IMCa: A High-Performance Caching Front-end
for GlusterFS on InfiniBand

Ranjit Noronha and Dhabaleswar K. Panda
Network Based Computing Lab
The Ohio State University
<noronha, panda>®@cse.ohio-state.edu

Outline of the Talk

* Background and Motivation

» Architecture and Design of IMCa
+ Experimental Evaluation of IMCa
» Conclusions and Future Work

Background .

* Large Scale Scientific and
Commercial Workloads

* Petascale Computers have arrived

* High-Performance access to the
I/0O data is crucial

- Parallel applications is often limited by
I/0
Clustered/Parallel File Systems

have evolved to meet this challenge

- [~ Motivation - Limitations of
disks

4GB Server Memory
W RDMA M |PoIB ™ GigkE

* File System performance o0
still dependent on disk]
performance “ .

+ Single Server Bandwidth 2345678
Drop With Multiple Clients 868 Server Memory

= ® RDMA m IPolB = GigE

gaBytes/s)

e

- Parallel I/0 Bandwidth £ o
From Multiple Servers £ [ﬁm[ﬁ
am] -
12345678
Number of

C .l i en’rs.

Motivation - Challenges With File
Systems

* Performance for Small Files

- Generally difficult to achieve
Many environments with a large number of small files
Storing on the same disk block provides limited benefit
Striping does not provide benefit
Store on different servers

- Cache Coherenc‘?' Problems

- Client side cache provides good performance

- Non-coherent client cache limited when there is sharing
- Limited Scalability of coherent caches

- Server Load Problems

- RDMA reduces overhead from TCP/IP

- RDMA based transport protocols cannot reduce copying costs
within the file system

Problem Statement .

* Which file-system operations are potential
targets for caching?

- What are the alternatives to the traditional
client cache/server cache architecture?

* What are the advantages and disadvantages
of alternate cache architectures?

* How do we provide the performance of the
non-coherent client cache without the
scalability problems of the coherent client
cache?

Outline of the Talk

* Background and Motivation

» Architecture and Design of IMCa
+ Experimental Evaluation of IMCa
» Conclusions and Future Work

Potential File System Operations
That May Be Cached

Potential Targets For Caching
- Should be something the client reads
- Should be possible to uniquely identify cache target
- Should be possible to chunk the data element

Small Operations = Stat, Create, Delete, Open

Stat

- Read by the client

- Used as a form of update by many applications

- Should be used

- Should be updated on read/write operations on the server
Create/delete

- Not read by the client

- Delete should invalidate previous cache entries
File Open

- Not a target for caching, but may be used for prefetching
Data Transfer Operations

- Read and Writes

- Blocks Needed

Intermediate Cache

Architecture (IMCa |
CRC) 1o

~_» CMCache Find the Cache

_— T~ > Server

_—
o i
k

Each Cache is a
node (MCD Array)

Hash Function
(CRC32) to
Find the Cache Server

Easy to maintain coherency
Extensible

Can multiple Cache nodes
provide benefit?

Need for Blocks In IMCa

* Most file system store data on the disk
as blocks

* Parallel file-systems stripe data across
multiple servers

- IMCa uses a fixed block size to store
data across the cache servers

- Block size should provide good performance
for most small files .
equested

- Should avoid gxtr I | Data
. .data - File data segmented
- excessive fragmentation Ih: by IMCa D orheive

Data Block
]

Beundasies

Design-Read Operations i
it

Design-Read Operations .

iMissi
e e

/

s e |

P

Design-Write Operations i

_» CMCache

T~

%
L

e

" Advantages/Disadvantages of
IMCa

+ Fewer Requests Hit the Server

+ Latency for requests read from the cache is
lower

* MCDs are self-managing
* Failures in MCDs do not impact correctness

Outline of the Talk

* Background and Motivation

» Architecture and Design of IMCa
+ Experimental Evaluation of IMCa
» Conclusions and Future Work

GlusterFs File System I

* Clustered File System
+ Client and Server in userspace

- Use FUSE interface to translate FS calls
from the kernel to the user daemons

* No Stripping > data distributed across
servers

* Possible to apply translators at the
server and client to perform different
functions

- WWW glusterfs.org

Experimental Setup

64-node cluster

- 8-core Intel Clovertown

- 8 6B memory

InfiniBand DDR is the interconnect

GlusterFS file-system

The data servers each have 8 RAID highpoint disks

Communication protocol is IPoIB in Reliable Connected
(RC) mode

MCDs run on independent nodes and use up to 6GB of
memory

CMCache and SMCache use a CRC32 hash function for
locating data on the MCDs

Lustre 1.6.4.3 is used with a sockind for comparison

Experiment-stat .

- Consists of two stages
- First stage (untimed)
+ 262144 files created by a single node

- Second stage (timed)

- each node tries to perform a stat on each
of the 262144 files sequentially

Stat performance

Time (seconds)

—-No Cache -1 Cache Server 2 —+—-No Cache -#-1 Cache Server 2
-2 Cache Servers =<4 Cache Servers -4-2 Cache Servers =<4 Cache Servers
—#-6 Cache Servers -o-Lustre-4DS —<6 Cache Servers -o-Lustre-4DS

500 3500

pat
3000
400 ,//’ 2500 d

o | e ,//
200 ’,,\‘/., 1500
500 . E _.2 E‘x
0 T T T | 0 I I
1 2 4 8 16 32 64
Number of Nodes

Time to stat 262144 different files
Benchmark has two phase create (untimed), followed by stat (timed)
82% improvement at 64 nodes

._Exper'imenf-WFi're Single .
Client

- One Client

- Writes 1,024 records of size r
sequentially to the file

- Measure time for this to complete

Write - Single Client

® No Cache m IMCa (2K) IMCa (Server Threads)

0

S

= 1600

S 1400

3 1200

g 1000

s 800

=) 600

>, 400

c 200 - :

3 0 -

,S A N S 0 O &N S 0 VW N < 0 W N < ©
AR B A = T - T - B

I/O Record Size (bytes)
2KB block size
. Server thread helps performance

Experiments-Read

Single Client Read

- Follows Write component of the benchmark

- Move file pointer to the beginning of the file

- Read 1,024 records of size r sequentially to the file
- Measure time for this to complete

Multiple Client Read

- Each client uses a separate file

Multiple Client Read Shared

- Same file used by every client

Lustre configurations

- Cold Client Cache » Unmount between Write and Read
- Warm Client Cache » No unmount between Write and Read

Read Latency (Single

Client)

—+—No Cache -=-Cache (256) —+—No Cache -#-Cache(256)
-+-Cache (2K) —<Cache (8K) -+—Cache (2K) = Cache (8K)
—#=Lustre-1DS (Cold) -e-Lustre-4DS (Cold) —Lustre-1DS (Cold) -e-Lustre-4DS (Cold)
——Lustre-4DS (Warm) ——Lustre-4DS (Warm
1200 25000 ()
1000 20000
800 /
15000
600 ’%\ /
400 \; 10000 //
&)
200 8 5000 —
S
O a ’J O T T T 1
b © \ b‘ D © 2V
O PSR N A
AN AGRAIR
Bytes
[] [J [] [] [J [J [J

ead Multiple Client (3_2_'

clients

=¥ Lustre (Cold)

-~ Lustre (Warm)

o)
§ ——-NoCache
08) - |MCa (1)
—
ﬁé —+—|MCa (2)
g —~<|MCa (4)
B
—

- AN < 00 O N < 00 O AN < 600 O N < 0 O
I N O N N 1 N < OO OO0 0 O M

— N 1N O O O « ™M I~N

- N < 00 O &N

— on O

Bytes

*51% improvement in latency at 16K

Multi 1ty misses
[J [J [] [] [J [J [J []

Iozone throughput

2 1000

o

O

& | 800

N

3

S, 600

/@

o

o 400

=

- 200

5

)

%D O I I I I]
O No Cache Cache(1) Cache(2) Cache(4) Lustre-1DS
ﬁ (Cold)

*1,2,4, 8 IOzone threads, 1GB files, 2KB block size
325 MB/s (NoCache) -> 868 MB/s (4 MCDs)

Read-Shared Latency

——No Cache
1600

Lustre-1DS (Cold)

MCD (1)

~ 1400

)
_g; 1200
1000

800
600

Time (microsec

|

nN b
o O
@

o

2 4

Number of nodes
*IMCa helps improve performance over NoCache case

16

32

Outline of the Talk

* Background and Motivation

» Architecture and Design of IMCa
+ Experimental Evaluation of IMCa
» Conclusions and Future Work

Conclusions and Future .
Work

‘Proposed, Designed and Evaluated an Intermediate
Cache for GlusterFS
*Good improvement in stat performance
‘Improvement in latency/throughput of read
operations

*Depends on block size
* Would like to evaluate the performance with
RDMA
*Would like to evaluate distribution algorithms

Acknowledgements

Our research is supported by the following organizations

F@' Office of . Tu il
Science .- .y
LL. DHERAATRENT O EAI o - ™ "

- lr '\-I

Cisco SYSTEMS

S
. S Sy >
ANy s NetApp

Thank you

{noronha, panda}@cse.ohio-state.edu

Labotatory
Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

