
Enhancing Checkpoint Performance

with Staging IO & SSD

Xiangyong Ouyang

Sonya Marcarelli

Dhabaleswar K. Panda

Department of Computer Science & Engineering

The Ohio State University

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Design a High-Performance Parallel

Storage for Checkpoint

• Performance Evaluation

• Conclusions and Future Work

Motivation
• Mean-time-between-failures (MTBF) is getting smaller

as clusters continue to grow in size
– Fault-Tolerance is becoming imperative in modern clusters

– Checkpoint/Restart is becoming increasingly important

• Existing Checkpoint/Restart mechanisms don’t scale
well with increasing job size
– Multiple streams intersperse their concurrent writes to a

shared storage media

– A low utilization of the raw throughput of the underlying
storage system

• High performance storage devices (SSDs) are
penetrating into HPC storage
– High bandwidth, Random-accessibility, Power-efficiency

– Can it help in a checkpoint storage system?

Job Launcher

Ckpt Rqst
Execution

Checkpoint

Execution

Checkpoint

Execution

Execution

Checkpoint

Execution

Checkpoint

Execution

Ckpt Rqst

Compute Node Compute Node
Start application

Phase 1: Coordinate to

reach a consistent

global state
•Drain in-flight messages

•Tear down connections

Phase 2: Use the
checkpoint library
(BLCR) to checkpoint
the individual processes

Phase 3: Re-establish
connections between the
processes, and continue
execution

A Typical Checkpoint Cycle

• Phase 2 involves writing a
process’ context and memory
contents to a checkpoint file

• Usually this phase dominates
the total time to do a checkpoint

• Previous work on Write-
Aggregation to improve ckpt to
local file system (ICPP 09,
HiPC 09)

• How to improve ckpt to parallel
storage system?

Phase 2 of Checkpointing

[X. Ouyang, K. Gopalakrishnan, T. Gangadharappa and D. K. Panda, Fast Checkpointing by Write

Aggregation with Dynamic Buffer and Interleaving on Multicore Architecture, HiPC ’09]

[X. Ouyang, K. Gopalakrishnan and D. K. Panda, Accelerating Checkpoint Operation by Node-

Level Write Aggregation on Multicore Systems, ICPP ’09]

http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/hipc09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/hipc09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/hipc09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/hipc09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/hipc09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/hipc09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/hipc09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/hipc09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/ouyang-icpp09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/ouyang-icpp09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/ouyang-icpp09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/ouyang-icpp09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/ouyang-icpp09.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2009/ouyang-icpp09.pdf

Problem Statement

• What’s the typical checkpoint data writing

pattern of an MPI application using BLCR?

• How to enhance checkpoint writing

performance on Parallel Storage System?

– Write-Aggregation and Staging I/O

• What are the potentials to apply SSDs into

a checkpoint storage system?

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Design a High-Performance Parallel

Storage for Checkpoint

• Performance Evaluation

• Conclusions and Future Work

• High Performance MPI Library for InfiniBand,

10GigE/iWARP and RDMAoE

– MVAPICH (MPI-1) and MVAPICH2 (MPI-2)

– Used by more than 1,100 organizations in 56 countries

– More than 39,000 downloads from OSU site directly

– Empowering many TOP500 clusters

• Tianhe-1: 5th 71,680-cores in China (in Nov. 2009)

• Ranger: 9th 62,976-core at TACC (in Nov. 2009)

– Available with software stacks of many IB, 10GE and server vendors

including Open Fabrics Enterprise Distribution (OFED)

– Supports system-level Checkpoint/Restart with BLCR(Berkeley Lab’s

checkpoint/Restart Library)

– http://mvapich.cse.ohio-state.edu/

MVAPICH/MVAPICH2 Software

8

Profiling Configuration
• Intel Clovertown cluster

– Dual-socket Quad core Xeon processors, 2.33GHz

– nodes connected by InfiniBand DDR

– Linux 2.6.18

• NAS Parallel Benchmark suite version 3.2.1
– Application LU/BT, Class C, 64 processes

– On 8 compute nodes

– Each process writes checkpoint data to a separate file on a local ext3 file
system

• MVAPICH2 with Checkpoint/Restart enabled
– BLCR 0.8.0 extended to provide profiling information

LU.C.64 BT.C.64

Checkpoint file size (MB) per process 23.0 40.0

Checkpoint data per node (MB) 184.0 320.0

Total Checkpoint Data (MB) 1472 2560

VFS writes per process 975 1057

Total VFS writes per node 7800 8456

Checkpointing Profiling(LU.C.64): to local ext3

•60% of writes < 4KB,

•contribute 1.5% of total data,

•consume 0.2% of total write

time

•0.8% of writes > 512KB

•contribute 79% of all data

•consume 35% of total write time

•38% of all writes

•contribute 20% of all data

•consume 65 % of all time

150+ seeks/s

Avg 30 MB/s

1200+ seeks/s

Checkpointing Profiling (BT.C.64): to local ext3

Disk raw bandwidth

= 60MB/s

•Multiple write streams

intersperse their

concurrent writes to

a shared storage media

 A lot of disk head seeks

•Use “blktrace” to collect

all block layer IO tracing

Checkpoint Overhead

Application execution time

w/o checkpoints (ext3 / PVFS 2.8.1)

16.1% 24.3%

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Design a High-Performance Parallel

Storage for Checkpoint

• Performance Evaluation

• Conclusions and Future Work

Basic Design Strategy (1)

Buffer Pool

•Aggregation IO at each compute node

Compute nodes Compute nodes

Parallel Filesystem

Buffer Pool

Storage Nodes

Basic Design Strategy (2)

Buffer Pool

•Aggregation IO at each compute node

•Staging IO pool at both sides

•Applying SSD at storage nodes

Compute nodes Compute nodes

Parallel Filesystem

Buffer Pool

Storage Nodes

Buffer PoolBuffer Pool

Staging IO

Enhance Checkpoint Writing with Staging IO

MPI

Process

BLCR

Buffer Manager

MPI

Process

BLCR

Request Queue

IO Thread Pool

Buffer Manager

Buffer Pool

Buffer Pool

RDMA Read

IO Request

Compute Node

Storage Node

(ckpt-id, process-id, logical-offset, size,

storage-ID, physical-offset)

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Design a High-Performance Parallel

Storage for Checkpoint

• Performance Evaluation

• Conclusions and Future Work

Experiments setup
• System setup

– Intel Clovertown cluster
• Dual-socket Quad core Xeon processors, 2.33GHz

• nodes connected by InfiniBand DDR

• Linux 2.6.18

– NAS parallel Benchmark suite version 3.2.1
• LU/BT Class C, 64 processes, 8 processes/node

• 8 nodes are used

– MVAPICH2 Checkpoint/Restart framework,
• BLCR 0.8.0 extended with IO Aggregation

– Storage Devices

Write BW(MB/s) Read BW(MB/s)

Hard Drive (250GB) 55 64

SSD1 (64GB) 179 202

SSD2 (80GB) 600 700

Aggregated Write Bandwidth

•Staging IO:

4 Storage Nodes, Buffer-pool=64MB, chunk=4MB

•PVFS 2.8.1

4 DS, stripe=1MB, bmi_mod=IB

“First Write” issue: file metadata updates affects

sequential write.

See:

http://www.bowulf-underground.org/pipermail/pvfs2-

users/2009-April/002770.htmle

SSD1 improves write-bw by 76%

Aggregated Write Bandwidth (Direct-IO)

Disk: 4 storage nodes

SSD1: 4 storage nodes

SSD2: 2 storage nodes

•Buffer-pool=64MB, chunk=4MB

Write

BW(MB/s)

Read

BW(MB/s)

Hard Drive (250GB) 55 64

SSD1 (64GB) 179 202

SSD2 (80GB) 600 700

287%

546%
67%

SSD2: 97% of raw bw

SSD1: 97% of raw bw

Checkpoint Time: LU.C.64 (8 client nodes)

•PVFS2

4 DS, stripe=1MB, bmi_mod=IB

•Staging IO:

4 Storage Nodes, Buffer-pool=64MB, chunk=4MB

LU.C.64

Total Checkpoint Data (MB) 1472

VFS writes per node 7800

16x (PVFS2)

3.7x (ext3)

18.7x (PVFS2)

4.4x (ext3)

7.3x (PVFS2)

2.0x (ext3)

7.4x (PVFS2)

2.0x (ext3)

Phase 2:

Ckpt time: 20.1s

4.68 s
1.25 s 1.07 s

Checkpoint Time: BT.C.64 (8 client nodes)

•PVFS2

4 DS, stripe=1MB, bmi_mod=IB

•Staging IO:

4 Storage Nodes, Buffer-pool=64MB, chunk=4MB

16.9x (PVFS2)

4.3x (ext3)

BT.C.64

Total Checkpoint Data (MB) 2560

VFS writes per node 8456

34.1 s

8.67 s
2.01 s 1.43 s

23.8x (PVFS2)

6.1x (ext3)

9.2x (PVFS2)

2.5x (ext3)

10.8x (PVFS2)

2.9x (ext3)

Phase 2:

Ckpt time:

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Design a High-Performance Parallel

Storage for Checkpoint

• Performance Evaluation

• Conclusions and Future Work

Conclusions

• Staging IO significantly improves Checkpoint

Writing performance to parallel storage system

– IO Aggregation improves write bandwidth at client-

side

– Staging IO reduces contentions at storage nodes

• SSD can boost aggregated IO throughput

in parallel storage systems

Future Work

• Staging IO for Read

• Integrate the IO Aggregation and Staging IO into

a stackable filesystem

• Apply Staging IO to Process-Migration design

Software Distribution

• Current MVAPICH2 1.4 supports basic

Checkpoint-Restart

– Downloadable from http://mvapich.cse.ohio-state.edu/

• The proposed Staging IO design will be

available in upcoming MVAPICH2 releases

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

Thank you!

{ouyangx, smarcare, panda}

@cse.ohio-state.edu

Network-Based Computing Laboratory

http://mvapich.cse.ohio-state.edu

Reconstruct Checkpoint Files

• The storage node maintains metadata for each buffer-

chunk

– (ckpt-id, Process-id, logical-offset, size, storage-node-ID,

physical-offset)

• Compute node reconstructs checkpoint files during

restart

– Collect metadata from all Storage Nodes

– Request data-chunks from storage nodes

• Given (Storage-Node-ID, Physical-offset, size)

– Concatenate all chunks belonging to a process into one file

• All chunks with same (ckpt-id, process-id)

Checkpoint Overhead

Application execution time

w/o checkpoints
Decomposition of

Checkpoint Time

16.1% 24.3%

