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Motivation

• Single-core processors are reaching physical limits
– Overheat problem

– Power consumption

– Design complexity

• Multi-core processor
– Two or more processing cores on the same chip

– Dividing workload to different cores

– Chip-level Multi-Processor (CMP)

• Widely deployed in clusters

• More than 80% sites in Top500 supercomputer list use 
multi-core processors, June 2008

• MPI intra-node communication is more critical than ever!
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Architectures of Multi-core Processors

Intel Clovertown processor                   Dual-core Opteron Quad-core Opteron

Quad-core                                             Separate L2 cache                                   Separate L2 cache          

Built from two Woodcrest                                        Shared L3 cache

sockets

Shared L2 cache
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Multi-core Cluster Setup
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Shared Memory Approach

• All the processes mmap a temporary file as the shared 
memory buffers for communication

• Minimal startup time

• Two copies

Send buffer Shared memory Receive buffer

Memory

Process 0 Process 1
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Kernel Assisted Direct Copy

• Taking help from the operating 
system to copy messages 

directly from one process’s 

user buffer to another

• Kernel overhead

• One copy

• LiMIC

– Stand alone communication 
module

– Implements its own message 
queue and  performs message 
matching etc

– Designed for Linux kernel 2.4

• H. -W. Jin, S. Sur, L. Chai, and . K. 
Panda, LiMIC: Support for High 
Performance MPI Intra-node 
Communication on Linux Cluster, 
International Conference on Parallel 
Processing (ICPP) 2005.

Kernel 

Space
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Kernel Assisted Direct Copy (Cont’d)

• LiMIC2
– Light weight communication 

primitives

– Only implements memory 
mapping and data movement 
primitives

– Depends on the MPI library 
for message matching etc

– Designed for Linux kernel 2.6

– Uses a rendezvous protocol 
for send/receive

– May potentially be affected 
by process skew 

• H. -W. Jin, S. Sur, L. Chai, D. K. 
Panda, Lightweight Kernel-Level 
Primitives for High-Performance MPI 
Intra-Node Communication over 
Multi-Core Systems. IEEE Cluster 
2007 (Poster).

With buffer info

Request to send

Memory 

mapping and 

Direct copy

Completion

Sender Receiver



9

Problem Statement

• What are the relative performances of these two 
approaches?

• Can one of them be sufficient for MPI intra-node 
communication, especially on multi-core clusters?

• Can we design an efficient hybrid approach that 
optimizes performance?

• Can applications benefit from the hybrid approach?
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Methodology

• Step 1: Initial evaluation
– To study the characteristics of the two approaches

• Step 2: Designing a hybrid approach
– To overcome the potential disadvantages of each individual 

approach (e.g. process skew issue in LiMIC2) and best combine 
the two approaches

• Step 3: A comprehensive performance evaluation on the 
hybrid approach
– Micro-benchmarks

– Collective operations

– Applications
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MVAPICH and MVAPICH-LiMIC2

• MVAPICH
– High-performance, scalable, and fault-tolerant MPI library over

• InfiniBand

• 10GigE/iWARP

• Other RDMA-enabled interconnects

– Developed by Network-Based Computing Laboratory, OSU

– Being used by more than 750 organizations world wide, including many 
of the top 500 supercomputers 

– For example, Ranger system at Texas Advanced Computing Center 
(TACC) ranked 4th in June '08 ranking

– Current release versions use shared memory approach for intra-node 
communication

• MVAPICH-LiMIC2
– An integrated version of MVAPICH with LiMIC2

– Uses kernel assisted direct copy for intra-node communication

– Will be available in future releases

http://mvapich.cse.ohio-state.edu/
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Experimental System Setup

• Intel Clovertown cluster

– Dual-socket quad-core Xeon processors, 2.0GHz

– 8 processors per node, nodes connected by InfiniBand

– A pair of cores on the same chip share a 4MB L2 cache

– Linux 2.6.18
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Experiments

• Micro-benchmarks
– OSU Multi-pair bandwidth test

• Without buffer reuse

• With buffer reuse

– Skew effect benchmark

• Tool to profile L2 cache utilization
– Oprofile (http://oprofile.sourceforge.net)

• Experiments
– Impact of processor topology

– Impact of buffer reuse

– L2 cache utilization

– Impact of process skew
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Impact of Processor Topology

• MVAPICH-LiMIC2 performs 
better for medium and large 
messages

• Thresholds:
– Shared cache: 32KB

– Intra-socket: 2KB

– Inter-socket: 1KB

Shared Cache
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Impacts of Buffer Reuse

• Send/Receive multiple iterations over the same buffer

• Buffer reuse helps the performance of both MVAPICH and MVAPICH-
LiMIC2

• MVAPICH-LiMIC2 benefits from buffer reuse better for medium messages 
because of better cache utilization

• Applications that have more buffer reuse will potentially benefit more from 
MVAPICH-LiMIC2
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L2 Cache Utilization

• Experiments are with buffer reuse
• Number of cache misses increase as message size 

increases

• MVAPICH-LiMIC2 has fewer cache misses than 
MVAPICH because it eliminates the intermediate copy

Intra-socket
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Impacts of Process Skew

• Process skew can 
potentially degrade 
application performance

• Skew tolerance is 
important!

• We designed a 
benchmark to measure 
process skew effect on 
performance

c1

MPI_Isend

MPI_Recv

c2

MPI_Waitall

c3

n times

n times

Producer Consumer

c2 is much larger than c1

We measure the total latency on 

the producer side: c3
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Process Skew Effects

• MVAPICH-LiMIC2: Send cannot complete until the corresponding receive is 
posted

• MVAPICH: Uses an intermediate buffer and is potentially more skew 
tolerant

• Theoretically:
– c3(MVAPICH) = (c1 + t(MPI Isend)) * window size n + t(MPI Waitall)

– c3(MVAPICH-LiMIC2) = (t(MPI Recv) + c2) * window size n + t(MPI Waitall)

• Experimental results conform to the expectation
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Topology Aware Thresholds

• Thresholds to switch from shared memory to LiMIC2 
need to be different for different cases
– Shared cache: 32KB

– Intra-socket: 2KB

– Inter-socket: 1KB

• Parsing information exported in “sysfs” file system
– Under /sys/devices/system/cpu/cpuX/topology/

– physical package id: Physical socket id of the logical CPU

– core id: Core id of the logical CPU on the socket

• Every process knows the topology based on the above 
information

• Using CPU affinity to pin processes to processors
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Skew Aware Thresholds

• Unexpected message queue
– Messages received without the 

matching receive call being 
posted

– Length indicates the process 
skew extent

• Skew aware
– Receiver keeps track of the 

length of the unexpected 
message queue

– Sends feedbacks to the 
sender 

– Sender adjusts thresholds 
accordingly

Sender Receiver

Request to send

… Unexpected queue 

is detected too long
Feedback

Increase threshold

Unexpected queue 

length is normal
Feedback

Decrease threshold

…
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Results of Topology Aware Thresholds

• Topology aware thresholds:

– Shared cache: 32KB

– Intra-socket: 2KB

– Inter-socket: 1KB

• Performance optimized for all 
the three cases
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Results of Skew Aware Thresholds

• The sending process can detect process skew quickly 
and adapt to it

• The producer latency is much lower with skew detection
– Close to that of MVAPICH 
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Performance of Collectives

• Improvements:
– MPI_Alltoall: 60%

– MPI_Allgather: 28%

– MPI_Allreduce: 21%

• MPI_Allreduce
– MVAPICH performs better for 1KB-

8KB messages

– MVAPICH uses optimized algorithms 

– MVAPICH-LiMIC2-opt can be further 
optimized for collective operations
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Performance of Applications (1)

• Performance on a single 
node with 8 processes

• MVAPICH-LiMIC2-opt 
improves the performance of 

FT, PSTSWM, and IS 

significantly

– FT: 8%

– PSTSWM: 14%

– IS: 17%

• Cache utilization is improved 
by up to 6%
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Performance of Applications (2)

• Performance on a single 
node with 8 processes

• Performance improvement is 
under 2% for LU, HPL, BT, 
and SP 
– Communication time is not 

significant, or

– Not many large messages

• Applications that transfer 
more large messages can 
benefit more from MVAPICH-
LiMIC2-opt
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Performance of Applications (3)

• Performance on 8 nodes with 8x8 processes

• PSTSWM still benefits from MVAPICH-LiMIC2-opt

• MVAPICH-LiMIC2-opt is promising for clusters
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Conclusions

• An efficient hybrid approach for MPI intra-node 
communication
– Shared memory (MVAPICH)

– OS kernel assisted direct copy (MVAPICH-LiMIC2)

• 1st step: Initial evaluation
– MVAPICH-LiMIC2 provides better performance than MVAPICH 

depending on the message size and physical topology

• Fewer number of copies

• Efficient cache utilization

– MVAPICH-LiMIC2 is less skew-tolerant than MVAPICH

• 2nd step: Designing an efficient hybrid approach
– Topology-aware thresholds

– Skew-aware thresholds
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Conclusions (Cont’d)

• 3rd step: Comprehensive performance evaluation
– MPI Alltoall, MPI Allgather, and MPI Allreduce performances are 

improved by up to 60%, 28%, and 21%, respectively.

– FT, PSTSWM, and IS performances are improved by 8%, 14%, and 

17%, respectively.

• Software distribution

– Will be available in upcoming MVAPICH releases!
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Future Work

• Optimizations on collective algorithms for MVAPICH-
LiMIC2

• Evaluation on AMD dual-core and quad-core platforms

• In-depth studies on how the improvements in MPI intra-

node communication benefit the application performance
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