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Background .

* Large Scale Scientific and
Commercial Workloads

* Petascale Computers have arrived

* High-Performance access to the
I/0O data is crucial

- Parallel applications is often limited by
I/0
Clustered/Parallel File Systems

have evolved to meet this challenge
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Motivation - Challenges With File
Systems

* Performance for Small Files

- Generally difficult to achieve
Many environments with a large number of small files
Storing on the same disk block provides limited benefit
Striping does not provide benefit
Store on different servers

- Cache Coherenc‘?' Problems

- Client side cache provides good performance

- Non-coherent client cache limited when there is sharing
- Limited Scalability of coherent caches

- Server Load Problems

- RDMA reduces overhead from TCP/IP

- RDMA based transport protocols cannot reduce copying costs
within the file system




Problem Statement .

* Which file-system operations are potential
targets for caching?

- What are the alternatives to the traditional
client cache/server cache architecture?

* What are the advantages and disadvantages
of alternate cache architectures?

* How do we provide the performance of the
non-coherent client cache without the
scalability problems of the coherent client
cache?
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Potential File System Operations
That May Be Cached

Potential Targets For Caching
- Should be something the client reads
- Should be possible to uniquely identify cache target
- Should be possible to chunk the data element

Small Operations = Stat, Create, Delete, Open

Stat

- Read by the client

- Used as a form of update by many applications

- Should be used

- Should be updated on read/write operations on the server
Create/delete

- Not read by the client

- Delete should invalidate previous cache entries
File Open

- Not a target for caching, but may be used for prefetching
Data Transfer Operations

- Read and Writes

- Blocks Needed




Intermediate Cache
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Need for Blocks In IMCa

* Most file system store data on the disk
as blocks

* Parallel file-systems stripe data across
multiple servers

- IMCa uses a fixed block size to store
data across the cache servers

- Block size should provide good performance
for most small files .
equested

- Should avoid gxtr I | Data
. .data - File data segmented
- excessive fragmentation Ih: by IMCa D orheive
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Design-Read Operations .
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" Advantages/Disadvantages of
IMCa

+ Fewer Requests Hit the Server

+ Latency for requests read from the cache is
lower

* MCDs are self-managing
* Failures in MCDs do not impact correctness
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GlusterFs File System I

* Clustered File System
+ Client and Server in userspace

- Use FUSE interface to translate FS calls
from the kernel to the user daemons

* No Stripping > data distributed across
servers

* Possible to apply translators at the
server and client to perform different
functions

- WWW glusterfs.org




Experimental Setup

64-node cluster

- 8-core Intel Clovertown

- 8 6B memory

InfiniBand DDR is the interconnect

GlusterFS file-system

The data servers each have 8 RAID highpoint disks

Communication protocol is IPoIB in Reliable Connected
(RC) mode

MCDs run on independent nodes and use up to 6GB of
memory

CMCache and SMCache use a CRC32 hash function for
locating data on the MCDs

Lustre 1.6.4.3 is used with a sockind for comparison




Experiment-stat .

- Consists of two stages
- First stage (untimed)
+ 262144 files created by a single node

- Second stage (timed)

- each node tries to perform a stat on each
of the 262144 files sequentially




Stat performance
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._Exper'imenf-WFi're Single .
Client

- One Client

- Writes 1,024 records of size r
sequentially to the file

- Measure time for this to complete




Write - Single Client
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Experiments-Read

Single Client Read

- Follows Write component of the benchmark

- Move file pointer to the beginning of the file

- Read 1,024 records of size r sequentially to the file
- Measure time for this to complete

Multiple Client Read

- Each client uses a separate file

Multiple Client Read Shared

- Same file used by every client

Lustre configurations

- Cold Client Cache » Unmount between Write and Read
- Warm Client Cache » No unmount between Write and Read
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Iozone throughput

2 1000

o

O

& | 800

N

3

S, 600

/@

o

o 400

=

- 200

5

)

%D O I I I I ]
O No Cache  Cache(1) Cache(2) Cache(4) Lustre-1DS
ﬁ (Cold)

*1,2,4, 8 IOzone threads, 1GB files, 2KB block size
325 MB/s (NoCache) -> 868 MB/s (4 MCDs)




Read-Shared Latency
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Conclusions and Future .
Work

‘Proposed, Designed and Evaluated an Intermediate
Cache for GlusterFS
*Good improvement in stat performance
‘Improvement in latency/throughput of read
operations

*Depends on block size
* Would like to evaluate the performance with
RDMA
*Would like to evaluate distribution algorithms
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