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In this presentation …

• We target high performance computing with 
virtual machines

• Why do we want to do this?
• What is missing? 

– Performance concerns
– Efficient inter-VM communication

• What do we do? 
– IVC: Inter-VM Communication library
– MPI: hiding the design complexities
– Performance evaluation

• Conclusion
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Virtual machine environment

• Virtual machine (VM) technologies allow running OSes on virtualized 
hardware instead of native hardware

• A wide adoption of VM environments:
– Server consolidation: efficiently utilize the resources
– Debugging and development: safety and efficiency
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VM for HPC: how and why?

• Applications are running on virtual clusters consisting of multiple VMs
• VMs can be migrated among physical hosts
• Why VM based environments?

– Management: hardware maintenance …
– Fault tolerance
– And many others: customized OSes, load balancing, performance isolation …
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VM for HPC: why not?
• Despite many promising features, VMs have not 

yet been widely used for HPC
• One of the most important reasons: perceived 

overhead from the virtualization layer
• Is this true?

– CPU & memory virtualization: 
• Not really: HPC is full of non-privileged instructions, which 

can be executed natively

– Communication I/O virtualization: 
• VMM-bypass I/O for network communication
• Is that all?
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A closer look at communication I/O

• Native environment running MPI job:
– Inter-node communication through high speed interconnect
– Intra-node communication through shared memory

• More efficient: no network contention
• Supported by MVAPICH/MVAPICH2, OMPI, etc …
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A closer look at communication I/O

• VM-based environment:
– Computing processes are hosted on separate VMs for scheduling flexibility
– Inter-node communication through high speed interconnect

• Support from VMM-bypass I/O – native level performance
– Intra-node communication has to go through loop back as well

• Extremely undesirable especially with the wide-spread 
adoption of multi-core architecture!

* Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar Panda. High Performance 
VMM-bypass I/O in Virtual Machines. In USENIX’06
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Our contributions

• Design IVC, an Inter-VM Communication 
library providing efficient intra-physical node 
communication through shared memory 

• Hide all design complexities by designing 
MVAPICH2-ivc, a VM-aware MPI library

• Evaluate our design on multi-core 
computing systems, showing great potential 
for VM-based HPC
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Inter-VM Communication

• Objectives
– Providing efficient inter-VM (intra-physical 

node) communication through shared memory
• How to setup shared memory region?
• How to find peers on the same node?

– Handling VM migration
• How to tear-down/establish inter-VM 

communication?
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Shared memory setup: a client-server model

• Step 0: register – kernel drivers helps computing processes to find out peers on the same computing node
• Step 1: A user process initiates the setup process

– Call into the IVC user communication library
• Step 2 & 3: IVC user library allocates shared memory space and grant page access to the remote VM through 

VMM
• Step 4: reference information is sent to the remote IVC library
• Step 5 & 6: Map the shared memory pages to process’ address space
• Step 7: computing processes get notified
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When VM migrates …

• IVC is a intra-node (physical node) 
communication library:
– IVC connections to VMs on the original host must 

be torn down
– IVC connections can be established to VMs on the 

new host
• Require peer coordination
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When VM migrates …

• Step 1: IVC kernel driver on the migrating VM receives a callback 
when VM is about to migrate

• Step 2 & 3: all peers stop send operations and acknowledge
• Step 4: computing processes get notified
• Step 5: return from callback
• Step 6: migrate to the new host and establish new IVC connection
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Now we have IVC …
• Benefits:

– Application can have efficient communication over shared 
memory, even when the computing processes are not in the 
same guest VM

– Possible to support VM migration
• Concerns: application needs to

– Written with our API
– Take care of both intra- and inter-node communication

• Not a big deal! 
– Most applications are written in standardized APIs, like MPI
– We can integrate our design into those API implementations
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MVAPICH2-ivc: hiding the complexities

• Choosing MPI: the de facto standard for parallel 
programming

• MVAPICH2: a popular MPI-2 library over 
InfiniBand from our lab, used by 580 
organizations world wide

• MVAPICH2-ivc: extends MVAPICH2, 
automatically choosing between IVC or network 
(IB) communication

• Hiding the complexities of IVC-specific APIs –
transparently benefits user applications
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Architectural overview

•ADI3 manages message delivery
•Communication coordinator manages IVC 
and network channels setup (dynamic)

•ADI3 manages message delivery
•Shared memory and ADI3 channels are 
statically setup

MVAPICH2-ivcMVAPICH2 (native)

•IVC channel communicates of shared 
memory (IVC library/driver provide mapping)

•Shared memory channel communications over 
shared memory (OS provides mapping service)
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Handling VM migration
• Key issue: ensuring message 

in-order delivery when setting 
up and tearing down IVC 
connections during migration

• VC: virtual connections 
encapsulating communication 
mechanisms:

– Network
– IVC

• VC has four states:
– IVC_CLOSE: all VC start with 

this state
– IVC_ACTIVE: IVC connection 

is ready to use
– IVC_SUSPEND: IVC 

connection is being torn down
– IVC_READY: IVC connection 

is setup, but not ready to use 
due to in-flight message over 
network
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Now we have a MPI …

• Unmodified MPI applications can benefit 
from our design

• Regarding the performance concerns:
– What’s the benefit of IVC?
– How does a VM-based environment with IVC 

compare with a native environment?
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Experimental setup
• Testbed A: dual socket Intel Clovertown (Quad-core) 

processors, 4 GB memory, PCI-Express InfiniBand HCA
• Testbed B: 64 node dual socket single core cluster (32 

Xeon and 32 Opteron), 2GB memory, PCI-Express 
InfiniBand HCA

• Xen-3.0, dom0 running RHEL 4
• DomU using ttylinux (tiny linux distribution)
• Configurations:

– IVC: mvapich2-ivc running in VM-based environment
– No-IVC: unmodified mvapich2 in VM-based environment
– Native: unmodified mvapich2 in native Linux environment
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Latency and bandwidth

Very close to native~3.2us through IB 
loopback

Sub-1us through 
Shared memory
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VM migration
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• MVAPICH2-ivc automatically switches to IVC whenever the target peers 
are on the same physical nodes

• Above two graphs show decreased latency and increased bandwidth 
when two processes in separate VMs are migrated to the same physical 
nodes
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Collectives
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Application-level benchmarks

• Number taken on 16 processes
• Benefits of IVC show for several benchmarks, e.g. IS (11%), CG 

(9%), LAMMPS (5.9%), SMP2000 (11.8%), and NAMD (3.4%)
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Larger scale?

• Based on individual benchmarks, intra-node communication is 
still an important part!

• Percentage of intra-node communication is well above average
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Overheads on 64 node cluster

• Performance comparison on a 64 node dual processor cluster
• We do see very close performance (~1%)
• NAS-FT shows around 5% overhead with its large message all-to-all 

communication pattern
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Conclusion

• We propose Inter-VM communication (IVC), 
allowing efficient shared memory communication 
between VMs

• We modify MVAPICH2 to hide all complexities 
and allow user applications to benefit 
transparently

• With our evaluation, we show: virtualization is 
NOT introducing much overhead

• With its benefits for system management, VMs 
are an attractive solution for HPC!
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Future work

• More optimizations can be made to 
improve the performance of Inter-VM 
communication
– Dynamically map user buffers to achieve one-

copy communication
• Looking more into management 

frameworks for VM-based computing 
environments (load balancing, fault-
tolerance …)
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Thank you!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/


