Reducing Diff Overhead In
Software DSM Systems using

!'_ RDMA Operations in InfiniBand

Ranjit Noronha and Dhabaleswar K. Panda

Department of Computer Science and
Engineering
The Ohio State University

Outline

n /ntroduction and Motivation
= Software DSM
= Modern computer networks
= Design and Implementation
= Diff creation and Issues
= Protocol Examples
= Design Challenges
= Experiments
= Application characteristics
= Results

s Conclusions and Future Work

i Software DSM

= Software DSM (SDSM)
« HLRC/VIA (Rutgers), TreadMarks (Rice)

= Depends on user and software layer

= Depends on communication protocols provided by
the system such as TCP, UDP, etc.

= Degraded performance because of false sharing and
high overhead of communication

= Has scaling problems

i HLRC

= HLRC/VIA (Rutgers)

= Home Based Lazy Release Consistency
Model

= Page Based DSM System
= Internal basic operations

= Page

= Diff

= Lock

HLRC Programming Example

A
Acquire_Lock (L1)
A=X+1 F Time
Release Lock(Ll) — 5
Acquire_Lock (L1)
X=X*2
Release Lock(L1)
eInitial value of X =0
v

*B is home node for page P containing X

i Modern Interconnects

InfiniBand, Myrinet, Quadrics
= Low Latency (InfiniBand 4.8 ps)
= High Bandwidth (InfiniBand 4X upto 10 Gbps)
= Programmable NIC
= User Level Protocols (VAPI, GM, Elan-4)

= Can deliver performance close to that of the underlying
hardware

= RDMA Write/Read, Atomic Operations, Service Levels, Multicast

i SDSM and Modern Networks

DSM applications are communication
Intensive

Latency critical (request messages)
Bandwidth intensive (response messages)

InfiniBand is a high-bandwidth/low-latency
network

Can InfiniBand be exploited to deliver better
performance ?

HLRC and

InfiniBand

Software DSM Reguirements

Barrier/ o Page Signal
. ocks vy
Write fetching | | hangdler J/,lefs
notice ‘ | e
Multicast || Atomic RDMA |IRDMA || Service
operations || Worite Read Level

IBA Features

R. Noronha and D. K. Panda Designing High Performance DSM Systems using
InfiniBand Features. DSM Workshop, in conjunction with 4th IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid 04), April,

2004

Outline

= Introduction and Motivation
= Software DSM
= Modern computer networks

n Design and Implementation
= Diff creation and Issues
= Protocol Examples
= Design Challenges

= Experiments
= Application characteristics
= Results

s Conclusions and Future Work

i Diffing in HLRC

= Each page assigned a home node
= Execution divided into intervals

= Updates sent at the end of intervals in the form of
diffs to the home node

= Create a run-length encoding of the dirty page and
Its clean copy

s Diffs sent to home node

i Diff I1ssues

= Diffs can be fairly large

= Send diffs together
= Improve bandwidth

s Breakdown diffs
= Earlier update

= Which approach is best ?

i Terminology

= Default diff protocol
= Called ORIG

= Sends an individual diff, then waits for an
ACK

= Protocol with packing/pipelining
= Called PIPE

= Can “pack” several diffs together
= Multiple outstanding unacked diffs

i ORIG protocol

= Node A arrives at a synchronization point
= Must send all diffs to home node

= For each page modified
= Compare to twin and create a run-length encoding
= Send to home node B
= Home node applies diff and sends ACK to node A
= Source continues with computing the next diff

ORIG protocol example

DIFF (P1)

PIPE protocol

= Node A arrives at a synchronization point

= Starts computing diffs by comparing dirty pages to their
clean copies

= Creates and copies run-length encoding into a buffer X of
predefined length

= Continues to create diffs and copy them into buffer X until it
IS full

= Sends this to the home node B
= If there are additional buffers available, use them without
waiting for an ACK from B
= Node B applies the diffs and sends an ACK back for
the corresponding buffer

‘L PIPE protocol example

B

DIFF (P1,P2)

DIFF (P3,P4) *

Combined ACK
(P1,P2)

i Design Challenges

s Network Primitives
= Pipeline Depth

s Packed Diff Size

i Network Primitives

= RDMA

= NO need to post a receive descriptor

= Can write directly into destination processes
memory

= Send/Receive
= Need a posted descriptor

= RDMA v/s Send/Receive
= RDMA shows better performance over InfiniBand

i Pipeline Depth

= Number of packed diffs that may be
sent before waiting for an ACK

= Longer pipeline
= hetwork lightly loaded

= Shorter Pipeline
= Network heavily loaded

= Practically depth=2 best
= Can achieve sufficient overlap

i Packed Diff Size

= Larger
« Updates delayed
= better bandwidth utilization

= Smaller
= Updates earlier
= Lower bandwidth utilization

Outline

= Introduction and Motivation
= Software DSM
= Modern computer networks
= Design and Implementation
= Diff creation and Issues
= Protocol Examples
= Design Challenges
. Experiments
= Application characteristics
= Results

s Conclusions and Future Work

Experimental Setup

HLRC/ VIA (Rutgers) modified to work with VAPI
InfiniScale MTS2400 24 port switch

Mellanox InfiniHost MT23108 DualPort 4X HCA'’s
16 node cluster

8 SuperMicro SUPER P4DL6

= Dual Pentium Xeon 2.4 GHz

= 512 MB memory

= 133 MHz PCI-X bus

8 SuperMicro SUPER X5DL8-GG
= 1 GB memory
= 133 MHz PCI-X bus

Linux 2.4.22 kernel

i Applications

= 4 applications were evaluated (SPLASH-2)
= Barnes
= Integer Sort (1S)
= Non-contiguous LU decomposition (LU)
= Non-contiguous Ocean simulation (Ocean)

= Different communication patterns
= Communication intensive

i Application Characteristics

Barnes
= N-body simulation using the hierarchical Barnes-HUT method
= Sharing pattern irregular and true
= IS
= Bucket Sort
= Global array contains buckets
= LU

= Factors a dense matrix into the product of a lower and upper
triangular matrix

= Exploits blocking for temporal locality on individual sub-matrices
= Ocean

= Simulates large scale ocean movements based on eddy and
boundary currents

= Uses locks for synchronization

* Diff Distribution

16000 +
14000 A
12000 A
10000 A
8000 -
6000 -
4000 +
2000 -
O-

\

\

Average number of diffs

Barnes 1S LU Ocean

- LU and Ocean send a large number of diffs

b
O
=
W
X

4500 +
4000 A
3500
3000
2500 -
2000 -
1500 -
1000 A
500+

Average Diff Size (Bytes)

Barnes 1S LU Ocean

¢|S sends diffs of the order of 4K

Interval Distribution

, 1000
< 900
S 800-
L 700]
(-
= 600"
Y
O 500-
o 400+
‘ED 300-
S5 200-
< 100-
O _

Barnes 1S LU Ocean

- Each interval marks a synchronization point like a
lock or barrier

e Ocean has the highest number of intervals

* Diff Burst Size

500 -
450 A
400 A
350+
300 -
250
200 -
150 A
100 A
50+

0-

Diffs/Interval

NN NN NN N NN

Barnes 1S LU Ocean

e Barnes and IS send a large number of diffs every
Interval

i Diff Characteristics Summary

s Barnes
= Few Small diffs
« Large diff burst size

= IS
= Send few large diffs
= Large diff burst size
= LU and Ocean

= Large number of diffs
= Small diffs
= Smaller diff burst size

* Diff Traffic Characteristics

30+

25+

20

15

MegaBytes

10

5_

O_
Barnes 1S LU Ocean

Diff Traffic

- Average diff traffic per node generated by the application

e IS has the largest diff traffic

* Overall Traffic Characteristics

1000

800

o
o
o

N
o
o

MegaBytes
N
@)
@)

Barnes 1S LU Ocean

- LU has considerable traffic in the network

* Application Execution Time

7000 -
6000 A
5000
4000+
B ORIG
3000 CPIPE

2000+

Time (milliseconds)

1000

O_

Barnes 1S LU Ocean

* 359 reduction Iin execution time for LU

* Remaining Bottlenecks

45
40+
35
30+
251
20+
15-
10+

5-

0-

NOONN NN NN NN

Wait time (percentage)

Barnes 1S LU Ocean

e Barrier wait time 45% for Barnes

Outline

= Introduction and Motivation
= Software DSM
= Modern computer networks

= Design and Implementation
= Diff creation and Issues
= Protocol Examples
= Design Challenges

= Experiments
= Application characteristics
= Results

m Conclusions and Future Work

i Conclusions

= Explored reducing diff overhead

= Diff packing and pipelining implemented
= Different applications evaluated

= Reduction in execution time upto 35%
= All applications benefited

i Future Work

= Read diffs using RDMA Read
= Node computes the diffs
= DIff Is stored
= Other nodes read it on demand
= Investigate wait times
= Efficient barrier
= Effect of sequential phases

* Web Pointers

- home page

http://nowlab.cis.ohio-state.edu/

E-mail: {noronha, panda}
@cse.ohio-state.edu

‘L Backup Slides

i Application Characteristics

Application Barnes IS LU Ocean
Average Diff Traffic | 1.83 29.55 10.9 9.16
(MegaBytes)

Average number of | 6060 7680 15114 14327.56
Diffs

Average Diff Size 317 4034 756.21 670.38
(bytes)

Average Number of | 13 17 129 037
Intervals

Average number of | 466.15 451.76 117.16 15.29
Diffs per interval

Average traffic 48 94.24 964.62 157.77

including Diff
Traffic (MegaBytes)

