Design and Implementation of
Open MPI over Quadrics/Elan4

W. Yu, T.S. Woodall*,
R.L. 6raham* and D.K. Panda

Dept of Computer Sci. and Engg.
The Ohio State University
{yuw,panda}@cse.ohio-state.edu

Los Alamos National Laboratory*
Computer and Computation Science.

[{twoodall,rigraham}@Ilanl.gov

Presentation Outline

+ Communication Requirements and Objectives
- Design Challenges and Implementation

- Performance Evaluation

- Conclusions

Cluster Computing

Parallel computing architecture
- Evolving into tens of thousands of processors
- More high performance interconnects

MPI and MPI-2

- The de facto industry standard

- MPI-2 extends MPI with dynamic process management, IO,
one-side communication, more collectives, language bindings, etc

Open MPI

A new implementation of MPI-2

Component-based dynamic architecture
Dynamic, fault tolerant process management

Concurrent communication over multiple
networks

Dual-mode communication progress

Presentation Outline

- Motivation

» Design Challenges and Implementation

- Performance Evaluation

- Conclusions

Open MPI Communication

* First implemented over TCP/IP

- Able to aggregate messages over multiple NICs
- Delivers comparable performance

-+ Communication stacks on top of two layers:

- Point-to-point message management layer (PML)
* Message fragmentation and assembly
* Ordered reliable delivery
* Scheduling and striping
- Point-to-point message transport layer (PTL)
- Network specific, managing network status and communication
- Presents communication support to PML

Communication Architecture _

‘ collective ‘

Point-to-point

| PML |

| Base |~ | PTL-TcP || PTL-Elan4 |

‘ Ethernet H Quadrics ‘

Flow of Open MPI Communication

PML PTL PTL PML
schedule
data/rendezvous
match
—p
Ack Lma’rc@,
update &
—>
short -- «SChedule update --short
=» Send
updat —»| update
ot Send —> —P
update ~—>
complete P update complete

PML Requirements to PTL
Communication Support

Fault-tolerance

- Dynamic joining and disjoining of PTLs

- Communication state monitoring and synchronization
Concurrent communication

- PML provides abstraction o handle semantics differences
between networks

Communication progress

- Non-blocking polling-mode and thread-based asynchronous
mode

Overview of Quadrics/Elan4

* Quadrics Network: QsNet!!
- Tport (MPI oriented) and SHMEM libraries

- Static communication model between processes

- Hardware-based collectives
- broadcast, barrier

+ Communication mechanisms
- Queue-based model
+ for messages up to 2KB
- Remote DMA
* Arbitrary size messages. RDMA write/read

- Event mechanism
» Completion notification

Objectives .

- Support MPI-2 dynamic processes over Quadrics

* Incorporate Quadrics RDMA capabilities
» Support dual-mode communication progress

Presentation Outline

- Motivation

+ Communication Requirements and Objectives

- Performance Evaluation

- Conclusions

Design Challenges

* Dynamic MPI-2 process model

- Communication Initialization and finalization

* Integrating RDMA Capabilities

- Memory semantics compatibility
- Protocol mapping

- Communication Progress
- How to support asynchronous progress?

Dynamic MPI-2 Process Pool -

- Communication Initialization and
finalization
- Break the coupling of MPI Rank and VPID

- Remove the reliance on Global virtual
memory

- Allocate a capability with more contexts

- Support dynamic and synchronized joining
and disjoining of processes

Integrating RDMA Capabilities

Memory Descriptor
- Right now, an expansion with Elan4_Addr

Communication and Completion notification
- Using RDMA write/read
- FIN with RDMA write
- FIN_ACK with RDMA read
Optimization
- Chains the control message with RDMA
- Provides fast, automatic transmission of control messages

RDMA Whrite

PML

PTL

update &

PTL

schedule
Data/rendezvous

—>]
Ack L’ma’rch@/

match

PML

schedule

~>

r update
complete

RDMA Whrite

FIN

update

—>

update

—>

complete

RDMA Read

PML PTL PTL PML
schedule
J Data/rendezvous
match
L’ma’rch@;’
update >

l RDMA Read

4 FINLAck |update —>
comple‘rer’ update |

complete

Communication Progress

Non-blocking Polling Mode

- PML iteratively checks all outstanding send
and receive queues

Thread-base asynchronous communication

- Two thread based Communication Progress
* One for the local completion of DMA descriptors
* Another for the completion of incoming QDMA messages
- One thread-based communication progress
- QDMA messages + local DMA completion to a combined queue

Challenges in Asynchronous -
Progress with RDMA

* RDMA completion can only be detected with
a separated event.

- The event mechanism

- Supports the completion of N DMA operations
with a count N

- Cannot have one thread per RDMA descriptor

Chained Event

+ Is it possible to use events with a count N for
shared completion?

host_event (_) () () O

elan_event . . .

- |
Message 7 ? o _ ﬁ o S

(a) Separated Events (b) Event with Count N

Possible Race Condition? .

host_event (] {)

i il - _3
elan_event \ T

Message __* f ~ A T h N

Count=0 Reset

(¢) A Count 1 Event Fired (d) Racing condition

Chained Event + QDMA .

Queue Slots Queue Event

(D

Message ™ l e A
RDMA

chain_event . elan_event

<1

Presentation Outline

- Motivation

»+ Communication Requirements and Objectives
» Design Challenges and Implementation

- Conclusions

Performance Evaluation

-+ Experimental Testbed:
- A Quadrics cluster: QS-8A switch, Elan4 cards
- Dual-SMP Intel Xeon 3.06Hz Processors
- PCI-X 133MHz/64bit
- b33MHz FSB
- 16B SDRAM memory

- Experimental Results
- Performance with different numbers of completion queues
- Communication cost in different layers
- Threading cost

- Overall performance

Basic Performance with

RDMA Read and Werite

2
"y 6 +§D%A&R§Gﬁ _ 0 —— RDMA-Read
Q 4 ead-NoInline [i -
9 5.5 e Read-DIP o 16 - Read-NoInline
° 5 RDMA-Write '§ *~ Read-DTP
9O =%~ Write-NoInline G RDMA-Write
E 45 - E 12 { ™ Write-NoInline
> > - Write-DTP
Q 4 2
5 S s
-
5 3.5 9
S .
3 T T T T T T T T 4 I I T
512 1024 2048 4096
O U % Dol P Y 9

Mesg Size (Bytes) Mesg Size (Bytes)

* RDMA read performs better than RDMA write
* Rendezvous Message without inline data improves performance
- memcpy() is replacing the sophisticated datatype engine for

.Per'for'mance with Chained DMA

and Completion Queues

35
7 30 - —— RDMA-Read X
§ Read-NoChain
o 25 7)
S —*— One-Queue /
2 20 A /
E Two-Queues A/
> 15 7] ""\‘/-w
(&) /
§ 10 s 3 ‘«—//A‘\;‘A//
S 5 |atetexexmaeie=T

O | | | | | |] |] |] | | |

O 4 16 64 256 1K 4K 16K
Message Size (Bytes)
* Chain DMA provides little performance improvement

- ~lus penalty for shared completion queue
* No performance difference with one-Queue or two Queue

S

Measuring Communication Cost .

Sender Receiver

{‘ b a \PTL ‘ b a \
Network

- L1: PML cost
- L2: PTL latency

Communication Cost in

Different Layers

—~ —— QDMA
N6
o PTL
§ 54 —APML Cost
O _
54
>~3'“
o
@2-
g
= rittttl—r_ﬁ—(‘
OI | | I | | | | | I |
o < o) < o) V]
- O (9) -

N
Mesg Size (Bytes)

o PML has about 0.5us overhead

o Compared fo QDMA, PTL/Elan4 has virtually no overhead
for O-byte messages.

Thread-Based Progress

Performance Analysis of Thread-based Progression

(in us)
Mesg Length Basic | Interrupt | One-Thread | Two-Threads
RDMA-Read | 387 | 14.70 22.76 27.50
(48)
RDMA-Read
15.2 27.1 2.80 47.72
(4KB) 5.25 7.16 3

o Open MPT w/ PTL/Elan4 thread-based progression has
18us overhead

o ~lus due to shared completion queue
o ~9us due to interrupts, ~8us due to threading

Overall Performance
- Latency

Latency (microsecs)

O N H» O O
I

—— MPICH-QsNet
PTL/Elan4-RDMA-Read

4+ PTL/Elan4-RDMA-Write

] A—A—A——A=——p=—A=AT
A
y

A

Ov-w NSO ON
- M

T
¢
O

128 -
256 -

Mesg size (Bytes)

512 -

1K

Latency (microsecs)

1200
—— MPICH-QsNet
1000 -
PTL/Elan4-RDMA-Read
800 7 . pTL/Elan4-RDMA-Write
600 -
400 - /
A
0] ¥=$E*==*-‘—%"l T T T
M M M M M M M M X E
N & 00 O N § 00 O N I
- M O N I
- N IO

Mesg Size (Bytes)

Open MPI w/ PTL/Elan4 achieves similar latency for large
messages, compared to MPICH-QsNet

For small messages, Open MPI w/ PTL/Elan4 has higher
cost due to its host-based receive queue and tag matching

Overall Performance

- Bandw

Bandwidth (MB/sec)

500
—— MPICH-QsNet
400 + PTL/Elan4-RDMA-Read
300 | 7 PTL/Elan4-RDMA-Write /‘
200 -
100 -
o A—A—Anégé"—"f‘ru T T T
O = N < 00 O N < 0 O
- M O N IO
- N IO
Mesg Size (Bytes)

1K

~\

idth

3 —— MPICH-QsNet
3 1200 71 p7y/Elan4-RDMA-Read
@ 1000 | —+ PTL/Elan4-RDMA-Write B
é 800 /A';‘/ e |
: ///
g
o
% 400‘A
S 200 -
(a1)
M M M ¥ ¥ ¥ ¥ M M S
N & 0 O N F 0 © N S
- N O N I
- N 10

Mesg Size (Bytes)

Open MPI w/ PTL/Elan4 has slightly lower bandwith
compared to MPICH-QsNet for small and large messages

For medium messages, Open MPT w/ PTL/Elan4 has
significant bandwidth because it does no pipelining

Presentation Outline

- Motivation

»+ Communication Requirements and Objectives
» Design Challenges and Implementation

- Performance Evaluation

Conclusions

+ Designed and implemented Open MPI over
Quadrics/Elan4

* Integrated Quadrics RDMA capabilities

* Provided dual-mode communication progress

» Support dynamic MPI-2 process model over Quadrics

Web Pointers

O&%ased CO{\%
;.%; & NBC-LAB

Labotatoty

Homepage: http://nowlab.cis.ohio-state.edu

