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ABSTRACT

Rapid advances in processors, memory, and network technologies have led to an
emerging trend of using a collection of powerful, low-cost desktops and workstations,
called a cluster system, as a cost-effective platform for various applications. Cluster
systems have been increasingly becoming a mainstream platform for both scientific
applications and non-scientific applications in the recent several years. These appli-
cations have been becoming more and more I/O intensive. However, 1/O is quickly
emerging as the main bottleneck limiting performance in today’s cluster systems.

The need for scalable and high performance I/O support is becoming more and
more urgent. Network storage systems, consisting of commodity storage units con-
nected with commodity network technologies, provide potentials to achieve high perfor-
mance, scalability, reliability, and manageability to meet the I/O demands in cluster
systems. However, networked storage systems are getting larger and more complex
than ever before. The performance of networked storage systems is usually limited
by communication overheads. Another source of performance limitation is the lack
of integration among system subsystems and the storage server applications in the
general-purpose operating system. This often results in redundant data copying,
multiple buffering, and other performance degradation

This dissertation investigates communication and memory management in net-
worked storage systems over emerging network technologies to improve 1/O perfor-
mance. The communication and memory management includes three main aspects:
(1) communication and memory management in the transport layer of networked
storage systems based on emerging networking technologies such as InfiniBand; (2)
integrated memory management between communication systems and file cache and
file systems; and (3) cache memory management in a multi-level cache hierarchy in
networked storage systems.

The communication and memory management in the transport layer of networked
storage systems over InfiniBand is designed to take advantage of InfiniBand features
and make the most out of RDMA operations. With this management, networked
storage systems over InfiniBand has minimal communication overheads for both con-
tiguous and non-contiguous accesses. Both performance and scalability are improved.
In addition, the storage systems are more adaptive to different access patterns. The
integrated memory management between communication subsystem and file cache
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and file system subsystems provides a unified memory management for both network-
ing operations and file I/O operations. This unification enables efficient interaction
and cooperation between these subsystems and eliminates redundant data copying,
and multiple buffering. In addition, this management provides potentials to reduce
memory registration and deregistration costs for RDMA-based networks on which
the networked storage systems are built. The cache memory management in a multi-
level cache hierarchy is designed to aggregate cache memory resources on both client
and server sides. The Demote buffering architecture achieves exclusive caching and
aggregate memory resources efficiently.

We have designed and implemented our communication and memory manage-
ment in an implementation of PVFS-1 over InfiniBand. We have also incorporated
the integrated cache and communication buffer management in the above PVFS-1
implementation. These designs improve the performance of PVFS-1 significantly.
For instance, compared to a PVFS-1 implementation over the standard TCP/IP on
the same InfiniBand network, our implementation offers 200% improvement in the
bandwidth if workloads are not disk-bound and 40% improvement in bandwidth if
disk-bound. The client CPU utilization is reduced to 1.5% from 91% on TCP/IP.
The native non-contiguous I/O access support attains a 20% improvement compared
to the best result across all other approaches in the NAS BTIO benchmark which
includes complex non-contiguous I/O accesses. The integrated cache and communica-
tion buffer management improves both performance and scalability. It also increases
the effective cache size due to the integration of communication buffers and the cache
buffers, leading to increased performance. To demonstrate the effects of exclusive
caching with Demote buffering, we have designed a simulator. Simulation results
of experiments with synthetic workloads demonstrate that 1.11-1.44x speedups are
achieved for the Sequential workload, up to 1.13x speedups for the Random work-
load. Simulation results with real-life workloads validate the benefits of DEMOTE
buffering by 1.08-1.15x speedups over the existing DEMOTE approach.
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CHAPTER 1

INTRODUCTION

Rapid advances in processors, memory, and network technologies have led to an
emerging trend of using a collection of powerful, low-cost desktops and workstations,
called a cluster system, as a cost-effective platform for various applications. Cluster
systems have been increasingly becoming a mainstream platform for both scientific
applications and non-scientific applications in the recent several years.

Applications on cluster systems have been becoming more and more I/O intensive.
The promise of cluster systems cannot be realized without high performance I/O
support. However, the I/O system has been becoming the main bottleneck limiting
performance in today’s cluster systems. While this can be in part attributed to
rapid advances in other system components such as processor, memory, and network
technologies, it is also true that the demands required by the diverse and challenging
applications are out-pacing the rate of progress in the design of 1/O systems. The
need for scalable and high performance 1/O support is becoming more and more
urgent.

Networked storage systems, based on recent advances in both storage architectures
and networking, provide potentials to achieve high performance, scalability, reliability,
and manageability to meet the I/O demands in cluster systems. A large number
of networked storage systems [86, 30, 17, 8, 2, 36, 21, 67, 79, 27, 70, 78] have been
proposed and used as a mainstream solution in various domains, such as data-centers,
high performance computing systems, and corporate computing environments. The
basic idea behind networked storage systems is to consolidate storage services through
networks for data sharing and manageability and to aggregate capability of storage
devices for performance, scalability and reliability. Figure 1.1 shows one of typical
storage architectures in cluster systems. In this example, commodity I/O servers,
cluster processing nodes are both connected to commodity networks. It can provide
aggregated performance and data sharing to applications. It can increase scalability
and reliability. It can reduce the complexity of management because the 1/O service
is consolidated in the networked storage system. In addition, it can take advantage
of the advent in commodity components.



Cluster Networ ked

Applications system Storage System
Scientific
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Figure 1.1: An Example of a Cluster System with a Networked Storage System.

Recent advances in both storage architectures and networking technologies have
facilitated networked storage systems. Storage architectures have evolved to utilize
clusters of intelligent and modular devices and commodity units in an efficient man-
ner. Storage networking interconnects have moved to direct access to intelligent net-
work interface cards, protocol processing offload, and Remote Direct Memory Access
(RDMA) to reduce the overheads such as memory copying, network access costs, and
protocol overhead in the I/O path. Often, as many developers are acutely aware of,
hardware and architecture developments that purport to improve performance lack
synergy with the software systems they were intended to enhance. Not surprisingly,
new developments in both storage architectures and networking technologies have a
profound impact on the design and implementation of networked storage software.
In this dissertation, we explore the effects of these trends on the development of
networked storage systems. In particular, we look at how we can take advantage of
networking technologies to design cluster file systems and how these features influence
communication and memory management.

The remaining parts of this chapter are organized as follows. In Section 1.1,
we introduce different storage architectures. Section 1.2 presents networking tech-
nologies used in networked storage systems. Section 1.3 describes networked storage
systems over InfiniBand. Problem statement is presented in Section 1.4. Section 1.5
describes approaches to the problems addressed in this dissertation. Overview of this
dissertation is presented in Section 1.6.

1.1 Storage Architectures

There are four common storage architectures used currently: Direct-Attached Stor-
age, Storage-Area Networks, Network-Attached Storage, and SAN file systems. The
fifth one, a new architecture which is now under standardization, is Object-Based stor-
age system. The sixth one, cluster-based storage system, combining both clustering
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technologies and many concepts of Object-Based storage system, has been emerging
as one of main solutions to the I/O support in high performance computing clusters
and cluster-based data-centers.

1.1.1 Direct-Attached Storage

Direct-Attached Storage (DAS) systems are probably the most popular storage
architecture in various systems such as personal computers and workstations. Block-
based storage devices are connected to the I/O bus of a host machine directly via
SCSI or ATA/IDE. While DAS offers minimum security concerns, it has serious lim-
itations on connectivity, capacity and data sharing. For example, at most 16 SCSI
devices/hosts can be connected to a 16-bit SCSI bus.

DAS is a common choice for applications that require high-performance, but have
limited data sharing among servers. A good example is a small database or a file
server.

1.1.2 Storage-Area Networks

Storage-Area networks (SANs) were introduced to overcome the limitations in the
DAS architecture. SAN is a switched fabric that provides a fast and scalable inter-
connect to a large number of storage devices and hosts. It provides high performance
and good scalability. It also enables the consolidation and sharing of storage devices.

SAN provides direct block-level access to storage devices. The storage application
such as file system and database maps its data structures (files, directories and tables)
to blocks on the storage devices. To do this mapping, metadata is required to be
maintained. For multiple hosts to share data blocks, they must also share metadata.
Metadata consistency among the hosts must be guaranteed.

The complexity to maintain metadata consistency has resulted in block shar-
ing only among tightly coupled storage applications such as cluster file systems and
databases. In these infrastructures, mechanisms such as distributed lock management
and/or global lock management are provided to achieve synchronization between hosts
to share both data and metadata. For example, the Global File System (GFS) is a
Shared-Disk filesystem for Fibre Channel [87]. It was implemented based on device
locks (Dlock) on the storage devices. VAXcluster [52] and Frangipani [93] rely on Dis-
tributed Lock Manager (DLM) to coordinate shared access to storage devices. Lock
management significantly increases the complexity of storage applications and stor-
age devices in SANs. Thus, most other infrastructures only allow hosts to share data
indirectly through files using Network-Attached Storage, as shown in Figure 1.2(b).

SAN architectures are often chosen for those applications with a need for highly
scalable performance from the storage devices. A good example is a distributed
database running on a cluster of workstations.



1.1.3 Network-Attached Storage

Network-Attached Storage (NAS) refers to the storage architecture which pro-
vides file access services to hosts across platforms (Operating Systems). In NAS, the
metadata which describes how files are stored on devices is managed completely on
the file server. This centralized metadata management enables cross-platform data
sharing at the cost of directing all I/O through the single file server. NAS provides
file-level access, which is a higher level abstraction than block-level access provided
by SAN and DAS. Files can be stored on a SAN or with DAS. Thus, NAS may be
implemented on top of a SAN or with DAS. Figure 1.2 shows two typical NAS im-
plementation on top of DAS and a fast SAN. In Figure 1.2(a), the NAS file server
accesses storage devices which are locally attached. While in Figure 1.2(b), the NAS
file server is often called NAS Header Server, which accesses storage devices through
a SAN fabric.

Windows NT
Host

Linux
Host

0

Local AreaNetwork (LAN) Local AreaNetwork (LAN)

NAS Head

NAS Server Storage Area Network (SAN)

Disk Arrary Disk Arrary Disk Arrary

(a) NAS Server (b) NAS Head Server

Figure 1.2: Typical Network-Attached Storage Systems.

With NAS, the process to provide data sharing is much simpler than that in a
SAN in terms of both security and consistency concerns. However, the single file
server is a potential bottleneck for both scalability and performance. Clients may
rarely see the aggregate performance of the storage devices since the performance
will be limited by the performance of the file server.

NAS is often chosen for applications with a need for cross-platform shared storage.
Good examples are a collection of Web servers in an enterprise, accessing HTML
content stored as files, or a network of workstations in a department.



1.1.4 SAN File Systems

SAN file systems have been recently introduced to address the limitations of NAS.
In a SAN file system, as illustrated in Figure 1.3, clients, the file server (maybe more
than one) and storage devices are all connected to a storage area network. Unlike
NAS, SAN file systems allow clients to access storage devices directly. Unlike SAN,
the file server can share the metadata with clients. The complexity of metadata
management is reduced. Therefore, SAN file systems combine features from both

SAN and NAS.

WindowsNT Linux Sun OS

...... Metadata
Host Host Host ’_\

Disk Arrary Disk Arrary Disk Arrary j
‘ [ ] % Management

Figure 1.3: A SAN file system in which all clients, file servers, and storage devices
are connected to a Storage Area Network.

Storage Area Network (SAN)

However, similar to SAN, the storage devices have no mechanisms for authoring
I/O access from clients. The SAN mechanism for device security only protect the
entire devices, not data within the device [58]. Conventionally, this requires that
clients in a SAN file system environment be trusted.

1.1.5 Object-Based Storage Systems

In summary, NAS provides a high-level abstraction that enables secure data shar-
ing across different operating system platforms, but often at the cost of limited per-
formance due to file server contention. SAN offers fast and scalable block-level access
to shared data; but without a file server to authorize I/O and maintain the meta-
data, this direct access comes at the cost of limited security and data sharing. SAN
file systems increase file serving performance by allowing direct client access at the
cost of security. However, an ideal storage architecture would provide strong security,



high-performance, cross-platform data sharing, and high scalability. None of these ar-
chitectures can meet these requirements. Recent industry and academic research have
proposed an object-based storage architecture which is considered as a convergence
of NAS and SANSs to address the limitations in today’s storage architecture.

Object-based storage architecture attempts to capture both the direct access na-
ture of SANs and the data sharing and security capability of NAS. A storage object is
a logical collection of bytes on a storage device, with well-known methods for access,
attributes describing characteristics of the data, and security policies that prevent
unauthorized access. Storage objects are stored on object-based storage device (OSD).
OSD can be in many forms such as disk, disk array, and tapes. The difference between
an OSD and a block-based device is the interface, not the physical media.

The interface to OSDs is very similar to that of a file system. Clients can cre-
ate, delete, read and write objects through this interface. This higher-level, file-like
interface is exactly what enables a more cross-platform capable storage device. Yet
these storage devices can still be accessed directly by the hosts, thus allowing for
higher performance. OSDs treat each object individually, it is easy to enforce secu-
rity policies on a per-object basis. In addition, metadata and its management are
offloaded to OSDs, which removes the dependency between the metadata and storage
application, making data sharing between different applications feasible. Further-
more, intelligence on the OSDs provides the potential for the storage devices to learn
important characteristics of the environments in which they operate, and then adjust
resource management and apply application-specific optimizations to better utilize
resources.

The key change brought by object-based storage technology is a different partition
of the storage system from the previous storage architectures. Figure 1.4 shows differ-
ent storage system models in DAS, SANs, NAS, and OSD architectures, respectively.
Compared to other architectures, a portion of storage management has been pushed
down to the OSD devices in the OSD architecture.

1.1.6 Cluster-Based Storage Systems

The concept of object-based storage technology has been incorporated in many
storage systems such as the next generation of IBM StorageTank [45]; Lustre cluster
file system; and the second generation of Parallel Virtual File System (PVFS), with
object-based storage as their basic storage interface. Since the object-based stor-
age devices are not available yet, cluster-based storage systems such as Lustre and
PVFS attempt to deploy the concept of object-based storage technology while using
commodity processors, network interconnects, memory, and storage devices. These
Cluster-Based Storage Systems are built upon off-the-shelf components. Figure 1.5
shows the architecture shared by both Lustre and PVFS. In this architecture, similar
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Figure 1.4: Models of Storage Systems in Different Storage Architectures.

to the OSD architecture, three entities are involved: clients, I/O servers, and man-
agers. Also similar to the OSD architecture, the storage system has been partitioned
into two main parts: the user component on the client side and the server compo-
nent on the I/O server side. The managers focus on maintaining the metadata that
describes how a storage system maps to the I/O server storage devices. Clients of
the storage system can consult the storage manager to learn of this metadata and ac-
cess control. Provided with this metadata and access capabilities, clients can directly
access the I/O server storage devices for data.

The I/0O servers can perform storage management on its controlled storage devices
and authorize client access using their processing power. Compared to SAN file
systems, the cluster-based storage systems can provide better security. Compared
to OSD, the cluster-based storage systems share many same concepts. However, the
cluster-based storage systems have less industry standardization and mainly focus on
cluster computing and cluster-based data-center environments.

1.2 Networking Technologies

A common feature shared by NAS, SANs, SAN file system, Object-based Storage
system, and cluster-based storage system, is to transfer data through networks. In
this dissertation, we call them networked storage systems for simplicity. The key
enabling technology for networked storage systems is storage networking technologies,
because a basic requirement in these systems is to provide high performance and
reliable access to large volumes of data. In this section, several important networking
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technologies are introduced, including Gigabit Ethernet, Fibre Channel, 10-Gigabit
Ethernet, InfiniBand, and RNIC.

1.2.1 Gigabit Ethernet

Gigabit Ethernet (GigE) [81] is the third generation of the IEEE 802.3 Ether-
net standard after Ethernet (10Mbps) and Fast Ethernet (100Mbps). This standard,
IEEE 802.3ab for CAT5 interconnect and 802.3z for optical fibre, increases the trans-
mission rate from 100Mbps of Fast Ethernet to 1000Mbps. The networking commu-
nity would like to use GigE as an option for storage networking solutions because Gigk
has a large install base, which reduces cost in both hardware and training. Gigabit
Ethernet is purely a networking technology. It uses IP routing as its base and relies
on upper-level protocols such as TCP for flow control and error detection/correction.

Both NAS and SANs based on Gigabit Ethernet technology have been widely used.
The most representatives are NEF'S and iSCSI over Gigabit Ethernet. GigE-based net-
worked storage systems can take advantage of the widely installed IP infrastructure.
They offer much lower prices and management cost compared to other technologies
such as Fibre Channel. The downside to utilizing TCP/IP on GigE networks for
storage traffic is that TCP/IP was not designed for the purpose of networked storage
systems. It does not define classes of services. It relies heavily on software layers
to provide reliable access and interface with storage protocols such as SCSI. The



overhead of protocol processing and other related software components limits the
performance.

1.2.2 Fibre Channel

Fibre Channel (FC) [114, 49] is a serial interconnection technology which provides
switched point-to-point connections between two communicating devices. FC is a full-
duplex, block-oriented serial networking protocol with most of the protocol handling
done in hardware. Fibre Channel was designed as a storage networking technology.
The Fibre Channel standard defines protocol layers all the way up to the application
interface. It is a combination of a networking technology and a protocol definition.
The protocol is implemented in hardware and has very little dependence on software
processing. This keeps the data processing and turn-around overhead to a minimum.
The hardware support includes error detection/correction, clock recovery, flow control
and the addition of control frames. The SCSI protocol is supported directly as an
upper-level protocol in Fibre Channel.

The majority of all Fibre Channel devices installed in the market today operate
at either 1Gbps or 2Gbps or 4Gbps. 10Gbps is arriving on the market now. Fibre
Channel has dominated the storage area network market for several years. However,
with the advent of Gigabit Ethernet technology, Fibre Channel cost and complexity
are finally becoming apparent. Furthermore, compared to the emerging networking
technologies such as InfiniBand, the flexibility, the support of Quality of Service, Reli-
ability, Availability, and Serviceability (RAS), and the performance in Fibre Channel
lag behind the requirements of today’s storage systems.

1.2.3 10 Gigabit Ethernet

10 Gigabit Ethernet [37] is the next development of Ethernet technologies af-
ter Ethernet (10Mbps), Fast Ethernet (100Mbps), and Gigabit Ethernet (1Gbps).
10 Gigabit Ethernet is a full-duplex only and fiber-only technology, it does not need
the carrier-sensing multiple-access with collision detection (CSMA/CD) protocol that
defines slower, half-duplex Ethernet technologies. In every other respect, 10 Gigabit
Ethernet remains true to the original Ethernet model. 10 Gigabit Ethernet ensures
interoperability not only with previous versions of Ethernet but also with other net-
working technologies such as SONET (synchronous optical network) OC-192c or SDH
(synchronous digital hierarchy) VC-4-64c infrastructures. Therefore, it can be used in
Local Area Networks (LANSs), Metropolitan Area Networks (MAN), and Wide Area
Networks (WAN).

10 Gigabit Ethernet will provide infrastructure for both network-attached storage
(NAS) and storage area networks (SAN). There are numerous applications for Giga-
bit Ethernet in storage networks today, which will seamlessly extend to 10 Gigabit
Ethernet as it becomes available. The versatility preserved by 10 Gigabit Ethernet is
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a big advantage over other networking technologies. However, the performance of 10
Gigabit Ethernet might not be as good as other networking technologies which are
designed for storage and high performance computing environments. For example,
the first 10 Gigabit Ethernet adapter, Intel PRO/10Gbe LR server adapter can de-
liver 2.5 — 7.2Gbps under different configurations [44, 101]. This adapter focuses on
offloading certain tasks from hosts such as TCP and IP checksums and TCP segmen-
tation to reduce the host CPU overhead rather than on Remote Direct Memory Access
(RDMA) and source routing used in high performance cluster interconnects such as
Myrinet [64] and Quadrics [68]. This design choice represents the design philosophy
along Ethernet technologies that values versatility over performance. However, as
mentioned in [101], Feng et al believe that an OS-bypass protocol, like RDMA over
IP [73], implemented over 10GbE would result in better throughput and latency and
lower CPU overhead. The OS-bypass protocols require an on-board network processor
on the adapter.

1.2.4 InfiniBand

The InfiniBand Architecture (IBA) [46] defines a System Area Network (SAN) for
interconnecting both processing nodes and I/O nodes. It provides a communication
and management infrastructure for inter-processor communication and I/O. Infini-
Band Architecture has built-in QoS mechanisms which provide virtual lanes on each
link and define service levels for individual packets.

A queue-based transport layer is provided in IBA. A Queue Pair (QP) consists
of two queues: a send queue and a receive queue. The completion of requests is
reported through Completion Queues (CQs). Both channel and memory semantics are
supported in the IBA transport layer. In channel semantics, send /receive operations
are used for communication. A receiver must explicitly post a descriptor to receive
messages in advance. In memory semantics, RDMA write and RDMA read operations
are used. RDMA operations enable the initiator to write data into or read data from
memory buffers of the peer side without intervention of the peer side.

The InfiniBand Architecture is designed to be a transport service independent
of protocol. It implements the layer 4-transport service in hardware. Its ability
to use a single communication technology to move raw data for different domains
such as storage, inter-processor communication, audio/video is superior to Ethernet
technologies and Fibre Channel. Specifically, InfiniBand provides more flexibility
than Fibre Channel. It defines mechanisms and management to support Quality of
Service and RAS required by many storage systems and data-centers. It incorporates
user-level networking technologies and RDMA to provide high bandwidth and low
latency communication with minimal CPU overhead. For example, the currently
available InfiniBand adapter can provide bandwidth of 890 MBytes/s and latency of
4 us with a CPU overhead approaching 2%.
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1.2.5 RDMA enabled NIC (RNIC)

Demand for networking bandwidth and increase in network speeds are growing
faster than the processing power and memory bandwidth of the compute nodes that
ultimately must process the networking traffic. This is especially true as the industry
begins migrating to 10Gigabit Ethernet infrastructures. Therefore, reducing protocol
overhead and eliminating intermediate memory buffering and copying become more
important. RDMA over TCP/IP [71] addresses these issues in two very important
ways: first, much of the overhead of protocol processing can be moved to the Ethernet
adapter and second, each incoming network packet has enough information to allow
its data payload to be placed directly into the correct destination memory location,
even when packets arrive out of order. The direct data placement property of RDMA
eliminates intermediate memory buffering and copying and the associated demands
on the memory and processor resources of the compute nodes, without requiring the
addition of expensive buffer memory on the Ethernet adapter. Additionally, RDMA
over TCP/IP uses the existing IP/Ethernet based network infrastructure.

To support RDMA over TCP/IP, RNIC - RDMA enabled NIC (Network Interface
Controller) — was introduced. The RNIC provides support for the RDMA over TCP
protocol suite and can include a combination of TCP offload and RDMA functions
in the same network adapter.

1.2.6 Existing state-of-the-art Approaches

Three important approaches have been emerged for high performance communica-
tion. They are user-level networking, zero-copy transfer, and Remote Direct Memory
Access (RDMA). The first two approaches have been widely used and recognized as
essential for reducing communication overheads. Both of these approaches move the
network interface closer to the application by removing the host processor and op-
erating system from the communication critical path. The third approach, RDMA,
has becoming more and more attractive and has been already incorporated in several
popular interconnects such as Fibre Channel [78], InfiniBand [46], and RNIC. Other
interconnects, such as Myrinet [13] and Quadrics [68] support RDMA as well, though
they mainly aim for high performance inter-processor communication in cluster sys-
tems.

These advances are outcomes of a proliferate research work and industry practices
in the last decade, including Active Message [100], Fast Message [66], VMMC [12],
Unet [99, 103], Virtual Interface (VI) Architecture [28], and Memory Channel [39].
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User-level Networking and Zero-copy Transfer

Figure 1.6 compares the traditional kernel-based transport stack and the emerging
transport stack based on user-level networking and zero-copy transfer. In the tradi-
tional approach, an application calls a system call to invoke the operating system
kernel for sending data. The kernel transfers the application data into the network
interface through multiple data copies. It first copies the data from the application
buffer into the system buffer and then copies data from a system buffer into the net-
work interface. Finally, the kernel initiates the network controller to send out the
message onto the network. On the receiver side, the network interface interrupts the
kernel to transfer the data from the network interface into a system buffer when a
message arrives from the network. The kernel determines the location of the data
and transfers it to the final destination in application memory. It then schedules the
blocked application that was waiting for the data to arrive. In both send and receive
sides, the kernel may need to copy the data several times among the system buffers
as the data goes through different network software layers.

Control path Data path Control path Data path
Application Application Application Application Application Application
Code Buffers Code Buffers
1 | )
\ 4 A 4
Kernel System Kernel User-level Zero—copy K€rnel
Transport Buffers Access Transfer
P
A 4 b 4 l l
Network Network Network Network Network Network
Interface Interface
Controller Buffers Controller Buffers
(a) Traditional Transport (b) User-level Networking and Zero-copy
Transfer

Figure 1.6: RDMA operations.

User-level networking and zero-copy data transfer bypass the kernel in the data
path. They also bypass the kernel in the control path in many cases.

User-level networking allows an application to bypass the operating system and
directly communicate with the network interface controller. Appropriate protection
is provided to achieve safe user-level access. Protected user-level access improves
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latency, especially for small messages. User-level networking is thus essential to min-
imize communication latency.

Zero-copy transfer allows a network interface to transfer data directly between the
application buffers and the network interface using Direct Memory Access (DMA).
This technique has three advantages. First, DMA transfers are very efficient and can
deliver the bandwidth close to the maximum of the connecting I/O bus. Second,
the CPU is free of data transfers. Third, memory copying between the application
buffer and the system buffers, or between the system buffers and network interfaces
is eliminated. Copy operations are expensive, they pollute the system cache, they
significantly increase the memory bus bandwidth by handling the data several times,
and they are far less efficient than DMA transfers. Zero-copy transfer is thus essential
to maximize communication throughput.

Remote Direct Memory Access (RDMA)

RDMA provides a new communication model — memory semantics model. In this
model, an application can directly write to, and read from, the memory of a remote
application, by specifying both local and remote addresses in a RDMA operation as
shown in Figure 1.7. The data transfers are transparent to the remote host CPU;
the data is simply copied into, or out of, the remote host memory through zero-copy
DMA transfers.

buffer buffer

DMA DMA

RDMA NIC RDMA NIC

(a) RDMA Write (b) RDMA Read

Figure 1.7: RDMA operations.

Compared to the send/receive communication model in traditional network sys-
tems, the RDMA model has three key advantages. The first advantage is that RDMA
provides a separation between data and control flow. RDMA allows an application
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to transfer data without transferring control. This separation can substantially im-
prove the performance of network operations by allowing an application to transfer
data without interrupting or involving the remote host processor [92]. In contrast,
the send/receive semantics typically require that the remote receiver post a blocked
receive operation. The arrival of the message interrupts the remote host to match the
message with the receive operation and schedule the blocked application. This process
is applied to both data and control messages. The second advantage of RDMA is that
it reduces the complexity of flow control because the initiator of RDMA operations
always specifies the destination address in which the data should be placed. The
network interface can always deliver every incoming message to its predetermined
location. Therefore, there is no need to buffer data which results in complicated
flow control as demonstrated in the transport layers such as TCP/IP based on the
send/receive semantics.

1.3 Networked Storage Systems over InfiniBand Networks

Access to networked storage systems is a key requirement in many domains such
as data-centers and high performance computing environment to achieve scalability,
reliability and low total cost of ownership. However, realizing these benefits requires
efficient and manageable storage connectivity: High performance with minimal host
CPU overhead; Reliable and redundant access from end to end; Easy and modular
scalability; Security and data protection; and Comprehensive management and vir-
tualization. The specification of InfiniBand was defined with all these requirements
in mind since the beginning. It can be expected that networked storage systems over
InfiniBand networks will be an important design choice in storage systems.

InfiniBand can be used in different storage architectures. NAS systems such as
NFS and DAFS can be designed and implemented over InfiniBand networks. SAN
systems such as iSCSI and SRP can also run over InfiniBand networks. Cluster-based
storage systems can use InfiniBand as well.

There are significant differences in these networked storage system architectures
with respect to protocols, interconnects, and storage devices. For example, the inter-
connect can be Fibre Channel [78], Ethernet or InfiniBand [46]. The wire protocol
can be FCP [78], TCP/IP or DAPL [32]. The access method can be block-level or
file/record-level. In reality, a combination of the appropriate choices may be the best
response. Figure 1.1 shows one typical setup with such combination. In this setup,
a storage area network is used to achieve high performance data transfers between
clients and storage servers, while the file-level access protocol is exposed to clients
for simplified data access, management and sharing. A simplified yet representative
software architecture is illustrated in Figure 1.8.
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Figure 1.8: Software Architecture of Networked Storage Systems.

1.4 Problem Statement

Driven by rapidly increasing requirements, networked storage systems are getting
larger and more complex than ever before. We identify the following issues as our main
focuses in this dissertation: Designing the communication subsystem for high speed,
low overhead data movement over RDMA networks; Efficient support for variable 1/0
access patterns; Mechanisms to provide efficient integration and cooperation among
different components; and Efficient exclusive caching.

1. High speed, low overhead data movement with RDMA — As shown
in Figure 1.8, the communication subsystem is a key component in networked
storage systems. Performance of networked storage systems is often limited by
the low performance of the network subsystem. This is mainly due to costs
of memory copying, network access, interrupt, and protocol processing in the
network subsystem [3, 74]. The advent of networking technologies and high
performance transport protocols facilitates the service of storage over networks.
Network architectures such as Virtual Interface (VI) Architecture [28], Infini-
Band Architecture [46](IBA), Myrinet [64], Quadrics [68], and RDMA enabled
NIC (RNIC) [71] provide several key features, namely user-level networking,
remote direct memory access (RDMA), and protocol offloading to offer low la-
tency, high throughput, and low host processing costs of network I/O. Some of
these networks have been used widely in scientific applications and have been
also taking into data centers and cluster systems for block storage, file system
access, and transaction processing.
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These enabling technologies eliminate or reduce costs of memory copy, network
access, interrupt, and protocol processing in the network subsystem. However,
there are a number of challenges to be addressed [115, 54, 33]. First, networks
such as InfiniBand provides a rich set of features such as RDMA Write and Read,
Gather/Scatter, and various completion mechanisms. An interesting question
is how we can take full advantage of these features to transfer different messages
such as small data, bulk data, and control messages efficiently. Second, there
are some new issues associated with RDMA and user-level networking. One
of the most significant issues is memory registration and deregistration costs.
Reducing these costs is a challenging issue.

. Variable I/O access patterns with Non-Contiguous Access — Many
research studies on I/O characteristics [9, 97, 51, 85] of applications show that
applications exercise file/storage systems in very different ways, sometimes even
in opposite ways. Therefore, they have different 1/O requirements. Subsystems
and service components in a networked storage system should cater for different
I/O requirements efficiently. For example, many applications [25, 75] perform
non-contiguous I/O access. Conventional I/O systems usually perform multiple
simple accesses to achieve a non-contiguous access. This leads to performance
degradation [75, 110]. In this example, both the communication subsystem and
the storage subsystem are required to adjust themselves and offer equally high
performance of simple and non-contiguous access.

. Efficient integration and cooperation among subsystems — The com-
plexity of networked storage systems mainly comes from the involvement of
several important and complex subsystems. This can be observed from Fig-
ure 1.8. Intensive interaction and cooperation occur between the file system
cache, the communication subsystem, the storage subsystem, and the system
disk subsystem. These interactions and cooperation can be further reflected by
the data flow in an I/O path. Figure 1.9 shows two typical I/O paths in the
networked storage systems, one for a database storage server and another for a
direct access file server.

The lack of integration and cooperation among system components and the stor-
age server applications in the general-purpose operating system also limits per-
formance in networked storage systems [35, 65, 6]. This often results in redun-
dant data copying, multiple buffering, and other performance degradation [65].
Redundant memory copying leads to high CPU overhead and limited server
throughput. In today’s networks which provides comparable performance to
the memory system, memory copy becomes bottleneck. In addition, multi-
ple buffering of data wastes memory. Consequently, the effective size of cache
space is reduced, increasing cache miss rates and disk accesses. The narrow
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Figure 1.9: 1/O Path In Networked Storage Systems.

interface [35, 6, 5, 38, 83] between these subsystems has been identified as one
of reasons for this problem.

. Efficient exclusive caching — The gap between processors and disks and the
gap between memory access and disk access have been widened recently. With
the decreasing memory price, modern file and storage servers in networked stor-
age systems typically have large caches up to several or even tens of gigabytes
to speed up I/O accesses [107]. In addition, the clients also devote a large
amount of memory for caching [115, 4, 61, 62]. Multiple clients may share file
and storage resources through various storage networks. Therefore, a multi-
level cache architecture is formed. Caching is designed to shorten access paths
for frequently referenced items, and so improve the performance of the over-
all file and storage systems. However, most cache placement and replacement
policies used in multi-level cache systems maintain the inclusion property: any
block in an upper level buffer cache is also in a lower level cache. The inclusive
cache architecture is desirable when the upper level buffer cache is significantly
smaller than the lower level one. However, as discussed earlier, the cache size
of each level in a modern storage and cluster file system becomes quite close.
To still maintain the inclusion property will prevent us from the benefits of the
aggregate cache size of the multi-level cache hierarchy and in some cases even
hurt performance.
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To aggregate the cache size of the multi-level cache hierarchy and to
ezxclusive caching, exclusive cache placement and replacement policies are ex-

pected.

We describe our approach to these problems in the next section.

1.5 Research Approach

achieve

To solve the aforementioned four issues, the following software architecture has
been proposed, as shown in Figure 1.10. In this architecture, we focus on efficient
communication and memory management in network, storage, and device subsys-
tems. This management not only enables each subsystem to perform efficiently in
an individual manner, but also provides better integration and cooperation among
them. The related service components which we have focused on are highlighted in
Figure 1.10, including the buffer manager and the communication manager in the
communication subsystem, the cache manager and the request scheduler in the server
storage subsystem. We target the following research directions:
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1. Efficient contiguous data movement over RDMA networks: We ex-
plore various mechanisms for contiguous data transmission using RDMA op-
erations. There are two main dimensions. One is whether RDMA operations
are performed by the client side or the server side. Another dimension is which
mechanism is more efficient according to the message characteristics. Our work
focuses on managing possible communication mechanisms and choosing an ap-
propriate one intelligently and automatically given a contiguous I/O access in
the communication manager component on both sides.

2. Efficient non-contiguous data movement over RDMA networks: Non-
contiguous data movement in networked storage systems comes from either ap-
plications or the internal implementations of the I/O system. Figure 1.11 shows
these two main sources. Non-contiguous data movement poses challenges on the
communication subsystem. Our work focuses on using RDMA Gather/Scatter
support to provide efficient non-contiguous data movement. In addition, we
design the communication manager to manage possible communication mech-
anisms and choose an appropriate one intelligently and automatically given a
non-contiguous I/0 access.

3. Efficient memory registration and deregistration: Memory registration
and deregistration for networks with RDMA capabilities adds a new dimension
to data movement for I/O intensive applications in networked storage systems.
We propose approaches to achieve efficient memory registration and deregis-
tration on both contiguous and noncontiguous memory regions. We also work
on approaches to enable efficient memory registration and deregistration shar-
ing among multiple networks. With these approaches and schemes, networked
storage systems can take full advantage of RDMA-based data movement mecha-
nisms. In our proposed software architecture, the buffer manager is responsible
for efficient memory registration and deregistration on a single buffer and a list
of buffers.
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Figure 1.11: Non-contiguous Access in Networked Storage Systems.
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4. Unified cache management and buffer management: As shown in Fig-
ures 1.8 and 1.10, the cache manager and the buffer manager are separated and
commonly designed in two different subsystems: the communication subsystem
and the storage subsystem. This design provides simple interaction and high
level abstraction between these two subsystems. Thus, it has been accepted
by many conventional networked storage systems. However, this design results
in redundant data copying, multiple buffering, and other performance degrada-
tion [65]. Memory copying and multiple buffering can be observed in Figure
1.9. The communication subsystem uses its own communication buffer to read
data from or write data into the storage cache. We propose a unified cache
management and communication buffer management, as shown by the dotted
circle in Figure 1.10. This unification provides better integration and cooper-
ation between the communication subsystem and the storage subsystem. Our
main goal is to offer a single copy data sharing among these two subsystems
safely and concurrently. Thus, zero-copy 1/O serving is achieved on the server
side.

5. Efficient exclusive caching with DEMOTE buffering: Exclusive caching
with DEMOTE buffering [107, 60] is another direction to achieve better cooper-
ation between different components. The exclusive caching system is designed
to aggregate the client cache and the server cache. A DEMOTE operation [107]
is introduced to send the evicted blocks from the client cache to the server cache.
With appropriate cache management policies, an aggregate cache between the
client cache and the server cache can be achieved. We proposed a buffering
scheme to mask the overhead of DEMOTE effectively.

6. Efficient interaction and integration among storage server application
components and system components: As shown in Figure 1.10, commu-
nication, storage, and device subsystems attempt to manage their resources
such as cache space, network bandwidth and disk arm to maximize the system
performance. Better interaction and cooperation between them are expected
to make better use of these limited resources. We have proposed InfoCache, a
cache-centric architecture, to manage memory resources in a more aggregated
and cooperative manner.

We carefully design expressive interfaces between these components. Therefore,
the internal state information of a component can be exposed to its related
components. For each component, there are two types of information, one for
the upper layers, and another for the lower layers. These information can be
used to reduce memory copying and to implement efficient scheduling, pre-
fetching, and other semantic policies.
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1.6 Dissertation Overview

In this dissertation, we describe how we improve performance of networked storage
systems through efficient communication and memory management. We present the
basic design, implementation, and evaluation of a cluster file system, Parallel Virtual
File System (PVFS), over InfiniBand in Chapter 2. Chapter 3 presents how to support
efficient non-contiguous I/O access in PVFS over InfiniBand. In Chapter 4, several
techniques are presented to reduce memory registration and deregistration overheads
in I/O path for PVFS and Direct Access File System (DAFS). Chapter 5 presents
an integrated communication buffer and cache memory management. Chapter 6
describes efficient exclusive caching through Demote Buffering.

In chapter 2, we describe our design, implementation, and performance evaluation
of PVFS over InfiniBand. Our research focuses on taking advantage of InfiniBand
features to achieve high performance contiguous data movement between I/O servers
and clients with minimal CPU overhead. In particular, we have designed a trans-
port layer customized for PVFS by trading transparency and generality for perfor-
mance; we have provided communication management to choose appropriate transfer
mechanisms for optimal performance; we also have designed schemes of flow control,
dynamic and fair buffer sharing to better utilize memory resources.

In chapter 3, we present the design, implementation and performance evaluation of
non-contiguous 1/O support in PVFS over InfiniBand. Two main performance issues
have been addressed: non-contiguous data movement and non-contiguous disk access.
We have designed several schemes to provide efficient non-contiguous data movement.
In addition, communication management is provided to choose an appropriate scheme
according to the characteristics of non-contiguous data access. We have also proposed
an Active Data Sieving idea to achieve efficient non-contiguous disk access.

Chapter 4 presents solutions to achieve efficient memory registration and dereg-
istration. Memory registration and deregistration overheads are costly. Without ef-
ficient memory registration and deregistration, the benefits of RDMA operations are
elusive. We have designed a two-level memory registration and deregistration archi-
tecture to reduce the costs of memory registration and deregistration on a contiguous
buffer. We have developed a scheme, Optimistic Group Registration, to provide efhi-
cient memory registration and deregistration on a list of buffers. These two solutions
are complementary to our work in Chapters 2 and 3 and work together to make the
most out of RDMA operations over InfiniBand networks. In the context of DAFS,
we have extended the DAFS interface to enable applications to avoid the memory
registration and deregistration in some cases.

Chapter 5 describes an integrated cache and communication buffer management.
We have designed a general cache component for networked storage applications. The
expressive interface of this cache component enables efficient interaction with other
components. In particular, we have used this component to achieve unified cache and
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communication buffer management which enables the communication subsystem to
use the cache buffer directly in a safe and concurrent manner. Consequently, zero-
copy 1/O serving is achieved by eliminating redundant data copying and multiple
buffering in the I/O path.

We describe a DEMOTE buffering architecture to achieve efficient exclusive caching
in Chapter 6. DEMOTE buffering is designed to mask the cost of DEMOTE op-
eration. It also provides more flexibility for optimizations, such as non-blocking
operations, aggregate of control messages, gather/scatter network operations, and
speculating demotions.

In Chapter 7, we present our conclusions and describe topics for further research.
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CHAPTER 2

DATA MOVEMENT MECHANISMS USING RDMA

High processing overhead associated with conventional network I/O becomes a
bottleneck to the networked storage systems. This is due to two main reasons. First,
a large volume of data is transferred between a storage server and its possible clients.
Second, checksumming, memory copying, data movement, and interrupt in conven-
tional network I/O incur high host processing overhead [22, 26, 74]. The costs of
checksumming, memory copying and data movement are usually proportional to the
size of data and are often called per-byte overhead. Costs of interrupt and other
protocol processing on a packet basis are often called per-packet overhead.

In today’s network interface cards (NICs), the checksum is commonly offloaded
into the computational power units in the NICs. This offload removes the other source
of the per-byte overhead [74]. The interrupt coalesce provided by these modern NICs
also reduces the per-packet costs. Thus, when the other overheads are eliminated or
reduced, the memory-copying overhead accounts for a larger part in network I/0O.

On the other hand, an increasing “processor-memory performance gap” has been
observed in a number of studies. Hennessy et al. [42] show that the CPU performance
grew from 1980-1998 at 60% per year, while the access time to DRAM improved
at 10% per year. Recently, with the advent of networking technologies, network
bandwidth has been improved at 40% per year in the last decade. Memory bandwidth
becomes behind the network bandwidth.

As mentioned in Section 1.2.6 in Chapter 1, RDMA provides zero-copy data trans-
fer between application buffers of two sides. This feature is critical to achieve high
bandwidth data transfer for large volume of data in networked storage systems. In
addition, RDMA operations transfer data without interrupting or involving the re-
mote host processor. This reduces CPU overheads of the remote host processor. This
leaves more CPU cycles for other useful computation. Consequently, better perfor-
mance and scalability can be achieved.

In this chapter, we focus on how to take advantage of RDMA benefits in net-
worked storage systems. Our work is based on InfiniBand which is capable of RDMA
operations and designed for both I/O and inter-processor communication. The rest
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of this chapter is organized as follows. First, we introduce RDMA operations in In-
finiBand. Second, we discuss and compare data movement mechanisms using RDMA
for I/O operations in networked storage systems. Lastly, we design and implement
PVFS over InfiniBand. We use this design and implementation to explore the design
issues of networked storage systems over RDMA and the impact of RDMA on the
performance of networked storage systems.

2.1 RDMA Operations over InfiniBand

The InfiniBand Architecture (IBA) [46] defines a System Area Network (SAN) for
interconnecting both processing nodes and I/O nodes. It provides a communication
and management infrastructure for inter-processor communication and I/0.

InfiniBand Architecture supports both channel and memory semantics. In channel
semantics, send/receive operations are used for communication. A receiver must
explicitly post a descriptor to receive messages in advance. In memory semantics,
RDMA write and RDMA read operations are used. RDMA operations enable the
initiator to write data into or read data from memory buffers of the peer side without
intervention of the peer side.

The most popular InfiniBand hardware available is 4x, which provides a full-
duplex 1 GBytes/second. The end-to-end bandwidth experienced by applications is
up to 825 MBytes/second. The end-to-end latency is as low as 6.0 microseconds.
Figure 2.1 shows the throughput of RDMA Read and Write operations in one of
InfiniBand networks from Mellanox [55].
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Figure 2.1: RDMA Read and Write Throughput on an InfiniBand network.
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2.2 Contiguous Data Movement using RDMA

In networked storage systems, there are two basic operations read and write. In
read operation, data is moved from the storage server to the client. In write operation,
data is moved from the client to the server. These data movements can be mapped
to RDMA Read and Write operations in different manners. In this subsection, we
discuss three possible mechanisms.

Data may come from a contiguous buffer or several non-contiguous buffers. Data
may be also placed in a contiguous buffer or several non-contiguous buffers. In this
section, we focus on the case in which data comes from a single buffer and is placed in
another single buffer. We call this data movement contiguous data movement, other-
wise noncontiguous data movement. In the next chapter, we present the mechanisms
of non-contiguous data movement.

2.2.1 Server-Based RDMA Mechanism

In server-based RDMA mechanism, both read and write operations are mapped
to RDMA operations initiated only by the I/O servers. The clients are responsible
for providing RDMA buffer information. Figures 2.2(a) and 2.2(b) show the oper-
ations involved in read and write transfers, respectively. Since client RDMA buffer
information can be provided along with the request messages, the I/O servers can
initiate RDMA operations asynchronously according to when they can be scheduled.

Client Server Client Server
Pin buffers _ Pin buffers _
Request + Request +
File Read - - ; File Write- - ;
- Receive - Receive
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|~ Pinbuffers ~=ZZ2
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Reoy . Ry 7 ‘W

(a) read (b) write

Figure 2.2: Server-based RDMA Mechanism.
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2.2.2 Client-Based RDMA Mechanism

In client-based RDMA mechanism, both read and write operations are mapped
to RDMA operations initiated only by the client. Figures 2.3(a) and 2.3(b) show the
operations involved to perform reads and writes, respectively.

Generally speaking, the client-based RDMA mechanism requires the server to send
a control message containing its RDMA buffer information before data transfer can
begin. It also requires that the client notifies the servers when RDMA operations
are finished. This usually incurs more control traffic, compared to the server-based
RDMA mechanism.
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Figure 2.3: Client-based RDMA Mechanism.

2.2.3 Hybrid RDMA Mechanism

Both Server-based and Client-based RDMA mechanisms use RDMA read opera-
tion for either write or read. Since RDMA read is a round-trip operation, its per-
formance is constantly lower than that of RDMA Write. For example, Figure 2.1
compares their performance in an InfiniBand network. As we can see, there is a big
performance gap between these two operations when the message size is small and
medium. Thus, one can consider a hybrid RDMA mechanism, wherein only RDMA
Write operations are used.

Figures 2.4(a) and 2.4(b) show the hybrid RDMA mechanism. In the hybrid mech-
anism, a read is designed with server-based RDMA Write as shown in Figure 2.4(a)
and a write is designed with client-based RDMA Write as shown in Figure 2.4(b).
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Figure 2.4: Hybrid RDMA Mechanism.

The hybrid mechanism is a common method to design networked storage systems on
networks that do not support the RDMA Read operation [54, 115].

2.2.4 Comparison between Three Mechanisms

The server-based RDMA mechanism has the simplest control path. The client
buffer information can be associated with the client request. So the server has full
control to initiate RDMA operations. In addition, the server knows when the corre-
sponding disk write/read operations are finished. It can send the reply back to the
client at an appropriate time. Therefore, the server has a natural flow control algo-
rithm between the network and disks. One drawback is that RDMA read operation
is used in the storage write call, which delivers relatively low performance with small
and medium data transfers.

The client-based RDMA mechanism normally needs more control messages. An
extra control message may be needed for the server buffer information. Notification
is also needed to tell the server when the data has been read from the server buffer
for a read operation and when the data arrives the server buffer for a write operation.
Read operation also suffers from the lower performance of network RDMA Read.
A possible advantage of this mechanism is that less CPU may be required to serve
each request on the server side since the clients initiate all RDMA operations. This
mechanism may achieve better scalability considering the large number of the clients.

The hybrid scheme takes advantage of higher performance of RDMA write opera-
tion for both read and write. For write, it has the same drawbacks as the client-based
RDMA mechanism. However, if the extra control message and notification can be
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done in an efficient manner, this scheme may achieve the best performance. In Sec-
tion 2.5.3, we show our solutions to reduce the extra costs and quantitatively compare
the hybrid scheme with the server-based scheme.

2.3 Related Issues

The aforementioned mechanisms can be applied to implement data movement
in all storage read and write calls in general. There are several related issues to
be addressed: buffer registration and deregistration, request/reply/control message
transfers, small and bulk read/write processing, and completion mechanisms.

2.3.1 Buffer registration and deregistration

RDMA operation requires that both source buffers and destination buffers be reg-
istered before communication. After the communication, these buffers may be dereg-
istered. Since both registration and deregistration operations are relatively expensive,
efficient registration and deregistration are expected. We discuss buffer registration
and deregistration in Chapter 4.

2.3.2 Request/Reply/Control Message Transfers

A client/sever model is often used in the networked storage systems. For each
request, a pair of request and reply messages are presented, besides data movement.
In addition, there are also some other messages used to maintain the wire proto-
cols and exchange necessary information between two sides. A good system should
provide efficient processing of these messages as well. Typically these messages are
short. The request and control messages are unexpected, while the reply message is
expected. All these messages need to get immediate attention to make progress. For
example, a request message is expected to be picked up by the server when it arrives.
Therefore, an appropriate communication choice should be chosen by matching these
characteristics with the communication services. In the Subsection 2.5.2, we show
how we make such choices in PVFS over InfiniBand.

2.3.3 Small Read/Write Request

For small requests, the overhead of the request and reply messages dominates. The
data movement overhead may not account too much. An important optimization is
to put data along with the request or the reply message. This optimization eliminates
the date movement message. It also avoids buffer registration and deregistration at
the cost of copying data into the request/reply message.
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2.3.4 Bulk Read/Write Request

There are two major phases in the I/O path of networked storage systems: data
movement phase, where data is transfered between client buffers and server buffers;
and I/O phase, where data is moved between server buffers and disks. Overlap be-
tween these two phases is necessary for high performance in the case of large requests.
One way to achieve communication and 1/O overlap is to split the whole processing
into multiple smaller processing. For example, when a client wants to read 100 MB
from a server, the server can read 1 MB, then start a 1 MB RDMA write operation
to the client, then repeat these two operations another 99 times. Then the total cost
can be approximated as follows:

T = mazx (tnetworka tdisk) +n X toverheada

where %0100k 1S the network transfer time; 4, is the disk access time; n is the
number of transfers; and %,yerheaq 1S the communication startup overhead. In the
RDMA networks, the communication startup overhead is negligible compared to both
the network time and the disk access time.

2.3.5 Completion Mechanisms

Completions of network operations including both send/receive operations and
RDMA operations are important to drive the progress. Either the server or the client
should be capable of detecting these completions efficiently.

There are two approaches, namely polling and interrupt. Polling is usually CPU
intensive; however, it offers better response latency. While servicing an interrupt
always increases the latency, it does consume fewer CPU cycles, particularly if it is
necessary to poll for a long time before the event arrives. We should make tradeoff
between them according to the characteristics of the storage server application and
the client application. For example, if the storage server application is granted to a
dedicated machine, and the disk I/O operations are blocking, polling may be a better
choice. However, if the disk I/O operations are non-blocking, especially which are
achieved by multi-threading as seen in the current POSIX AIO library, probably the
interrupt may be a better choice. In the latter case, the CPU cycles can be used to
process I/O requests when there is no completion.

2.4 Designing PVFS over InfiniBand

In this section, we first give a brief overview of PVFS. Then we define a general
software architecture of PVFS based on InfiniBand. We use PVFS as the founda-
tion to show how we choose appropriate mechanisms for data movement and re-
quest/reply/control messages. We also evaluate the impact of RDMA operations on
the performance of PVFS.
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Figure 2.5: Typical PVFS setup. Figure 2.6: Proposed PVFS Software

Architecture on InfiniBand Network.

2.4.1 PVFS Overview

PVFS is a leading parallel file system for Linux cluster systems. It was designed
to meet increasing I/O demands of parallel applications in cluster systems. As shown
in Figure 2.5, a number of nodes in a cluster system can be configured as I/O servers
and one of them is also configured to be the metadata manager. It is possible for a
node to host computations while serving as an I/O node.

PVFS achieves high performance by striping files across a set of I/O server nodes
to achieve parallel accesses and aggregate performance. PVFS uses the native file
system on the I/O servers to store individual file stripes. An I/O daemon runs on
each I/0O node and services requests from compute nodes, particularly read and write
requests. Thus, data is transferred directly between I/O servers and compute nodes.

A manager daemon runs on a metadata manager node. It handles metadata
operations involving file permissions, truncation, file stripe characteristics, and so on.
Metadata is also stored in the local file system. The metadata manager provides a
cluster-wide consistent name space to applications. In PVFS, the metadata manager
does not participate in read/write operations.

PVFS supports a set of feature-rich interfaces, including support for both con-
tiguous and noncontiguous accesses in both memory and files [24]. PVFS can be used
with multiple APIs: a native API, the UNIX/POSIX API, MPI-IO [90], and an array
I/0O interface called the Multi-Dimensional Block Interface (MDBI). The presence of
multiple popular interfaces contributes to the wide success of PVFS in both industry
and university settings.
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2.4.2 Proposed PVFS Software Architecture

Figure 2.6 shows our proposed PVFS software architecture over the InfiniBand
network. Since the metadata server is a simpler case of the I/O server, we only show
the architecture of the client and the I/O server here.

There are six modules in the PVFS architecture. A buffer manager, a communica-
tion manager, and a PVFS transport layer reside on both the client and server sides.
The PVFS library is used by the client to generate requests. A request manager and
a file access manager exist on the server side to process client requests.

The transport layer transfers data using user-level InfiniBand primitives. The
buffer manager supplies the transport layer buffers and also supplies buffers to the file
access manager for file accesses. The request manager receives requests and decides in
what order to service requests, using information supplied by the file access manager.
The communication manager chooses communication mechanisms and schedules data
transfers.

InfiniBand network offers much more flexible design space for PVFS compared to
other networks. Communication manager is responsible for choosing an appropriate
communication mechanism for each message. It also schedules data communication
to reduce network congestion and avoid delaying other traffic in the network. It is
capable of applying a service level to each message which marks its priority as it
moves through the network.

We focus on the transport layer. We also discuss the communication choices,
which is a part of functions provided by the communication manager.

2.5 Designing PVFS Transport Layer

The PVFS transport layer provides data, metadata, and control channels between
PVFS compute nodes, I/O server nodes, and the metadata manager. In this section,
we first analyze the characteristics of various types of messages in PVFS. Second,
we make appropriate communication strategy selection for them, including commu-
nication choices, message transfer mechanisms and completion handling. Then we
propose optimized small data transfers and pipelined bulk data transfers to further
optimize the PVFS transport layer.

2.5.1 Messages and Buffers in PVFS

Messages in PVFS can be categorized as follows: Request messages, Reply mes-
sages, Data Messages, and Control messages. These messages are different in many
ways and therefore expect different communication choices.

There are two types of buffers. Internal buffers are allocated by the PVES system.
They are pinned when a connection is established and remain active for a long period
of time. On the servers they can be used to service multiple clients. RDMA buffers
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are used to achieve zero-copy data transfer between the compute nodes and the I/O
server nodes. On the client side, RDMA buffers are provided by the application when
it initiates read and write operations. On the I/O server side, RDMA buffers are
allocated to stage data in memory before it moves to the disk or to the network.

2.5.2 Communication Choices

InfiniBand provides both reliable and unreliable connection and datagram services.
Since PVFS requires a reliable transport layer, we focus only on the reliable connection
service.

In reliable connection service, InfiniBand offers Send/Recv operations and both
read and write RDMA operations. For each operation, the initiator can choose
whether to generate a completion event or not. Send/Recv operations and RDMA
Write with Immediate data operations consume receive descriptors and result in So-
licited or Unsolicited completion on the receive side [46]. These features provide a
flexible design space and the opportunity to optimize performance. However, the ob-
vious question which arises is how to choose efficient communication operations and
completion schemes for each of the message types in PVFS.

Generally speaking, each message type can use either send/recv or RDMA opera-
tion; however, a better fit can be obtained for particular message types according to
how well they align with the characteristics of the corresponding communication op-
erations. Table 2.1 lists message characteristics and suitable communication choices.

Both Send/Recv and RDMA Write with Immediate Data can be used to transfer
reply messages, the choice can be made according to performance attained by the two
operations on a given hardware platform. In our testbed, no significant performance
difference was detected. Thus, we choose send/recv since its design complexity is
somewhat less than RDMA Write with Immediate Data.

For data messages, the decision pertaining whether to use RDMA Write or Read
is also critical and discussed in section 2.5.3. For small data messages, a tradeoff
can be made between the use of zero-copy RDMA data transfers and non zero-copy
transfers. We discuss the details of this choice in section 2.5.3.

The completion of Send, RDMA Write and Read operations on the initiator side
is somewhat complicated by the need to drive the message progress engine. It can be
expected that better performance can be achieved by avoiding an explicit completion
notification; however, this notification provides an easy way to manage resources and
quickly check the status of communication. For example, considering a PVFS file
write, if the I/O server uses RDMA Read operations to bring data from the compute
node buffer, the server would like to know when the RDMA Reads are complete so
that it can initiate file write operation to move the data to disk, but it is not necessary
for every RDMA Read operation to generate completion notification.
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Table 2.1: Communi

cation Choices

Message Request | Reply Control | Data
Characteristics | Expected? | No Yes No Yes
Characteristics | Size Short Short Short Variable

sizes
Characteristics | In-place Yes Yes Yes Zero-copy
process-
ing?
Characteristics | Immediate | Yes Yes Yes No
attention?
Choices Operation | Send/Recv| Send/Recv, | Send/Recv| RDMA
RDMA Read/Write
Write
Choices Recv Com- | Solicited | Solicited Solicited | No
pletion
Choices Send Com- | Yes Yes Yes Selectable
pletion

2.5.3 Choosing Data Movement Mechanisms

We choose the server-based RDMA mechanism for data movement. However, we
perform the following optimizations.

1. Inline Data Transfer: Zero-copy data transfers require that application buffers

be registered before data transfer and may be deregistered after data transfer.
For small data messages, the performance benefit of zero-copy transfer may not
offset the cost of memory registration and deregistration. In Inline data transfer
scheme, data is first copied into internal buffers which are pre-registered and
then transferred by Send/Recv mechanism. For PVFS write data, if they can
fit in an internal buffer with the request message, data and request are sent in
one message. Otherwise, following the request message, the remaining data are
sent separately. For PVFS read data, the server acts similarly. Data is sent
either together with the reply message or as a separate message. One copy on
the client side is then required to place the data. On the server side, a copy is
not usually necessary because it can process messages in place. This technique
has been used elsewhere [30].

. Fast RDMA: Figure 2.1 shows there is a significant performance difference be-
tween RDMA Read and RDMA Write when the transfer size is not large. This
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implies that using RDMA Write for small data transfers is preferable if the
benefit can offset the overhead of doing so. Fast RDMA Write is mainly used
to optimize PVF'S write operations. However, it is also used to optimize PVFS
read operations by avoiding application buffer registration and deregistration.

To optimize small writes, the client does RDMA Write to transfer data to the
I/O server. However, as shown in Figure 2.3(b), two additional control messages
are needed. To avoid the first control message, a small set of RDMA buffers
(called Fast RDMA buffers) are allocated and registered when a connection is
established. The buffer information is cached on the peer side. Thus, the client
can RDMA write data directly into the Fast RDMA buffers on the server. We
use RDMA Write with Immediate data to avoid the second control message.

Fast RDMA Write is carried out between application buffers and the server Fast
RDMA buffers directly if application buffers are already registered. Otherwise,
it is carried out between the Fast RDMA buffers of both sides with cost of one
memory copy on the client side. Thus, this scheme takes advantage of both
higher RDMA write performance and the tradeoff between memory cost and
buffer registration and deregistration costs. Fast RDMA Write operations are
initiated by the client for small writes; while they are initiated by the server for
small reads.

The number of Fast RDMA buffers per connection needed on the server side
is variable according to resource availability. However, this number and the
Fast RDMA buffer size can become a hindrance to scalability in a large system.
In PVFS, since there is only one outstanding read or write from each client,
one Fast RDMA buffer for each connection works well. Thus, scalability is not
an issue. If more than one outstanding request is allowed, as expected in the
next-generation design of PVFS, more Fast RDMA buffers can offer better per-
formance. However, flow control must be applied to ensure that future requests
do not overwrite earlier ones. The optimal Fast RDMA buffer size should be
decided by comparing the cost of memory registration and deregistration to the
cost of copying.

. Pipelined Bulk Data Transfer:

Scientific applications frequently write large amounts of data (100 MB to 10 GB),
such as to perform checkpoints or to output results. We divide large transfers
into multiple smaller transfers. In PVFS, the transfer size is usually the same
as the stripe size of the file due to the contiguity of client buffers and server
files. In cases where larger transfer units are possible, the transfer size should
be no more than half of the total size to achieve good pipelining.
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2.5.4 Polling or Interrupt on Events

InfiniBand provides an aggregated event notification mechanism for scalable event
notification and delivery. A single structure, Completion Queues, is used to notify
and deliver events for a large number of connections. Events such as arrival of a
client request, or completion of a data transfer, can be efficiently detected by entries
in one or more Completion Queues. There are two basic methods to catch an event.
One is that applications explicitly poll the associated Completion Queues to retrieve
interested events. Another one is to invoke pre-registered event handlers to notify
applications of events by interrupts. In this method, applications can sleep and
relinquish CPU when waiting for an event.

Important goals when designing PVFE'S over InfiniBand are to minimize CPU over-
head on the client side, minimize response latency for short transfers, and maximize
throughput for large transfers. In our design, notification of completion of sending
request messages on the client side is done using polling and notification of comple-
tion of incoming reply and control messages with interrupts. On the server side, all
event notification is done with polling, as is appropriate for a dedicated machine.

2.6 Performance Results of PVFS over InfiniBand

We have implemented PVFS on our InfiniBand testbed with designs described
in Sections 2.4 and 2.5. Our implementation is based on PVFS version 1.5.6. The
InfiniBand interface is VAPI [57], which is a user-level programming interface de-
veloped by Mellanox and compatible with the InfiniBand Verbs specification. This
section presents performance results from a range of benchmarks on our implementa-
tion of PVFS over InfiniBand. First, we quantify that PVFS can take full advantage
of InfiniBand features to achieve high throughput, low CPU utilization, and high
scalability by comparing performance of our implementation with that of PVFEFS over
IBNice [56], a TCP/IP implementation for InfiniBand. We use both PVFS and MPI-
IO micro-benchmarks as well as applications to carry out the comparison. Then we
quantify the impact of system optimizations in the transport layer. Unless stated
otherwise, the unit megabytes (MB) in this paper is an abbreviation for 22 bytes, or
1024 x1024 bytes.

2.6.1 Experimental setup

Our experimental testbed consists of a cluster system consisting of 8 nodes built
around SuperMicro SUPER P4DL6 motherboards which include 64-bit 133 MHz PCI-
X interfaces. Each node has two Intel Xeon 2.4 GHz processors with a 512 kB L2 cache
and a 400 MHz front side bus. The machines are connected with Mellanox InfiniHost
MT23108 DualPort 4x HCA adapter through an InfiniScale MT43132 Eight 4x Port

35



InfiniBand Switch. The Mellanox InfiniHost HCA SDK version is thca-x86-0.0.6-
rcl-build-002. The adapter firmware version is fw-23108-1.16.0000_5-build-001. Each
node has a Seagate ST340016A, ATA 100 40 GB disk. We used the Linux RedHat 7.2
operating system.

2.6.2 Network and File System Performance

Table 2.2 shows the raw 4-byte one-way latency and bandwidth of VAPI and
IBNice. The benchmark we used for this purpose is ttcp, version 1.12-2, with a large
socket buffer size of 256 kB to improve IBNice performance. The VAPI Send/Recv
and RDMA Write performance is measured using the Mellanox perf -main benchmark.
The VAPI RDMA Read performance is measured using our own program which is
constructed similarly to perf-main.

Table 2.3 compares the read and write bandwidth of an ezt3fs file system on the
local 40 GB disk against bandwidth achieved on a memory-resident file system, using
ramfs. The bonnie [43] file-system benchmark is used.

Table 2.2: Network performance

Latency (us) | Bandwidth (MB/s)

IBNice 40.1 185

VAPI Send/Recv 8.1 825
VAPI RDMA Write 6.0 827
VAPI RDMA Read 12.4 816

Table 2.3: File system performance

Write (MB/s)

Read (MB/s)

ext3fs

25

20

ramfs

256

1057

It can be seen that there is a large difference in bandwidth realizable over the
network compared to that which can be obtained to a disk-based file system. How-
ever, applications can still benefit from fast networks for many reasons in spite of this
disparity. Data is frequently in server memory due to file caching and read-ahead
when a request arrives. Also, in large disk array systems, the aggregate performance
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of many disks can approach network speeds. Caches on disk arrays and on individ-
ual disks also serve to speed up transfers. Therefore, the following experiments are
designed to stress the network data transfer independent of any disk activities. We
mainly focus on experiments on a memory-resident file system. Results on ramfs are
representative of workloads with sequential I/O on large disk arrays or random-access
loads on servers which are capable of delivering data at network speeds. We also show
some results on ext3fs to quantify the impact of CPU utilization on the scalability of
I/O server.

2.6.3 PVFS Concurrent Read/Write Bandwidth

The test program used for concurrent read and write performance is pufs-test,
which is included in the PVFS release package. We followed the same test method as
described in [19]. In all tests, each compute node writes and reads a single contiguous
region of size 2N MB, where N is the number of I/O nodes in use.

Figure 2.7 shows the read and write performance with IBNice on the InfiniBand
network. For reads, the bandwidth increases at a rate of around 120 MB/s with
each additional compute node. Similar performance can be seen for writes with
IBNice. The bandwidth here increases at a rate of approximately 160 MB/s with
each additional compute node when there are sufficient I/O nodes to carry the load.
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Figure 2.7: PVFS performance with IBNice (TCP/IP over InfiniBand).

Figure 2.8 shows the read and write performance of our implementation of PVFS
over InfiniBand VAPI. The same physical network is used, yet significant performance
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Figure 2.8: PVFS performance with InfiniBand VAPI

improvement by designing and implementing PVFS on native VAPI layer is achieved.
Since data transfers are mostly performed using RDMA initiated by the I/O nodes,
the aggregate capacity of all the I/O nodes can be delivered to compute nodes. The
bandwidth increase from adding another I/O node is roughly 400 MB/s for simul-
taneous reads from many compute nodes. For writes, the bandwidth increases at
approximately the same rate, though slightly less due to the lower performance of
RDMA Read compared to RDMA Write.

2.6.4 MPI-IO Micro-Benchmark Performance

The same test as in the previous section was modified to use MPI-IO calls rather
than native PVFS calls. The number of I/O nodes was fixed at four, and the number
of compute nodes was varied from one to four. Figure 2.9 shows the performance of
MPI-IO over PVFS on VAPI and IBNice, for both memory-based and disk-based file
systems. On the RAM file system, Figure 2.9 shows that PVFS native over VAPI
offers about three times better performance than PVFS over IBNice. Even on a
disk file system, ezt3fs, it can be seen that although each I/O server is disk-bound,
a significant performance improvement, 15-42%, is still achieved. This is because
the lower overhead of PVFS-VAPI leaves more CPU cycles free for I/O servers to
process concurrent requests. With four compute nodes, MPI-IO over PVFS-VAPI
can achieve 95 MB/s aggregate write bandwidth, which is almost four times the peak
write bandwidth of the disks we used for the tests. This shows that PVFS-VAPI
offers almost perfect performance aggregation of multiple I/O servers.
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Figure 2.9: MPI-IO Performance on PVFS over InfiniBand

Figure 2.10 shows CPU utilization on the compute nodes when the same program
runs with four I/O servers on ramfs. It can be seen that the CPU overhead of compute
nodes is as high as 91% in PVFS-IBNice. This is because the overhead of PVFS
over IBNice is dominated by the data transfer, mostly because of copying overhead,
context switches and system calls in IBNice. CPU utilization drops off with increasing
number of compute nodes, because the waiting time increases in each request when
the server has more concurrent requests to service. However, the CPU utilization is
still considerably high. In contrast, the overhead of PVFS over VAPI is dominated
by request initialization and response handling costs in the PVF'S client code, since
the HCA handles data transport using RDMA and there is no kernel involvement in
the I/O path. The CPU overhead is as low as 1.5%. This demonstrates potential for
greater scalability to a large number of compute node clients.
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Figure 2.10: CPU Utilization of MPI-10
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2.6.5 Impact of Small Data Transfer Optimizations

To evaluate the impact of various small data transfer optimizations, we measured
the access time of small PVFS write requests for different design schemes. Figure 2.11
shows the results using Inline, Fast RDMA, and Server-Based RDMA. The access size
varies from 128 B to 64 kB.

As mentioned in section 2.5, user buffers must be registered before communication.
This happens in both Fast RDMA and Server-Based RDMA schemes. Applications
can have different buffer usage patterns. We consider two extreme cases. As shown in
Figure 2.11(a), the same buffer is used repeatedly. Therefore, registration is required
only at the first time. Figure 2.11(b) shows another case in which different buffers
are used. Thus, every PVFS write needs buffer registration on the client side in the
Fast RDMA and Server-Based RDMA schemes. Note that the user buffer usage does
not affect the performance of Inline scheme.

Figure 2.11 shows that significant improvement can be achieved using Inline and
Fast RDMA schemes. It also shows these optimization schemes differ. Without
the cost of buffer registration as shown in Figure 2.11(a), the Fast RDMA scheme
offers the best performance. Since one copy is needed in the Inline scheme, the
Fast RDMA scheme outperforms the Inline scheme, especially for relatively large
messages. Inline scheme performs better than the Server-based scheme for messages
up to 32 kB. For messages larger than 32 kB, copying cost offsets the performance gap
between Send/Recv and RDMA Read. With the cost of buffer registration as shown
in Figure 2.11(b), one copy is needed in both the Inline and Fast RDMA schemes.
Since RDMA Write performs slightly better than Send/Recv in our testbed, the Fast
RDMA scheme offers the best performance. Both Inline and Fast RDMA schemes
outperform Server-Based RDMA because of the costly registration. However, the
gap decreases with increasing message size. This is because memory copy cost in the
Inline and Fast RDMA schemes increases faster with increasing message sizes than
the registration cost increases. The Server-based scheme is expected to be used for
large messages.

In our implementation, the Inline scheme was used to transfer messages less than
4 kB, Fast RDMA was used for messages up to 64 kB, and Server-based to transfer
data larger than 64 kB.

2.6.6 Impact of Pipelined Bulk Data Transfer

This experiment was designed to show the effect of pipelined bulk data transfers
in PVFS over InfiniBand. In this test, a PVFS client transfers 32 MB to or from
an 1/O server using ramfs. This test represents workloads in which large amounts of
data are moved to or from a single large buffer on the client, such as for a checkpoint
snapshot.
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Figure 2.12 shows the impact of transfer unit size on PVFS performance, from a
single 32 MB on the right-hand side of the graph to 512 small transfers on the left.
The results show that a transfer size smaller than about 2 MB is sufficient to allow
complete overlap between I/O access and communication. There is a slight degra-
dation when the transfer size is very small due to the effect of total communication
startup overheads from a large number of communication operations.

2.7 Summary of the Design of PVFS over InfiniBand

With the design of PVFS over InfiniBand, we study how to leverage the emerg-
ing InfiniBand technology to improve I/O performance and scalability of cluster file
systems. We designed and implemented a version of PVFS that takes advantage
of InfiniBand features. Our work shows that the InfiniBand network and its user-
level communication and RDMA features can improve all aspects of PVFS, including
throughput, access time, and CPU utilization. However, InfiniBand network also
poses a number of challenging issues to I/O intensive applications. In this section, we
focus on management of communication choices and mechanisms for both data and
other messages.

Compared to a PVFS implementation over the standard TCP/IP on the same
InfiniBand network, our implementation offers three times the bandwidth if workloads
are not disk-bound and 40% improvement in bandwidth if disk-bound. The client
CPU utilization is reduced to 1.5% from 91% on TCP/IP.
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CHAPTER 3

EFFICIENT NONCONTIGUOUS I/O ACCESS

The access patterns generated by many of scientific and non-scientific applica-
tions sometimes tend to be many small accesses scattered widely across a striped file,
a model which has to date not been well supported. Previous research shows that
only about a tenth or less of the peak I/O performance can be realized by many
applications [91, 53]. One of the main reasons is that the I/O interfaces available to
applications and the I/O methods supported by file systems do not match well to ap-
plications’ access characteristics. Most file systems are optimized for large contiguous
file accesses, while in many applications, each process tends to access a large num-
ber of relatively small regions that are not located sequentially in the file [9, 63, 84].
Noncontiguity can exist in both the file itself and in the memory of the client.

Traditionally, noncontiguous access is achieved with a set of contiguous calls, each
of which accesses only a single contiguous piece. Several techniques [89, 34, 80, 50, 47]
were proposed to optimize noncontiguous accesses in situations where only contiguous
I/O access support is available. Thakur et al. [90] noted that native noncontiguous
access support in file systems themselves is important. They proposed an interface
that describes noncontiguity in both memory and the file in a simple manner. This
interface not only can be used to implement noncontiguous I/0O access functions in
the upper programming interfaces such as MPI-I1O [59] efficiently, but also allows the
file systems themselves to make further optimization on the noncontiguous accesses.
Ching et al. [1] implemented this interface in PVFS. Their implementation is called
list 1/0.

There are two important issues in providing efficient noncontiguous accesses in
cluster file systems wherein the compute nodes and the I/O nodes are connected by
high performance networks.

e High-performance noncontiguous data transmission between the compute node
and the I/O node.

e Efficient processing of these small requests on the I/O nodes is crucial to appli-
cation performance.
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These two issues result in more serious performance problems when the network is
not the bottleneck in a cluster file system. The issue of noncontiguous data transmis-
sion is often ignored in conventional networks. The performance differences between
different ways to handle noncontiguous data transmission might not have much im-
pact on the performance of noncontiguous I/O accesses because of the high overhead
and low bandwidth in these networks. We observe that noncontiguous data trans-
mission becomes an important factor affecting the performance of noncontiguous I/0O
accesses in high performance networks such as InfiniBand [46]. Similarly, the inef-
ficiency of processing noncontiguous small requests on the I/O node might not be
realized by applications on conventional networks since network performance is the
main bottleneck. However, as high performance networks become a popular means to
connect the compute nodes and the I/O nodes in cluster file systems, this inefficiency
has direct and significant impact on the performance of applications.

In this chapter, we address two issues involved in noncontiguous I/O accesses in
cluster file systems over high performance networks: noncontiguous data transmission
and noncontiguous disk accesses. For noncontiguous data transmission, we propose a
novel approach, RDMA Gather/Scatter, to transfer noncontiguous data between the
clients and the I/O servers. For noncontiguous disk accesses in the I/O server nodes,
we have implemented a new scheme termed as Active Data Sieving to reduce disk
access costs for a large number of small and noncontiguous accesses. Unlike other
data sieving implementations, a cost model is used by the I/O nodes to actively and
intelligently decide whether it is beneficial to perform data sieving or not. We have
designed and incorporated these approaches in a version of PVFS over InfiniBand.

3.1 Noncontiguous Access in PVFS

In this section, we first describe the current design and implementation of PVFS
list I/O. We then show two different ways in which noncontiguous accesses arise, both
of which pose challenges on efficient noncontiguous I/O access in PVFS. As illustrated
in the example in Figure 3.1, the top set of communications show noncontiguous data
transmission between the compute nodes and the 1/0 nodes. The second source of
noncontiguity is noncontiguous disk accesses, as shown at the bottom, when I/O
nodes access their local files. We try to solve these two issues.

3.1.1 PVFS List I/O

PVFS provides a list I/O interface to applications which can be used to perform
the transfers in Figure 3.1 in a single operation. This interface confirms with the
interface proposed by Thakur et al. in [90]. The following is the PVFS list 1/O read
interface (the write interface is similar):
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Figure 3.1: A PVFS list I/O example.

pvfs_read_list(int fd,

int mem _list_count,
void *  mem_offsets],
int mem lengths],
int file_list_count,

int64_t file offsets]],

int32_t file lengths|])
This interface allows a set of buffers to be used as read or write destinations in memory
on the client and a set of offsets in the file on the I/O node. Noncontiguity in both
the file and the memory is thus possible.

A naive implementation of list I/O would translate a list I/O request into a set of
individual requests, each of which accesses one contiguous piece separately. Obviously,
this would provide no advantages for list 1/O.

PVFS has designed and implemented its list I/O in an efficient manner as de-
scribed in [24]. The pvfs_read_list and pvfs_write_list functions take list I/O
parameters and perform the noncontiguous access in a single PVFEFS operation. The
current implementation is based on TCP/IP, a stream-based transport layer, there-
fore the buffer offset-length pairs are not required by the I/O nodes. When an I/O
node receives a list I/O request with a number of file offset-length pairs, it services
them individually; merge happens only when the actual file accesses from the same
compute node are contiguous with each other.

This implementation effectively reduces the number of request and reply message
pairs and increases data amount transfered in each pair of request and reply mes-
sages, significantly improving the data transfer efficiency. However, as it is based on
TCP/IP, noncontiguous data transmission is not considered as an issue. Also, the
I/O accesses to the local files in each I/O node are processed separately. Given a
PVFS list read operation as shown in Figure 3.1, the I/O nodes read each contiguous
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piece of data from the local files. After each read, they initiate a socket write oper-
ation to send data to client processes. Each client process reads data into 4 different
buffers using 4 operations. In total, eight read and 1seek operations are used for file
accesses. 8 socket write and read operations are used to transfer data between the
client processes and the server I1/0O nodes.

3.1.2 Network Support for List I/O

Many conventional communication interfaces, including TCP/IP, only support
data transmission in contiguous blocks, defined by a memory address and a length.
Based on these interfaces, to move data from and into a list of buffers specified
in the PVFS list I/O, two schemes can be used. The first scheme is to send and
receive one message for each contiguous block of data. The second scheme is to pack
noncontiguous data into a temporary buffer before transmitting it, and unpacking it
when it has arrived.

Both schemes have been widely used for noncontiguous data transmission. For
example, the current PVFS list I/O design follows the first scheme using the socket
interface over TCP/IP, and the second scheme is a generic method deployed in
MPICH [102] to transmit noncontiguous data. Communication performance suffers
in the first scheme since the message startup costs accrue for each message. Further-
more, the data size in each message is small. In the second scheme, one additional
copy is required on both the send and the receive sides; however, it does use one large
message to transfer all data.

Performance issues in noncontiguous data transmission are often ignored in con-
ventional networks because of their high overhead and low bandwidth. The message
startup costs or the extra memory copy overheads do not have much impact on the
communication performance when the network is comparatively slow. However, in
low overhead and high bandwidth networks such as InfiniBand, these overheads have
a significant impact on performance. For example, in our InfiniBand testbed, the net-
work bandwidth is 820 MB/s and memory copy bandwidth is 1300 MB/s, therefore
a scheme to pack, send, and unpack data can offer an aggregate bandwidth of only
362 MB/s.

Due to the emergence of high-performance networks, traditional methods used for
noncontiguous data transmission become very inefficient. In section 3.2, we address
how we can achieve efficient noncontiguous data transmission for list I/O over high-
speed networks.

3.1.3 Disk Operations for List I/O

As shown in Figure 3.1, file regions specified by the offset-length pairs in a list
I/O request may not be contiguous, as is found in many parallel applications. Thus
even though an I/O node can receive a large number of file accesses in one list I/O
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request, if these accesses were serviced individually, the performance would be quite
low. There are three major factors which affect performance of file accesses on the
I/O node:

e Most file systems favor large accesses; small requests can not obtain peak per-
formance.

e The cost of making many read/write system calls, each for small amounts of
data, is extremely high, even when caching is performed by the file system [91].

e Minimizing file seeks is important to maximize performance when doing multiple
file accesses.

To reduce the effects of these factors, it is critical to make as few requests to the
file system as possible, generating as many large accesses to the file system as possible.
Data sieving is such a technique that enables an implementation to make a few, con-
tiguous requests to the file system even if the user’s request consists of several small,
noncontiguous accesses [89]. However, data sieving reduces the number of file access
calls and increases file access sizes at the cost of extra data read/written. For write
data sieving, costs are also paid to perform read-modify-write and synchronization to
prevent concurrent updates to the same file region. The extra data may actually be
good for later requests, though [90].

In section 3.3, we address the feasibility of performing data sieving on the I/O
node to service list I/O requests and describe a cost model used by the I/O nodes
to decide whether to perform data sieving or to access each contiguous piece of data
separately in the presence of the advantages and disadvantages given above.

3.2 Noncontiguous Data Transmission

PVES list I/O allows a set of discrete memory buffers to be used as read or write
destinations in memory on the client. A typical example of such buffers is rows in
a subarray of a multidimensional array, separated by gaps (noncontiguous buffers).
As previously noticed [108], buffers on the I/O nodes are usually contiguous. An
important issue is to transfer data between PVFS list I/O buffers on the compute
nodes and buffers on the server nodes.

3.2.1 Mechanism Tradeoffs

As discussed in section 3.1.2, two schemes have been widely used to transfer
noncontiguous data: 1) send and receive one message for each contiguous block of
data, 2) pack noncontiguous data into a temporary buffer before transmitting it,
and unpack it after its arrival. We call them Multiple Message and Pack/Unpack,
respectively. The left and middle panels in Figure 3.2 illustrate these schemes.
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Figure 3.2: Noncontiguous data transfer. Left: Multiple Message. Middle:
Pack/Unpack. Right: RDMA Gather/Scatter.

A third way exists to transfer noncontiguous data in modern communication net-
works such as InfiniBand that support RDMA Gather/Scatter operations. RDMA
Write operations can gather multiple data segments together within one operation
and place them in a single buffer on the receiver side. RDMA Read operations can
read data from a single buffer on the peer side into multiple buffers on the local ini-
tiator. This gather/scatter functionality is a perfect match with the requirement of
PVFS list I/O noncontiguous data transfer. The right panel in Figure 3.2 shows an
example of RDMA gather write. In this RDMA Gather/Scatter scheme, the message
startup costs which occur in the Multiple Message scheme can be reduced dramati-
cally, since a large number of data segments can be specified in one operation. It also
avoids data copies which are required in the Pack/Unpack scheme.

There are many tradeoffs among the three schemes, however, which complicates
the design decision about when to use a particular scheme. These are listed in the
following paragraphs.

Copy or memory registration. Buffers must be registered before any data trans-
mission occurs in InfiniBand. This requires that all list I/O buffers be registered in
both the Multiple Message and the RDMA Gather/Scatter schemes, and that the
temporary buffer in the Pack/Unpack scheme be registered. Sometimes it is desirable
to unregister these buffers after the completion of noncontiguous I/O access as well.
A tradeoff exists between choosing to accept the overhead of an extra copy versus the
overhead of memory registration and possible deregistration.

Communication startup overhead. The number of communication operations is
different in these three schemes. In the Multiple Message scheme, it is equal to the
number of list I/O buffers. In the Pack/Unpack scheme, only one transfer is required.
In the RDMA Gather/Scatter scheme, some number of segments, 64 currently in
InfiniBand, can be gathered into a single communication. Choosing fewer, larger
messages results in better performance.

Buffer alignment. Networks which use RDMA are sensitive to buffer alignment and
can generate large delays to compensate for misaligned buffers. Since the Pack/Unpack
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scheme itself allocates a temporary buffer for RDMA operations, this buffer can be
aligned. However, it is possible that list I/O buffers given by users may not be aligned
and cause the performance of the Multiple Message and RDMA Gather/Scatter
schemes to suffer.

Application buffer access patterns. The costs of memory registration and dereg-
istration can be amortized across multiple operations by registration caching mech-
anisms such as pin-down cache [41]. But if the application chooses buffers in such
a way that caching is not very frequent, performance of the Multiple Message and
RDMA Gather/Scatter schemes might be hurt. It is likely that a Pack/Unpack im-
plementation will reuse the same buffer and not be affected.

Since it is clear that the Multiple Message scheme will likely perform poorly com-
pared to the other two, it is ignored now for clarity. From the tradeoffs listed above,
though, it is not clear which of the remaining two schemes will be better. The answer
depends on the total effects of the above factors in each scheme. We use the follow-
ing test to show the performance of noncontiguous data transmission with these two
schemes.
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Figure 3.3: Bandwidth achieved in various transfer schemes.

In Figure 3.3, we show the bandwidth achieved in transferring a 2-D subarray from
a compute node to an I/O node in our testbed. We consider the following scenario
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which is a common case of I/O access patterns in scientific applications. A 2-D array
of varying size is distributed across 4 processes using a block distribution in both
dimensions. One of the subarrays is then sent using different schemes.

In the Pack/Unpack scheme, the temporary buffer can be allocated from a pre-
registered buffer pool or from the system. In the former case, registration and dereg-
istration are not needed. These two cases are termed as pack, no reg and pack, reg,
respectively. In the RDMA Gather/Scatter scheme, two ways to register list I/O
buffers are considered. One is to register each list I/O buffer separately, termed as
gather, multiple reg in the graph. Another is to register the memory region which
covers all list I/O buffers from a subarray, termed as gather, one reg. We also show its
best case, where memory registrations are always found in the cache, called multiple,
no reg in the graph. Finally, the maximum achievable bandwidth obtained by a single
write is labeled contiguous, no reg in the graph.

Several observations can be made from Figure 3.3. First, the packing and memory
registration costs have a dramatic impact on performance. Second, the Pack/Unpack
scheme performs comparatively better when the array size is small, Third, the RDMA
Gather/Scatter scheme has the potential for high performance if registrations are
handled well.

The above test results show that the RDMA Gather/Scatter scheme is very
promising when the costs of memory registration and deregistration can be controlled
in a certain range. The issue of how we can reduce the costs of memory registration
and deregistration is addressed in Chapter 4.

3.3 Efficient Noncontiguous File Access on the I/O Node

In this section, we set out to answer this question: how a single I/O node can
efficiently perform file accesses to service a list I/0 request. This is the second issue
in noncontiguous I/O access. Combined with efficient noncontiguous data transmis-
sion as discussed in Section 3.2, a complete solution is achieved that can offer high
performance noncontiguous 1/0O access in PVFS.

3.3.1 Active Data Sieving on the I/O node

As previously mentioned, in many parallel applications, each process tends to
access a number of relatively small, noncontiguous portions of a file. Information of
a large number of file accesses can be sent in one single list I/O request; however,
performance would suffer if these accesses were serviced separately, as we discussed
in Section 3.1.

We propose to apply data sieving on the I/O node to process PVFS list I/O
requests. We refer to this as Active Data Sieving (ADS). In data sieving, for read,
instead of reading each contiguous portion separately, the I/O node reads a large
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contiguous chunk into a temporary buffer. It then transfers the desired data to the list
I/O buffers on the compute node. For write, a read-modify-write is performed locally.
First, the I/O node reads a large contiguous chunk of data into a temporary buffer.
Second, it copies data received from the compute nodes into appropriate locations
in the temporary buffer. Then, it writes that temporary buffer back to the file. In
general, the portion of the file being accessed must be locked to prevent concurrent
updates, but that is not a concern here since the I/O node has exclusive access
to its own local data. Active Data Sieving fits nicely with scatter/gather capable
networks such as InfiniBand where just parts of the buffer can be sent naturally to
the requesting client.

When a list I/O request arrives, the I/O node analyzes all file accesses in the
request and decides whether it is beneficial to apply data sieving to process these
accesses or not. A cost model could be very comprehensive and complicated to take
access patterns, system parameters, disk characteristics and cache effects into account.
Here, we deploy a simple but effective model in the design of ADS on the I/O node.
The following parameters in table 3.1 are considered.

Table 3.1: Model Parameters
System Parameters

Bpem | Memory bandwidth

B, (s) | File read bandwidth without cache for size s
B, (s) | File write bandwidth without cache for size s
)

N File read overhead
Ouw File write overhead
Ogeek File seek overhead

Orock File lock overhead
Ounioct. | File unlock overhead
Request Parameters

N Number of noncontiguous accesses
S; Size of the ith file access

Sreq Total size of wanted data

Sds Total size of data sieving data

Given these parameters, the costs to serve a PVFS list read and write without data
sieving and with data sieving are represented by 7., T.,, Ty, and Ty, respectively.
In T, the costs for read, modify and write with synchronization are included.
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This model gives a conservative estimate of the costs for data sieving, since cache
effects are not taken into account. This indicates that with this cost model, if data
sieving is chosen by the I/O node, it is highly probable that data sieving is beneficial
due to the added effect of caching discussed earlier.

Twrite =N x (Ow + Oseek) +

Tdsw = Tdsr +

3.3.2 Why not Just Use ROMIO Data Sieving?

Data sieving is used in ROMIO to handle independent noncontiguous accesses [91]
on each process. In the latest ROMIO implementation over PVFS, it performs data
sieving for noncontiguous reads if the corresponding hints are enabled. However, it
does not perform data sieving for noncontiguous writes since the current PVFS does
not support file locking. Although both ADS and ROMIO data sieving over PVFS
tend to reduce the number of I/0 calls to the local file system in the I/O node and to
increase I/O access sizes, ROMIO data sieving is a client side implementation of data
sieving, while ADS is a server side implementation of the same task. Particularly,
there are a few key differences between the two.

First, list I/O with ADS enables list I/O write operations to take advantage of
data sieving benefit. Second, the undesired data is not transfered through the network
in list I/O with ADS. Third, data copies can be avoided on the compute node with
ADS. In addition, ADS is more capable of making better decisions on whether to
perform data sieving or access contiguous data segments separately since in ROMIO
data sieving, the compute node may be not aware of underlying file system data
layouts and parameters.

MPI-IO applications can choose to use either list I/O with ADS or ROMIO Data
Sieving by setting file system hints to override the defaults.

3.4 Performance Results

This section presents performance results from a range of benchmarks on our
implementation of PVFS over InfiniBand. Based on our previous work [108], we
added noncontiguous data transmission and active data sieving. Our implementation
is based on PVFS version 1.5.6. The InfiniBand interface is VAPI [57], which is
a user-level programming interface developed by Mellanox and compatible with the
InfiniBand Verbs specification. We use both PVFS and MPI-IO micro-benchmarks as
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well as applications to quantify our design choices in noncontiguous data transmission
and noncontiguous file accesses. Unless stated otherwise, the unit megabytes (MB)
in this paper is an abbreviation for 22° bytes, or 1024 x1024 bytes.

3.4.1 Effects of Data Transfer Mechanism

We design a PVFS-level micro-benchmark to show the effects of the design choice
whether to use Pack/Unpack or RDMA Gather/Scatter to transfer noncontiguous
data between the compute nodes and I/O nodes. In this test, there are four I/O
nodes and four compute nodes. Each process wants to write or read variable sizes of
data using PVFS list I/O operations. The number of noncontiguous data segments
is set to 128. The size of each segment is equal, and varies from 128 bytes to 8 kB.

Three design choices are compared: Pack/Unpack, RDMA Gather/Scatter, and
the hybrid scheme which we use in our final design. Figure 3.4 shows that Pack/Unpack
works better when the total request size is not large, while RDMA Gather/Scatter
performs better when the request size is large. The hybrid scheme we choose combines
these two schemes and works well in both cases.

PVFS write test PVFS read test
1200 T T T T T 1600 T T T T T -
Pack/Unpack —¥— — Pack/Unpack —¥— P
1100 F Gather/Scatter ---l-- P e 4 Gather/Scatter ---l-- s
Hybrid & 1400 | Hybrid —© -
1000 - = 1

1200 -

1000 -

800

Aggregated Bandwidth (MB/sec)
Aggregated Bandwidth (MB/sec)

. . . . . . . . . .
128 256 512 1024 2048 4096 8192 128 256 512 1024 2048 4096 8192
Data Segment Size (Bytes) Data Segment Size (Bytes)

Figure 3.4: Performance of noncontiguous data transfer schemes.

3.4.2 MPI-1I0O Noncontiguous Access Benchmarks

To evaluate the impact of Active Data Sieving on the performance of PVFS list I/O
operations, we designed a benchmark using MPI-10O. The file view is one dimensional
block column distribution. As shown in Figure 3.5, the file accesses are noncontiguous:
each process accesses only one unit out of every four in the file. In this test, we vary
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the size of the array from 512 to 8192, thus the numbers of columns touched by each
process changes from 128 to 2048.

File
Access | B3 = = S
Proc 0 data
2-D Fie Vi —
© _ e = = Proc 1 data
(Row Major) =
= Proc 2 data
\
S Proc 3 data

Figure 3.5: Accesses in the file view with one-dimensional block column distribution.

In the test, we set different hints to enable the potential techniques: Multiple
I/O, ROMIO Data Sieving, and PVFS list I/O. In the PVFS list I/O method, we
also test using Active Data Sieving or not. We compare the performance of these four
methods for read, where the data is in cache or uncached, and write, where the data
is potentially flushed to disk.

Figure 3.6 shows write results for each method. As mentioned earlier, ROMIO
Data Sieving over PVFS for noncontiguous write is actually implemented with the
Multiple I/O method, thus their performance is nearly identical. The next feature
to notice is that using list I/O always outperforms ROMIO Data Sieving by a factor
of anywhere from 3.5-12.1 depending on the array size. This is true both when
considering just the network transfer aspects (no sync), and when considering the full
time to commit the data to disk. Regarding the two list I/O curves, it can be seen
that using ADS shows a significant benefit in the small array size range. Starting at
2048, the model used by the I/O node decides that there is no benefit to be gained
from using ADS, hence the curves merge.

Figure 3.7 shows read results for each method. In these graphs it can be seen that
list I/O is comparable to, or outperforms ROMIO Data Sieving. As the array size
increases, ROMIO Data Sieving must transfer the whole array from the I/O nodes to
the compute nodes, and its performance suffers while list I/O selectively transfers only
the data required by each compute node. Using ADS again improves performance
in the small array cases. In the read without cache case, ROMIO Data Sieving is
comparable to list I/O for a wide range of array sizes, up to 2048, because disk access
time dominates in this range. Eventually the overheads of reading three times as
much data and sending it across the network catch up with ROMIO Data Sieving
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and its performance falls off. However, list I/O with ADS can decide that there is no
benefit to perform data sieving and then can access each file region separately in the
large array cases.

3.4.3 MPI-10 Tiled Access Test

The test application mpi-tile-io [76] implements tiled access to a two dimensional
dense dataset. This type of workload is seen in visualization applications and in some
numerical applications. For our tests, we used four compute nodes and four I/O
server nodes. Each compute node renders to one of a 2x2 array of displays, each
with 1024x768 pixels. The size of each element is 24 bits, leading to a file size of
9 MB.

The access pattern in this test is noncontiguous in file space but contiguous in
memory. We consider the same four cases as in the previous test: Multiple I/O, List
I/0O, List I/O with ADS, and ROMIO Data Sieving for both read and write, again
either considering or ignoring disk effects.

©
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o
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o

write w/o sync cached read

Figure 3.8: Tiled I/O, without disk effects.

Figure 3.8 shows the results for the four test cases when data is written without
sync and read from the file cache. Compared to the Multiple I/O case, List I/O with
ADS has a factor of 5.7 improvement for write, and 8.8 for read. Compared to the List
I/O case, it has 8.4% improvement for write, and 45% improvement for read. Write
is more costly than read with ADS, due to the need to perform a read-modify-write
cycle. Compared against ROMIO Data Sieving, list I/O with ADS still has a factor
of 5.7 improvement for write, but just 18% improvement for read.

Figure 3.9 shows the results for the four test cases when the disk is the bottleneck
in data transfers. For write, list I/O with ADS still outperforms the other methods.
For read, ROMIO Data Sieving now outperforms list I/O with ADS. There are two
reasons. First, the increased network transfer time in ROMIO Data Sieving does not
matter when the disk dominates. Second, list I/O with ADS generates 6 pairs of
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Figure 3.9: Tiled I/O, with disk effects.

request and reply messages, compared to just one with ROMIO Data Sieving, adding
more overhead to the entire operation.

It is expected that the list I/O with ADS will improve with increasing number
of file accesses in one list I/O request. Currently, we use the default value in PVFS
which is 128, but a larger number can be used to decrease the number of request and
reply pairs needed to complete the operation.

3.4.4 NAS BTIO Benchmark

The BTIO benchmark was recently added into the 2.4 version of NAS Parallel
Benchmarks (NPB) and is used to test the output capabilities of high-performance
computing systems, especially parallel systems. It is based on the Block-Tridiagonal
problem of the NPB Suite. The details of the numerical algorithm, data partition,
and data distribution can be referred to [72].

There is a very high degree of fragmentation in data sets of the BT problem.
The main access pattern in BTIO is noncontiguous in memory and in the file. Thus,
this test can be used for us to quantify our design choices in both noncontiguous
data transmission and noncontiguous file accesses. Results for a class A problem size
are shown in Table 3.2, where we show the total problem execution time and the
I/O overhead, which is the amount of time the benchmark spends performing I/O
operations. It can be seen that list I/O with ADS performs best even for this complex
application.

We profiled the I/O characteristics of this test for the above five I/O methods.
Due to space limitations, we briefly describe the profiling information here, details can
be found in [111]. In both list I/O cases, the number of request messages is reduced to
1360, a significant reduction compared to the Multiple I/O method (163840) and the
Data Sieving method (82040). In List I/O with ADS, the number of the file access
call pairs (Iseek, write) and (Iseek, read) on each I/O node is also reduced to 7680,
compared to Multiple I/O (163840), List I/O (163840), and ROMIO Data Sieving
(85060). This reduction is attributed to Active Data Sieving on the I/O node.
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Table 3.2: BTIO Performance
case Time (s) | I/O overhead (s)
10 1/0 165.6 0
Multiple I/O 180.0 14.4
Collective 1/0O 169.6 4.0
List 1/0 168.2 2.6
List I/O with ADS 167.7 2.1
Data Sieving 177.3 11.7

3.5 Summary of Efficient Noncontiguous I/O Access Support

In this section, we address two issues involved in noncontiguous I/O accesses in
cluster file systems over high performance networks: noncontiguous data transmission
and noncontiguous disk accesses. For noncontiguous data transmission, we propose a
novel approach, RDMA Gather/Scatter, to transfer noncontiguous data between the
clients and the I/O servers. For noncontiguous disk accesses in the I/O server nodes,
we have implemented a new scheme termed as Active Data Sieving to reduce disk
access costs for a large number of small and noncontiguous accesses. Unlike other
data sieving implementations, a cost model is used by the I/O nodes to actively and
intelligently decide whether it is beneficial to perform data sieving or not.

We have designed and incorporated these approaches in a version of PVFS over
InfiniBand. Our results show a performance improvement of up to 1.5 times for the
RDMA Gather/Scatter approach on PVFS list I/O performance compared to the
other approaches. Intelligent and active data sieving on the I/O node achieves a
factor of 1.3-1.9 improvement on small noncontiguous I/O accesses. The NAS BTIO
benchmark performance results show that our approach attains a 20% improvement
compared to the best result across all other approaches in an environment which is
a complex combination of noncontiguous data transmission and noncontiguous I/O
accesses.

The approaches proposed in this paper for noncontiguous data transmission in
noncontiguous I/O access has been used in MPI Datatype communication [112]. It
also can be natually applicable to noncontiguous data movement such as database
multiple data segment transfer in other networked storage systems. The design of
Active Data Sieving is not network specific.
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CHAPTER 4

COMMUNICATION BUFFER MANAGEMENT

RDMA enables direct data movement between two buffers across networks. How-
ever, it requires that both buffers be registered. Memory registration and dereg-
istration are kernel involved operations and are commonly expensive. The costs of
memory registration and deregistration make it necessary to have a particular compo-
nent, namely communication buffer manager, to provide efficient memory registration
and deregistration and manage those registered buffers in networked storage systems.

In this section, we first look at the memory registration and deregistration costs
on InfiniBand and their impact on the network communication performance. Second,
we present a scheme to achieve efficient memory registration and deregistration on
a single buffer. Third, we present a scheme to achieve efficient memory registration
and deregistration on a list of buffers. Fourth, we discuss how to manage the com-
munication buffer on the server side for better communication performance. Finally,
we use PVFS over InfiniBand to evaluate the performance of our proposed schemes.

4.1 Costs of Memory registration and Deregistration

Memory registration includes three steps. First, the registered buffer is pinned
with the system and becomes non-swappable. Second, address translation from vir-
tual address to physical address. Third, information bookkeeping and access control
are recorded by the NIC. Both registration and deregistration are commonly expen-
sive. Figure 4.1 shows memory registration and deregistration costs in the current
InfiniBand SDK [57]. Figure 4.2 shows their impact on the network bandwidth. We
use an MPI bandwidth test to show the impact. With on-the-fly registration and
deregistration, we can see that for large messages, 35% performance is degraded. Es-
pecially small and medium messages suffer more. For example, when the message
size is 4096 bytes, only one tenth of peak bandwidth is delivered (450 MegaBytes vs.
48 MegaBytes). Therefore, without efficient memory registration and deregistration,
the benefits of RDMA become questionable.
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4.2 Memory Registration and Deregistration on Single Buffers

Memory registration and deregistration have been identified as an issue in RDMA
networks by several research studies. Basu et al. [104] show how the NIC and host-
level software can collaborate to manage large amounts of host memory. Tezuka et
al. [41] propose a pin-down cache to reduce memory registration and deregistration
overhead for zero-copy communication. Pin-down cache delays deregistration of regis-
tered buffers and caches their registration information. When these buffers are reused,
their registration information can be retrieved from pin-down cache. This technique
is quite effective when the amount of buffer reuse is high.

In I/O intensive applications, a large number of buffers are used for I/O operations.
For example, the database server may use all of memory available as cache to read and
write data. Scientific I/O intensive applications also use a large number of different
I/O buffers. In these applications, the buffer reuse ratio may be low. This poses a
challenge on approaches such as pin-down cache which work well only in the case
where applications keep using a moderate number of buffers.

Zhou et al. [115] propose a batched deregistration scheme to deregister a certain
number of buffers in a region in one operation. In their scheme, the registration is
dynamic. However, the deregistration is batched. A certain number of deregistration
operations are performed in one call.

We propose a two-level architecture: pin-down cache plus Fast Memory Registra-
tion component (termed as FMR) and Deregistration component (termed as FMD).
We refer to this two-level architecture as Fast Memory Registration and Deregistra-
tion (FMRD) scheme in the rest of this paper. This architecture offers advantages
from both pin-down cache and batched deregistration.
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Figure 4.3: Fast Memory Registration and Deregistration (FMRD).

As shown in Figure 4.3, when a buffer is to be registered, first, it checks if its
registration is cached; if yes, information is returned immediately. Otherwise, FMR
is invoked to register the user buffer. The registration information is inserted into
the cache. If there is no space left in the cache, one entry is evicted from the cache
and put into a deregistration list. FMD is invoked to deregister all buffers in the
deregistration list when the number of entries in the list reaches a threshold.

When a buffer is to be unregistered, only some information such as reference count
of the buffer is modified in the cache. Real deregistration is delayed. Deregistration
occurs later in a batched fashion during registration.

The fast memory registration component also takes advantage of Mellanox fast
memory region registration extension in VAPI [57]. In this extension, a buffer regis-
tration is divided into two steps: 1) allocation of a fast memory region resource; 2)
mapping a buffer to a fast memory region resource. Fast memory region resources
can be allocated before any I/O operations. Thus the first step can be kept out of the
critical path. Since multiple buffers can be mapped to the same fast memory region
resource, only a moderate number of fast memory region resources are needed. The
second step is in the critical path, however in VAPI it is much more efficient than the
regular memory registration operations.

In FMRD, FMR component only performs the second step when registering a
buffer. FMD component performs batched deregistration. In addition, they both
interact with the pin-down cache. Their impact on PVFS performance is quantified
in details in Section 4.5.
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4.3 Memory Registration and Deregistration on a List of
Buffers

The 1/O systems often provide some interfaces to enable a list of I/O requests
with a single function call. For example, POSIX lio_listio, DAFS dap_async_listio
and PVFS pufs_read/write_list all support noncontiguity in both application memory
regions and file regions. For simplicity, we call these interfaces list /O interface.
The list I/O interface provides opportunity to the underlying system to optimize
data movement and file/disk accesses. However, it also incurs noncontiguous data
movement in networked storage systems.

Noncontiguous data movement may happen to a single request due to other rea-
sons, even without the list I/O operations. For example, in a typical database server,
I/O access buffers on the database server are from its cache, which are commonly
divided into pages and may not be contiguous for a request. On the server side, the
requested data may be also cached in multiple pages, which may not be contiguous.
Data movement between these buffers is noncontiguous.

Memory registration and deregistration on a list of buffers are a challenge in
noncontiguous data movement. We discuss its issues and propose our approaches to
these issues. We evaluate the performance of our approaches by implementing PVFS
list I/O over InfiniBand.

4.3.1 Issues

The registration and deregistration operation costs can be modeled as follows:
T=axT,+b

where a is the per-page overhead, and b is the per-operation overhead. Usually, b
is much larger than a. The complication for registering and deregistering a list of
buffers comes from the number of registration and deregistration operations on list
I/O buffers and the total size of memory space to be registered and deregistered.

Individual registration and deregistration on each buffer incur high per-operation
overhead. Reducing the number of buffers needed to be registered as much as possible
is critical. On the other hand, the total size of memory space to be registered and
deregistered should also be considered. We could register or deregister the whole
memory region which covers all list I/O buffers with a single operation. The total
amount of memory registered increases because even unused areas are included. But
the benefit of reducing the number of buffer registration calls in this way may not
arise because more time is required to perform the registration as the memory size
grows.

Based on these observations, the reigning design principle which dictates how to
perform memory registration and deregistration on a list of I/O buffers is to reduce
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the number of buffers as much as possible, while also minimizing the total size of
memory regions.

4.3.2 Optimistic Group Registration

The first, naive scheme is to register the entire memory region which covers all
the list I/O buffers. Although the number of registration operations is thus reduced
to one, there are two practical problems. The “holes” between two buffers may not
really have been allocated by the application, causing the registration call to fail. Or,
even if the whole memory region has been allocated, the total size of “holes” may be
so large that no benefit is gained over simply registering each of the buffers separately.

The second scheme is to group list I/O buffers into several memory regions. This
scheme overcomes the problems in the naive scheme by the following two steps. In the
first step, it controls the sizes of memory regions which are going to be registered by
sorting and grouping buffer regions to avoid attempting to allocate truly large “holes”
of memory between buffers. This avoids the failure of the naive scheme to gain any
benefit over individual registration. In the second step, it queries the operating system
to find out if a “hole” which was not rejected by the first step is actually in the process
allocated memory space and thus safe to register. Where they are not, buffers again
must be registered independently.

The third scheme is a combination of the previous two. First, it sorts and groups
list I/O buffers into candidate regions for registration. Then, it optimistically at-
tempts to register each memory region as the first scheme does, but if the operating
system denies one of these registrations, it must query the operating system to find
out actual boundaries of application memory allocation and register exactly those.
We call this scheme Optimistic Group Registration. 1t is quite efficient in the common
case where all list I/O buffers come from one or more bigger buffers, but is also safe
by virtue of relying on queries to the operating system if it must.

4.3.3 Our Design and Implementation over InfiniBand

We use the Optimistic Group Registration scheme for two reasons. First, in
common cases, list I/O buffers are from one encompassing allocation, such as rows in a
subarray of a multidimensional array. Second, it is transparent to PVFS applications.
There are three steps in this scheme: 1) group list I/O buffers into candidate regions,
2) optimistically register each region, and 3) to filter out “holes” which resulted in
registration failures, if any.

The following equation is used to sort and group list I/O buffers. The cost of
registering a buffer is modeled as 7" = a X p + b, where a is the registration cost
per page, b is the overhead per operation, and p is the size of the buffer in pages.
The same cost equation can be applied to deregister a buffer with different values
of a and b. In our testbed, we found the costs per page in buffer registration and
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deregistration to be 0.77us and 0.23us, respectively. The overheads per registration
and deregistration operations are 7.42us and 1.1us, respectively. According to this
cost model, a tradeoff can be made between the number of operations and the buffer
size. In our implementation, we compare the cost to register a large combined region
which includes extra unneeded “holes” against the cost to perform multiple small
regions to determine candidate groupings.

These candidate memory regions are optimistically registered, one at a time, in
the second step. If all registration operations are successful, the procedure is finished.
This is the common case in most applications.

When an optimistic registration fails, if there are not too many buffers inside the
failed region, we simply allocate them as given. But if there are many buffers which
would make that too expensive, we query the operating system to find the “true”
holes in virtual memory space. There are a few ways to find out this information. In
Linux, one can read from the file /proc/$pid/maps, but that is quite slow. Instead we
added a system call which walks the virtual memory structures in the kernel to find
the same information. This system call requires about 70 us when querying about
1000 holes compared to 1100 us when reading from /proc. A third mechanism is sys-
tem independent and involves using signal handling to catch segmentation violations
while reading from one word on each page in order to find if the pages are resident
or not. Alternatively, some systems support the mincore system call which perhaps
will provide the same information. We have investigated these last two and plan to
use them to deploy PVFS on other systems.

4.4 Server RDMA Buffer Management

Server RDMA buffers are used to receive data from clients and to read data
from files. These buffers are effectively used to bridge the performance gap between
network and disk. Due to highly concurrent requests and possible large request sizes,
a significant portion of the total memory must be allocated as RDMA buffers on a
dedicated server. Clearly, the server can reuse these buffers for different requests.
Thus, all these regions can be pre-registered at startup. The I/O server then keeps
using them to service client requests. A slightly more complicated solution is that
the I/O server may dynamically register or deregister some regions according to the
working set of concurrent client requests. For example, if the working set of client
requests is not large enough, the I/O server can deregister some regions which are
seldom used. This may improve performance since the system I/O cache competes
for memory. The fewer buffers that are registered, the more buffers that can be used
for 1/O cache and other purposes. Even with this dynamics, it can be expected that
the frequency of memory registration and deregistration is low in the I/O server side.
Thus, efficient memory registration and deregistration is not a huge issue.

64



The more important function for a server buffer manager is to provide a fair and
dynamic buffer sharing among all clients. This task is not difficult over TCP/IP.
First, TCP/IP provides a stream communication, the server can receive and send
a large data multiple times using a smaller buffer. Second, the client side can stop
sending data if there is no space left in the socket receive buffer of the server side.
Third, select and poll provide mechanisms to notify the server of data arrival before
data placement. In RDMA networks, data is transferred as whole messages, not
as bytes in a stream. Buffers are also supplied explicitly. Message transfers are thus
atomic, and data placement and data arrival are not separated as they are in TCP /IP.
Therefore, explicit buffer assignment is needed in PVFS over InfiniBand.

Another issue is that transfer sizes for requests could be different. This variabil-
ity can offer better performance, while it requires that the buffer manager be able
to supply different sizes of virtually contiguous buffers. Avoiding fragmentation is
important in this scenario.

4.5 Impact of Memory Registration and Deregistration

In this subsection, we show the impact of memory registration and deregistration
on the performance of an implementation of PVFS over InfiniBand.

4.5.1 Fast Memory Registration and Deregistration (FMRD)

We run pvfs-test program again with three different memory registration and
deregistration schemes. Results are presented in Figure 4.4. The first one is to
dynamically register and deregister I/O buffers per each I/O operation, noted as
Dynamic in the plot. The second one is to use pin-down cache only, noted as Pin-
down cache. The third one is to use FMRD, noted as FMRD. The test program
performs 1000 I/O operations, in which I/O buffers are from a buffer pool with 1000
different buffers. We control pin-down cache hit ratio explicitly. We choose 20%
and 80% cache hit as representatives of low buffer reuse and high buffer reuse cases,
respectively. The cache size is 100, which allows us to take deregistration into account.

Figure 4.4 shows PVFS write bandwidth with different schemes. Note that these
results are normalized to the results of the case where there is not any buffer regis-
tration and deregistration. We make three observations. First, memory registration
and deregistration have a significant impact on performance. Up to 35% decrease is
seen in the dynamic scheme. Second, significant improvement on performance with
pin-down cache and FMRD is achieved. Particularly, if the buffer reuse ratio is 80%,
pin-down cache increases bandwidth by about 24%, while FMRD increases bandwidth
by about 28%. Third, FMRD works much better than pin-down cache in cases where
buffer reuse ratio is low. There is about 9% improvement compared to pin-down
cache when buffer reuse ratio is 20%.
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Figure 4.4: Effects of Memory Registration and Deregistration

4.5.2 Optimistic Group Registration Performance

This test is designed to study the impact of Optimistic Group Registration on the
PVFS list I/O performance. The test writes a 2-D integer array of size 2048 x2048
into one file in row-major order. The array is distributed across 4 processes using a
block distribution in both dimensions. Each process writes its subarray into the file
contiguously at different non-overlapping file locations.

Four cases are considered. The first case is the ideal one where no registration is
needed. This happens when all buffer registrations have been previously cached. The
second case is individual registration and deregistration on each buffer. The third
case is to use the Optimistic Group Registration scheme to register list I/O buffers
that come from the subarray. The fourth case is similar to the third case, except that
the list I/O buffers are not all part of the same large array. We take 1024 buffers from
several arrays, and intentionally create 10 holes which are not allocated yet between
these buffers. By this, we can see the costs for registration failures and querying the
operating system in the Optimistic Group Registration scheme. We call these four
test cases “Ideal”, “Indiv.” “OGR” and “OGR+Q”, respectively.

Table 4.1 lists the write bandwidth, the number of registrations, and the overhead
for registration in each test case. Compared to the ideal case, the other three cases
have 57%, 6% and 13% dregradation, respectively in write without sync. In write
with sync, when disk access time is dominant, however, the overhead of memory
registration and deregistration in the individual case still results in 11% degradation.

The number of registration operations and their costs are also shown in the table.
It can be observed that Optimistic Group Registration reduces costs of registration
on list I/O buffers dramatically. In addition, a faster file system leads to a larger
impact from memory registration and deregistration.
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Table 4.1: Optimistic Group Registration Impact

case no sync sync | # reg | overhead
(MB/s) | (MB/s) (us)

Ideal 1010 82 0 0
Indiv. 424 73| 1024 5254
OGR 950 ~82 1 227
OGR+Q 879 ~82 11 496

4.6 Summary of Communication Buffer Management

Memory registration and deregistration for networks with remote DMA capabil-
ities adds a new dimension to data movement for I/O intensive applications in the
networked storage system. In a contiguous data movement, we have observed that up
to 35% performance can be degraded if dynamic registration and deregistration are
not avoided. In a non-contiguous data movement, even more performance can be de-
graded. We have shown that our two-level Fast Memory Registration and Deregistra-
tion (FMRD) can effectively reduce the registration and deregistration costs and work
well with I/O intensive applications. The Optimistic Group Registration scheme re-
duces these costs significantly on a list of buffers. Both schemes enable RDMA-based
data movement mechanisms to take full advantage of RDMA operations.
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CHAPTER 5

UNIFYING CACHE MANAGEMENT AND
COMMUNICATION BUFFER MANAGEMENT

This chapter presents the design, implementation, and evaluation of Unifier [113].
Unifier is a component in server applications such as network storage system servers
and other 1/0O serving applications (e.g., Web servers). It enables efficient interac-
tion and integration among the components of the server application and the system
subsystems.

Unifier is designed to improve the performance of server applications. In partic-
ular, Unifier has three main goals. First, Unifier eliminates redundant data copying
in the I/O path. Each data object can have only one single copy in the whole sys-
tem which is shard by all application components and system subsystems safely and
concurrently. Unifier also eliminates multiple buffering of data, thus the cache size
is effectively increased. Second, Unifier serves as a buffer manager to provide buffers
to RDMA operations in the emerging network technologies. Unifier tries to manage
these communication buffers in a manner to reduce memory registration and dereg-
istration costs as much as possible. Therefore, the server application can take full
advantage of RDMA-capable networks such as InfiniBand. Third, Unifier provides
an application-level cache to achieve cache adaptivity and application-specific cache
optimization. It provides expressive interfaces to achieve better cooperation among
components.

A prototype of Unifier was implemented as a stand-alone component. It has well-
defined interfaces. It also allows flexible accesses to the underlying file and storage
systems via various interfaces. This component can be deployed in a wide range of
server applications as both an application-level cache manager and a communication
buffer manager for RDMA operations. In this chapter, we focus on the design of
Unifier over InfiniBand network and its deployment in an implementation of PVFS1
over InfiniBand [109, 110] which has been discussed in Chapter 2. Our central per-
formance results are the performance of the PVFS1 implementation with Unifier, in
addition to other micro-benchmarks to measure the cache performance itself.
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5.1 Motivation

The advent of networking technologies and high performance transport protocols
facilitates the service of storage over networks. These enabling technologies eliminate
or reduce costs of memory copy, network access, interrupt, and protocol processing in
the network subsystem. In Chapters 2, 3, and 4, we have discussed how we can take
advantage of RDMA networks to reduce CPU overhead, increase I/O throughput,
and improve server scalability in networked storage systems.

Another source of performance limitation in networked storage systems is the lack
of integration among system subsystems and the storage server applications in the
general-purpose operating system [35, 65, 6]. This often results in redundant data
copying, multiple buffering, and other performance degradation [65]. Redundant
memory copying leads to high CPU overhead and limited server throughput. In
networks such as IBA which provides comparable performance to the memory system,
this becomes even worse. Multiple buffering of data wastes memory. Consequently,
the effective size of cache space is reduced, increasing cache miss rates and disk
accesses. In addition, the narrow interface [35, 6, 5, 38, 83] between system subsystems
and applications becomes a barrier to achieve efficient cooperation.

We proposed Unifier to achieve efficient interaction and integration between the
components of storage server applications and the system subsystems.

5.1.1 Data Path in Networked Storage Systems

Figure 5.1 shows two examples of data paths in the networked storage systems.
In Figure 5.1(a), a database server is connected to a networked storage server. In
Figure 5.1(b), it shows the data path in a typical network file system environment
such as DAFS and PVFS in which there is no client cache. In the storage server
side, we can see that there may be a copy between the communication buffer and the
storage cache. In the general-purpose system, there are several methods to avoid such
copy in some cases. We look at this issue further by analyzing PVFS data transfer
over TCP/IP and issues on InfiniBand.

5.1.2 PVFS Data Transfer over TCP/IP

The I/O path in a PVFS I/O server combines both network I/O operations and file
I/O operations. Therefore, the efficiency of PVFS I/O servers relies on performance
of both operations, as well as the interaction between their associated subsystems: the
network subsystem and the file system. In the implementation of PVFS over TCP/IP,
three data transfer methods can be provided, reflecting different interactions.

Normal: In the Normal method, a PVF'S server translates a PVFS read request into
two separate calls: a file read call and a network write call. Similarly for a PVFS
write request, it is translated to a network read call and a file write call. As analyzed
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Figure 5.1: 1/O Path In Networked Storage Systems.

in [88], there are usually four context switches. There are at least two data copies:
copy between the user buffer and the file cache, and copy between the user buffer and
the network buffer.

Mmap: The Mmap method maps the requested part of a file into the application
user space using the system call mmap(2). Then an application read or write on the
mapped buffers results in a file read or write. This avoids data copy between the user
buffer and the file cache. But the context switches remain same. The improvement
comes at the cost of several constraints, complicated memory management, and error-
prone pitfalls [88].

Sendfile: sendfile(2) is a system call providing direct data transfer between two
file descriptors, including a TCP socket descriptor. Using sendfile, a PVFS server
can do the file read and the network write together in one call. This reduces not
only context switches, but also two data copies as mentioned in the Normal method.
Over networks with Zero-copy TCP/IP implementation, the Sendfile method enables
Zero-copy I/0O path for transmitting data from the file to the network [88]. However,
there is no support on recvfile-like semantics. That is, to serve a PVFES write request,
the I/O server should follow either the Normal or the Mmap method.

5.1.3 Data Transfer Issues in PVFS over InfiniBand

In Chapter 2, we designed and implemented a version of PVFS over InfiniBand.
Our results show that re-designing PVF'S over the InfiniBand native transport layer is
worthy with up to 3 times improvement over TCP/IP on the same IBA network when
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performance of the local file system is well balanced compared to the network system.
The Normal and Mmap methods can be applied to PVFS over InfiniBand when we
use the InfiniBand native transport layer, while we cannot use the Sendfile method
directly. In addition, there are several issues to be addressed to further improve PVFS
performance.

Data copying between different components: 1/O data is copied between the
file cache and PVF'S server communication buffers. This happens when the Normal
method is used. It also happens when we want to avoid dynamic memory registration
and deregistration in the Mmap method. Data copying incurs high per-byte overhead
for PVF'S read and write operations.

Explicit communication buffer pool: To avoid expensive dynamic memory reg-
istration and deregistration, an often used solution is to pre-register a list of buffers
and to keep using them for all communication. To serve a large number of requests
concurrently, a significant amount of memory space should be allocated. Since these
buffers are not swappable, they actually reduce the effective size of main memory,
and thus the size and hit rate of the server’s file cache.

Data duplication in communication buffers: When we use an explicit commu-
nication buffer pool, a same data object may be in multiple communication buffers
to serve different requests which access the same data object. This duplication re-
duces the efficiency of the communication buffers, leading to a possible increase of
the communication buffers and service stalls.

Dynamic memory registration and deregistration: This happens when we use
the Mmap method. As shown in Chapter 4, up to 35% performance can be degraded
due to the costs of memory registration and deregistration.

These issues have a root in the lack of integration and interaction among the
PVFS transport layer over InfiniBand, the file/storage component, and the under-
lying I/O subsystem. To solve these issues, we propose a component to unify the
communication buffer space and the cache space. We deploy an application-level
cache in this component. The cache space is directly used for communication. We
call this component Unifier, working as both a cache manager and a communication
buffer manager. It provides pre-registered communication buffers without reducing
the effective cache size. It also offers other features to enable better cooperation with
related components. We describe the detailed design of Unifier in Section 5.2 and a
prototype implementation in Section 5.3.

5.2 The Design of Unifier

In this section, we present the design of Unifier. We start with its basic software
architecture and its application programming interface (APT), followed by its potential
benefits and design issues.
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5.2.1 Basic Software Architecture

Unifier is designed to provide efficient interaction between components in PVFS
I/O servers. The basic architecture and its interaction with other components are
shown in Figure 5.2.
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Figure 5.2: Basic software architecture of Unifier.

The control flow is shown by the dotted lines in Figure 5.2. Unifier, as a central
hub, interacts with the request manager, the transport component, and the storage
component. First, it receives requests from the request manger. Second, it provides
cache buffers to serve these requests. Lastly, for a read request, it first talks to the
storage component to read the requested data into its cache buffer if data is not
cached. Then, it provides the same buffer to the transport component to transmit
data to the client. For a write request, it first asks the transport component to receive
data into its cache buffer. These data then is cached in the Unifier’s cache buffer and
flushed to the storage component at appropriate time.

The data flow is shown by the solid line. The data flow is simple. All data is
placed in the Unifier’s cache buffers. The cache buffers are also used by the transport
component for communication, as well as the storage component for file and storage
I/O operation. Given a data object, there is only one copy in the Unifier's cache
buffers shared by all components safely and concurrently.

Unifier provides two main functionality. First, it acts as a cache manager, main-
taining an application-level cache. It also hides the details of the storage component.
Second, it acts as a buffer manager, providing buffers to the transport component.
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The cache buffer pool is managed in a way to enable efficient RDMA operations.
Further, it intends to optimize cache management for better network performance,
such as buffer coalescing and variable cache units.

5.2.2 Unifier Interface

The underlying observation that shapes our design of the Unifier API is that a
high-performance API should adopt the lessons learned from the design of the high-
performance server architectures. As a result, we provide the following features in
the Unifier API.

Supporting structured data access: Structured data access is a common access
pattern in many applications. Native structured data access support in each compo-
nent is a key for high performance [90, 110, 25]. The Unifier API should cater to this
requirement and enable possible optimizations for structured data access.

Supporting asynchronous operations: Asynchronous operations provide oppor-
tunities to overlap I/O operations with other processing. Network I/O operations
in IBA are asynchronous. File and storage systems have been evolving to provide
asynchronous I/O support [11]. Unifier API should provide an interface to support
asynchronous operations and to take advantage of the advances in both network and
storage 1/0.

A more expressive interface: Significant research work has pointed out that nar-
row interfaces in the existing systems have become a barrier for different subsystems
to exchanging their semantic information to improve system performance [38, 83, 6].
A more expressive interface is expected, which allows more cross-subsystem optimiza-
tions and more flexible extended services.

Recognizing the importance of these features, we define a simple yet powerful Uni-
fier’s interface. This subsection briefly describes its interface. A complete discussion
of the whole interface can be found in the PVFS2 document [70]. Currently, the inter-
face includes five types of calls: 1) Post a request; 2) Check the request completion;
3) Query cache information; 4) Completion notification; 5) Release resources. As
an example, we use Unifier_post_read to show how we achieve the aforementioned
features in the Unifier API.

Unifier_post_read(int fd,
ACCESS_Agg * access_info ,
BUFFER_Agg * buffer_info,
INFO_Agg * semantic_info,
COMP _Info * comp_info)

In Unifier post_read, ACCESS_Agg aggregates information of a structured ac-
cess. This aggregate structure can be easily represented by an MPI Datatype if other
components accept Datatype directly [25], or a representation of structured access.
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INFO_Agg contains semantic information the caller wants to pass to Unifier. Cur-
rently, we only support cache policy selection and the cache unit size. We intend to
extend this to convey more information to Unifier for optimization and for differential
requirements. COMP_Info guides Unifier to set up the completion notification. The
Unifier_post_read operation returns buffers which hold the requested data. We use
BUFFER_Agg to aggregate a list of buffers. These buffers will be provided to the
transport component for communication.

5.2.3 Potential Benefits

The primary goal of Unifier is to improve the performance of PVFS 1/O servers.
It offers the following potential benefits.

1.

Zero-copy I/0 serving: Unifier eliminates data copying between PVFS server
components in the I/O path. Further, it maintains an application-level cache
which enables the storage component to bypass the operating system file/storage
cache without losing performance. Therefore, Unifier can achieve the minimal
number of data copies to the extent permitted by the hardware. Zero-copy
I/O serving path is easily achieved in a typical I/O server hardware setup over
InfiniBand, as shown in Figure 5.2.

. Increased cache size: Unifier eliminates all multiple buffering. Each object

can have only one single copy in the Unifier’s cache buffer. This actually in-
creases the effective cache size, and thus the cache hit rate. Considering the
increasing gap between the memory system and the disk system and the in-
creasing gap between the network system and the disk system, a small increase
in the cache hit rate can improve the performance of I/O intensive applications
significantly.

. Reduced memory registration and deregistration costs: A part if not all

of the cache buffers in Unifier can be pre-registered for communication without
any memory registration or deregistration cost on these buffers.

. Native structured data access support: We bear the structured data access

support in mind from the beginning when we design Unifier. This support not
only fits application common access patterns well, but also provides tremendous
optimization potential in both Unifier and other components. For example,
the storage component can perform optimizations such as active sieving on a
structured data access as discussed in Chapter 3.

In this Chapter, we focus on the above benefits. Many other potential benefits,
such as providing cache information to the request scheduler for cache-aware schedul-
ing, application-controlled caching policies, and moving hot data into the memory of
the IBA Channel Adapter, are not discussed.
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5.2.4 Design Issues

Unifier and the Unifier-based I/O server software architecture show very attractive
potential benefits. However, several issues need to be addressed for this architecture
to be used in real systems to achieve high performance. We consider the following
three important issues, namely adaptive PVFS I/O server cache, buffer sharing, and
the size of registered cache buffers.

1. Adaptive PVFS I/0 server Cache:

Application-level cache has been popularly used in many server applications,
such as database management applications, web server applications [94], and
Grid data servers [10], We could borrow these designs into the design of PVFS
I/0O server cache. We could also reuse the design of the system cache for general-
purpose systems. However, the reason why we consider the design of PVFS I/O
server cache is an issue is that applications using PVFS have different 1/O
workload characteristics and I/O requirements from that on other systems [96].
Compared to database applications, PVFS applications may have more diversi-
fied access patterns. On the other hand, compared to applications on general-
purpose systems, PVFES applications may have less variation in access patterns.
Therefore, the design of PVFS I/0O server cache should reflect these differences
and provide high performance in general. An adaptive cache to cater to various
requirements is expected.

There is no “one size fits all” solution for a cache with fixed policies [82]. In our
design, we attempt to increase the cache adaptivity from two aspects. First,
we explicitly expose cache information to other components. Research work
in [16, 6] has shown that applications can adapt their own behavior to that of the
OS for improved performance with cache information. Unifier provides explicit
cache information queries to enable adaptation. Second, we allow applications
to specify their cache requirements. These requirements are passed down to
Unifier. Consequently, different cache policies can be applied, different cache
units can be used. Note that Unifier only provides best-effort services to these
requirements. It is possible that some of them may be overruled [18].

2. Buffer Sharing:

In Unifier, network read and write and file/storage read and write all share a
single copy of a given data object. This results in problems of synchronization
and consistency in buffer sharing. Techniques such as immutable buffers used
in JO-Lite [65] can be used to solve these problems. Immutable buffers provide
read-only buffer sharing to eliminate synchronization and consistency problems
at the price of the data which can not generally be modified in place. As also
mentioned in IO-Lite, immutable buffers is not suitable for scientific applications
where in-place modification is a must.
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Considering scientific applications being the main target of PVFS, we propose
other means to solve the buffer sharing problems. We use an allocate-release
model to manage and control sharing on the cache buffers. The main design
points are as follows:

Single owner: The only owner of all cache buffers is Unifier. This implies
that Unifier has control on all buffer sharing. This method reduces the design
complexity significantly.

Allocate: Unifier allocates the cache buffers to each operation. When a conflict
sharing occurs, the allocation will be deferred. When there is no conflict sharing,
the same cache buffers may be allocated to several concurrent operations. This
enables safe and concurrent sharing.

Release: When an operation is granted with the cache buffers, it should release
these buffers to Unifier when it completes.

With this design, Unifier supports both read-only sharing as well as write shar-
ing. I/O data can be modified in place if it is not currently shared. Therefore,
Unifier provides not only the sendfile semantics over InfiniBand transport pro-
tocols, which transmits data in the cache buffers directly to the network without
any copy, but also a recufile-like support that data received by the network is
placed directly into the cache buffers which are associated with a data object
in file/storage systems.

There are three reasons why we support the recvfile-like semantics which is
not supported by the operating system on the traditional network protocols.
First, the IBA network performance is becoming comparable to the bandwidth
of the memory system. Second, RDMA operations provide a “shared-memory
illusion”. To some extent, a process on a remote machine could be equally
considered as a local process running on the same machine. Third, write sharing
is very little in parallel applications [96]. A PVFS write can be done without
affecting others. Therefore, providing recvfile-like support over InfiniBand can
improve performance of PVFS writes without costs in common cases. Even
when write sharing does occur, since the network performance is high, the cost
to maintain writing sharing is low.

. The Size of Registered Cache Buffers:

Another main goal of Unifier is to reduce memory registration and deregistration
cost imposed by RDMA operations. Ideally, a part (if not all) of the cache
buffers can be registered and be always ready for RDMA operations. However,
there are several tradeoffs to be addressed to achieve this objective. First, the
size of Unifier’s cache should be as large as possible. Unifier should use all free
memory as cache to increase cache hit rate. Due to dynamic memory demands,
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a static size may cause virtual memory penalties. Second, as many cache buffers
as possible should be registered during the cache initialization. However, the
size of registered cache buffers should be limited not to degrade the system
performance. Because registered buffers are pinned and not swappable, the
effective size of physical memory used for other purposes is reduced.

In our design, the cache buffers are divided into two groups: Ready and Raw.
Ready buffers are registered and resident in the system during the Unifier’s life
time. The size of Ready buffers is projected conservatively according to the
estimate of memory needed by a PVFS server application with its maximum
support of outstanding requests. Raw buffers are not registered. Communi-
cation on these buffers needs on-the-fly registration and deregistration. The
size of raw buffers is the total physical memory size subtracted by the size of
Ready buffers and the size of memory needed by a PVFS server application
with a light load. With this design, we can achieve a good tradeoff between the
cost of memory registration and deregistration and the cost of potential virtual
memory activities.

5.3 Implementation

This subsection gives an overview of the implementation of the Unifier component
and its deployment in PVFS over InfiniBand.

Unifier is implemented as a user-level component in PVFS software architec-
ture [70, 109]. As a prototype implementation, the cache implementation is mostly
based on the file cache implementation in Linux 2.6. Our implementation supports
variable cache unit sizes from 4 KBytes to 64 KBytes. Applications can advise Unifier
to choose a cache unit size for a file when the file is first opened. Unifier provides
both polling and callback completion notification. The callback completion notifi-
cation depends on the support of callback completion notification provided by the
underlying storage component. To support structured data access, our current im-
plementation uses the <offset, length> to represent a structured data access and a
list of cache buffers. This is compliant with both PVFS1 and PVFS2 implementation
where the request manager interprets the high-level abstraction (e.g. MPI Datatype)
of structured data access.

The deployment of Unifier in PVF'S is straightforward, as shown in Figure 5.2.
In the current implementation, Unifier provides explicit information queries to the
request manager. However, how to make use of the cache information is under study.
We are also working on the adaptive cache management.

Apparently, our design and implementation are not without problem. In the
current implementation, we assume that the PVFS I/O server is multi-threaded.
Then a single cache can be shared by all threads. Significant modifications are needed
in Unifier to provide cache sharing for a multi-process server architecture. We also
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consider a dedicated PVFS I/O server configuration for better performance. The
total cache size and the size of pre-registered cache buffers depend on the dedicated
configuration for accurate estimate.

5.4 Experimental Results

In this subsection, we provide three sets of results. First we show the basic results
of the network, the file system, and the memory system. Next, we compare the
micro-benchmark level performance of Unifier with the Normal and Mmap methods.
Lastly, we analyze the performance of PVFS implementation over InfiniBand with
the deployment of Unifier.

All our experiments used the following experimental testbed. A cluster system
consisting of 8 nodes built around SuperMicro SUPER P4DL6 motherboards and GC
chipsets which include 64-bit 133 MHz PCI-X interfaces. Each node has two Intel
Xeon 2.4 GHz processors with a 512 kB L2 cache and a 400 MHz front side bus.
The machines are connected with Mellanox InfiniHost MT23108 DualPort 4x HCA
adapter through an InfiniScale MT43132 Eight 4x Port InfiniBand Switch. The Mel-
lanox InfiniHost HCA SDK version is thca-x86-0.2.0-build-001. The adapter firmware
version is fw-23108-rel-1_18_0000. We used the Linux 2.4.7-10 kernel. Unless stated
otherwise, the unit megabytes (MB) in this paper is an abbreviation for 22° bytes.

5.4.1 Basic System Performance Results

Performance realized by PVFS applications depends on the performance of three
main subsystems: the network, the memory, and the file system. Table 5.1 compares
the throughput of IBA VAPI Send/Recv, RDMA Write, RDMA Read, IPoIB, memory
copy, file read and write with and without cache. In the IBA throughput tests,
memory registration and deregistration costs are not included. In the memory copying
test, the amount of data copied is 20 MBytes, much larger than L1 and L2 caches to
eliminate the cache effect.

Memory registration and deregistration costs are crucial for us to leverage Infini-
Band features. Figure 4.1 shows these costs with different buffer sizes using Mellanox
fast memory registration extension in VAPI [57]. Note that much higher costs should
be paid if we use VAPI regular memory registration facilities. Figure 4.2 shows the
impact of dynamic memory registration and deregistration. This is the reason why
we make great effort in Unifier to reduce these costs.

It can be seen that there is a large difference in bandwidth realizable over the
network and the memory system compared to that which can be obtained to a disk-
based file system without cache effect. However, applications can still benefit from
fast networks for many reasons in spite of this disparity. Data is frequently in server
memory due to file caching and read-ahead when a request arrives. Also, in large
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Table 5.1: Throughput of different subsystems

Subsystem Throughput (MB/s)
VAPI Send/Recv 830
VAPI RDMA Write 830
VAPI RDMA Read 826
Memory Copying 596
File Read w/o cache 20
File Write w/o cache 25
File Read w/i cache 590
File Write w/i cache 183

disk array systems, the aggregate performance of many disks can approach network
speeds. Caches on disk arrays and on individual disks also serve to speed up transfers.
Therefore, the following experiments are designed to stress the network data transfer
and independent of any disk activities. We consider data is cached. The results
are representative of workloads with sequential I/O on large disk arrays or random-
access loads on servers which are capable of delivering data at network speeds from
a well-balanced storage system.

5.4.2 Performance of Micro-benchmarks

In this subsection, we present the designs of several micro-benchmarks to show
the performance of Unifier. We put Unifier in a simple client-server environment,
which is similar to the PVFS architecture but simpler. In these tests, a client sends
one or more read or write requests to a server. The server then serves these requests
using three different methods: Normal, Mmap, and Unifier, respectively. Details of
Normal and Mmap methods are discussed Section in 5.1.2.

Cached read performance: We first measured the cached read performance of
these three methods. In this test, all data is in the system cache in the Normal and
Mmap method. All data is also in the Ready cache buffer in the Unifier method. We
used this test to show the best case performance of all methods.

Figure 5.3 shows the results. The Normal method gives a peak bandwidth of 324
MBytes/sec. We see a small drop when the access sizes are larger than 128 KBytes,
probably this is because the increase of the memory footprints affects the memory
copy performance.

In the Mmap method, the memory registration and deregistration costs have a
significant impact, particularly for small access sizes. When the access size increases,
the costs of memory registration and deregistration become less than the cost of
memory copy. Thus, this method performs better than the Normal method.
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Figure 5.3: Cached read bandwidth.

In the Unifier method, data is cached in the Unifier Ready cache buffers. Thus,
the server can RDMA write data directly to the client buffer from its Unifier’s cache
buffers. Unifier achieves an improvement of a factor of 2.1 over the Normal method,
a factor of 1.3 over the Mmap method when the access size is large, a factor of up to
2.7 over the Mmap method when the access size is small.

Effects of cache size: As discussed earlier, the effective cache size in each method
is different. Given a system with 512 MBytes physical memory, the maximum size of
memory which can be used for cache is around 420 MBytes. In our test, the server
application consumes around 60 MBytes. Then around 360 MBytes memory can
contribute to cache data. The Mmap and Unifier methods can make full use of these
360 MBytes for caching. However, since we need some pre-registered communication
buffers in the Normal method, we allocate 20 MBytes for this use, thus, the effective
cache size is around 340 MBytes. Note that to allow the server to serve a large number
of concurrent requests in a real PVFS configuration, even a larger buffer pool may
be needed. In the Unifier method, the maximum size of Ready buffers allowed by the
system is around 200 MBytes. So that around 160 MBytes of Raw buffers are in the
Unifier cache, which requires dynamic registration and deregistration.

We used a re-read test to show the effects of cache size. In this test, the client
reads a file whose size varies from 300 MBytes to 400 MBytes. This test reads a file
sequentially with the block size of 128 KBytes. Then, it reads the same file again
sequentially. The bandwidth achieved by the second read is reported in Figure 5.4.
We can see that both the Mmap and the Unifier methods can still hold the entire file
in the cache when its size is not larger than 360 MBytes, while the Normal method
can not. When the file size increases to 380 MBytes, all methods suffer due to the
disk-bound access on a normal IDE disk which can offer a read bandwidth of 20
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Figure 5.4: Effects of cache size.

MBytes/sec. All methods are comparable. This also shows that the Unifier cache can
provide comparable performance to the system cache with the sequential workload.

5.4.3 Performance of PVFS1 with Unifier

The test program used is pufs-test, which is included in the PVFS release package.
We followed the same test method as described in [19]. That is, each compute node
writes and reads a single contiguous region of size 2N MB, where N is the number
of I/O nodes in use. The number of I/O nodes was fixed at four, and the number of
compute nodes was varied from one to four.

Figure 5.5 shows the cached read performance with different methods deployed in
an implementation of PVFS over InfiniBand VAPI as discussed in 2. The aggregate
bandwidth realized by all clients is reported. There are two observations. First,
PVFS with Unifier scales better than other two methods. This is due to the lower CPU
overhead needed to serve each request in the Unifier method. In other methods, either
memory copying or memory registration and deregistration consumes significant CPU
cycles. Second, in terms of the peak bandwidth, the Unifier achieves an improvement
of a factor of 1.7 over the Normal method, a factor of 1.3 over the Mmap method.

5.5 Summary

Unifier is designed to improve the performance of network storage server appli-
cations. It provides three notable features. First, Unifier eliminates redundant data
copying and multiple buffering in the I/O path. It provides a single data sharing
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Figure 5.5: PVFS cached read performance.

among all components in a server application safely and concurrently over high per-
formance networks such as InfiniBand. Second, the integration of communication
buffer management and cache management reduces memory registration and deregis-
tration costs as much as possible. This enables applications to take full advantage of
RDMA operations. Third, Unifier provides means to achieve adaptation, application-
specific optimization, and better cooperation among different components in a server
application.

This chapter presents the design and implementation of Unifier. We also deployed
and evaluated this component in a version of PVFS1 implementation over InfiniBand.
Experimental results from a prototype implementation show performance improve-
ments between 30 and 70% over two other methods often used in the PVFS I/O server
implementation. Better scalability is achieved by the PVFS I/O servers. The Unifier
method also increases the effective cache size due to the integration of communication
buffers and the cache buffers, leading to increased performance.
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CHAPTER 6

FAST DEMOTION-BASED EXCLUSIVE CACHING
THROUGH DEMOTE BUFFERING

This chapter presents Demote Buffering to improve performance of Demotion-
based exclusiving caching. With DEMOTE buffering, a small portion of buffer space
is used to delay DEMOTE operations. When an evicted block needs to be sent to
the server cache, the block is first placed in the DEMOTE buffer. DEMOTE buffer-
ing can mask the DEMOTE overheads, to smooth the variance (burstiness) in the
DEMOTE traffic, and to provide more flexibility for optimizations. The design space
for optimizations is broadened, including non-blocking network operations, remote
direct memory access (RDMA), RDMA Gather/Scatter operations in networks such
as InfiniBand [46, 69], and speculating demotions.

6.1 Multi-level Cache Hierarchy in Networked Storage Sys-
tems

Caching is designed to shorten access paths for frequently referenced items, and so
improve the performance of the overall file and storage systems. With the increasing
gap between processors and disks, and decreasing memory price, modern file and
storage servers typically have large caches up to several or even tens of gigabytes
to speed up I/O accesses [107]. In addition, the clients of these servers also devote
a large amount of memory for caching [115, 4, 61, 62]. Multiple clients may share
file and storage resources through various storage networks. A typical scenario is a
two-level hierarchy: the lower level cache can be a high-end disk array cache or a
cluster file server cache, and the upper level can be a database server cache or a file
client cache. We call a lower level cache a server cache. In contrast, we call an upper
level cache as a client cache.

6.1.1 Inclusive and Exclusive Caching

Most cache placement and replacement policies used in multi-level cache systems
maintain the inclusion property: any block in an upper level buffer cache is also in
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a lower level cache. The drawbacks of inclusive caching have been observed in a
rich set of literature [60, 116, 107, 23]. To aggregate the cache size of the multi-level
cache hierarchy to achieve ezclusive caching, different approaches have been proposed.
Wong and Wilkes [107] recently proposed a simple operation called DEMOTE as
an additional interaction between a client cache and a disk array cache to achieve
exclusive re-read cache. The DEMOTE operation is used to transfer evicted data
blocks from the client buffer cache to the disk array cache. Then the server cache
uses different cache replacement policies for the demoted blocks and blocks recently
read from disks to yield exclusive caching. Chen et al [23] proposed an eviction-
based cache replacement to achieve exclusive caching. Using the eviction-based cache
placement policy, the server cache tries to reload blocks from disks when these blocks
are evicted from the client cache. Unlike the Demotion-based exclusive caching, the
eviction-based cache placement attempts to retain the current interface between the
client and the storage server. An extra software is installed in the client side to send
eviction information to the storage server, Thus, a change in the interface to the
storage server is also needed to receive the eviction information. Recent work on a
non-invasive exclusive caching mechanism [7] achieves a high degree of exclusivity
through gray-box methods: using system information to construct an approximate
image of the contents of file system cache and uses this image to determine the
exclusive set of blocks that should be cached in the storage server. This approach
considers no change to the storage and file system interfaces as central to achieving
cache exclusivity in multi-level cache hierarchy.

6.2 Demotion-Based Exclusive Caching

Wong and Wilkes [107] proposed a simple operation called DEMOTE as an ad-
ditional interaction means between a client cache and a disk array cache to achieve
exclusive re-read cache. The DEMOTE operation is used to transfer evicted data
blocks from the client cache to the disk array cache. To achieve exclusive caching,
the server cache should choose appropriate cache placement and replacement poli-
cies to manage blocks demoted from the client cache and blocks that have been read
from the disk. One of exclusive cache schemes discussed is shown in Figure 6.1. The
client cache uses the LRU policy to read blocks from the server cache. The server
cache puts blocks it has sent to a client at the head (earliest to be discarded) of its
LRU queue, while puts demoted blocks from the client cache at the tail. This cache
management policy most closely achieves a single unified LRU cache [107]. Ideally,
exclusive caching has the potential to double the effective cache size with client and
server caches of equal size.

When a client is to discard a clean block from its cache to make space for other
blocks, it first sends the block metadata in advance of the block data [106]. This
control message can be used to avoid transferring the block data in some cases. For
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Figure 6.1: Cache management in the DEMOTE exclusive caching.

example, from the metadata, the server can determine whether or not it has cached
the block, and if it has it can signal to the client to abort the transfer.

Demotion-based exclusive caching relies on transferring demoted blocks through
network between the clients and the server. Further, the DEMOTE approach per-
forms eager DEMOTE operations with assumption that the network is fast. This
method offers design simplicity. However, it introduces the following performance
overheads, which may offset the benefits of exclusive caching for some workloads and
networks.

e Eager DEMOTE operations increase request access time. A request may be
delayed because it needs to wait for the completion of a DEMOTE operation
to make space for it. That is, the average client cache miss penalty will be
increased due to the cost of DEMOTE operations.

e DEMOTE operations increase the network traffic. In the worst case, each read
incurs a DEMOTE operation, the network traffic is more than doubled (some
control traffic is also counted).

e Eager DEMOTE operations provide little design space for optimizations. A
DEMOTE operation must be finished before a demand request can have space
in the client cache. Therefore, features such as non-blocking network operations
can not be applied. Besides, each block needs a control message. In addition,
the size of cache blocks is usually small (e.g. 4 kB or 8kB), one cache block per
DEMOTE operation may not utilize the network bandwidth efficiently.

We propose DEMOTE buffering to hide and/or reduce these overheads. DE-
MOTE buffering provides more flexibility for optimizations. These optimizations can
make better use of network features, such as non-blocking network operations and
gather/scatter operations. A control message in DEMOTE buffering can contain
multiple blocks’ metadata. This can reduce control traffic and amortize control cost
over multiple blocks.
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6.3 DEMOTE Buffering

In this section, we first describe the structure of DEMOTE buffering and its
potential benefits. Then we discuss its design issues.

6.3.1 The Architecture of DEMOTE Buffering

In DEMOTE buffering, a small memory space, the DEMOTE buffer, is used on the
client side for buffering demoted blocks, as shown in Figure 6.2. DEMOTE buffering
works as follows: when a client encounters a cache miss and is about to demote a clean
block from its cache (e.g. to make space for a READ), it first moves the demoted
block into the DEMOTE buffer. This operation is a local operation. Then it initiates
a request to the server cache to read the demanded block. Unless the number of
demoted blocks in the DEMOTE buffer is up to a certain threshold, requests will not
encounter any overhead of DEMOTE operations.
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Client

Cache

-
|

Demote Buffering

Read -]] Demote buffer

————Non-blocking DEMOTE
v i
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Figure 6.2: Architecture of DEMOTE Buffering.

: Discard

Double-buffering technique is used in our DEMOTE buffering mechanism. The
threshold could be half of the DEMOTE buffer size in blocks. Thus, when the DE-
MOTE buffer is half full, non-blocking DEMOTE operations are initiated.

When client cache misses are too bursty, it is possible that there is no space left
in the DEMOTE buffer when a client needs to demote a block. The client cache then
checks the completion of previously initiated demotions and reclaims resources for
future demoted blocks.

6.3.2 Benefits of DEMOTE Buffering
DEMOTE buffering has the following potential benefits.
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1. Reduced visible DEMOTE cost: DEMOTE buffering tries to hide the cost
of DEMOTE operations by increasing the overlap between demotions and other
activities. This is achieved through buffering demoted blocks in the DEMOTE
buffer and using non-blocking I/O to perform DEMOTE operations.

2. Exploiting idle network bandwidth: DEMOTE buffering provides oppor-
tunities to use idle network bandwidth to transfer demoted blocks in the DE-
MOTE buffer. The network link between a client and a server is free when
the client cache hits occur or the client is not performing I/O operations. If
DEMOTE operations occur during this period, the impact of the increased traf-
fic on the system performance is minimized. This benefit can be realized easily
with one-sided communication such as RDMA operations in the InfiniBand net-
work. For example, the server can monitor the network usage and then initiate
RDMA Read operations to retrieve demoted blocks from a client’s DEMOTE
buffer when the link is free.

3. Better network utilization: In the DEMOTE buffering mechanism, multi-
ple control messages can be aggregated into one single message for all buffered
blocks. The control messages can be piggybacked with request and reply mes-
sages. Effective scheduling or batching on the transmission of multiple blocks in
the DEMOTE buffer can be performed. For example, RDMA Gather/Scatter
operations in InfiniBand can be used to retrieve multiple blocks in one oper-
ation, even though they are not contiguous. This can achieve better network
utilization.

4. More flexibility for optimizations: Demote buffering enables more flexibil-
ity for optimizations. One example is speculating demotion. When the client
cache misses are too bursty for the DEMOTE buffering to hide the DEMOTE
costs, the client can only send metadata information of the demoted blocks to
the server. The server then speculates about cold blocks [23] which are ac-
cessed infrequently and thus are unnecessary to demote from the clients. After
the client receives the server’s speculation information, it can replace those un-
necessarily demoted blocks with the newly demoted blocks directly. Speculating
demotion can be applied without DEMOTE buffering, however, the control mes-
sage cost is significant. In Demote buffering, the control message cost can be
amortized effectively across multiple blocks.

In summary, Demote buffering has the potential to hide the demotion cost through
overlapping communication and other activities, to reduce the number of communica-
tion operations, to achieve better utilization of the network bandwidth, and to allow
more flexible optimizations to reduce the impact of demotion cost on the system
performance.
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6.3.3 Design Issues in DEMOTE Buffering

The DEMOTE buffering mechanism shows very attractive potential benefits over
the eager DEMOTE mechanism, however, several issues need to be addressed for this
mechanism to be used in real systems to achieve high performance.

¢ Reducing DEMOTE buffering overhead: There are two ways to buffer a
demoted block. One is to copy the demoted blocks into the DEMOTE buffer.
The method can have demoted blocks in a contiguous memory space which can
be used to optimize communication in some networks. There is no change to the
client cache space. These advantages are achieved at the cost of memory copy.
The second one is to exchange the positions of a free block in the DEMOTE
buffer and a demoted block in the client cache. There is no memory copy.
However, the client cache space and the DEMOTE buffer space change with
time. Noncontiguous data transmission may occur [110]. Tradeoff must be
made between the cost of memory copy and the performance of noncontiguous
data transmission in the studied network.

e Tuning the size of the DEMOTE buffer: The size of the DEMOTE buffer
affects the ability of the DEMOTE buffering mechanism to mask the demotion
overhead. From the server cache point of view, a DEMOTE operation is similar
to a WRITE operation, and the DEMOTE buffer is similar to a write-behind
buffer. Ideally speaking, the DEMOTE buffer size must be large enough to
cover the burstiness of the client cache misses. This is similar to a write-behind
buffer to cover the variance in the write workload [95, 77]. On the other hand,
the DEMOTE buffer should not consume too much memory since most memory
should be devoted to the client cache.

e Maintaining cache hits: DEMOTE buffering introduces a new complication:
the delayed demotions may result in cache misses in the client and server caches.
To address this issue, first the DEMOTE buffer should be considered as a part
of the client cache. When a client cache miss occurs, the client should look
at the DEMOTE buffer to see if the requested block is stored. Thus, from
maintaining the client cache hit point of view, the DEMOTE buffer works as
a victim buffer in victim caching [48]. In a single-client system, this method
solves the issue completely. However, it is a little bit more complicated in a
multi-client system.

e Handling remote client cache hits: In a multi-client system, it is possible
that the demoted blocks in one client’s DEMOTE buffer may be expected by
others. That is, the delayed demotions might decrease the server cache hits for
some workloads. One solution to this problem is to let a server cache maintain
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a directory of which blocks are in which client’s DEMOTE buffer. Since the
number of blocks in a DEMOTE buffer is small, the total space for this directory
is limited. Then when a request from a client encounters a server cache miss, the
server can potentially retrieve the block from a different client which is holding
it in its demote buffer. Data transfer between clients is also possible, as with

Cooperative Caching [31, 62, 98, 29].

6.4 Performance Evaluation

We developed a simulator to simulate the DEMOTE buffering between the clients
and the server over various networks. For comparison, the original DEMOTE mech-
anism is also simulated. Our simulator is built over fscachesim [107] by adding com-
munication details. The simulator takes synthetic workloads and traces as input.

6.4.1 Experimental setup

Our experimental testbed consists of a cluster system consisting of 8 nodes built
around SuperMicro SUPER P4DL6 motherboards and GC chipsets which include
64-bit 133 MHz PCI-X interfaces. Each node has two Intel Xeon 2.4 GHz proces-
sors with a 512 kB L2 cache and a 400 MHz front side bus. The machines are
connected with Mellanox InfiniHost MT23108 DualPort 4x HCA adapter through
an InfiniScale M'T43132 Eight 4x Port InfiniBand Switch. The Mellanox InfiniHost
HCA SDK version is thca-x86-0.1.2-build-001. The adapter firmware version is fw-
23108-rel-1_17_0000-rc12-build-001. Each node has a Fujitsu Ultra3 SCSI (Model
MAM3184MC) disk, which is a 18.4GB and 15,000 rpm drive. We used the Linux
RedHat 7.2 operating system.

We perform tests over three different networks: TCP/IP over Fast Ethernet (re-
ferred as FE), IBNice (TCP/IP over InfiniBand), and native InfiniBand (using the
VAPI library). We intend to use these three networks to represent roughly 0.1 Gb/s,
1 Gb/s, and 10 Gb/s networks. Table 6.1 lists their minimum latency, maximum
bandwidth, and effective bandwidth when the message size is 4 kB bytes.

Table 6.1: Network Performance
FE | IBNice | VAPI

Latency (us) 68 36 5.4
off. Bandwidth (MiB/s) | 11| 109| 718
max. Bandwidth (MiB/s) | 11.2 130 | 831
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6.4.2 Single-client synthetic workloads

Three synthetic workloads: Random, Sequential, and Zipf [15], are generated using
the fscachesim package [107]. The size of cache blocks is assumed 4 kB, the client
and server caches each have 16384 blocks.

We follow the following method as mentioned in [107] to compare DEMOTE
buffering and DEMOTE mechanisms. We perform simulations over different networks
with the above synthetic workloads. The size of the working set is 32768 blocks, 32767
blocks, and 49152 blocks for the Random, Sequential and Zipf workloads, respectively.
In each test, the caches are “warmed up” with a working-set size set of READs. After
the warm-up, another 10 timed READs are initiated. Time to randomly access a 4 kB
disk block is set to 10 ms, the same value set in [107]. The DEMOTE buffer size is
set to 10 cache blocks. The client cache hit ratios are 50%, 0%, and 86% for Random,
Segential, and Zipf workloads, respectively; with server cache hit ratios of 46%, 100%,
and 9%. Note that these ratios are expressed as fractions of the total client READs.
Since the cache hit results are important for us to understand the performance of
DEMOTE buffering, we put these results in Table 6.2 for clearer reference.

Table 6.2: Client and server cache hit rates for single-client synthetic workloads.
Workload | client | server
Seq 0% | 100%
Random | 50% | 46%
Zipf 86% 9%

The main metric for evaluating DEMOTE buffering is the mean latency of a
READ at the client. DEMOTE buffering achieves same cache hits and server hits as
DEMOTE does. The results in Table 6.3 show the mean latency of READs in each
workload with DEMOTE (DE for short) and DEMOTE Buffering (DB for short)
mechanisms.

It can be observed that DEMOTE buffering achieves the highest speedup (1.44x)
for the Sequential workload. This is because there is no cache hit on the client, and
all accesses are cached in the server. Each access results in sending a demoted block
to the server and receiving a block from the server.

In Random workload, the number of demote operations is 50% of the size of the
working set due to 50% client cache hit ratio. There are 4% blocks needed to be read
from disk. DEMOTE buffering achieves considerable improvement on Fast Ethernet
and IBNice. However, the benefit diminishes on VAPI because the total demotion
overheads are less significant.
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DEMOTE buffering achieves the least improvement in the Zipf workload. This is
actually expected, because of the highest client cache hit ratio and the lowest server
cache hit ratio. The client cache hit ratio is 86%, indicating that there are only 14%
blocks needed to be demoted. The server cache hit ratio is 9%, indicating that there
are 5% blocks needed to be read from disk. Since the disk access time is much higher
than the network access time, the total demotion overheads become less significant
in the Zipf workload.

Table 6.3: Mean READ latencies and speedups over DEMOTE for single-client syn-
thetic workloads (DE: DEMOTE; DB: Demote Buffering)

Seq (ms) Random (ms) | Zipf (ms)
DE | 1.21 0.99 0.84
FE | DB | 1.09 (1.11x) | 0.92 (1.08x) | 0.83 (1.01x)
DE | 0.26 0.52 0.73
IBNice | DB | 0.18 (1.44x) | 0.46 (1.13x) | 0.71 (1.03x)
DE | 0.078 0.41 0.704
VAPI | DB | 0.056 (1.4x) | 0.40 (1.03x) | 0.70 (1.01x)

We note that performance gain achieved by using DEMOTE buffering varies with
the network performance, disk performance, as well as workload access patterns.
It depends how significant the total demotion overheads are. It can be expected
that workloads with high client cache miss rates can benefit more from DEMOTE
buffering. In addition, the faster disks are, the more significance DEMOTE buffering
is. Furthermore, the performance gain is closely related to the performance gap
between network and disk. In Table 6.3, we see DEMOTE buffering achieves less
improvement on VAPI than on IBNice, this is because VAPI performs 6.5 times
better than IBNice and tens of times better than disk, the total demotion overheads
over VAPI are less significant than those over IBNice.

6.4.3 Effectiveness of DEMOTE buffering

To show the effectiveness of DEMOTE buffering directly, we profiled the total
demotion overheads visible to the client in our tests. Results are shown in Table 6.4.
With a small DEMOTE buffer (10 blocks), up to 34% demotion overheads are reduced
by DEMOTE buffering.

Note that in the above tests, one request is initiated immediately after the comple-
tion of the previous one. This incurs the highest burstiness of DEMOTE operations
in all workloads studied. It is possible that client cache misses are too bursty to mask
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Table 6.4: Total demotion overheads for single-client synthetic workloads

Seq (s) | Random (s) | Zipf (s)

DE 12.76 10.65 1.91

FE DB 8.30 7.44 1.52
DE 9.45 4.70 1.70

IBNice | DB 6.39 3.23 1.14
DE 0.95 1.81 0.33

VAPI | DB 0.70 1.30 0.26

the DEMOTE overhead. That is, some of requests should wait for the completion
of non-blocking demotions for spaces. Thus, the results in Table 6.4 are actually
the worst-case results for DEMOTE buffering. In the next subsection, we show that
DEMOTE buffering can achieve better overlap if we reduce the access rate.

6.4.4 Effects of Burstiness

The sequential workload results in the most bursty demote operations since each
READ incurs a DEMOTE operation. To study how well DEMOTE buffering can
mask the DEMOTE overheads under different client cache miss burstiness, we put
some computation delay after each client read request. We expect that the larger the
delay is, the better DEMOTE buffering can overlap demotions with the computa-
tion delay. Consequently, the visible DEMOTE overheads to the client decrease. In
contrast, each read in the eager DEMOTE approach must pay the demotion cost no
matter what the delay is.

The results in Figure 6.3 validate our expectations. The overhead visible to the
client is expressed as the fraction of the total overhead visible to the client in the eager
DEMOTE, shown in y-axis. The delays between two consecutive requests are shown in
x-axis. First, DEMOTE buffering effectively reduces the demotion overheads visible
to the client even with small delays. Second, the delay at which the best overlap is
achieved is adversely proportional to the network bandwidth. For example, when the
delay is 500 us, DEMOTE buffering on Fast Ethernet can offer the best overlap, while
similar benefits arises with 100 us for IBNice, and 50 us for VAPI. Third, another
interesting observation is that still 36% and 32% overheads are visible to the client
on Fast Ethernet and IBNice even with large delays, while only 12% overhead visible
to the client on VAPIL. This is due to different CPU overheads needed to transfer
data in the three networks studied. Both fast Ethernet and IBNice use the kernel-
based TCP/IP stack which incurs substantial overheads due to context switching
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and memory copies. In contrast, VAPI provides user-level networking which requires
much less interference from the host CPUs and operating system.
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Figure 6.3: Demotion overhead visible to the client with different request rates.

6.4.5 The Single-client DB2 workload

We used the DB2 workload [97] to evaluate the benefits of DEMOTE buffering
for real-life workloads. The DB2 traces were generated by an eight-node IBM SP2
system. The size of data set is 5.2 GB. The eight client nodes access disjoint sections
of the database. For single-client test, the eight access streams are combined into one.
Unlike the above-mentioned tests, in this and the next tests, the disk accesses are not
simulated. We used a Fujitsu Ultra3 SCSI (Model MAM3184MC) disk, which is a
18.4GB and 15,000 rpm drive. DB2 exhibits a behavior between the sequential and
random workload styles [107]. The results of mean latencies achieved with different
DEMOTE buffers are shown in Figure 6.4. Data points with zero block are results
of DEMOTE. Overall, a 1.10 to 1.15x speedup over DEMOTE is achieved for Fast
Ethernet and IBNice on InfiniBand, a 1.05x speedup for VAPI on InfiniBand. The
mean latencies on IBNice and VAPI have little sensitivity to the size of DEMOTE
buffer.

6.4.6 The Multi-client HTTPD workload

The HTTPD workload [97] was collected on a seven-node IBM SP2 parallel web
server serving a 524 MB data set. There is a significant portion of blocks shared by
clients. In this study, we evaluate the impact of DEMOTE buffering on the server
cache hit ratio. For comparison, we implemented two methods to process server
cache misses. One is to reload the missed blocks from disks, referred as Reload.
The second one tries to retrieve the missed blocks first from the clients’ DEMOTE
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Figure 6.4: Mean latencies of the DB2 workload

buffers, referred as Retrieve. To keep the server updated of which blocks are in clients’
DEMOTE buffers, the client eagerly piggybacks metadata information of the demoted
block to the server cache in the request message.

In our test, each client has an 8 MB cache. The server cache is 64 MB. This
configuration results in 62% client cache hits on average, 12% server cache hits, and
16% server cache misses with the DEMOTE approach. In DEMOTE buffering, when
the DEMOTE buffer is less than 40 blocks, the server cache misses remain same.
When the DEMOTE buffer size is set to 80, the average client cache hit ratio is 63%,
9% server cache hit ratio, and 18% server cache miss ratio. Figure 6.5 shows the
aggregated throughput (the total number of HTTPD requests finished per second) of
seven clients with different DEMOTE buffer sizes. We use “1” to represent the Reload
method, and “2” for the Retrieve method. In Fast Ethernet (FE), Reload performs
better than Retrieve because of the poor network performance. In both IBNice and
VAPI, the network access is much faster than the disk access; hence, retrieve performs
better than Reload. Although there is some increase of the server cache misses when
the DEMOTE buffer becomes large, the DEMOTE buffering with Retrieve scheme
still provides better performance than the eager DEMOTE approach whose results
are shown by data points with zero block in the figure. A speedup up to 1.08x can
be achieved. For example, the eager DEMOTE can support 9859 ops/sec on IBNice,
while DEMOTE buffering can support 10670 ops/sec, a factor of 1.08 improvement.

6.5 Summary

DEMOTE buffering is proposed to hide the cost of DEMOTE operations by in-
creasing the overlap between demotions and other activities in demotion-based exclu-
sive caching. It also provides more flexibility for optimizations, such as non-blocking
operations, aggregate of control messages, gather/scatter network operations, and
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Figure 6.5: HTTPD workload aggregate throughput

speculating demotions. Results of experiments with synthetic workloads demon-
strate that 1.11-1.44x speedups are achieved for the Sequential workload, up to 1.13x
speedups for the Random workload. Simulation results with real-life workloads vali-
date the benefits of DEMOTE buffering by 1.08-1.15x speedups over the DEMOTE
approach.

The exclusive caching motivates us to aggregate resources from the NICs, main
cache, and the disk/disk array cache.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this dissertation we have designed a high performance and highly adaptive
networked storage system over emerging networks to cater to the requirements of
different applications. We approached this problem by focusing on the management
of communication and memory in the I/O path of networked storage systems. Our
research has shown that emerging networking technologies and storage architectures
have a profound impact on the design and implementation of networked storage soft-
ware. Specifically, the RDMA-based networks provide high speed and low CPU over-
head data movement for networked storage systems. They also increase the system
scalability. However, RDMA operations have introduced new issues such as memory
registration and deregistration and communication buffer management. This disserta-
tion investigates approaches to solve these new issues and evaluates different tradeoff
to make the most out of the RDMA benefits for networked storage systems.

Secondly, this dissertation presents a novel architecture to provide efficient interac-
tion between different components such as the communication subsystem, the file sys-
tem, the file cache in both clients and servers. The lack of efficient interaction between
these components in the general operating systems is one of performance bottlenecks
in networked storage systems. The low level primitives provided by RDMA networks
can be used to achieve the best performance. However, building the networked stor-
age systems on these low level primitives deteriorates the existing interaction without
new designs. We approached this problem by providing integrated communication
buffer management and cache management. This approach not only provides efficient
interaction between storage server application components and different subsystems,
but also takes advantage of the high performance of low level primitives of RDMA
networks.

Thirdly, this dissertation introduces a buffering mechanism to achieve efficient
exclusive caching in multi-level cache hierarchy which is often formed in networked
storage systems. The exclusive cache memory management makes the better use of
memory resources in different cache levels.

96



The main conclusion of this dissertation is that using innovative methods to man-
age communication and memory can significantly improve performance and scala-
bility of a networked storage system. To achieve this requires studying and taking
advantage of the new features in the emerging networking technologies and storage
architectures, understanding new issues and performance bottlenecks, investigating
different approaches, and evaluating various tradeoffs.

7.1 Summary of Research Contributions

We presented communication and memory management in networked storage sys-
tems. Below, we summarize the contributions and results of this dissertation.

7.1.1 Contiguous Data Movement using RDMA

In Chapter 2, we presented the design, implementation and performance evalu-
ation of PVFS over InfiniBand. We studied how to leverage the emerging Infini-
Band technology to improve I/O performance and scalability of cluster file systems.
Our work shows that the InfiniBand network and its user-level communication and
RDMA features can improve all aspects of PVFS, including throughput, access time,
and CPU utilization. However, InfiniBand network also poses a number of challeng-
ing issues to I/O intensive applications, including communication management for
choosing appropriate transfer mechanisms and communication buffer management.

Compared to a PVFS implementation over the standard TCP/IP on the same
InfiniBand network, our implementation offers three times the bandwidth if workloads
are not disk-bound and 40% improvement in bandwidth if disk-bound. The client
CPU utilization is reduced to 1.5% from 91% on TCP/IP.

7.1.2 Non-Contiguous I/O Access Support

We presented our Non-Contiguous I/O access support in Chapter 3. In this chap-
ter, we addressed two issues involved in noncontiguous I/O accesses in cluster file
systems over high performance networks: noncontiguous data transmission and non-
contiguous disk accesses. For noncontiguous data transmission, we propose a novel
approach, RDMA Gather/Scatter, to transfer noncontiguous data between the clients
and the I/O servers. For noncontiguous disk accesses in the I/O server nodes, we have
implemented a new scheme termed as Active Data Sieving to reduce disk access costs
for a large number of small and noncontiguous accesses. Unlike other data sieving
implementations, a cost model is used by the I/O nodes to actively and intelligently
decide whether it is beneficial to perform data sieving or not.

We have designed and incorporated these approaches in a version of PVFS over
InfiniBand. Our results show a performance improvement of up to 1.5 times for
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the RDMA Gather/Scatter approach with Optimistic Group Registration on PVFS
list I/O performance compared to the other approaches. Intelligent and active data
sieving on the I/O node achieves a factor of 1.3-1.9 improvement on small noncon-
tiguous I/O accesses. The NAS BTIO benchmark performance results show that our
approach attains a 20% improvement compared to the best result across all other
approaches in an environment, which is a complex combination of noncontiguous data
transmission and noncontiguous 1/O accesses.

7.1.3 Efficient Memory Registration and Deregistration

Memory registration and deregistration for networks with remote DMA capabil-
ities adds a new dimension to data movement for I/O intensive applications in the
networked storage system. In a contiguous data movement, we have observed that
up to 35% performance can be degraded if dynamic registration and deregistration
are not avoided. We designed a two-level architecture as Fast Memory Registration
and Deregistration (FMRD) scheme to reduce the registration and deregistration
costs. Our performance evaluation shows that FMRD outperforms other existing
approaches. Particularly, it works much better than others with I/O intensive appli-
cations.

Memory registration and deregistration on a list of buffers in a non-contiguous
I/O access is even more challenging due to the large number of buffers and the gaps
between these buffers. Our scheme, Optimistic Group Registration (OGR), maintains
a good tradeoff between the number of registration and deregistration operations and
the total size of memory space to be registered and deregistered. Our performance
evaluation shows that Optimistic Group Registration is a necessity for us to achieve
efficient non-contiguous I/O access over InfiniBand.

7.1.4 Unified Buffer and Cache Management

Integration and cooperation among different components are a general issue for
many systems. Our work has demonstrated that the conventional Operating Systems
and applications provide little support to achieve efficient integration and coopera-
tion, especially for networked storage systems. We designed Unifier to improve the
performance of network storage server applications. It provides three notable features.
First, Unifier eliminates redundant data copying and multiple buffering in the I/O
path. It provide a single data sharing among all components in a server application
safely and concurrently over high performance networks such as InfiniBand. Second,
the integration of communication buffer management and cache management reduces
memory registration and deregistration costs as much as possible. This enables appli-
cations to take full advantage of RDMA operations. Third, Unifier provides means to
achieve adaptation, application-specific optimization, and better cooperation among
different components in a server application.
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Chapter 5 presents the design and implementation of Unifier. We also deployed
and evaluated this component in a version of PVFS1 implementation over InfiniBand.
Experimental results from a prototype implementation show performance improve-
ments between 30 and 70% over two other methods often used in the PVFS I/O server
implementation. Better scalability is achieved by the PVFS I/O servers. The Unifier
method also increases the effective cache size due to the integration of communication
buffers and the cache buffers, leading to increased performance.

7.1.5 Fast Demotion-Based Exclusive Caching through De-
mote Buffering

In Chapter 6, we present DEMOTE buffering to to hide the cost of DEMOTE
operations to achieve efficient exclusive caching. DEMOTE buffering increases the
overlap between demotions and other activities in demotion-based exclusive caching.
It also provides more flexibility for optimizations, such as non-blocking operations,
aggregate of control messages, gather/scatter network operations, and speculating
demotions. Results of experiments with synthetic workloads demonstrate that 1.11-
1.44x speedups are achieved for the Sequential workload, up to 1.13x speedups for the
Random workload. Simulation results with real-life workloads validate the benefits
of DEMOTE buffering by 1.08-1.15x speedups over the DEMOTE approach.

7.2 Future Research Directions

Networked storage systems have become a mainline solution in data-centers and
high performance computing systems. Many interesting research directions are still
left to pursue. Below we describe some of these areas of future research.

Storage service with performance guarantees — Networked storage systems
provide storage consolidation to applications for both ease of administration and
economics of scale. This leads to sharing of storage resources across multiple
workloads, corresponding to different applications/customers. Storage resources
such as cache space, disk arms, disk controller cycles, and network bandwidth
are shared and contended for, as shown in Figure 7.1. One of the central
challenges in such a shared and networked storage environment is to provide
performance isolation and to achieve Quality of Service (QoS) [40, 14, 105]. In-
dependent workloads should be isolated from each other and their performance
should be guaranteed in a predictable manner. For example, clients 1, 2 and
3 in Figure 7.1 expect that the storage server provides them 1/O service with
their required quality. On the other hand, the storage server must differentiate
its services to different applications.

Providing storage service with QoS in networked storage systems has its unique
challenges compared to QoS in networking and QoS in local storage systems. It
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Figure 7.1: Resource Sharing in Networked Storage Servers.

is clear that networked storage systems involves multiple subsystems including
both networking and local storage systems. Research needs to be done to pro-
vide QoS awareness in all involved subsystems and integrate them together to
provide QoS to end workloads. Specifically, the communication subsystem, the
file cache, the file system, the storage devices must be able to cooperate with
each other. QoS features in emerging networking technologies such as Infini-
Band should have a profound impact on the development of networked storage
systems with QoS.

Efficient interaction and cooperation between different components —
Networked data servers are machines that manage clients’ data and provide
access to these data for clients through networks. Based on the type of data,
networked data servers can be categorized into file servers, storage servers, web
servers, database servers, video servers, and so on.

There may be many differences between these networked data servers. How-
ever, several salient common features are shared. First, the interaction between
the communication component and the file/storage component is very intensive.
Second, caches in different levels and components form a multi-level cache hi-
erarchy. Figure 7.2 shows a typical I/O architecture in networked data servers.
In each component, an amount of memory is used either for caching data or for
communication.
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How to make better use of these memory is important to the overall perfor-
mance of networked data servers. We proposed a notion, InfoCache, to provide
flexible memory management in each component and interactions among mul-
tiple components. As shown in Figure 7.3, each cache receives information in
the down-stream path, and exposes internal state information in the up-stream
path. These in/out information can be used to achieve adaptation, intelligent
scheduling decision, efficient interaction and integration, and better aggregation
and management of memory resources.

As a part of the InfoCache project, our Unifier work described in Chapter 5
shows the power of information exchanged in different memory/cache levels.
Essentially, Unifier takes the cache buffer information and uses the cache buffers
in the communication component. Zero-copy in the whole I/O path is achieved.
Thus, the end users can take full advantage of RDMA-based data movement.

Our basic idea is to make better use of the limited memory resources in each
component. We continue this project with the following studies:

e Cache-aware Scheduling: The cache state information can be exposed
to make better request scheduling. Applications and/or the server sched-
uler component can determine which data access is likely to be fast and
thus re-order their requests.
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e Semantic Prefetching: We attempt to use the semantic information
to achieve effective prefetching. We try to explore the correlation infor-
mation of independent accesses in workloads and use these information
to guide prefetching policy. Therefore, the cache space can be used in a
more efficient manner. For example, information can be used to provide
across-file prefetching in I/O workloads such web access. A homepage file
and its associated document and image files have useful correlation for
prefetching. On the other hand, we may also need to limit the prefetching
in a file/record level in workloads. This idea is partly motivated by the
work [20].

e An aggregate and cooperative management of the NIC memory,
the storage system cache and the disk/disk array cache: With
the increasing size of the NIC memory, the storage system cache, and
the disk/disk array cache, an aggregate and cooperative management is
expected to make better use of these resources and to achieve the expected
performance commensurate to the aggregate cache size.
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