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Cluster Computing

Parallel computing architecture
- Evolving into tens of thousands of processors
- More high performance interconnects

MPI and MPI-2

- The de facto industry standard

- MPI-2 extends MPI with dynamic process management, IO,
one-side communication, more collectives, language bindings, etc



Open MPI

A new implementation of MPI-2

Component-based dynamic architecture
Dynamic, fault tolerant process management

Concurrent communication over multiple
networks

Dual-mode communication progress
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Open MPI Communication

* First implemented over TCP/IP

- Able to aggregate messages over multiple NICs
- Delivers comparable performance

-+ Communication stacks on top of two layers:

- Point-to-point message management layer (PML)
* Message fragmentation and assembly
* Ordered reliable delivery
* Scheduling and striping
- Point-to-point message transport layer (PTL)
- Network specific, managing network status and communication
- Presents communication support to PML



Communication Architecture _
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Flow of Open MPI Communication
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PML Requirements to PTL
Communication Support

Fault-tolerance

- Dynamic joining and disjoining of PTLs

- Communication state monitoring and synchronization
Concurrent communication

- PML provides abstraction o handle semantics differences
between networks

Communication progress

- Non-blocking polling-mode and thread-based asynchronous
mode



Overview of Quadrics/Elan4

* Quadrics Network: QsNet!!
- Tport (MPI oriented) and SHMEM libraries

- Static communication model between processes

- Hardware-based collectives
- broadcast, barrier

+ Communication mechanisms
- Queue-based model
+ for messages up to 2KB
- Remote DMA
* Arbitrary size messages. RDMA write/read

- Event mechanism
» Completion notification



Objectives .

- Support MPI-2 dynamic processes over Quadrics

* Incorporate Quadrics RDMA capabilities
» Support dual-mode communication progress
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Design Challenges

* Dynamic MPI-2 process model

- Communication Initialization and finalization

* Integrating RDMA Capabilities

- Memory semantics compatibility
- Protocol mapping

- Communication Progress
- How to support asynchronous progress?



Dynamic MPI-2 Process Pool -

- Communication Initialization and
finalization
- Break the coupling of MPI Rank and VPID

- Remove the reliance on Global virtual
memory

- Allocate a capability with more contexts

- Support dynamic and synchronized joining
and disjoining of processes



Integrating RDMA Capabilities

Memory Descriptor
- Right now, an expansion with Elan4_Addr

Communication and Completion notification
- Using RDMA write/read
- FIN with RDMA write
- FIN_ACK with RDMA read
Optimization
- Chains the control message with RDMA
- Provides fast, automatic transmission of control messages
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RDMA Read
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Communication Progress

Non-blocking Polling Mode

- PML iteratively checks all outstanding send
and receive queues

Thread-base asynchronous communication

- Two thread based Communication Progress
* One for the local completion of DMA descriptors
* Another for the completion of incoming QDMA messages
- One thread-based communication progress
- QDMA messages + local DMA completion to a combined queue




Challenges in Asynchronous -
Progress with RDMA

* RDMA completion can only be detected with
a separated event.

- The event mechanism

- Supports the completion of N DMA operations
with a count N

- Cannot have one thread per RDMA descriptor



Chained Event

+ Is it possible to use events with a count N for
shared completion?
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Possible Race Condition? .
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Chained Event + QDMA .
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Performance Evaluation

-+ Experimental Testbed:
- A Quadrics cluster: QS-8A switch, Elan4 cards
- Dual-SMP Intel Xeon 3.06Hz Processors
- PCI-X 133MHz/64bit
- b33MHz FSB
- 16B SDRAM memory

- Experimental Results
- Performance with different numbers of completion queues
- Communication cost in different layers
- Threading cost

- Overall performance



Basic Performance with

RDMA Read and Werite
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* RDMA read performs better than RDMA write
* Rendezvous Message without inline data improves performance
- memcpy() is replacing the sophisticated datatype engine for



.Per'for'mance with Chained DMA

and Completion Queues
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* Chain DMA provides little performance improvement

- ~lus penalty for shared completion queue
* No performance difference with one-Queue or two Queue
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Measuring Communication Cost .
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Communication Cost in

Different Layers
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o PML has about 0.5us overhead

o Compared fo QDMA, PTL/Elan4 has virtually no overhead
for O-byte messages.



Thread-Based Progress

Performance Analysis of Thread-based Progression

(in us)
Mesg Length Basic | Interrupt | One-Thread | Two-Threads
RDMA-Read | 387 | 14.70 22.76 27.50
(48)
RDMA-Read
15.2 27.1 2.80 47.72
(4KB) 5.25 7.16 3

o Open MPT w/ PTL/Elan4 thread-based progression has
18us overhead

o ~lus due to shared completion queue
o ~9us due to interrupts, ~8us due to threading




Overall Performance
- Latency
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Open MPI w/ PTL/Elan4 achieves similar latency for large
messages, compared to MPICH-QsNet

For small messages, Open MPI w/ PTL/Elan4 has higher
cost due to its host-based receive queue and tag matching




Overall Performance

- Bandw

Bandwidth (MB/sec)

500
—— MPICH-QsNet
400 + PTL/Elan4-RDMA-Read
300 | 7 PTL/Elan4-RDMA-Write /‘
200 -
100 -
o A—A—Anégé"—"f‘ru T T T
O = N < 00 O N < 0 O
- M O N IO
- N IO
Mesg Size (Bytes)

1K

~\

idth

3 —— MPICH-QsNet
3 1200 71 p7y/Elan4-RDMA-Read
@ 1000 | —+ PTL/Elan4-RDMA-Write B
é 800 /A';‘/ e |
: ///
g
o
% 400‘A
S 200 -
(a1)
M M M ¥ ¥ ¥ ¥ M M S
N & 0 O N F 0 © N S
- N O N I
- N 10

Mesg Size (Bytes)

Open MPI w/ PTL/Elan4 has slightly lower bandwith
compared to MPICH-QsNet for small and large messages

For medium messages, Open MPT w/ PTL/Elan4 has
significant bandwidth because it does no pipelining
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Conclusions

+ Designed and implemented Open MPI over
Quadrics/Elan4

* Integrated Quadrics RDMA capabilities

* Provided dual-mode communication progress

» Support dynamic MPI-2 process model over Quadrics
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