Fast and Scalable Startup of MPI Programs in
InfiniBand Clusters*

Weikuan Yu, Jiesheng Wu, Dhabaleswar K. Panda

Network-Based Computing Lab
Dept. of Computer Science and Engineering
The Ohio State University
{yuw,wuj,panda@cse.ohio-state.edu

Abstract. One of the major challenges in parallel computing over lacge
clusters is fast and scalable process startup, which tiypican be divided into
two phases: process initiation and connection setup. $rpdgper, we characterize
the startup of MPI programs in InfiniBand clusters and idgrtio startup scal-
ability issues: serialized process initiation in the atitbn phase and high com-
munication overhead in the connection setup phase. To eeth& connection
setup time, we have developed one approach with data reblysemeduce data
volume, and another with a bootstrap channel to parall¢fizecommunication.
Furthermore, a process management framework, Multi-RBgrpaemons (MPD)
system is exploited to speed up process initiation. Ourmxgatal results show
that job startup time has been improved by more than 4 time4&Z8-process
jobs, and the improvement can be more than two orders of muafor 2048-
process jobs as suggested by our analytical models.

1 Introduction

The MPI (Message Passing Interface) Standard [12] has ed@ls ale facto parallel
programming model for distributed memory systems. Trad#il research over MPI
has been largely focusing on the high performance commtimichetween processes.
As cluster computing becomes a prominent platform of higtigpenance computing,
scalable process management of MPI applications becomesiae research topic [3,
1]. One of the major challenges in process management isihamd scalable startup
of large-scale applications [2, 6, 10, 4, 9]. This issue bee®even more pronounced
in the large scale systems with thousands of nodes. A phjatiiés usually launched
by a process manager, which is often referred to aptbeess initiation phase. These
initiated processes usually require assistance from theggs manager to set up peer-
to-peer connections before starting communication andocation. This is referred to
as theconnection setup phase.

InfiniBand Architecture (IBA) [8] has been recently stardiaed in industry to de-
sign next generation high-end clusters for both data-ceamte high performance com-
puting. Large cluster systems with InfiniBand are being dggdl. For example, in the
Top500 list released in November 2003 [15], the 3rd, 111k, HL6th most powerful
supercomputers use InfiniBand as their parallel applinatimmmunication intercon-
nect. These three systems have 2200, 256, and 512 processpextively. The startup

* This research is supported in part by a DOE grant #DE-FCER25506, NSF Grants #CCR-
0204429 and #CCR-0311542, and a grant from Los Alamos Naltlaboratory.

of MPI applications in InfiniBand clusters at such a largdescsma challenging issue. It
may take more than ten minutes to go through the above metiprocess initiation
and connection setup phases for an application with 100€egees without scalable
and high performance startup support.

In this paper, we have taken on the challenge to support aldeadnd high per-
formance startup of MPI programs over InfiniBand clusterehWIVAPICH [13] as
the platform of study, we have analyzed the startup bottlesieAccordingly, differ-
ent approaches have been developed to speed up the conrssttip phase, one with
data reassembly at the process manager and another usatiggxall-to-all broadcast
over a ring of InfiniBand queue pairs (referred to as a baasthannel). In addition,
we have exploited a process management framework, Mutpdde Daemons (MPD)
system to further speed up the startup. The bootstrap chanaiso utilized to reduce
the impact of communication bottlenecks in MPD, includingltiple process context
switches and quadratically increasing data volume oveMR® management ring.
Over 128 processes, our work improves the startup time b rham 4 times. Scala-
bility Models derived from these results suggest that therawement can be more than
two orders of magnitude for the startup of 2048-process jobs

The rest of the paper is structured as follows. Section 2sgaweoverview of Infini-
Band. Section 3 describes the challenge of scalable sttatan by parallel programs
over InfiniBand and related work on process managementicBetidescribes the de-
sign of startup with different approaches to improve thengmtion setup time and the
process initiation phase. Experiments results are provids. Finally, we conclude the
paper in Section 6.

2 Overview of InfiniBand Architecture

The InfiniBand Architecture (IBA) [8] defines a System AreatiWerk (SAN) for in-
terconnecting computing nodes and 1/0O nodes. In an InfirdBagtwork, a switched
communication fabric is defined to allow many devices to camitate concurrently
at high bandwidth and low latency. Processing nodes arestt@d as end-nodes to the
fabric with Host Channel Adapters (HCAS).

InfiniBand provides four types of transport services: R#éa&Connection (RC), Re-
liable Datagram (RD), Unreliable Connection (UC), and Uiat#e Datagram (UD).
The often used service is RC in the current InfiniBand proglant software. It is also
our focus in this paper. To support RC, a connection must bepsbetween two QPs
before any communication. In the current InfiniBand SDK e@® has a unique iden-
tifier, calledQP-ID. This is usually an integer. For network identification, led&tCA
also has a unique 16-bit local identifidtl D). To make a connection, a pair of QPs
must exchange their QP IDs and LIDs.

3 Problem Statement and Related Work

This section first characterizes the scalability constsaifithe startup of MPI programs
in InfiniBand clusters. It then provides a brief discussiénetated work and motivates
the study for a scalable startup scheme.

3.1 Startup of MPI Applications using MVAPICH

MVAPICH [13] is a high performance implementation of MPI ovefiniBand. Its de-
sign is based on MPICH [5] and MVICH [11]. The current implertedion of MVA-
PICH utilizes the Reliable Connection (RC) service for tleenenunication between
processes. The connection-oriented nature of IBA RC-b@$tdrequires each process
to create at least one QP for every peer process. To formyadoiinected network of
N processes, a parallel application needs to create andecbanleastV x (N — 1)
QPs during the initialization time. Note that it is possitidave these QPs be allocated
and connected in an on-demand manner [16], however thisresghat the connection
management subsystem of IBA can handle either peer-toguesient-server model
connection establishment, which is not mature yet in theecuid BA software. Another
reason for the fully-connected connection model is sinifpliand robustness. There-
fore, this connection model has been used in many MPI impiatiens, including
MVAPICH.

.\D D’ process (rank)
AN - daemons
.-~ (rshissh)

. launcher (port)

/\y wrk/exec
o o

(a) The Initiation Phase (b) The Connection Setup Phase
Fig. 1: The Startup of MPI Applications in Current MVAPICH

1id0,gp(N-1}| | lid1,qp{N-1}| ... ‘

process 1

The startup of an MPI application using MVAPICH can also béd#d into two

phases. As shown in Fig. 1(a), an MPI application using M\@RIis launched with

a simple process launcher iterating over UNIX remote shgh)(or secure shell (ssh)
to start individual processes. Each process connects loattietlauncher via a port
exposed by the launcher. Except the rank of the process,mackss has no global
knowledge about the parallel program. In the second phasemmiection setup, as
shown in Fig. 1(b), each process creabés- 1 QPs, one for each peer process, for
an N-process application. Then, these processes excheigktal identifiers (LIDs)
and corresponding QP identifiers (QP-IDs), as mentionecksti@ 2 for connection
setup. Since each process is not connected to its peer pescéise data exchange has
to rely on the connections that are created to the launchieeifirst phase. The launcher
collects data about LIDs and QP-IDs from each process, amgbnds the combined
data back to each process. Each process in turn sets up tionsewer InfiniBand with
the received data. A parallel application with fully conteztprocesses is then created.

3.2 The Scalability Problem

The startup paradigm described above is able to handledhestof small scale par-
allel applications. However, as the size of an InfiniBandstdu goes to 100s—-1000s,

the limitation of this paradigm becomes pronounced. Fongtea, launching a par-
allel application with 2000 processes may take tens of mesthere are two main
scalability bottlenecks, one in each phase. The first btk isrsh/ssh-based startup

in the process initiation phase. This process startup nméstmais simple and straight-
forward, but its performance is very poor on large systenm& Jecond bottleneck is
the communication overhead for exchanging LIDs and QP-tDké connection setup
phase. To launch an N-process MPI application, the launtheto receive data con-
taining (N — 1) QP-IDs from each process. Then it returns the combined dika w
N x (N —1) QP-IDs to each process. In total, the launcher has to convatendata in
the amount of)(IV3) for an N-process application. Each QP-ID is usually a foyteb
integer, for a 1024-process application the launcher witeive almost 4 MegaBytes
data and sends almost 4 Gigabytes of data. This communidgpaally goes through
the management network which is normally Fast Ethernet galdi Ethernet. This
incurs significant communication overhead and slowdowhécapplication startup.

3.3 Related Work

Numerous work have been done to provide resource managérasrawork for col-
lections of parallel processes, ranging from basic iteeash/ssh-based process launch
in MVICH [11] to more sophisticated packages like MPD [3],l&mt [2], PBS [14],
LoadLeveler/POE [7], to name a few. Compared to the rshissted iterative launch of
processes, all these packages can provide more scalatilgstad retain better mon-
itoring and control of parallel programs. However, theyitgtly lack efficient support
for complete exchange of LIDs and QP-IDs as required by [gqalograms over In-
finiBand clusters. In this paper, we focus on providing arcifit support for the com-
plete exchange of LIDs and QP-IDs, and applying such a schewm®e of these pack-
age, MPD, in order to obtain efficient process initiationmon. We choose to study
MPD [3] because it is one of the systems widely distributezhglwith MPICH [5]
releases and has a large user base.

4 Designing Scalable Startup Schemes

This section describes the design of scalable startup ssheminfiniBand clusters. We
first describe different approaches used to enhance theaction setup phase while
the processes are still launched via rsh/ssh daemons. Tdherploit the advantages of
MPD [3], to replace the rsh/ssh based scheme and achieve dfficimress initiation.
We also characterize some MPD features and their limitatiothe scalable startup of
MPI applications in InfiniBand clusters. We also introdulse toncept of a bootstrap
channel which can be used to overcome these limitations.

4.1 Efficient Connection Setup

As mentioned in the previous section, because the launasaotcollect, combine and
broadcast QP IDs, the volume of these data scales up in tleg ofd(N?3), which
leads to prolonged connection setup time. One needs tod=mmgio directions in order
to reduce the connection setup time. The first direction ietluce the volume of data
that needs to be communicated. The other direction is tdlpiza communication for
the exchange of QP IDs.

Approach 1: Reducing the Data Volume with Data Reassembly (R) To have pro-
cesses fully connected over InfiniBand, each process needshect with another peer
process via one QP. This means that each process needsito Sbtal QP IDs, one
for each peer. That is to say, out of the combined dat& of (N — 1) QP IDs in the
launcher, each process only needs to recaive 1 QP IDs that is specifically targeted
for itself. This requires a centralized component, i.ee, luncher, to collect and re-
assembly QP IDs. The biggest advantage of this data reakséD®) scheme is that
the data volume exchanged can be reduced down to an ord&i\of). But there are
several disadvantages associated with this scheme. thiestntire set of QP IDs need
to be reassembled before sending them to each client pesceRsis constitutes an-
other performance/scalability bottleneck at the launcBecond, the whole procedure
of receive-reassembly-send is also serialized at the keamc

) @) [6)

P lidap(N-1) [lidap{N-1) | lid.qp{N-1}

process — process C process 3 process 0
(lid,gp){Ihs,rhs} \
launcher af Tiaap -] lidap(N-1)3)
(lid,qp){Ihs,rhs} /r
' ‘ process 2 process |
d lid,qp{lhs, rhs}
process 2 So process 1 m m m
S __- o) @
(a) Setup a Bootstrap Channel (b) Ring-Based All-to-all Broadcast of QP
Data

Fig. 2: Parallelizing the Total Exchange of InfiniBand Qu@aér Data

Approach 2: Parallelizing Communication with a Bootstrap Channel (BC) More
insights can be gained on the possible parallelism withh&rrexamination of the
startup. Essentially, what needs to be achieved at thaipttinhe is an all-to-all per-
sonalized exchange of QP IDs, i.e., each process receieesptrific QP IDs from
other processes. In the original startup scheme as showigirl Fthe launcher per-
forms a gather/broadcast to help the all-to-all broaddatedr QP data. On top of that,
the DR scheme in Section 4.1 reassembles and “personadesiata to reduce the
data volume. Both do not exploit the parallelism of all-tbggersonalized exchange.
Algorithms that parallelize an all-to-all personalizeakange can be used here. These
algorithms are usually based on a ring-, hypercube- or t{based topology, which re-
quires more connections to be provided among processdsthdiinitial star topology
in the original startup scheme, providing these connesti@s to be done through the
launcher. However, since a parallel algorithm can pot#yitiwerlap both sending and
receiving QP data, it promises better scalability overteltsswith larger sizes.

Among the three possible parallel topologies, the ringeddepology requires the
least number of additional connections, i.e., 2 per procEsis would minimize the
impact of the ring setup time. Another design option to besadered is that which type

of connections should be provided. Either TCP/IP- or Infaril-based connections
can be used. Since the communication over InfiniBand is mastef than that over
TCP/IP (see [17] for detail latency comparison between dhera choose to use a ring
of InfiniBand QPs as a further boost to the parallelized dathange.

The second approach works as follows. First, each procesdes two QPs for
its left hand side (lhs) and right hand side (rhs) processspectively. We call these
QPsbootstrap QPs. Second, the DR scheme mentioned in Section 4.1 is used to set
up connections between these bootstrap QPs as shown ireR@ix. Thus, a ring of
connections over InfiniBand is created, as shown by the ddéitte in Figure 2(a). We
refer to this ring as &ootstrap channel (BC). After this channel is set up, each process
initiates a broadcast of its own QP IDs through the channtblérclockwise direction as
shown in Fig. 2(b) with four processes. Each process alseai@s what it receives to
its next process. In this scheme, we take advantage of batimcmication parallelism
and high performance of InfiniBand QPs to reduce the comnatioit overhead.

4.2 Fast Process Initiation with MPD

MPD [3] is designed to be a general process manager intetatprovides the needed
support for MPICH, from which MVAPICH is developed. It majrgrovides fast startup
of parallel applications and process control to the pdraltes. MPD achieves its scal-
able startup by instantly spreading a job launch requestadts ring of daemons, then
launches one ring of manager and another ring of applicgiionesses in a parallel
fashion (see [17] for detailed description of MPD systerfsy. processes to exchange
individual information MPD system also exposes a BNR iregfwith a put/fence/get
model. A process stores (puts) a (key,value) pair at its granprocess, a part of the
MPD database, then another process retrieves (gets) thiat lvp providing the same
key after a synchronization phase (fence).

i
i process 1

be |
i
i

i
i ﬂ i

i
RN : ‘ P T T process
- .process i Ihs Processes .

JP process. Y -
rocess 3

i
i

i

i

I
i

\/’@ . Processes

peer 2 N
process 0 .
peer 3

process 3
. - . -
Store (put) Retrieve (get) Req Retrieve (get) Rep Store (put) Retrieve (get) Req Retrieve (get) Rep

(@) Exchange of Queue Pair IDs Over the (b) Setting up Bootstrap Channel within Pro-
Ring of Manager cesses

Fig. 3: Improving the Scalability of MPD-Based Startup

Although this fast and parallelized process startup fronDMi#@lves the process
initiation problem, the significant volume of QP data stidlges a great challenge to the
MPD model. As shown in Fig. 3(a), the database is distribotet the ring of manager
processes when each process stores (puts) their proasfiesgata to its manager.
To collect the data from every peer process, one processohssntl a request and
get the reply back for the target process. At the completioinese data exchanges,

each process then sets up connections with all the peerbpas with process 0 in
Fig. 3(a). Together, messages for the request and the regdg encomplete round over
the manager ring. For a parallel job with N processes, ther&ax (N — 1) message
exchanges in total. Each of these messages is in the ord@{/éj bytes and has to
go through the ring of manager processes. In addition, sippécation processes store
and retrieve data through their corresponding manageepses at each node, process
context switches are very frequent and they further degttael@erformance of ring-
based communication. Furthermore, the message passiveyisGP/IP sockets, which
delivers lower performance than InfiniBand-based conaoesti(see [17] for latency
comparisons).

There are different alternatives to overcome these limitat One way of doing
that is to replace the connections for the MPD manager rittlg WAPI connections to
provide fast communications. In addition, copies of QP databe saved at each man-
ager process as the first copy of QP data passes through ghd@ hien further retrieve
(get) requests can get the data from the local managerlginestead of the MPD man-
ager ring. This approach will improve the communicationgjrhowever, the process
context switches still exist between the application psses and manager processes.
In addition, retrieve requests made before QP data reabkdedal manager process
still has to go through the manager ring. Last but not leh&,approach necessitates a
significant amount of instrumentation of MPD code and hay bmiited portability to
InfiniBand-ready clusters.

Instead of exchanging all the QP data over the ring of MPD mangrocesses,
we propose to exchange QP IDs over the bootstrap channeilmiE$in Section 4.1.
Though setting up the bootstrap channel still needs hetp fhe ring of manager pro-
cesses. As shown in Fig. 3(b), each process first createsard P IDs for its left side
(Ihs) and right hand side (rhs) processes to the local manBigen, from the database,
they retrieve QP IDs for its left hand side and right hand gidecesses, and then set
up InfiniBand connections. Eventually a ring of such conioestare constructed and
together form a bootstrap channel. This bootstrap chasriben utilized to perform a
complete exchange of QP IDs as described in Section 4.1e S bootstrap channel
is provided within the application processes and over IBfnid, this approach will not
only provide fast communication and eliminate the procesgext switches, but also
reduce the number of communications through each managee$s.

5 Performance Evaluation

Our experiments were conducted on a 256-node cluster of 4GBND dual-SMP

2.4GHz Xeon at the Ohio Supercomputing Center. For fastortdiscovery with data
reassembly (DR) or the bootstrap channel (BC), we used dalch the parallel pro-
cesses. Performance comparisons were provided againsPMBKA 0.9.1 (Original).

Since Networked File System (NFS) performance could be &bitieneck in a large
cluster and mask out the performance improvement of stadllipinary executable
files were duplicated at local disks to eliminate its impact.

5.1 Experimental Results

Table 1 shows the startup time for parallel jobs of differninber processes using dif-
ferent approaches. SSH-DR represents ssh-based stattuQRidata assembly (DR)

Table 1: Comparisons of Parallel Job Startup Time over M\@#PWith Different Approaches

Number of Processgd |8 |16 |32 |64 |128
Original (sec) 0.590.92(1.743.41{7.3 |13.7
SSH-DR (sec) 0.580.941.693.37/6.7713.4
SSH-BC (sec) 0.610.9591.7(03.386.7613.3
MPD-BC (sec) 0.610.630.640.84/1.583.10

at the process launcher. SSH-BC represents ssh-basegbstaitig the bootstrap chan-
nel (BC) to exchange QP IDs. MPD-BC represents MPD-baseuliptevith a bootstrap
channel for the exchange of QP IDs.

As the number of processes increases, both SSH-DR and SSHeBCe the startup
time, compared to the original approach. This is becausze assembly can reduce
the data volume by an order 6J(N) and the bootstrap channel can parallelize the
communication time. Note that the BC-based approach padalightly worse than
the the original and DR-based approach for small number eéquses. This is due
to the overhead from setting up the additional ring over IBfimd. As the number of
processes increases, the benefits become greater. Boti8SSiid SSH-DR will be
able to provide more scalable startup for a job with thousafgrocesses since they
remove the major communication bottleneck imposed by pigténlarge volume of
QP data. In contrast, the MPD-based approach with a boptstrannel provides the
most scalable startup. On one hand, MPD-BC provides effigiarallelized process
initialization, compared to the ssh-based schemes. Ontttex band, it also pipelines
the QP data exchange over a ring of VAPI connections, hergafiproach speeds up
the connection setup phase. Compared to the original agiprttee MPD-BC approach
reduces the startup time for a 128-process job by more thiame$ t

5.2 Analytical Models and Evaluations for Large Clusters

As indicated by the results from Section 5.1, the benefithedesigned schemes will
be more pronounced for parallel jobs with larger number otpsses. In this section,
we further analyze the performance of different startugetds and provide parameter-
ized models to gain insights about their scalability ovegdeclusters. The total startup
time Tq,tup Can be divided into the process initiation time and the cotioe setup
time, denoted a$;,,;; andT...,, respectively. Based on the scalability analysis, we use
the following model to describe the startup time of the erégischeme (Original), ssh-
based scheme with data reassembly (SSH-DR) and the MP@-sakeme with the
bootstrap channel (MPD-BC). Each of the models shows the timthe startup ofV
processes, and the last component describes the time fer @tbrheads that are not
quantified in the models, for example, process switchinglozed.

Original: Tsiartup = (Og * N) + (O1 % N * (Wn + Wy2)) + O2
The process initiation phase ting,,;; scales linearly as the number of
processes increases with ssh/rsh-based approachesgdwhilg the con-
nection setup there ateV messages communicated over TCP/IP. Half of
them are gathered by the launcher, each being in the orde{/gi bytes;
the other half are scattered by the launcher, each(6f?) bytes .

SSH-DR: Tstartup = (Do * N) + (Deomp * N* + Dy x 2N x« W) + Do
The process initiation timé&;,,;; scales linearly with ssh/rsh. During the

connection setup phase, the amount of computation scatbe iorder of
O(N?3) (the constanD.,.,,,, can be very small, being the time for extract-
ing one QP Id), and there are 2*N message communicated ovefiF.C
Half of them are gathered by the launcher, each being in therafO (V)
bytes; The other half are scattered by the launcher, eadheaf {s only
O(N) bytes due to reassembly.

MPD-BC: Tstartup = (Mo+NsWyeq)+(Men_setup*N+Mix N« W)+Mo
The process initiation timé;,,;; scales constantly using MPD, however
there is a small fractional increase of communication tiorelie request
messagéV,..,. During the connection setup phase, the time to setup a boot-
strap channel increases in the orde€gfV). Each process also handles N
message in the pipeline, each in the orde®¢iV) bytes.

Original: Tsiartup (S€C)= (0.100 % N) 4 (10.5 % N * (W + Wy=)) +0.12

SSH-DR: Tistartup (S€C)= (0.100% N)+(8.5¢ 9% N34+10.5% N+ W) +0.12

MPD-BC: Tisartup (S€C)= (0.20 + 0.0010 N) + (0.0180 N + 2.5 % N *
Wx) +0.30

The above scalability models are parameterized based oanalytical modeling.
As shown in Fig. 4, the experiment results confirm the validit these models for
jobs with 4 to 128 processes. Fig. 5 shows the scalabilityifeérént startup schemes
when applying the same models to larger jobs from 4 to 2048gsses. Both SSH-DR
and MPD-BC improves the scalability of job startup signifitg Note that MPD-BC
scheme improves the startup time by about two orders of madgs for 2048-process
jobs.

20 — T 2500 —— T T
Original —+— Original Modeling —+—
DR ---x%-—-- SSH-DR Modeling --->---
MPD-BC ---:--- i L MPD-BC Modeling ---*---
16 Original Modeling & 2000
Iy SSH-DR Modeling --®-)
3 MPD-BC Modeling ---o- 2
T 12 7+ % 1500
£ / 2
= / =
=% 4 [=%
2 8f 4 R 2 1000
8 8
n e 7]
al R 500 |-
I v
4 8 16 32 64 128 4 8 16 32 64 128 256 512 1024 2048

Number of Processes Number of Processes

Fig.4: Performance Modeling of DifferentFig.5: Scalability Comparisons of Different
Startup Schemes Startup Schemes

6 Conclusions and Future Work

In this paper, we have presented schemes to support scafatilep of MPI programsin
InfiniBand clusters. With MVAPICH as the platform of studyeWwave characterized the
startup of MPI jobs into two phases: process initiation amdnection setup. To speed
up connection setup phase, we have developed two approaciessith queue pair data
reassembly at the launcher and the other with a bootstramehdn addition, we have
exploited a process management framework, Multi-Purpaeenidns (MPD) system,

to improve the process initiation phase. The performamaigdtions in the MPD’s ring-
based data exchange model, such as exponentially increasedunication time and
numerous process context switches, are eliminated by ukmgroposed bootstrap
channel. We have implemented these schemes in MVAPICH [3}.experimental
results show that, for 128-process jobs, the startup tirséokan reduced by more than
4 times. We have also developed an analytical model to pgrtjecscalability of the
startup schemes. The derived models suggest that the isypent can be more than
two orders of magnitudes for the startup of 2048-processyath the MPD-BC startup
scheme.

In future, we want to provide a file broadcast mechanism to Mipfdem to achieve
efficient loading of jobs [10]. Furthermore, we intend to yide a hypercube-based
scalable startup over really large systems, e.g., futute-8ale clusters with tens of
thousands of processors.

References

[1] M. Baker, G. Fox, and H. Yau. Cluster Computing Reviewybsimber 1995.

[2] R. Brightwell and L. A. Fisk. Scalable parallel applizat launch on Cplant. lProceed-
ings of Supercomputing, 2001, Denver, Colorado, November 2001.

[3] R. Butler, W. Gropp, and E. Lusk. Components and inter$acof a process management
system for parallel program®arallel Computing, 27(11):1417-1429, 2001.

[4] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin,&n@oll. STORM: Lightning-
Fast Resource Management. Rroceedings of the Supercomputing ' 02, Baltimore, MD,
November 2002.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Perfaance, Portable Implementa-
tion of the MPI Message Passing Interface StandRedallel Computing, 22(6):789-828,
1996.

[6] E.Hendriks. Bproc: The beowulf distributed processcepdnProceedings of the Interna-
tional Conference on Supercomputing, New York, New York, June 2002.

[7] IBM. Using the Parallel Operating Environment, VersibrRelease 1, 2004.

[8] Infiniband Trade Association. http://www.infinibandieg, 2000.

[9] M. Jette and M. Grondona. SLURM: Simple Linux Utility f(tesource Management. In
Proceedings of the International Conference on Linux Clusters, San Jose, CA, June 2003.

[10] A. Kavas, D. Er-El, and D. G. Feitelson. Using MulticéstPre-Load Jobs on the ParPar
Cluster.Paralldl Computing, 27(3):315-327, 2001.

[11] Lawrence Berkeley National Laboratory. MVICH: MPI feirtual Interface Architecture.
http://ww. nersc. gov/research/ FTG nvi ch/i ndex. ht m , August 2001.

[12] Message Passing Interface Forum. MPI: A messagemaBs¥erface standardhe Inter-
national Journal of Supercomputer Applications, 8(3—4):159—-416, 1994.

[13] Network-Based Computing Laboratory. MVAPICH: MPI fmfiniBand on VAPI Layer.
http://now ab. ci s. ohi o- st at e. edu/ proj ect s/ npi -i ba/index. htm .

[14] OpenPBS Documentatioit t p: / / ww. openpbs. or g/ docs. ht nl , 2004.

[15] TOP 500 Supercomputerbt t p: / / www. t op500. or g/ , 2003.

[16] J.Wu, J. Liu, P. Wyckoff, and D. K. Panda. Impact of OnAland Connection Management
in MPI over VIA. In Proceedings of the International Conference on Cluster Com puting,
2002.

[17] W. Yu, J. WU, and D. K. Panda. Fast and Scalable StartigRifPrograms in InfiniBand
Clusters. Number OSU-CISRC-5/04-TR33, Columbus, OH 43Ry 2004.

