
Fast and Scalable Startup of MPI Programs in
InfiniBand Clusters?

Weikuan Yu, Jiesheng Wu, Dhabaleswar K. Panda

Network-Based Computing Lab
Dept. of Computer Science and Engineering

The Ohio State University
{yuw,wuj,panda}@cse.ohio-state.edu

Abstract. One of the major challenges in parallel computing over largescale
clusters is fast and scalable process startup, which typically can be divided into
two phases: process initiation and connection setup. In this paper, we characterize
the startup of MPI programs in InfiniBand clusters and identify two startup scal-
ability issues: serialized process initiation in the initiation phase and high com-
munication overhead in the connection setup phase. To reduce the connection
setup time, we have developed one approach with data reassembly to reduce data
volume, and another with a bootstrap channel to parallelizethe communication.
Furthermore, a process management framework, Multi-Purpose Daemons (MPD)
system is exploited to speed up process initiation. Our experimental results show
that job startup time has been improved by more than 4 times for 128-process
jobs, and the improvement can be more than two orders of magnitude for 2048-
process jobs as suggested by our analytical models.

1 Introduction

The MPI (Message Passing Interface) Standard [12] has evolved as ade facto parallel
programming model for distributed memory systems. Traditional research over MPI
has been largely focusing on the high performance communication between processes.
As cluster computing becomes a prominent platform of high performance computing,
scalable process management of MPI applications becomes anactive research topic [3,
1]. One of the major challenges in process management is the fast and scalable startup
of large-scale applications [2, 6, 10, 4, 9]. This issue becomes even more pronounced
in the large scale systems with thousands of nodes. A parallel job is usually launched
by a process manager, which is often referred to as theprocess initiation phase. These
initiated processes usually require assistance from the process manager to set up peer-
to-peer connections before starting communication and computation. This is referred to
as theconnection setup phase.

InfiniBand Architecture (IBA) [8] has been recently standardized in industry to de-
sign next generation high-end clusters for both data-center and high performance com-
puting. Large cluster systems with InfiniBand are being deployed. For example, in the
Top500 list released in November 2003 [15], the 3rd, 111th, and 116th most powerful
supercomputers use InfiniBand as their parallel application communication intercon-
nect. These three systems have 2200, 256, and 512 processors, respectively. The startup

? This research is supported in part by a DOE grant #DE-FC02-01ER25506, NSF Grants #CCR-
0204429 and #CCR-0311542, and a grant from Los Alamos National Laboratory.



of MPI applications in InfiniBand clusters at such a large scale is a challenging issue. It
may take more than ten minutes to go through the above mentioned process initiation
and connection setup phases for an application with 1000 processes without scalable
and high performance startup support.

In this paper, we have taken on the challenge to support a scalable and high per-
formance startup of MPI programs over InfiniBand clusters. With MVAPICH [13] as
the platform of study, we have analyzed the startup bottlenecks. Accordingly, differ-
ent approaches have been developed to speed up the connection setup phase, one with
data reassembly at the process manager and another using pipelined all-to-all broadcast
over a ring of InfiniBand queue pairs (referred to as a bootstrap channel). In addition,
we have exploited a process management framework, Multi-Purpose Daemons (MPD)
system to further speed up the startup. The bootstrap channel is also utilized to reduce
the impact of communication bottlenecks in MPD, including multiple process context
switches and quadratically increasing data volume over theMPD management ring.
Over 128 processes, our work improves the startup time by more than 4 times. Scala-
bility Models derived from these results suggest that the improvement can be more than
two orders of magnitude for the startup of 2048-process jobs.

The rest of the paper is structured as follows. Section 2 gives an overview of Infini-
Band. Section 3 describes the challenge of scalable startupfaced by parallel programs
over InfiniBand and related work on process management. Section 4 describes the de-
sign of startup with different approaches to improve the connection setup time and the
process initiation phase. Experiments results are provided in 5. Finally, we conclude the
paper in Section 6.

2 Overview of InfiniBand Architecture

The InfiniBand Architecture (IBA) [8] defines a System Area Network (SAN) for in-
terconnecting computing nodes and I/O nodes. In an InfiniBand network, a switched
communication fabric is defined to allow many devices to communicate concurrently
at high bandwidth and low latency. Processing nodes are connected as end-nodes to the
fabric with Host Channel Adapters (HCAs).

InfiniBand provides four types of transport services: Reliable Connection (RC), Re-
liable Datagram (RD), Unreliable Connection (UC), and Unreliable Datagram (UD).
The often used service is RC in the current InfiniBand products and software. It is also
our focus in this paper. To support RC, a connection must be set up between two QPs
before any communication. In the current InfiniBand SDK, each QP has a unique iden-
tifier, calledQP-ID. This is usually an integer. For network identification, each HCA
also has a unique 16-bit local identifier (LID). To make a connection, a pair of QPs
must exchange their QP IDs and LIDs.

3 Problem Statement and Related Work

This section first characterizes the scalability constraints of the startup of MPI programs
in InfiniBand clusters. It then provides a brief discussion of related work and motivates
the study for a scalable startup scheme.



3.1 Startup of MPI Applications using MVAPICH

MVAPICH [13] is a high performance implementation of MPI over InfiniBand. Its de-
sign is based on MPICH [5] and MVICH [11]. The current implementation of MVA-
PICH utilizes the Reliable Connection (RC) service for the communication between
processes. The connection-oriented nature of IBA RC-basedQPs requires each process
to create at least one QP for every peer process. To form a fully connected network of
N processes, a parallel application needs to create and connect at leastN × (N − 1)
QPs during the initialization time. Note that it is possibleto have these QPs be allocated
and connected in an on-demand manner [16], however this requires that the connection
management subsystem of IBA can handle either peer-to-peeror client-server model
connection establishment, which is not mature yet in the current IBA software. Another
reason for the fully-connected connection model is simplicity and robustness. There-
fore, this connection model has been used in many MPI implementations, including
MVAPICH.

process (rank)

daemons
(rsh/ssh)

launcher (port)

fork/exec

(a) The Initiation Phase

lid,qp{N−1}

process 0

process 1

launcher
...lid0,qp{N−1} lid1,qp{N−1}

lid,qp{N−1}

(b) The Connection Setup Phase

Fig. 1: The Startup of MPI Applications in Current MVAPICH

The startup of an MPI application using MVAPICH can also be divided into two
phases. As shown in Fig. 1(a), an MPI application using MVAPICH is launched with
a simple process launcher iterating over UNIX remote shell (rsh) or secure shell (ssh)
to start individual processes. Each process connects back to the launcher via a port
exposed by the launcher. Except the rank of the process, eachprocess has no global
knowledge about the parallel program. In the second phase ofconnection setup, as
shown in Fig. 1(b), each process createsN − 1 QPs, one for each peer process, for
an N-process application. Then, these processes exchange their local identifiers (LIDs)
and corresponding QP identifiers (QP-IDs), as mentioned in Section 2 for connection
setup. Since each process is not connected to its peer processes, the data exchange has
to rely on the connections that are created to the launcher inthe first phase. The launcher
collects data about LIDs and QP-IDs from each process, and then sends the combined
data back to each process. Each process in turn sets up connections over InfiniBand with
the received data. A parallel application with fully connected processes is then created.

3.2 The Scalability Problem

The startup paradigm described above is able to handle the startup of small scale par-
allel applications. However, as the size of an InfiniBand cluster goes to 100s–1000s,



the limitation of this paradigm becomes pronounced. For example, launching a par-
allel application with 2000 processes may take tens of minutes. There are two main
scalability bottlenecks, one in each phase. The first bottleneck isrsh/ssh-based startup
in the process initiation phase. This process startup mechanism is simple and straight-
forward, but its performance is very poor on large systems. The second bottleneck is
the communication overhead for exchanging LIDs and QP-IDs in the connection setup
phase. To launch an N-process MPI application, the launcherhas to receive data con-
taining (N − 1) QP-IDs from each process. Then it returns the combined data with
N × (N − 1) QP-IDs to each process. In total, the launcher has to communicate data in
the amount ofO(N3) for an N-process application. Each QP-ID is usually a four-byte
integer, for a 1024-process application the launcher will receive almost 4 MegaBytes
data and sends almost 4 Gigabytes of data. This communication typically goes through
the management network which is normally Fast Ethernet or Gigabit Ethernet. This
incurs significant communication overhead and slowdown to the application startup.

3.3 Related Work

Numerous work have been done to provide resource managementframework for col-
lections of parallel processes, ranging from basic iterative rsh/ssh-based process launch
in MVICH [11] to more sophisticated packages like MPD [3], Cplant [2], PBS [14],
LoadLeveler/POE [7], to name a few. Compared to the rsh/ssh-based iterative launch of
processes, all these packages can provide more scalable startup and retain better mon-
itoring and control of parallel programs. However, they typically lack efficient support
for complete exchange of LIDs and QP-IDs as required by parallel programs over In-
finiBand clusters. In this paper, we focus on providing an efficient support for the com-
plete exchange of LIDs and QP-IDs, and applying such a schemeto one of these pack-
age, MPD, in order to obtain efficient process initiation support. We choose to study
MPD [3] because it is one of the systems widely distributed along with MPICH [5]
releases and has a large user base.

4 Designing Scalable Startup Schemes

This section describes the design of scalable startup schemes in InfiniBand clusters. We
first describe different approaches used to enhance the connection setup phase while
the processes are still launched via rsh/ssh daemons. Then we exploit the advantages of
MPD [3], to replace the rsh/ssh based scheme and achieve efficient process initiation.
We also characterize some MPD features and their limitations to the scalable startup of
MPI applications in InfiniBand clusters. We also introduce the concept of a bootstrap
channel which can be used to overcome these limitations.

4.1 Efficient Connection Setup

As mentioned in the previous section, because the launcher has to collect, combine and
broadcast QP IDs, the volume of these data scales up in the order of O(N3), which
leads to prolonged connection setup time. One needs to consider two directions in order
to reduce the connection setup time. The first direction is toreduce the volume of data
that needs to be communicated. The other direction is to parallelize communication for
the exchange of QP IDs.



Approach 1: Reducing the Data Volume with Data Reassembly (DR) To have pro-
cesses fully connected over InfiniBand, each process needs to connect with another peer
process via one QP. This means that each process needs to obtain N − 1 QP IDs, one
for each peer. That is to say, out of the combined data ofN × (N − 1) QP IDs in the
launcher, each process only needs to receiveN − 1 QP IDs that is specifically targeted
for itself. This requires a centralized component, i.e., the launcher, to collect and re-
assembly QP IDs. The biggest advantage of this data reassembly (DR) scheme is that
the data volume exchanged can be reduced down to an order ofO(N2). But there are
several disadvantages associated with this scheme. First,the entire set of QP IDs need
to be reassembled before sending them to each client processes. This constitutes an-
other performance/scalability bottleneck at the launcher. Second, the whole procedure
of receive-reassembly-send is also serialized at the launcher.

lid,qp{lhs,rhs}

lid,qp{lhs,rhs}

launcher

(lid,qp){lhs,rhs}

(lid,qp){lhs,rhs}

process 0

process 1process 2

process 3

(a) Setup a Bootstrap Channel

lid,qp{N−1}

process 0

process 1

(2) (3)(1)

(1) (0) (3)

process 2

process 3

(2)

(1)

(0)

(3)

(0)

(2)

lid,qp{N−1} lid,qp{N−1} lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}lid,qp{N−1}lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

(b) Ring-Based All-to-all Broadcast of QP
Data

Fig. 2: Parallelizing the Total Exchange of InfiniBand QueuePair Data

Approach 2: Parallelizing Communication with a Bootstrap Channel (BC) More
insights can be gained on the possible parallelism with further examination of the
startup. Essentially, what needs to be achieved at the startup time is an all-to-all per-
sonalized exchange of QP IDs, i.e., each process receives the specific QP IDs from
other processes. In the original startup scheme as shown in Fig. 1, the launcher per-
forms a gather/broadcast to help the all-to-all broadcast of their QP data. On top of that,
the DR scheme in Section 4.1 reassembles and “personalizes”QP data to reduce the
data volume. Both do not exploit the parallelism of all-to-all personalized exchange.
Algorithms that parallelize an all-to-all personalized exchange can be used here. These
algorithms are usually based on a ring-, hypercube- or torus-based topology, which re-
quires more connections to be provided among processes. With the initial star topology
in the original startup scheme, providing these connections has to be done through the
launcher. However, since a parallel algorithm can potentially overlap both sending and
receiving QP data, it promises better scalability over clusters with larger sizes.

Among the three possible parallel topologies, the ring-based topology requires the
least number of additional connections, i.e., 2 per process. This would minimize the
impact of the ring setup time. Another design option to be considered is that which type



of connections should be provided. Either TCP/IP- or InfiniBand-based connections
can be used. Since the communication over InfiniBand is much faster than that over
TCP/IP (see [17] for detail latency comparison between them), we choose to use a ring
of InfiniBand QPs as a further boost to the parallelized data exchange.

The second approach works as follows. First, each process creates two QPs for
its left hand side (lhs) and right hand side (rhs) processes,respectively. We call these
QPsbootstrap QPs. Second, the DR scheme mentioned in Section 4.1 is used to set
up connections between these bootstrap QPs as shown in Figure 2(a). Thus, a ring of
connections over InfiniBand is created, as shown by the dotted line in Figure 2(a). We
refer to this ring as abootstrap channel (BC). After this channel is set up, each process
initiates a broadcast of its own QP IDs through the channel inthe clockwise direction as
shown in Fig. 2(b) with four processes. Each process also forwards what it receives to
its next process. In this scheme, we take advantage of both communication parallelism
and high performance of InfiniBand QPs to reduce the communication overhead.

4.2 Fast Process Initiation with MPD

MPD [3] is designed to be a general process manager interfacethat provides the needed
support for MPICH, from which MVAPICH is developed. It mainly provides fast startup
of parallel applications and process control to the parallel jobs. MPD achieves its scal-
able startup by instantly spreading a job launch request across its ring of daemons, then
launches one ring of manager and another ring of applicationprocesses in a parallel
fashion (see [17] for detailed description of MPD systems).For processes to exchange
individual information MPD system also exposes a BNR interface with a put/fence/get
model. A process stores (puts) a (key,value) pair at its manager process, a part of the
MPD database, then another process retrieves (gets) that value by providing the same
key after a synchronization phase (fence).

Store (put) Retrieve (get) RepRetrieve (get) Req

Processes

mpd managers

peer 3

peer 2

peer 1

process 0

process 1

process 2

process 3

(a) Exchange of Queue Pair IDs Over the
Ring of Manager

Store (put) Retrieve (get) Req Retrieve (get) Rep

Processes

mpd managers

lhs

rhs

process 3

process 0

process 1

process 2

(b) Setting up Bootstrap Channel within Pro-
cesses

Fig. 3: Improving the Scalability of MPD-Based Startup

Although this fast and parallelized process startup from MPD solves the process
initiation problem, the significant volume of QP data still poses a great challenge to the
MPD model. As shown in Fig. 3(a), the database is distributedover the ring of manager
processes when each process stores (puts) their process-specific data to its manager.
To collect the data from every peer process, one process has to send a request and
get the reply back for the target process. At the completion of these data exchanges,



each process then sets up connections with all the peers, as shown with process 0 in
Fig. 3(a). Together, messages for the request and the reply make a complete round over
the manager ring. For a parallel job with N processes, there areN × (N − 1) message
exchanges in total. Each of these messages is in the order ofO(N) bytes and has to
go through the ring of manager processes. In addition, sinceapplication processes store
and retrieve data through their corresponding manager processes at each node, process
context switches are very frequent and they further degradethe performance of ring-
based communication. Furthermore, the message passing is over TCP/IP sockets, which
delivers lower performance than InfiniBand-based connections (see [17] for latency
comparisons).

There are different alternatives to overcome these limitations. One way of doing
that is to replace the connections for the MPD manager ring with VAPI connections to
provide fast communications. In addition, copies of QP datacan be saved at each man-
ager process as the first copy of QP data passes through the ring. Then further retrieve
(get) requests can get the data from the local manager directly instead of the MPD man-
ager ring. This approach will improve the communication time, however, the process
context switches still exist between the application processes and manager processes.
In addition, retrieve requests made before QP data reaches the local manager process
still has to go through the manager ring. Last but not least, this approach necessitates a
significant amount of instrumentation of MPD code and has only limited portability to
InfiniBand-ready clusters.

Instead of exchanging all the QP data over the ring of MPD manager processes,
we propose to exchange QP IDs over the bootstrap channel described in Section 4.1.
Though setting up the bootstrap channel still needs help from the ring of manager pro-
cesses. As shown in Fig. 3(b), each process first creates and stores QP IDs for its left side
(lhs) and right hand side (rhs) processes to the local manager. Then, from the database,
they retrieve QP IDs for its left hand side and right hand sideprocesses, and then set
up InfiniBand connections. Eventually a ring of such connections are constructed and
together form a bootstrap channel. This bootstrap channel is then utilized to perform a
complete exchange of QP IDs as described in Section 4.1. Since this bootstrap channel
is provided within the application processes and over InfiniBand, this approach will not
only provide fast communication and eliminate the process context switches, but also
reduce the number of communications through each manager process.

5 Performance Evaluation

Our experiments were conducted on a 256-node cluster of 4GB DRAM dual-SMP
2.4GHz Xeon at the Ohio Supercomputing Center. For fast network discovery with data
reassembly (DR) or the bootstrap channel (BC), we used ssh tolaunch the parallel pro-
cesses. Performance comparisons were provided against MVAPICH 0.9.1 (Original).
Since Networked File System (NFS) performance could be a bigbottleneck in a large
cluster and mask out the performance improvement of startup, all binary executable
files were duplicated at local disks to eliminate its impact.

5.1 Experimental Results

Table 1 shows the startup time for parallel jobs of differentnumber processes using dif-
ferent approaches. SSH-DR represents ssh-based startup with QP data assembly (DR)



Table 1: Comparisons of Parallel Job Startup Time over MVAPICH with Different Approaches

Number of Processes4 8 16 32 64 128
Original (sec) 0.590.921.743.417.3 13.7
SSH-DR (sec) 0.580.941.693.376.7713.45
SSH-BC (sec) 0.610.951.703.386.7613.3
MPD-BC (sec) 0.610.630.640.841.583.10

at the process launcher. SSH-BC represents ssh-based startup using the bootstrap chan-
nel (BC) to exchange QP IDs. MPD-BC represents MPD-based startup with a bootstrap
channel for the exchange of QP IDs.

As the number of processes increases, both SSH-DR and SSH-BCreduce the startup
time, compared to the original approach. This is because data reassembly can reduce
the data volume by an order ofO(N) and the bootstrap channel can parallelize the
communication time. Note that the BC-based approach performs slightly worse than
the the original and DR-based approach for small number of processes. This is due
to the overhead from setting up the additional ring over InfiniBand. As the number of
processes increases, the benefits become greater. Both SSH-BC and SSH-DR will be
able to provide more scalable startup for a job with thousands of processes since they
remove the major communication bottleneck imposed by potentially large volume of
QP data. In contrast, the MPD-based approach with a bootstrap channel provides the
most scalable startup. On one hand, MPD-BC provides efficient parallelized process
initialization, compared to the ssh-based schemes. On the other hand, it also pipelines
the QP data exchange over a ring of VAPI connections, hence this approach speeds up
the connection setup phase. Compared to the original approach, the MPD-BC approach
reduces the startup time for a 128-process job by more than 4 times.

5.2 Analytical Models and Evaluations for Large Clusters

As indicated by the results from Section 5.1, the benefits of the designed schemes will
be more pronounced for parallel jobs with larger number of processes. In this section,
we further analyze the performance of different startup schemes and provide parameter-
ized models to gain insights about their scalability over large clusters. The total startup
time Tstartup can be divided into the process initiation time and the connection setup
time, denoted asTinit andTconn respectively. Based on the scalability analysis, we use
the following model to describe the startup time of the original scheme (Original), ssh-
based scheme with data reassembly (SSH-DR) and the MPD-based scheme with the
bootstrap channel (MPD-BC). Each of the models shows the time for the startup ofN
processes, and the last component describes the time for other overheads that are not
quantified in the models, for example, process switching overhead.

Original: Tstartup = (O0 ∗ N) + (O1 ∗ N ∗ (WN + WN2)) + O2

The process initiation phase timeTinit scales linearly as the number of
processes increases with ssh/rsh-based approaches, whileduring the con-
nection setup there are2N messages communicated over TCP/IP. Half of
them are gathered by the launcher, each being in the order ofO(N) bytes;
the other half are scattered by the launcher, each ofO(N2) bytes .

SSH-DR: Tstartup = (D0 ∗ N) + (Dcomp ∗ N3 + D1 ∗ 2N ∗ WN ) + D2

The process initiation timeTinit scales linearly with ssh/rsh. During the



connection setup phase, the amount of computation scales inthe order of
O(N3) (the constantDcomp can be very small, being the time for extract-
ing one QP Id), and there are 2*N message communicated over TCP/IP.
Half of them are gathered by the launcher, each being in the order ofO(N)
bytes; The other half are scattered by the launcher, each of them is only
O(N) bytes due to reassembly.

MPD-BC: Tstartup = (M0+N∗Wreq)+(Mch setup∗N+M1∗N∗WN)+M2

The process initiation timeTinit scales constantly using MPD, however
there is a small fractional increase of communication time for the request
messageWreq . During the connection setup phase, the time to setup a boot-
strap channel increases in the order ofO(N). Each process also handles N
message in the pipeline, each in the order ofO(N) bytes.

Original: Tstartup (sec)= (0.100 ∗ N) + (10.5 ∗N ∗ (WN + WN2)) + 0.12
SSH-DR: Tstartup (sec)= (0.100∗N)+(8.5e−9

∗N3+10.5∗N ∗WN)+0.12
MPD-BC: Tstartup (sec)= (0.20 + 0.0010 ∗ N) + (0.0180 ∗ N + 2.5 ∗ N ∗

WN ) + 0.30

The above scalability models are parameterized based on ouranalytical modeling.
As shown in Fig. 4, the experiment results confirm the validity of these models for
jobs with 4 to 128 processes. Fig. 5 shows the scalability of different startup schemes
when applying the same models to larger jobs from 4 to 2048 processes. Both SSH-DR
and MPD-BC improves the scalability of job startup significantly. Note that MPD-BC
scheme improves the startup time by about two orders of magnitudes for 2048-process
jobs.

0

4

8

12

16

20

4 8 16 32 64 128

S
ta

rt
up

 T
im

e(
se

c)

Number of Processes

Original
SSH-DR
MPD-BC

Original Modeling
SSH-DR Modeling
MPD-BC Modeling

Fig. 4: Performance Modeling of Different
Startup Schemes

0

500

1000

1500

2000

2500

4 8 16 32 64 128 256 512 1024 2048

S
ta

rt
up

 T
im

e(
se

c)

Number of Processes

Original Modeling
SSH-DR Modeling
MPD-BC Modeling

Fig. 5: Scalability Comparisons of Different
Startup Schemes

6 Conclusions and Future Work

In this paper, we have presented schemes to support scalablestartup of MPI programs in
InfiniBand clusters. With MVAPICH as the platform of study, we have characterized the
startup of MPI jobs into two phases: process initiation and connection setup. To speed
up connection setup phase, we have developed two approaches, one with queue pair data
reassembly at the launcher and the other with a bootstrap channel. In addition, we have
exploited a process management framework, Multi-Purpose Daemons (MPD) system,



to improve the process initiation phase. The performance limitations in the MPD’s ring-
based data exchange model, such as exponentially increasedcommunication time and
numerous process context switches, are eliminated by usingthe proposed bootstrap
channel. We have implemented these schemes in MVAPICH [13].Our experimental
results show that, for 128-process jobs, the startup time has been reduced by more than
4 times. We have also developed an analytical model to project the scalability of the
startup schemes. The derived models suggest that the improvement can be more than
two orders of magnitudes for the startup of 2048-process jobs with the MPD-BC startup
scheme.

In future, we want to provide a file broadcast mechanism to MPDsystem to achieve
efficient loading of jobs [10]. Furthermore, we intend to provide a hypercube-based
scalable startup over really large systems, e.g., future Peta-scale clusters with tens of
thousands of processors.

References

[1] M. Baker, G. Fox, and H. Yau. Cluster Computing Review, November 1995.
[2] R. Brightwell and L. A. Fisk. Scalable parallel application launch on Cplant. InProceed-

ings of Supercomputing, 2001, Denver, Colorado, November 2001.
[3] R. Butler, W. Gropp, and E. Lusk. Components and interfaces of a process management

system for parallel programs.Parallel Computing, 27(11):1417–1429, 2001.
[4] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, andS. Coll. STORM: Lightning-

Fast Resource Management. InProceedings of the Supercomputing ’02, Baltimore, MD,
November 2002.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementa-
tion of the MPI Message Passing Interface Standard.Parallel Computing, 22(6):789–828,
1996.

[6] E. Hendriks. Bproc: The beowulf distributed process space. InProceedings of the Interna-
tional Conference on Supercomputing, New York, New York, June 2002.

[7] IBM. Using the Parallel Operating Environment, Version4, Release 1, 2004.
[8] Infiniband Trade Association. http://www.infinibandta.org, 2000.
[9] M. Jette and M. Grondona. SLURM: Simple Linux Utility forResource Management. In

Proceedings of the International Conference on Linux Clusters, San Jose, CA, June 2003.
[10] A. Kavas, D. Er-El, and D. G. Feitelson. Using Multicastto Pre-Load Jobs on the ParPar

Cluster.Parallel Computing, 27(3):315–327, 2001.
[11] Lawrence Berkeley National Laboratory. MVICH: MPI forVirtual Interface Architecture.

http://www.nersc.gov/research/FTG/mvich/index.html, August 2001.
[12] Message Passing Interface Forum. MPI: A message-passing interface standard.The Inter-

national Journal of Supercomputer Applications, 8(3–4):159–416, 1994.
[13] Network-Based Computing Laboratory. MVAPICH: MPI forInfiniBand on VAPI Layer.

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/index.html.
[14] OpenPBS Documentation.http://www.openpbs.org/docs.html, 2004.
[15] TOP 500 Supercomputers.http://www.top500.org/, 2003.
[16] J. Wu, J. Liu, P. Wyckoff, and D. K. Panda. Impact of On-Demand Connection Management

in MPI over VIA. In Proceedings of the International Conference on Cluster Com puting,
2002.

[17] W. Yu, J. Wu, and D. K. Panda. Fast and Scalable Startup ofMPI Programs in InfiniBand
Clusters. Number OSU-CISRC-5/04-TR33, Columbus, OH 43210, May 2004.


