— NETWORK-BASED F
COMPUTING
LABORATORY

Accelerating Checkpoint Operation by
Node-Level Write Aggregation on -
Multicore Systems

- Xiangyong Ouyang, Karthik Gopalakrishnan
‘ and Dhabaleswar K. (DK) Panda

Department of Computer Science &
Engineering

19_~ . The Ohio State University
B L —_—

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* Motivation and Introduction

* Checkpoint Profiling and Analysis
* Write-Aggregation Design

* Performance Evaluation

* Conclusions and Future Work

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

Motivation

* Mean-time-between-failures (MTBF) is getting smaller as
clusters continue to grow in size
— Checkpoint/Restart is becoming increasingly important

* Multi-core architectures are gaining momentum
— Multiple processes on a same node checkpoint simultaneously

* Existing Checkpoint/Restart mechanisms do’t scale well
with increasing job size
— Multiple streams intersperse their concurrent writes

— Alow utilization of the raw throughput of the underlying file
system

OHIO
_

Checkpointing a Parallel MPI

Application

* Berkeley Lab’s Checkpoint/Restart (BLCR) solution is
used by many MPI implementations
— MVAPICHZ2, OpenMPI, LAM/MPI

* Checkpointing a parallel MPI job includes 3 phases
— Phase 1. Suspend communication between all processes

— Phase 2: Use the checkpoint library (BLCR) to checkpoint the
individual processes

— Phase 3: Re-establish connections between the processes and
continue execution

OHIO
_

Phase 2 of Checkpoint Restart

* Phase 2 involves writing a process’ context and
memory contents to a checkpoint file

* Usually this phase dominates the total time to
do a checkpoint

* File system performance depends on data I/O
pattern

— Writing one large chunk is more efficient than multiple
writes of smaller size

OHIO
_

Problem Statement

* What's the checkpoint data writing pattern
of a typical MPI application using BLCR?

* Can we optimize the data writing path to
increase the Checkpoint performance?

* What are the costs of the optimizations?

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* Checkpoint Profiling and Analysis
* Write-Aggregation Design

* Performance Evaluation

* Conclusions and Future Work

OHIO
_

MVAPICH/MVAPICHZ2 Software

* High Performance MPI Library for InfiniBand and
10GE

MVAPICH (MPI-1) and MVAPICH2 (MPI-2)
Used by more than 975 organizations in 51 countries
More than 32,000 downloads from OSU site directly

Empowering many TOP500 clusters
* 8" ranked 62,976-core cluster (Ranger) at TACC

Available with software stacks of many IB, 10GE and server vendors
including Open Fabrics Enterprise Distribution (OFED)

http://mvapich.cse.ohio-state.edu/

8

OHIO
_

Initial Profiling
* MVAPICHZ2 Checkpoint/Restart framework

— BLCR was extended to provide profiling information

* |Intel Clovertown cluster
— Dual-socket Quad core Xeon processors, 2.33GHz

— 8 processor per node, nodes connected by InfiniBand
DDR

— Linux 2.6.18

* NAS parallel Benchmark suite version 3.2.1
— Class C, 64 processes
— Each process on one processor

— Each process writes checkpoint data to a separate file
on a local ext3 file system

OHIO
_

Profiled Results

Basic checkpoint writing information
(class C, 64 processes, 8 processes/node)

LU BT SP CcG
Time for one check- 7.6 11.3 10.3 7.1
point(seconds)
Total data size(MB) per | 184.0 | 320.0 | 316.0 | 163.2
node

Number of VFS wrnite 975 1057 1367 820
per process
Total number of VES 7800 8456 | 10936 6560
writes per node

OHIO
_

Sizes of File Write Operations

* The profiling revealed some characteristics of
checkpoint writing

— Most of file writes are associated with small data size

* 60% of writes <4KB, contribute 1.5% of total data,
consume 0.2% of total write time

— Afew large writes
* 0.8% of writes > 512KB, contribute 79% of all data,
consume 35% of total write time

— Some medium writes in between
* 38% of all writes, contribute 20% of all data,
consume 65 % of all time

OHIO
_

Checkpoint Writing Profile for
LU.C.64

% of Writes | % of Data | % of Time
0-64 50.86 0.04 0.17
64-256 0.61 0.00 0.00
256-1K 0.25 0.01 0.00
1K-4K 9.46 1.53 0.01
4K-16K 36.49 11.36 44.66
16K-64K 0.74 0.77 6.55
64K-256K 0.49 3.79 11.80
256K-512K 0.25 3.58 1.75
S512K-1M 0.61 17.72 14.72
> 1M 0.25 61.21 20.35

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* Write-Aggregation Design
 Performance Evaluation
* Conclusions and Future Work

OHIO
_

Methodology

Classify checkpoint writes into 3 categories

Small writes

— Frequent calls of vfs_write() with small size cause heavy
overhead

— Solution: Aggregate small writes in a local buffer

* Large writes
— Memory copy cost becomes close to file write cost
— Has to consider memory usage
— Solution: Flush large writes directly to checkpoint files

* Medium writes
— Depends on memory-copy cost vs. file write cost

— Solution: Search a threshold
* Size <= threshold: Aggregate in local buffer

OIEI]O * Size > threshold: Flush directly to checkpoint files
is“ﬁ*

Memory-copy vs. File write

* Without aggregation, checkpoint data write overhead
comes from
— Vfs_write to move data to page cache
— Move data from page cache to storage device

* With aggregation, checkpoint data write overhead comes
from
— Memory copy to local buffer
— Vfs_write to move data from local buffer to page cache
— Move data from page cache to storage device

OHIO
_

Latency (us)

OHIO
_

Memory-copy vs. File wr

NETWORK-BASED
COMPUTING
ABORATORY

Performance

0 'VFS write ——

60 Memory copy - > o

50

40 |

30

20 |

10 T tt———+
O>HHHHHH€9H(—X‘Q‘>(X

4 16 64 256 1k 4k

size of data

16k

Latency (us)

4000

3500
3000
2500
2000 r
1500
1000
500

memory copy -

VFS Write' —— |
> S -

™

256k
size of data

* Memory-copy cost very low at small size
* Memory-copy cost becomes close to vfs_write at certain size

* A threshold should be determined by

* Relative cost
* Total Memory usage

Write-Aggregation Scheme

* Each node has one IO process (IOP), many
application processes (AP)

* Each AP has a local buffer (for small writes
aggregation)

* Alarge buffer shared by all APs (for medium
writes aggregation)

OHIO
_

Write-Aggregation Scheme

* Small writes (< 512B)
— AP puts it to local buffer

* Medium writes (< threshold)
— AP grabs a free chunk from shared buffer, copy to the chunk

* All writes >= threshold
— AP directly flushes it to checkpoint file

* |OP periodically flushes data in shared buffer to a data
file

* Experiment indicates 64KB to be a good threshold for
current generation platforms

OHIO
_

Write-Aggregation Design

P3
data ready to be flushed,| . data being written __ Free buffer ,
W APO APl Y AP1 AP2 W
NN NN PPy yryyd LSS0 0000
R A
RN ISP I Py rsd PP e o
R A A
shared—memory (for medium write) - $7'4 *: CerUIar buffer
I0P P \
7 e \
medium medium,” medinm
e L 1&
small{ - - smallf -
- - - -
Local buffer Local buffer Local buffer
Large Large Large
data file data file data

OHIO
SIATE

e [
LABORATORY
Restart

* Each write is encapsulated into a chunk

Process Rank Data size Original Offset Data

* At restart,
* Unpack data from the data files
* Rebuild checkpoint file for each AP
* AP calls BLCR library to restart

* Restarts are infrequent, thus slight overhead is OK

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* Performance Evaluation
* Conclusions and Future Work

OHIO
SIATE

Experiments setup

* System setup

— Intel Clovertown cluster
* Dual-socket Quad core Xeon processors, 2.33GHz

* 8 processor per node, nodes connected by InfiniBand
* Linux 2.6.18

— NAS parallel Benchmark suite version 3.2.1
* LU/BT/CG, Class C, 64 processes
* Each process on one processor
* 8 nodes are used

* Each process writes checkpoint data to a separate file on a
local ext3 file system

— MVAPICHZ2 Checkpoint/Restart framework, with
BLCR 0.8.0 extended with Write-Aggregation Design

OHIO
_

NETWORK-BASED

COMPUTING
- B . LABORATORY
Time Cost Decomposition into
Phases
Phase | Phase | Phase | Improvement in
1 2 3 phase 2 (%)
LU-orig 33 5418 | 2150
LU th=16K 59 4612 | 2169 | 14.88
LU th=64K 67 4389 | 2132 | 18.99

LU th=256K 74 3474 | 2047 | 35.88
LU th=512K 64 3081 | 2115 | 43.13

BT-orig 34 9136 | 2141
BT th=16K 34 8142 | 2034 | 10.88
BT th=64K 48 7725 | 2159 | 15.44

BT th=256K 48 7084 | 2137 | 2246
BT th=512K 34 5463 | 2142 | 40.20

CG-orig 40 4987 | 2103
CG th=16K 42 4344 | 2073 12.89
CG th=64K 43 4055 | 2026 | 18.69

CG th=256K 4 3178 | 2124 | 36.27
CG th=512K 45 2959 | 2168 | 40.67

* Phase 1: Suspend communication * Phase 2: Checkpoint individual process

* Phase 3: Re-establish connections (Time in milli-seconds)

OHIO
_

Overall Checkpoint Time with Write-

Aggregation

12,000 B Original BLCR
[] thresh=16K
B thresh=64K
10,000 @ thresh=256K-----
[] thresh=512K

At Threshold=16K,64K,
256K,512K, reductions of
checkpoint time are:
8000 -~
* LU.C.64: 10.0%, 13.3%,
26.4%, 30.8% 6000 -4 M
* BT.C.64: 9.7%, 12.2%,
18.0%, 32.5% 4000 -
* CG.C.64: 9.4%, 14.1%,

25.0%, 27.5% 2000 -

Time of One Checkpoint (milli-seconds)

0

LU.C.64 BT.C.64 CG.C.64

OHIO
_

Memory Usage at Different
Threshold

Memory Usage in MB

16 KB | 64 KB | 256 KB | 512 KB
LU.C.64 42.6 50.0 78.2 31.1
BT1.C.64 33.6 44 8 81.2 160.5
CG.C.64 39.2 48.8 64.8 76.0

OHIO
_

Software Distribution

* Current MVAPICH2 1.4 supports basic Checkpoint-
Restart

Downloadable from http://mvapich.cse.ohio-state.edu

* The proposed aggregation design will be available in
MVAPICH2 1.5

OHIO
_

http://mvapich.cse.ohio-state.edu/

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* Conclusions and Future Work

OHIO
SIATE

Conclusions

* Write-Aggregation can improve Checkpoint
efficiency in multi-core systems

— Significantly reduces the cost of checkpoint write

* Improvement depends on varied threshold
values

— Larger threshold yields better improvements, but
requires extra amount of memory usage

OHIO
_

Future Work

* Larger scale test on different multi-core
platforms

— Study the effectiveness of Write-Aggregation on
platforms with 16/24-cores

— Search the optimal threshold values at given buffer
size, with different memory bandwidth

* Inter-node Write Aggregation

* Usage of emerging Solid State Drive (SSD) to
accelerate Checkpoint-Restart

OHIO
_

Thank you !

|

| ==— MIVAPICH

http://mvapich.cse.ohio-state.edu

< J

{ouyangx, gopalakk, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

OHIO
_

	Accelerating Checkpoint Operation by Node-Level Write Aggregation on Multicore Systems
	Outline
	Motivation
	Checkpointing a Parallel MPI Application
	Slide 5
	Problem Statement
	Slide 7
	MVAPICH/MVAPICH2 Software
	Initial Profiling
	Profiled Results
	Sizes of File Write Operations
	Checkpoint Writing Profile for LU.C.64
	Slide 13
	Methodology
	Memory-copy vs. File write
	Memory-copy vs. File write Performance
	Write-Aggregation Scheme
	Write-Aggregation Scheme
	Write-Aggregation Design
	Restart
	Slide 21
	Experiments setup
	Time Cost Decomposition into 3 Phases
	Overall Checkpoint Time with Write-Aggregation
	Memory Usage at Different Threshold
	Software Distribution
	Slide 27
	Conclusions
	Future Work
	Thank you !

