th
 (M

B
ps

)

Message Size (Bytes)

0

500

1000

1500

2000

4K 16K 64K 256K 1M 4M

La
te

nc
y

(u
se

c)

Message Size (Bytes)

0

10

20

30

40

50

1 4 16 64 256 1K

La
te

nc
y

(u
se

c)

Message Size (Bytes)

16

Two-sided Communication Performance

0.0

10.0

20.0

30.0

40.0

1 4 16 64 256 1024

La
te

nc
y

(u
se

c)

Message Size (Bytes)

SHARED-MEM CUDA IPC

70%
46%

78%
considerable
improvement in
MPI performance
due to host
bypass

0
1000
2000
3000
4000
5000
6000

1 16 256 4K 64K 1M

B
an

dw
id

th
 (M

B
ps

)

Message Size (Bytes)

0

10

20

30

40

50

2 8 32 128 512

La
te

nc
y

(u
se

c)

Message Size (Bytes)

17

One-sided Communication Performance
(get + active synchronization vs. send/recv)

0

5

10

15

20

1 4 16 64 256 1K

La
te

nc
y

(u
se

c)

Message Size (Bytes)

SHARED-MEM-1SC CUDA-IPC-1SC CUDA-IPC-2SC

30%

27%
Better
performance
compared to
two-sided
semantics.

0

500

1000

1500

2000

4K 16K 64K 256K 1M 4M

La
te

nc
y

(u
se

c)

Message Size (Bytes)

18

One-sided Communication Performance
(get + passive synchronization)

0.0

10.0

20.0

30.0

40.0

1 4 16 64 256 1024

La
te

nc
y

(u
se

c)

Message Size (Bytes)

SHARED-MEM CUDA IPC

0
100
200
300
400
500
600

0 100 200 300

La
te

nc
y

(u
se

c)

Target Busy Loop (usec)

true
asynchronous
progress

•  Lock + 8 Gets + Unlock with the target in a busy loop (128KB
messages)

 Lattice Boltzmann Method

0

20

40

60

80

100

120

140

256x256x64 256x512x64 512x512x64

LB
 S

te
p

La
te

nc
y

(m
se

c)

Dataset per GPU

2SIDED-SHARED-MEM 2SIDED-IPC 1SIDED-IPC

•  Computation fluid dynamics code with support for multi-phase flows
with large density ratios

•  Modified to use MPI communication from GPU device memory - one-
sided and two-sided semantics

•  Up to 16% improvement in per step

16%

19

Outline

•  Motivation

•  Problem Statement

•  Basics of CUDA IPC

•  CUDA IPC based Designs in MVAPICH2

–  Two Sided Communication

–  One-sided Communication

•  Experimental Evaluation

•  Conclusion and Future Work

20

21

Conclusion and Future Work
•  Take advantage of CUDA IPC to improve MPI communication between GPUs

on a node

•  70% improvement in latency and 78% improvement in bandwidth for two-
sided communication

•  One-sided communication gives better performance and allows for truly
asynchronous communication

•  16% improvement in execution time of Lattice Boltzmann Method code

•  Studying the impact on other applications while exploiting computation-
communication overlap

•  Exploring efficient designs for inter-node one-sided communication on GPU
clusters

 Thank You!

{potluri, wangh, bureddy, singhas, panda} @cse.ohio-state.edu

carlos@tacc.utexas.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/�

22

