
SC'07 -- Nov 13th, 2007

Virtual Machine Aware Communication 
Libraries for 

High Performance Computing

Wei Huang, Matthew Koop, Qi Gao, and 
Dhabaleswar K. Panda

Network Based Computing Laboratory 
The Ohio State University



SC'07 -- Nov 13th, 2007

In this presentation …

• We target high performance computing with 
virtual machines

• Why do we want to do this?
• What is missing? 

– Performance concerns
– Efficient inter-VM communication

• What do we do? 
– IVC: Inter-VM Communication library
– MPI: hiding the design complexities
– Performance evaluation

• Conclusion



SC'07 -- Nov 13th, 2007

Virtual machine environment

• Virtual machine (VM) technologies allow running OSes on virtualized 
hardware instead of native hardware

• A wide adoption of VM environments:
– Server consolidation: efficiently utilize the resources
– Debugging and development: safety and efficiency

Native hardware

OS kernel

OS service and Applications

Native computing 
environment

Native hardware

Virtual machine monitor

VM-based computing 
environment

OS kernel

OS service 
and 

Applications

OS kernel

OS service 
and 

Applications

Guest VM



SC'07 -- Nov 13th, 2007

VM for HPC: how and why?

• Applications are running on virtual clusters consisting of multiple VMs
• VMs can be migrated among physical hosts
• Why VM based environments?

– Management: hardware maintenance …
– Fault tolerance
– And many others: customized OSes, load balancing, performance isolation …

Native hardware

Virtual machine monitor

Guest VMGuest VM

Physical Resources

Native hardware

Virtual machine monitor

Guest VM

Native hardware

Virtual machine monitor

Guest VM

Virtual 
cluster



SC'07 -- Nov 13th, 2007

VM for HPC: why not?
• Despite many promising features, VMs have not 

yet been widely used for HPC
• One of the most important reasons: perceived 

overhead from the virtualization layer
• Is this true?

– CPU & memory virtualization: 
• Not really: HPC is full of non-privileged instructions, which 

can be executed natively

– Communication I/O virtualization: 
• VMM-bypass I/O for network communication
• Is that all?



SC'07 -- Nov 13th, 2007

A closer look at communication I/O

• Native environment running MPI job:
– Inter-node communication through high speed interconnect
– Intra-node communication through shared memory

• More efficient: no network contention
• Supported by MVAPICH/MVAPICH2, OMPI, etc …

Native hardware

OS

Computing 
process

Native computing 
environment

Computing 
Process

Inter-node 
communication

Intra-node 
communication



SC'07 -- Nov 13th, 2007

A closer look at communication I/O

• VM-based environment:
– Computing processes are hosted on separate VMs for scheduling flexibility
– Inter-node communication through high speed interconnect

• Support from VMM-bypass I/O – native level performance
– Intra-node communication has to go through loop back as well

• Extremely undesirable especially with the wide-spread 
adoption of multi-core architecture!

* Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar Panda. High Performance 
VMM-bypass I/O in Virtual Machines. In USENIX’06

Native hardware

Virtual machine monitor

VM-based computing 
environment

OS

Computing 
Process

OS

Computing 
Process

Inter-node 
communication

?
Intra-node 

communication



SC'07 -- Nov 13th, 2007

Our contributions

• Design IVC, an Inter-VM Communication 
library providing efficient intra-physical node 
communication through shared memory 

• Hide all design complexities by designing 
MVAPICH2-ivc, a VM-aware MPI library

• Evaluate our design on multi-core 
computing systems, showing great potential 
for VM-based HPC



SC'07 -- Nov 13th, 2007

Inter-VM Communication

• Objectives
– Providing efficient inter-VM (intra-physical 

node) communication through shared memory
• How to setup shared memory region?
• How to find peers on the same node?

– Handling VM migration
• How to tear-down/establish inter-VM 

communication?



SC'07 -- Nov 13th, 2007

Shared memory setup: a client-server model

• Step 0: register – kernel drivers helps computing processes to find out peers on the same computing node
• Step 1: A user process initiates the setup process

– Call into the IVC user communication library
• Step 2 & 3: IVC user library allocates shared memory space and grant page access to the remote VM through 

VMM
• Step 4: reference information is sent to the remote IVC library
• Step 5 & 6: Map the shared memory pages to process’ address space
• Step 7: computing processes get notified

Native hardware

IVC kernel driver

Computing process Computing Process

Virtual machine monitor

IVC kernel driver

IVC library IVC library OS Services 

(IVC user library)

OS kernel

(IVC kernel driver)

VMM and HW

End-user 
application

1

2

3

5

6

4

7 7

Shared memory pages Shared memory pages

0 0



SC'07 -- Nov 13th, 2007

When VM migrates …

• IVC is a intra-node (physical node) 
communication library:
– IVC connections to VMs on the original host must 

be torn down
– IVC connections can be established to VMs on the 

new host
• Require peer coordination



SC'07 -- Nov 13th, 2007

When VM migrates …

• Step 1: IVC kernel driver on the migrating VM receives a callback 
when VM is about to migrate

• Step 2 & 3: all peers stop send operations and acknowledge
• Step 4: computing processes get notified
• Step 5: return from callback
• Step 6: migrate to the new host and establish new IVC connection

Native hardware

IVC library and 
kernel driver

Computing 
process 1

Virtual machine monitor

Computing 
Process 2

IVC library and 
kernel driver

Native hardware

Computing 
Process 3

Virtual machine monitor

IVC library and 
kernel driver

A three process parallel job

2
3

4 4

51

6



SC'07 -- Nov 13th, 2007

Now we have IVC …
• Benefits:

– Application can have efficient communication over shared 
memory, even when the computing processes are not in the 
same guest VM

– Possible to support VM migration
• Concerns: application needs to

– Written with our API
– Take care of both intra- and inter-node communication

• Not a big deal! 
– Most applications are written in standardized APIs, like MPI
– We can integrate our design into those API implementations



SC'07 -- Nov 13th, 2007

MVAPICH2-ivc: hiding the complexities

• Choosing MPI: the de facto standard for parallel 
programming

• MVAPICH2: a popular MPI-2 library over 
InfiniBand from our lab, used by 580 
organizations world wide

• MVAPICH2-ivc: extends MVAPICH2, 
automatically choosing between IVC or network 
(IB) communication

• Hiding the complexities of IVC-specific APIs –
transparently benefits user applications



SC'07 -- Nov 13th, 2007

Architectural overview

•ADI3 manages message delivery
•Communication coordinator manages IVC 
and network channels setup (dynamic)

•ADI3 manages message delivery
•Shared memory and ADI3 channels are 
statically setup

MVAPICH2-ivcMVAPICH2 (native)

•IVC channel communicates of shared 
memory (IVC library/driver provide mapping)

•Shared memory channel communications over 
shared memory (OS provides mapping service)

Application

MPI Layer

ADI3 Layer

Shared memory 
Channel

Network Channel

Shared Memory InfiniBand API

MPI
Library

Communication 
device API

Native Hardware

Application

MPI Layer

ADI3 Layer

IVC

Virtual Machine
Aware
MPI Library

Communication 
device API

Virtualized Hardware

IVC channel Network channel

Communication coordinator

Native MVAPICH2 Modified: MVAPICH2-IVC

VMM-bypass I/OIVC VMM-bypass I/O

IVC channel

Communication coordinator

•Network channel communicates over VMM-
bypass over InfiniBand (transparent)

•Network channel communicates over InfiniBand



SC'07 -- Nov 13th, 2007

Handling VM migration
• Key issue: ensuring message 

in-order delivery when setting 
up and tearing down IVC 
connections during migration

• VC: virtual connections 
encapsulating communication 
mechanisms:

– Network
– IVC

• VC has four states:
– IVC_CLOSE: all VC start with 

this state
– IVC_ACTIVE: IVC connection 

is ready to use
– IVC_SUSPEND: IVC 

connection is being torn down
– IVC_READY: IVC connection 

is setup, but not ready to use 
due to in-flight message over 
network

IVC_CLOSE

IVC_ACTIVE

Establish IVC 
connection 
(init stage)

Migration call 
back: IVC no 
longer available

drain receive 
buffers

Establish IVC 
connection 
(during migration)

IVC_READY

Network messages 
flushed (receive a 
flush message)

IVC_SUSPEND



SC'07 -- Nov 13th, 2007

Now we have a MPI …

• Unmodified MPI applications can benefit 
from our design

• Regarding the performance concerns:
– What’s the benefit of IVC?
– How does a VM-based environment with IVC 

compare with a native environment?



SC'07 -- Nov 13th, 2007

Experimental setup
• Testbed A: dual socket Intel Clovertown (Quad-core) 

processors, 4 GB memory, PCI-Express InfiniBand HCA
• Testbed B: 64 node dual socket single core cluster (32 

Xeon and 32 Opteron), 2GB memory, PCI-Express 
InfiniBand HCA

• Xen-3.0, dom0 running RHEL 4
• DomU using ttylinux (tiny linux distribution)
• Configurations:

– IVC: mvapich2-ivc running in VM-based environment
– No-IVC: unmodified mvapich2 in VM-based environment
– Native: unmodified mvapich2 in native Linux environment



SC'07 -- Nov 13th, 2007

Latency and bandwidth

Very close to native~3.2us through IB 
loopback

Sub-1us through 
Shared memory

Latency

IVCNo-IVCNative

0

2

4

6

8

10

12

0 2 8 32 128 512 2k
Message Size (Bytes)

La
te

nc
y 

(u
s)

Native No-IVC IVC

0

200

400

600

800

1000

1200

1400

1600

2 8 32 128 512 2k 8k 32k 128k 512k

Message Size (bytes)

B
an

dw
id

th
 (M

B
/s

)

Native No-IVC IVC

Native-level 
performance

Getting better for 
large messages

Much higher for 
mid-size messages

Bandwidth



SC'07 -- Nov 13th, 2007

VM migration
2K Message Latency (us)

0
2
4
6
8

10
12
14
16
18
20

0

2K Message Bandwidth (MB/s)

0

200

400

600

800

1000

1200

0

• MVAPICH2-ivc automatically switches to IVC whenever the target peers 
are on the same physical nodes

• Above two graphs show decreased latency and increased bandwidth 
when two processes in separate VMs are migrated to the same physical 
nodes

Start with VMs 
on separate 
physical nodes

Migrating to 
the same 
physical node

Switch to IVC, 
latency 9us 
3us

Migrate again, 
switch back to 
network



SC'07 -- Nov 13th, 2007

Collectives
Collectives (16 KBytes)

0

0.5

1

1.5

2

2.5

3

Allgather Allreduce Alltoall Bcast Reduce

N
or

m
al

iz
ed

 T
im

e

no-ivc ivc native
Collectives (16 bytes)

0

1

2

3

4

5

Allgather Allreduce Alltoall Bcast Reduce

N
or

m
al

iz
ed

 T
im

e
no-ivc ivc native

Collectives (256 KBytes)

0

0.5

1

1.5

2

2.5

Allgather Allreduce Alltoall Bcast Reduce

N
or

m
al

iz
ed

 T
im

e

no-ivc ivc native • With inter-VM communication, 
mvapich2-ivc largely closes the 
gap between native and VM 
based environments

• Results collected on 8-core 
systems using Intel MPI 
Benchmarks (IMB) (8x2)



SC'07 -- Nov 13th, 2007

Application-level benchmarks

• Number taken on 16 processes
• Benefits of IVC show for several benchmarks, e.g. IS (11%), CG 

(9%), LAMMPS (5.9%), SMP2000 (11.8%), and NAMD (3.4%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cg.B is.B ep.B bt.A ft.B mg.B sp.A lu.A NAM D SM G2000 LAM M PS

R
el

at
iv

e 
P

er
fo

rm
an

ce

No-IVC IVC Native



SC'07 -- Nov 13th, 2007

Larger scale?

• Based on individual benchmarks, intra-node communication is 
still an important part!

• Percentage of intra-node communication is well above average

8x2

8x8

8x64
0

10

20

30

40

50

60

70

80

90

LAMMPS SMG2000 NAMD2 BT CG EP FT IS MG LU SP

%
 o

f i
nt

ra
-n

od
e 

co
m

m
un

ic
at

io
n

8x2 8x8 8x64



SC'07 -- Nov 13th, 2007

Overheads on 64 node cluster

• Performance comparison on a 64 node dual processor cluster
• We do see very close performance (~1%)
• NAS-FT shows around 5% overhead with its large message all-to-all 

communication pattern

0

0.2

0.4

0.6

0.8

1

1.2

bt.C cg.C lu.C is.C mg.C ft.C ep.C sp.C

No
rm

al
iz

ed
 E

xe
cu

tio
n 

Ti
m

e

ivc native HPL with different Configurations

0

0.2

0.4

0.6

0.8

1

1.2

8x2 16x2 32x2 64x2

No
rm

al
iz

ed
 E

xe
cu

tio
n 

Ti
m

e ivc native



SC'07 -- Nov 13th, 2007

Conclusion

• We propose Inter-VM communication (IVC), 
allowing efficient shared memory communication 
between VMs

• We modify MVAPICH2 to hide all complexities 
and allow user applications to benefit 
transparently

• With our evaluation, we show: virtualization is 
NOT introducing much overhead

• With its benefits for system management, VMs 
are an attractive solution for HPC!



SC'07 -- Nov 13th, 2007

Future work

• More optimizations can be made to 
improve the performance of Inter-VM 
communication
– Dynamically map user buffers to achieve one-

copy communication
• Looking more into management 

frameworks for VM-based computing 
environments (load balancing, fault-
tolerance …)



SC'07 -- Nov 13th, 2007

Acknowledgements
Our research at the Ohio State University is supported 
by the following organizations:

• Current Funding support by

• Current Equipment support by



SC'07 -- Nov 13th, 2007

Thank you!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/


