
Zero Copy MPI Derived Datatype
Communication Over InfiniBand

Gopalakrishnan Santhanaraman
Jiesheng Wu
D.K.Panda

Network Based Computing Lab
The Ohio State University

Presentation Layout

� Introduction

� Background and Existing approaches

� Motivation for new Scatter/Gather (SGRS)
approach

� Design and implementation issues

� Performance Evaluation

� Conclusions and Future work

Introduction

� Non-contiguous data communication is common in
scientific applications.

� Decomposition of multi dimensional volumes, FFT, finite element
codes

� NAS BENCHMARKS, LINPACK

� MPI provides derived datatype interface to facilitate this
kind of data movement

� Current Implementations of derived datatypes not very
efficient

Presentation Layout

� Introduction

� Background and Existing Approaches

� Motivation for new Scatter/Gather(SGRS)
approach

� Design and Implementation Issues

� Performance Evaluation

� Conclusions

Related Work

� Improve datatype processing

� Optimized packing and Unpacking Procedures

� Taking advantage of network features to
improve non contiguous datatype
communication

InfiniBand Overview

� Emerging interconnect based on Open
standards

� Provides low latency and high Bandwidth

� Several Novel features

� RDMA

� Scatter/Gather

� Atomic operations

� VAPI – low level interface (API) over InfiniBand

Our Previous Work

� Different Approaches

� Pack/Unpack Based Approach

� Copy on both sides

� Pipeline packing, network communication and unpacking

� Reduced Copy

� RDMA write with Gather on sender side

� RDMA read with Scatter on receiver side

� Zero Copy

� Multiple RDMA writes on sender side (Multi-W scheme)

Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. High Performance
Implementation of MPI Datatype Communication over InfiniBand. In Int'l Parallel
and Distributed Processing Symposium (IPDPS 04), April, 2004

Conclusions of Previous Work

� For small messages with eager protocol, segment
pack/unpack is best.

� For messages in rendezvous protocol range, zero copy
schemes are beneficial.

�

Multi-W zero copy scheme was proposed.

��� � � �� ���	 �
�� � �

�� �� ��� � � � �
�� �� ��� � � � �

�� �� ��
� �

�� �� ��
� �

�� �� ��
� �

�� �� ��
� �

Limitations of Earlier Approaches

� RDMA write/gather, RDMA read/scatter

�

Needs copy in order to handle non-contiguity on both sides

� Multi-W

�

For large number of small segments, performance degrades.

� Overhead of large number of RDMA operations

� Poor network utilization

� Motivation to explore other zero copy schemes

� Problem statement
How can we utilize the advanced features provided by modern

interconnects like InfiniBand to handle non-contiguous data
communication efficiently and overcome the above limitations?

Presentation Layout

� Introduction
� Background and Existing approaches
� Motivation for New Scatter/Gather (SGRS)

Approach
� Design and Implementation issues
� Performance Evaluation
� Conclusions and Future work

Semantics of send/gather,
receive/scatter feature

� Based on send/receive channel semantics

� Handles non-contiguity on both send/receive sides which
is the most generic case

� To implement datatype using this feature needs a
synchronization phase. Hence applicable for messages
which fall under the rendezvous protocol

VAPI level Comparison
Multi-W vs SGRS

Observations

� For a fixed number of segments
SGRS approach outperforms the
Multi-W approach for different
message sizes

� For a fixed message size with
increasing degree of non-
contiguity,

�

SGRS scheme degradation is
negligible

�

Multi-W degradation is significant

Presentation Layout

� Introduction
� Background and Existing approaches
� Motivation for new Scatter/Gather

approach
� Design and Implementation issues
� Performance Evaluation
� Conclusions

MVAPICH Overview

� High Performance Implementation of MPI over
InfiniBand

� Design based on MPICH and MVICH

� Eager protocol for small messages

� Rendezvous protocol for large messages

� Datatype Implementation currently uses the
generic packing and unpacking scheme.

� small datatype messages are packed/unpacked

� large datatype messages both sides allocate pack/
unpack buffers dynamically

� Open Source (current version is 0.9.4 released last week)

� Have been directly downloaded by more than 119 organizations and industry

� Available in the software stack distributions of IBA vendors

MVAPICH Software Distribution

��� � ��� � � � 	��
��
� �� �� �� � � � � � � ��

����� � �� ��� � �� �� ! � "� � � �� �#$� � � � % & �� � # $� � � � �$� � � � � '� � (� � & �)� � ��* + � � , $�)-. � � � /* � � �* �0% & � � � � & � � � � , + 12 � + �43 '� � 5�6 - � � �)� � �� 7 &# + ��* + 08 � �)� �# 1

2 � + �43 '� � 7 �� � � �) / ��. * �. � � + � � ,9 � �� :�� � � ��; � � �� �08 � �)� �# 1

! �< � � �* � =�� � >� � # ��� � �� �� ! � "� � � �� �#!� + � �)� + �� � �� �� ! � "� � � �� � #(� 6 7 ?� �* > 2 � + � � �. � � '� � � + ��� ��)# 0 8 � �)� �# 1

� � / � �) � + @� +� � � * & $� � �� �� $ / �
�� � �� �� $� � � � � '� � � �)� +- & � � �* @ � +� � � * &

: & �� /. - � � *�)-. � � � $� � �� �7 � * � ' �* �� � � &< � + � ��� � �� �� ! � "� � � �� � #7 � � � + ". �� & /. - � � *�) -. � � �� $� � � � �@� +� � � * &A 9 �B � � -)� � � 2 � + � � �. � � CB � � � 0 @. + + � � 1

/* � � �* � � - - �* � � �� � + 2 � � � � �� � �� �� $� � -� � � � �� �/� � , ��� ��� � �� �� ! � "� � � �� � #

D � ��E � �� � � � ��

8 �� � � � � % � * &

2 � , ��� �� F � �B � � + � �#C� � � � F � �B 3 0 C� � � � 1

C� � � � 2 � + �43 : ' /* � � �* � � � ,% � * & 3 0 C� � � � 1

C# . + &. F � �B 3 0G � - � � 1(� + + � + + � - - � / �� � � F � �B � � + � �#(� +*� < / �� � � F � �B � � + � �# 0 @. + + � � 1

�� � � & � � + � � � � F � �B � � + � �#7 � � � / �� � � F � �B � � + � �#@. + + � � � �* � , �)# � ' /* � � �* � + 0 @. + + � � 1

/ �� � '� � , F � �B � � + � �#% � * & � �� � 0 2 +� � � 1

% � * & � �* � F � �B 3� ' (. �* & � � 0 8 � �)� �# 1

% � * & � �* � F � �B 3� ' $ & �) � � �; 0 8 � �)� �# 1

F � �B 3� ' 8 � � �B � 0 /< � �; � � � � , 1

F � �B 3� 'H�� . + �� �F � �B 3� ' C� � +�. & � 0 8 � �)� �# 1

F � �B 3� ' (� + +� * &. +� � � +!� < �

F � �B 3� '7 � , � � "� � � 0 8 � �)� �# 1

F � �B 3� '7� � + ,�) 0 8 � �)� �# 1

F � �B 3� ' @ �� 8 � � � ,?� 0 =� � ; � 1

F � �B 3� ' / & � � "�� � >� 0 $� �� ,� 1

F � �B 3� ' / �. � �� � � � 0 8 � �)� �# 1

F � �B 3� '%� �� � �� 0 $� �� ,� 1

MVAPICH Users (Cont’d)

� " "� % � * & �� � � #� ,B � �* � , $. + � � � � �� % � * & 3� (9
�))� + +�� - - ���� � � # /# + � �) + $�)- 3 0 $� �� ,� 1

� � � - � % � * & �� � � � � +�� � � � �% � * & �� � � � � +$. + �� � + /. - � � *�)-. � � ���% � * & �� � � # 2 �* 3 0 $ & � �� 1

$. + � � �B � + �� � 0 � � � & � � � � , + 1$�)-. +# + 0 F C 1

$ / /! � "� � � �� � � � +�� 2 �* 39 �
9 � �� $�)-. �� � 0 8 � �)� �# 1

5)- �* + 0 8 � �)� �# 1

� . � � � 2 �* 356 � � � � 0 2 +� � � 1

8 � � - & / �� � �) � 2 �* 3H 7
H 7 0 �� � �* � 1

� � ��� � � ��

2 = (
2 = (0 �� � �* � 1

2 = (0 8 � �)� �# 1

2 �% 5 @ / 59 0 �� � �* � 1

2 � ' � � � $� �2 � � �
2 � � � 0 $ & � �� 1

2 � � � 0 8 � �)� �# 1

2 � � � /� . � �� � /�� �B ��* � + 0H�� �� C� �� 1

2 � � � /� . � �� � /�� �B ��* � + 0G � - � � 1G � 2
C� � ' �< � # 0 @. + + � � 1

! � �� * &�� 0 $ & � �� 1

! � �. 6 � � �< � � 6! � �B � + �� � 0 � � � & � � � � , + 1(� � �< � � � 0 8 � �)� �# 1

(� � * . �# $�)-. �� � /# + ��) +(� � �� 6 % � * & �� � � � � +(� �� +# + 0 �� � �* � 1

(��* �� < � # � 2 �* 3� 5 $ 0G � - � � 1� 5 $ /� . � �� � + � 2 �* 3� 5 $ 0 / � �� � -� � � 1

� 2 $ 5	 % 0 @. + + � � 1

: $ � - * 0 F � � � � , C � �� ,�) 1

:* � �� � =� # 0 $� �� ,� 1

7 � �% � /# + ��) +7 � � % � * 0 8 � �)� �# 1

7 � � & /* � � � 2 �* 37 . �� * 0G � - � � 17 # � �) � , $�)-. � � � 08 � �)� �# 1

 . + � � � + 0 2 +� � � 1

@� # � & �� � 2 �* 3@! �% � * & �� � � � � +@� + �� ! � ,3 0 @. + + � � 1

/ = $% � * & �� � � � � +�� 2 �* 3/* # , /� ' �< � � �/ 8 2 0 / � ��*� � 8 � � - & �* + � 2 �* 3 1

/ C� $�) -. � � � +/ �� � �) � �� $�)-. � � �� 0 F C 1

/# + �� � �%�)� �% � ?*� � , ��� � - - � � , @ � +� � � * &

% &� � + F � , � �< � � � � /# + � �) + 0 F C 1

% � � � + � � * 0 8 � �)� �# 1

%� 7 � � '� �) + 0 @. + + � � 1

%� - +- � �F � � +# +

	� �� �� �
� � > + �� � �� � + F C� ! � ,3 0 F C 1

� B � � /# + � �) + � 2 �* 3

Larger IBA Clusters using MVAPICH
and Top500 Rankings

� 1105-node cluster at Virginia Tech

� 3rd in Nov. ’03 ranking

� 192-node cluster at Mississippi State University

� 150th in June ’04 ranking

� 128-node cluster at Sandia/Livermore

� 111th in Nov ’03 ranking and 211th in June ’04 ranking

� 256-node cluster at Los Alamos

� 116th in Nov ’03 ranking and 218th in June ’04 ranking

� 128-node cluster at Ohio Supercomputer Center (OSC)

� 272th in June ’04 ranking

� More are getting installed ….

Framework For Handling Datatypes

MPI INTERFACE

INFINIBAND LAYER

Rendezvous

Reduced CopyPipeline Zero copyPack

Small messages Large messages

Eager

��� � � � � ��	 �
�� �

�	 �� � ��

���	 �
� � �

�� � � ��� � � � �
�� �� ��� � � � �

��� � �

� �� � � �

Basic Idea

Design Issues

� Exchanging layout information

�

MPI datatype has only local semantics

�

Optimizing layout exchange

� Layout matching decision needs to be conveyed

� Registration and deregistration on user datatype
message buffers

�

Unique issue due to non-contiguity in buffers

� Posting Descriptors

�

Upper limit on number of scatter gather descriptors.

�

Needs a secondary connection for transmitting non-contiguous
data

S
G

R
S

 C
O

M
M

U
N

IC
A

T
IO

N
 P

R
O

T
O

C
O

L

S
E

N
D

E
R

R
E

C
E

IV
E

R

R
E

Q
U

E
S

T
 C

T
R

L
 M

E
S

G
+

L
A

Y
O

U
T

 (
P

R
IM

A
R

Y
 C

O
N

N
E

C
T

IO
N

)

P
O

S
T

 S
C

A
T

T
E

R

P
O

S
T

 G
A

T
H

E
R

R
E

P
L

Y
 C

T
R

L
 M

E
S

G
 +

 D
E

C
IS

IO
N

 IN
F

O
 (

P
R

IM
A

R
Y

 C
O

N
N

E
C

T
IO

N
)

D
A

T
A

 (
S

E
C

O
N

D
 C

O
N

N
E

C
T

IO
N

)

Layout Exchange and Matching Decision

� Take advantage of handshake messages in the rendezvous protocol
to achieve this

� Sender’s datatype layout is appended to Rendezvous start control
message

� The matching decision information is conveyed in the Rendezvous
reply/clear to send message

� A layout cache mechanism is implemented to reduce overhead of
layout transfer

� Datatype information is exchanged only once

� Only the index needs to be sent for future messages

� Datatype Cache mechanism proposed by Traff et al.

Registration

� Registration and Deregistration on user datatype
message buffers

� Common issues in both the zero copy schemes

� Unique issue due to non-contiguity in buffers

� Use Optimistic Group Registration scheme

J. Wu, P. Wyckoff, and D. K. Panda. “Supporting Efficient Noncontiguous
Access in PVFS over InfiniBand”. IEEE Cluster Computing 2003, Dec. 2003

Posting Descriptors

� Needs a separate Queue pair connection

�

Ordering

�

Scalability

� Upper limit on number of gather/scatter descriptor

�

Message might need to be chopped into multiple gather/scatter
descriptors

�

Number of posted gather descriptors must be equal to the
number of posted scatter

�

Needs a negotiation phase

Presentation Layout

� Introduction
� Background and Existing approaches
� Motivation for new Scatter/Gather (SGRS)

approach
� Design and Implementation issues
� Performance Evaluation
� Conclusions and Future work

Experimental Evaluation

� Experimental Test bed

�

Cluster of 8 Supermicro nodes

� Dual Xeon 3.0 GHz processors

� 512 KB L2 Cache, PCI-X 64bit 133 MHz bus

� InfiniHost SDK version 3.0.1

� Physical memory 1GB DDR-SDRAM memory

� Experiments conducted

�

Latency, Bandwidth with vector datatype

�

Collective latency (MPI_Alltoall)

�

CPU overhead tests

�

Impact of layout cache

Vector Datatype Test
A vector (multiple columns in a 64x4096 integer array) test

MPI Level Vector Latency

0

100

200

300

400

500

600

700

800

900

2k 4k 8k 16k 32k 64k 128k 256k 512k

Message size(bytes)
L

at
en

cy
 (u

se
c)

SGRS-128

Multi-W-128

Generic-128

Contiguous

0

300

600

900

1200

1500

1800

2100

2k 4k 8k 16k 32k 64k 128k 256k 512k

Message size (bytes)

L
at

en
cy

 (
u

se
cs

)

SGRS-64

MultiW-64

Contiguous

Generic-64

� SGRS scheme reduces latency by up to 62% as compared to Multi-W

MPI Level Vector Bandwidth

0

100

200

300

400

500

600

700

800

900

2k 4k 8k 16k 32k 64k 128k 256k 512k

Message size(bytes)

B
an

d
w

id
th

 (
M

eg
ab

yt
es

/s
ec

)

SGRS-64

SGRS-128

MultiW-64

MultiW-128

Contiguous

Generic-128

Generic-64

� SGRS scheme gives the best performance

� For large messages we get Bandwidth close to that of contiguous Bandwidth

0

10

20

30

40

50

60

2k 4k 8k 16k 32k 64k 128k 256k 512k

Message size(bytes)

C
P

U
 o

ve
rh

ea
d

(u
se

c)

MultiW-64 segments

MultiW-128 segments

SGRS-64 segments

SGRS-128 segments

• The CPU overhead associated with SGRS protocol is relatively low

CPU Overhead

Receiver side OverheadSender side Overhead

0

4

8

12

16

20

2k 4k 8k 16k 32k 64k 128k 256k 512k

Message size(bytes)
C

P
U

 o
ve

rh
ea

d(
us

ec
)

MultiW-64 segments

MultiW-128 segments

SGRS-64 segments

SGRS-128 segments

MPI_Alltoall Latency

• The Alltoall latency test shows significant improvement for the SGRS approach

0

2000

4000

6000

8000

10000

12000

4k 8k 16k 32k 64k 128k 256k 512k

Message size(bytes)

L
at

en
cy

 (
u

se
c)

Multi-W 64

Multi-W-128

SGRS-64

SGRS-128

Synthetic Benchmark to Measure Impact of
Layout Caching

� Need to transfer the two
diagonals of a square matrix.

� Diagonal elements are actually
blocks.

� Need significant layout size to
describe it

0

5

10

15

20

25

30

500 750 1000 1250 1500 1750 2000

Num of blocks

P
er

ce
n
ta

g
e

o
f
O

ve
rh

ea
d

blocksize:4bytes

blocksize:8bytes

blocksize:16bytes

Effect of Layout Cache

� Layout cache shows benefits for certain scenarios

� Layout itself is contiguous as compared to the data that it describes

Presentation Layout

� Introduction
� Background and Existing approaches
� Motivation for new Scatter/Gather (SGRS)

approach
� Design and implementation issues
� Performance Evaluation
� Conclusions and Future work

Conclusions and Future Work

� Provided a new zero-copy scheme for datatype
communication over InfiniBand

� The new scheme outperforms the existing schemes

�

Latency can be improved by up to 62%

�

Bandwidth can be increased by up to 400%

�

Collective communication like Alltoall can derive potential
benefits

�

Layout cache is shown to be beneficial for some scenarios

� Future Work

�

Evaluate the effectiveness of this scheme at application level

�

Provide a comprehensive solution that internally uses multiple
schemes to achieve best performance

��� � � � � � ��� �� � �	
 � ����
 � �	 � �� � � �

 � �

�

� � �� � � �	 ��� � � ��� � � � ��� �
	
 �� � ���

� �
 �� � � 	 � � � !"� �
�
 �� # $	 � � �	
� �%

& � � ' � � � (
	
 �) � �� � � � �
 %

Thank You!

NBC Home Page

BACKUP SLIDES

Vapi Level Bandwidth Comparison
SGRS vs. Multi-W

• SGRS scheme consistently outperforms the Multi-W

0

100

200

300

400

500

600

700

800

900

1000

2k 4k 8k 16k 32k 64k 128k 256k 512k

Message size (bytes)

B
an

d
w

id
th

 (
M

eg
a

b
yt

es
/s

ec
)

Multi-W-Bw

SGRS-Bw

Effect of degree of non-contiguity

• SGRS scheme fares better with increased non-contiguity

500

550

600

650

700

750

800

850

900

4 8 16 32 64

Num of Blocks

B
an

d
w

id
th

 (
M

eg
ab

yt
es

/s
ec

)

Multi-W-128k

Multi-W-256k

Multi-W-512k

SGRS-128k

SGRS-256k

SGRS-512k

