
Extending OpenSHMEM for
GPU Computing

Sreeram Potluri Devendar Bureddy Hao Wang
Hari Subramoni Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University

2

Outline

•  Motivation

•  Problem Statement

•  OpenSHMEM Extensions for GPU Computing

•  Designing a High-performance OpenSHMEM Runtime

•  Performance Evaluation

•  Conclusion and Future Work

IPDPS 2013

Accelerator Era

•  Accelerators are becoming common in high-end system architectures

•  Increasing number of workloads are being ported to take advantage of GPUs

•  As they scale to large GPU clusters with high compute density – higher the
synchronization and communication overheads – higher the penalty

•  Critical to minimize these overheads to achieve maximum performance

3 IPDPS 2013

70%

Top 100 – Nov 2012
(20% use Accelerators)

20%

70% use GPUs

Partitioned Global Address Space (PGAS) Models

•  PGAS models, an attractive alternative to traditional message passing

–  Simple shared memory abstractions

–  Lightweight one-sided communication

–  Flexible synchronization

–  Lower synchronization and communication overheads – fit the requirements for
GPU computing ?

•  OpenSHMEM, a easy-to-use library based PGAS model that is gaining
attention

•  An effort to unify and standardize various proprietary SHMEM-like
implementations

•  Benefits from long standing SHMEM implementations and user base

4 IPDPS 2013

The OpenSHMEM Memory Model

5

•  Defines symmetric data objects that are globally addressable
–  Allocated using a collective shmalloc routine

–  Same type, size and offset address at all processes/processing elements (PEs)

–  Address of a remote object can be calculated based on info of local object

Symmetric
Object

b

b

 PE 0 PE 1

int main (int c, char *v[]) {
 int *b;
 start_pes();
 b = (int *) shmalloc (sizeof(int));

 shmem_int_get (b, b, 1 , 1);
} (dst, src, count, pe)

int main (int c, char *v[]) {
 int *b;

 start_pes();
 b = (int *) shmalloc (sizeof(int));

}

IPDPS 2013

Limitations of OpenSHMEM for GPU Computing

6

•  OpenSHMEM memory model does not support disjoint memory address
spaces - case with GPU clusters

IPDPS 2013

PE 0

Existing OpenSHMEM Model with CUDA

•  Copies severely limit the performance

PE 1

GPU-to-GPU
Data Movement

PE 0

cudaMemcpy (host_buf, dev_buf, . . .)
shmem_putmem (host_buf, host_buf, size, pe)
shmem_barrier (…)

host_buf = shmalloc (…)

PE 1

shmem_barrier (. . .)
cudaMemcpy (dev_buf, host_buf, size, . . .)

host_buf = shmalloc (…)

•  Synchronization negates the benefits of one-sided communication

Can we do better?

7 IPDPS 2013

PE 0

Proposed OpenSHMEM Model

•  High performance – Preserve one-sided semantics

PE 1

GPU-to-GPU
Data Movement

PE 0
shmem_putmem (dev_buf, dev_buf, size, pe)

PE 1

<< not involved >>

Problem Statement

8 IPDPS 2013

Can we extend the OpenSHMEM memory model to allow direct communication from
GPU device memory?

Can we design an OpenSHMEM runtime system to achieve the maximum performance
for different GPU configurations?

Can the performance benefits offered by the OpenSHMEM runtime result in
improvements in performance of applications?

Can the extensions be interoperable with both CUDA and OpenCL for wider
acceptance in the GPU computing community?

Proposed Design Framework

HPC Applications & Kernels

OpenSHMEM CUDA
OpenCL

Multi-core Nodes InfiniBand Network

Modern HPC System Architecture

GPUs

High Performance OpenSHMEM Runtime

9 IPDPS 2013

Intra-Node

Intra-IOH Inter-IOH Inter-Node

Extensions
(performance, interoperability)

10

Outline

•  Problem Statement

•  OpenSHMEM Extensions for GPU Computing

•  Designing a High-performance OpenSHMEM Runtime

•  Performance Evaluation

•  Conclusion and Future Work

IPDPS 2013

HPC Applications & Kernels

OpenSHMEM Extensions
(performance, interoperability) CUDA

OpenCL

Multi-core Nodes InfiniBand Network

Modern HPC System Architecture

GPUs

High Performance OpenSHMEM Runtime

11 IPDPS 2013

Intra-Node

Intra-IOH Inter-IOH Inter-Node

Proposed Design Framework

Evaluating Existing Alternatives

12 IPDPS 2013

•  Heap Selection (based on UPC extensions by Zheng et. al. and Luo et. al.)
–  Extensions to select memory domain before allocation

–  Shmalloc can return CPU and GPU buffers

PE 0

shmem_putmem (dev_buf, dev_buf, size, pe)

PE 1

<set memory domain to GPU>

<set memory domain to GPU>
dev_buf = shmalloc (size)

dev_buf = shmalloc (size)

•  We saw limitations as we went into the details

13 IPDPS 2013

•  Usability of shmalloc’ed buffers in CUDA/OpenCL calls

–  OpenCL operates on data objects - require an address to object conversion

•  Device buffer detection in OpenSHMEM communication calls

–  Not an issue with CUDA with Unified Virtual Addressing (UVA)

–  OpenCL standard does not offer a feature equivalent to UVA - user has to indicate the type of
buffer with each call or OpenSHMEM runtime needs a way to differentiate

•  Context Management

–  CUDA provides separate API calls to set context, user can select context before
making OpenSHMEM calls

–  Context is required as a parameter in several calls, need a way for user and runtime to
exchange context information

•  These complications arise as OpenSHMEM handles allocation of GPU device
buffers

Interoperability with CUDA and OpenCL

Proposed Extension: shmmap

14 IPDPS 2013

•  Let users mange device buffer allocation

•  Allow buffers to be mapped onto a symmetric address space for communication

void *shmmap (void *obj, size t size, int obj type);
void shmunmap (void *ptr);

•  obj
–  a pointer to OpenCL memory

object
–  adevice buffer pointer with CUDA

•  size
•  type

–  OSHM_MEMTYPE_CUDA

–  OSHM_MEMTYPE_OPENCL

Device
Buffer

Reserved Map
Address Space

shmmap

mapped vaddr

•  The address can be used in OpenSHMEM communication calls

•  Note that the map address space is only virtual addresses

Proposed Extension and Interoperability

15 IPDPS 2013

•  Shmmap follows semantics similar to shmalloc routine – collective and
symmetric

•  Symmetric map allows for translation from local map address to remote map
address

•  The map address is then translated to the memory object or device address

•  Buffer usability in CUDA/OpenCL calls

–  User has complete control of the allocated buffers or buffer objects

•  Device buffer detection
–  A simple check owing to reserved virtual address space for symmetric mapping

•  Context management
–  Users have complete control of context information

–  OpenSHMEM runtime can get OpenCL context information using clGetMemObjectInfo on
the memory object

16

Outline

•  Problem Statement

•  OpenSHMEM Extensions for GPU Computing

•  Designing a High-performance OpenSHMEM Runtime

•  Performance Evaluation

•  Conclusion and Future Work

IPDPS 2013

Design Framework

HPC Applications & Kernels

OpenSHMEM CUDA
OpenCL

Multi-core Nodes InfiniBand Network

Modern HPC System Architecture

GPUs

High Performance OpenSHMEM Runtime

17 IPDPS 2013

Intra-Node

Intra-IOH Inter-IOH Inter-Node

Extensions
(performance, interoperability)

Intra-IOH Communication with CUDA

18 IPDPS 2013

•  CUDA offers Inter-Process Communication
(IPC), a host-bypass for GPU-GPU transfers

HOST

IOH

GPU0 GPU1

P0 P1 Intra-IOH

CUDA IPC

•  One process can map another process’s
device buffer into its address space

•  Single copy to move data between processes

•  Buffers are mapped during shmmap, data
movement fits well with one-sided
semantics in OpenSHMEM

•  However, this works only when GPUs are
on the same IOH or Socket

•  We work around this limitations by using a
“shadow context”

Inter-IOH Communication with CUDA:
 Shadow Context

19 IPDPS 2013

•  CUDA supports P2P transfers between GPUs on different IOHs within one
process (staged through the host by the driver but still single copy call)

HOST

IOH

GPU0 GPU1

IOH

Inter-IOH P0 P1

P0’s
Shadow
Context

P1’s
Shadow
Context

•  Each process creates a “shadow” context on remote process’s GPU - during
init

•  In shmmap call – process switches to shadow context, maps remote
process’s buffer using CUDA IPC and switches back to original context

•  Uses P2P transfers for GPU-GPU communication, one-sided
P0

Design Framework

HPC Applications & Kernels

OpenSHMEM CUDA
OpenCL

Multi-core Nodes InfiniBand Network

Modern HPC System Architecture

GPUs

High Performance OpenSHMEM Runtime

20 IPDPS 2013

Intra-Node

Intra-IOH Inter-IOH Inter-Node

Extensions
(performance, interoperability)

Inter-Node Communication with CUDA

21 IPDPS 2013

•  Pipelined data transfers through host memory - overlap between CUDA copies and
IB transfers

•  Used light-weight CUDA events for synchronization instead of streams

•  Service-thread offered by OpenSHMEM reference implementation for asynchronous
and one-sided progress

•  We follow similar designs with OpenCL and more designs discussed in the paper

HOST

IOH

HOST

IOH

GPU1 GPU0

Inter-Node
P0 P1

22

Outline

•  Problem Statement

•  OpenSHMEM Extensions for GPU Computing

•  Designing a High-performance OpenSHMEM Runtime

•  Performance Evaluation

•  Conclusion and Future Work

IPDPS 2013

•  Micro-benchmark level evaluation
–  A westmereep cluster, each node has

•  Each node has two Intel Xeon E5645 quad-core CPUs, 12GB RAM

•  Mellanox MT26428 QDR HCA

•  Two NVIDIA C2075 GPUs with 5GB Memory

•  Red Hat Linux 5.4, OFED 1.5.1 and CUDA 4.1
•  Application Kernel level evaluation

–  XSEDE Keeneland-KIDS cluster
•  Two Intel Xeon X5560 six- core CPUs , 32GB RAM

•  Mellanox MT4099 IB FDR HCA

•  Three NVIDIA Tesla M2090 GPUs

•  OpenSHMEM Reference Implementation v1.0b

•  OSU Micro-Benchmarks & SHOC Benchmark Suite

Experimental Setup

23 IPDPS 2013

Intranode Communication using CUDA

24 IPDPS 2013

Small Messages Large Messages

shmem_getmem

•  CUDA IPC significantly improves intra-IOH GPU-GPU communication –
90% improvement for 4Byte and 72% for 4MByte messages

•  “shadow context” and P2P copies provides single copy for inter-IOH transfers -
40% improvement for 4Byte and 45% improvement for 4MByte messages

0
20
40
60
80

100

1 4 16 64 256 1K 4K 16K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0
500

1000
1500
2000
2500
3000
3500

32K 128K 512K 2M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

Internode Communication using CUDA

25 IPDPS 2013

Small Messages Large Messages

shmem_getmem

One-sided Progress

•  Small messages benefit from selective
CUDA registration – 17% for 4Byte messages

•  Large messages benefit from pipelined
overlap – 42% for 4MByte messages

•  Service thread enables one-sided
communication

0
20
40
60
80

100

1 4 16 64 256 1K 4K 16K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0
500

1000
1500
2000
2500
3000

32K 128K 512K 2M

L
at

en
cy

 (u
se

c)

Meesage Size (Bytes)

0
200
400
600
800

1000
1200

0 200 400 600 800 1000

L
at

en
cy

 (u
se

c)

Remote Compute Skew (usec)

Internode Communication using OpenCL

26 IPDPS 2013

Small Messages Large Messages

shmem_putmem

•  Similar latency and benefits as with CUDA – 42% for 4MByte messages

0

20

40

60

80

1 4 16 64 256 1K 4K 16K

L
at

en
cy

 (u
se

c)

Message Size (Bytes

0
500

1000
1500
2000
2500
3000

32K 128K 512K 2M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

Stencil2D Kernel

27 IPDPS 2013

•  Modified SHOC Stencil2D kernelto use OpenSHMEM for cluster level parallelism

•  The enhanced version shows 65% improvement on 192 GPUs with 4Kx4K problem
size/GPU

•  Using OpenSHMEM for GPU-GPU communication allows runtime to optimize non-
contiguous transfers

0
5000

10000
15000
20000
25000
30000

512x512 1Kx1K 2Kx2K 4Kx4K 8Kx8K

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Problem Size/GPU
(192 GPUs)

0
2
4
6
8

10
12
14

48 96 192

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

se
c)

Number of GPUs
(4Kx4K problem/GPU)

BFS Kernel

28 IPDPS 2013

•  Extended SHOC BFS kernel to run on a GPU cluster using a level-synchronized
algorithm and OpenSHMEM

•  The enhanced version shows upto 12% improvement on 96 GPUs, a consistent
improvement in performance as we scale from 24 to 96 GPUs.

0
200
400
600
800

1000
1200
1400
1600

24 48 96

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Number of GPUs
(1 million vertices/GPU with degree 32)

Conclusion and Future Work

29 IPDPS 2013

•  Usability of OpenSHMEM on GPU clusters is severely limited

•  Proposed extensions to the OpenSHMEM memory model to alleviate this,
interoperable with both CUDA and OpenCL

•  Presented a high-performance OpenSHMEM runtime including novel
designs like shadow context

•  Upto 90% improvement in inter-node GPU-GPU transfers and upto 42%
improvement for inter-node GPU-GPU communication

•  Demonstrated benefits using Stencil2D and BFS kernels

Conclusion and Future Work

30 IPDPS 2013

•  Current focus on runtime level optimizations using CUDA features like
GPUDirect RDMA

•  To re-design wider range of applications using the extended OpenSHMEM
model

 Thank You!
{potluri, bureddy, wangh, subramon, panda}@cse.ohio-state.edu,

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

31

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/�

