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Introduction

§ Multi-core systems are now
extremely common

§ There can be problems with
contention in multicore systems
unless other components are
scaled appropriately

§ Memory Speed / Capacity
§ Network?

§ This type of contention needs to
be evaluated and addressed

Intel Core i7 (Nehalem) - courtesy Intel
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Network Contention
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§ We are specifically interested in looking at network
contention on a single node

§ More cores, but usually only one network device per
node 2
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Introduction:

Network Contention

§ How can we determine If there is network
contention?

8 MPI is the most popular programming model
for scientific computing

— How can we determine how much traffic is being
contributed by each core?

— Particularly more important for increasing numbers of
cores per node

4
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Introduction:

InfiniBand Overview

Interconnect Family Share Over Time

§ InfiniBand is a popular
high-speed interconnect
§ Minimum Latency: ~1-2us . ["\"f!-k Al e
§ Peak Bandwidth: ~1500- y 300 AR /
2500 M B/S % .;::i;:azrconnect
§ ~30% of Top500 now e
uses InfiniBand as the oo
primary interconnect
§ We will use it as our T st neneee
testbed : )
=500

SUPERCOMPUTER SITES
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Introduction:

Userspace Interconnects

§ If MPI Is run over typical

Implementations of Application

TCP/IP then the kernel @

knows the traffic VP Library', hY
. : : [ \

§ InfiniBand is different.... — \

— The Host Channel Adapter N | i .
(HCA) can be directly accessed Ke/rqe ' ;
from userspace applications 5 /!

_ N4 : !
Can_nqt have kernel capture Veiino oo\ /
statistics! So-
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Introduction: InfiniBand

InfiniBand Communication

§ Queue Pair (QP) Model

§ Each QP consists of two
gueues:
§ Send Queue (SQ)
§ Receive Queue (RQ)
§ A QP must be linked to a
Completion Queue (CQ)

§ Gives natification of
operation completion from

QPs
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Introduction: InfiniBand

InfiniBand Communication (cont.)

§ Memory and Channel Semantics
§ Memory: Remote Data Memory Access (RDMA)
§ No CPU interaction in copy (below)

§ Channel: Receive buffers are posted to the QP Receive
Queue (or SRQ) and consumed in order

RDMA Transfer with no CPU interaction

Memory Memory
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Problem Statement

§ Is the network a bottleneck for systems of increasing
numbers of cores? How can we see the traffic?

§ If so, what can be done to reduce this contention and
Increase overall cluster throughput?
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Presentation Outline

Introduction

Problem Statement
Measuring Network Access
Mixed Workloads & Evaluation
Conclusions and Future Work
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Measuring Network Traffic

§ We cannot measure network traffic per
orocess directly on the host without additional
nardware assistance

§ Instead, can we instrument or time MPI calls
to give network access information?

11
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Measuring Network Traffic:

MPI vs. Network

§ MPI has functionality through PMPI interface
to allow tools to intercept MPI calls and get
timing information
— Used in many MPI profiling tools — Vampir, mpiP, etc.

§ Message completion in MPI in general does

not Imply network access has started or
completed at that time

— Only means that buffer is available

— e.g. MPl _Send finishing only means that the send
buffer can now be reused

12
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Measuring Network Traffic:

MPI vs. Network (contd.)

MPI Time:

Network Usage Time:

Timing for MPI and the network need not match

13
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Measuring Network Traffic:

Track Directly inside MPI

§ The MPI library can know when message sends are
initiated
§ Unfortunately due to asynchronous nature of InfiniBand

communication we must estimate duration of network
access

§ Use performance characteristics based on number of
concurrent accesses by number of processes on the
same node

— e.g. If there are ‘n’ processes all sending large messages each will take
roughly ‘n’ times longer to finish than if it were only one process
sending.

— Use specially designed benchmarks to determine characteristics

14
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Presentation Outline
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Mixed Workloads & Evaluation:

Experimental Setup

§ Cluster Configuration:

— 128-core InfiniBand Cluster

— Quad Socket, Quad-Core Opteron 2GHz

— Mellanox DDR ConnectX HCA

— OpenFabrics Enterprise Edition (OFED) 1.3

§ Implementation

— Based off of MVAPICH2 1.2 (nhttp://mvapich.cse.ohio-state.edu)
— MPI library used by over 960 organizations worldwide
— Offline analysis of performance data stored per node

§ Benchmarks
— We use the NAS Parallel Benchmarks
— Fluid dynamics kernels / mini apps

16
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Mixed Workloads & Evaluation:
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§ NAS FT (and many other applications) have a very structured
pattern where network communication is done concurrently
17
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Mixed Workloads & Evaluation

Network Concurrency

§ Concurrent network access iIs very inefficient

8 The network is idle most of the time and then
under significant contention

§ What If we could reduce this contention?

— How much would the speedup be?

— What if half the number of cores were using the same
network?

18
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All vs. Half Cores

Node 1

Node 2

All Cores

Nodes
not
needed

Node 1

Node 2

Half Cores

Node 3

Node 4

LABORATORY

[ ] Coresinuse

[ ] Idle cores

§ By running on half the cores we can see the benefit of
having %2 as many cores per network adapter

§ Using ‘Half Cores’ means twice as many nodes are

needed

19
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Mixed Workloads & Evaluation

Network Concurrency

§ We ran each NAS benchmark with ‘All Cores’
and ‘Half Cores’ configurations

All Cores

BT

198.22

CG

34.82

EP

28.53

FT

44.19

)

3.10

LU

180.46

\Y[€

156.14

SP

196.29

Half Cores

(on double number
of nodes)

196.71

26.17

29.07

38.89

2.29

179.86

14.78

188.84

Half/All

99%

75.2%

99%

88.0%

73.9%

99.6%

97.6%

96.2%

Runtimes in seconds for different benchmarks
20
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Mixed Workloads & Evaluation

Mixed Workloads

§ Others have previously suggested running
multiple jobs on the same node since they
have different requirements

— Generally this has been done in the context of file I/O
access, memory access, or cache usage

8 We propose adding the network as a key
component of deciding job co-location

— NUMA already significantly segments nodes

— We believe network is the main shared resource for
contention

21
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Exclusive vs. Shared

Exclusive

Shared
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[] Job A
[ Job B

§ We evaluate each of the NAS Parallel Benchmarks with each other
to determine what patterns can be scheduled together and achieve

higher throughput
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Mixed Workloads & Evaluation
Exclusive Shared
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§ Running FT together with itself shows how communication
becomes offset
§ Overall runtime is 89% of Exclusive run
23
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Mixed Workloads & Evaluation
Shared Mode Evaluation
Measured Application
BT CG EP FT IS LU MG SP
= BT 99.1% | 77.3% | 100.2 | 91.9% | 81.6% | 99.7% | 98.4% | 96.6%
= CG 100.5% | 101.8 | 100.5 | 96.0% | 90.2% | 100.9 |100.8% | 102.0
% EP  98.8% | 75.2% | 99.6% | 93.8% | 80.1% | 100.1 | 97.9% | 97.2%
< ET 99.4% | 84.3% | 99.9% | 89.6% | 87.6% | 100.5 | 99.5% | 98.9%
_§ IS 100.2% | 79.0% | 99.1% | 91.0% | 84.4% | 99.6% | 98.8% | 96.2%
g) LU 99.2% | 76.2% | 100.0 | 88.0% | 80.7% | 100.4 | 98.9% | 97.0%
E‘ MG 99.0% | 77.3% 1%2.4 89.4% | 73.9% | 99.6% | 98.1% 1%2.5
SP 99.6% | 79.2% | 100.4 | 93.2% | 86.7% | 100.3 | 97.6% | 99.5%
70 70
Max | 99% | 75.2% | 99% | 88.0% | 73.9% | 99.6% | 97.6% | 96.2%
24
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Mixed Workloads & Evaluation
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§ FT is extremely bandwidth sensitive
§ Less communication-intensive applications, such as LU don’t improve, but offer a
perfect companion
§ Why does CG/CG not work if FT/FT shows improvement? o5
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Mixed Workloads & Evaluation

Shared Mode: CG & EP

EP

—_ 4
- MNWwhkeO

CG
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EP

CG
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101.8

100.5
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Time (sec)

CG has a near-constant communication profile

EP

—
O MNWrION®DOO

75.2

99.6

Few gaps — less possibility for improvement in other applications

26
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Conclusion and Future Work

§ Network contention is an increasing concern as
additional cores are added
— Many applications exhibit very synchronized communication

§ Developed a method to profile network access for MPI
applications on InfiniBand

§ Showed 20% improvement when using a shared method
of scheduling

§ Future:
— Better determination of symbiotic job scheduling / automated
— Studying the effect of QDR on this study

27
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Questions?

matthew.koop@nasa.gov

{luom, panda}@cse.ohio-state.edu
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