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Abstract— Process skew is an important factor in the perfor-
mance of parallel applications, especially in large-scale clusters.
Reduction is a common collective operation which, by its na-
ture, introduces implicit synchronization between the processes
involved in the communication and is therefore highly susceptible
to performance degradation due to process skew. A collective op-
eration with application-bypass does not require the application
to block in order for the operation to make progress. Application-
bypass collective operations are therefore highly tolerant of skew.
In this paper we describe the design and implementation of an
application-bypass version of the reduction operation in MPICH
over GM. We evaluate our implementation on a 32-node cluster.
Under conditions of process skew we find a factor of improvement
of up to 5.1 for our application-bypass reduction versus the
default MPICH implementation. In addition, we see that this
factor of improvement increases with system size, indicating
that the application-bypass implementation is more scalable and
skew-tolerant than the default non-application-bypass version.
This framework promises design and development of high-
performance and scalable collective communication libraries for
next-generation large-scale clusters.

I. INTRODUCTION

When we visualize running a parallel application on a
cluster, it’s common to think of all processes involved in
the computation executing in a synchronous manner. For
example, it’s natural to assume that all processes will start at
the same instant. However, in reality processes may become
unsynchronized or skewed. This may happen for a variety
of reasons including heterogeneous systems consisting of
nodes with different processing capabilities, varying commu-
nication latencies between nodes, unbalanced or asymmetric
code where different nodes may be assigned tasks requiring
different amounts of processing resources, and random effects
such as interrupts or contention for resources between multiple
processes on a given node. Process skew becomes more
prevalent as the size of a cluster grows and more opportunities
for unpredictable delays are introduced.

Process skew is an important factor in the performance
of parallel applications, especially those involving collective
communications. Collective communications [1] [2] often by
their nature introduce implicit synchronization in the form
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of communication dependencies between processes. Under
conditions of process skew, these dependencies can cause
some processes to wait idly for other processes to catch up.
This results in ineffective CPU utilization, wasting resources
that might otherwise be dedicated to useful processing.

Reduction is a common example of such a collective com-
munication. In the default MPICH [3] implementation of re-
duction, each process involved in the communication calls the
MPI _Reduce function. Internally, MPICH organizes the pro-
cesses into a logical tree. Processes wait to receive messages
from their children before sending a result to their parent and
completing MPl _Reduce. So MPI _Reduce synchronizes
the participating processes, requiring each process to wait
until all processes below it in the logical tree have completed
MPI _Reduce. This synchronization is not necessary for the
majority of the processes involved in the communication.
It would be more efficient if the reduction operation could
make progress independently of the application, allowing
parent processes to continue with other work until their child
processes have sent their data. This technique is known as
application bypass [4] and is discussed in detail in the next
section.

This paper describes our design and implementation of
an application-bypass version of the reduction operation in
MPICH over GM [5]. We discuss the design challenges
that we faced in the process of adapting the synchronous
infrastructure provided by the default MPICH implementation
to support our more flexible application-bypass operation.
These challenges include extending the MPICH communica-
tion progress mechanism, maintaining intermediate reduction
state, handling messages that arrive both earlier and later than
normally expected and minimizing the overhead associated
with the mechanisms that we chose to support asynchronous
processing. We have evaluated our implementation and found
a factor of improvement of up to 5.1 under conditions of
process skew. Furthermore, we have observed that the factor
of improvement increases with system size, indicating that our
application-bypass implementation is more scalable and skew-
tolerant than the default non-application-bypass version.

The remainder of this paper is organized as follows. In
the next section we discuss the basic concepts of application
bypass and how they can be applied to the reduction operation.
In Section I11 we provide an overview of GM and MPICH over
GM. The design challenges we encountered while implement-
ing our application-bypass reduction operation are discussed
in Section IV and then the details of our implementation
are covered in Section V. In Section VI we evaluate the



performance of our implementation and then we present our
conclusions in Section VII.

I1. BASIC CONCEPTS BEHIND APPLICATION-BYPASS
REDUCTION

The goal in coding an application-bypass operation is to
eliminate the need for applications to block while the oper-
ation makes progress. This sort of optimization is ideal for
operations such as broadcast and reduction where there is no
implied global synchronization between processes. It could
even benefit synchronizing operations like barrier and all-
reduce if they are implemented in a split-phase manner.

In MPICH, each process involved in a reduction calls the
MPI _Reduce function at the application level to initiate the
operation. Internally, MPl _Reduce organizes the processes
into a logical binomial tree and the operation is then performed
using point-to-point communication between processes. Fig. 1
illustrates such a tree for eight processes. The root process is
shown in black, internal processes are colored gray and leaf
processes are shown in white. The arrows between processes
indicate the direction of point-to-point messages associated
with the reduction.

0

Fig. 1. Example binomial tree used to organize point-to-point communica-
tions between eight processes involved in a reduction operation. The root node
is shown in black, internal nodes are colored gray and leaf nodes are shown
in white. The arrows between processes indicate the direction of messages
involved in the reduction.

When calling MPI _Reduce, each process provides a buffer
containing its input for the operation. The root process also
provides an additional buffer to accept the operation results.
While leaf processes simply need to send their input to their
parents, all other processes must wait to receive results from
their children before they can perform the arithmetic operation
associated with the reduction. This organization introduces
dependencies between processes. When processes become
skewed, those which are parents in the tree may have to wait
idly on children that are late. Application-bypass techniques
eliminate the synchronous nature of these dependencies so that
parent processes can proceed in spite of the late arrival of
children at the MPI _Reduce point.

The default MPICH implementation of the reduction oper-
ation could be enhanced using application-bypass techniques.
The processes that can benefit from such enhancements are
the internal ones. The behavior of the leaf processes need
not be optimized as their only action is to perform a send
to their parent. Similarly, the behavior of the root node
can not benefit from optimization. Per the MPI standard,
MPI _Reduce is implemented in a blocking fashion, so the

root process expects the function call to return only when the
reduction has completed across all processes. However, a split-
phase implementation would enable optimization of the root
node as well.

Fig. 2 shows example time lines for a reduction involv-
ing four processes. Each large vertical arrow represents the
progress of the operation for a given process. The portions
of the large arrows shown in gray represent CPU utilization
associated with the reduction. The small horizontal arrows rep-
resent point-to-point messages associated with the reduction.
In this example, node zero is the root node, nodes one and
three are leaf nodes and node two is an internal node. Note
that the processes are slightly skewed, with nodes zero and
two starting the reduction at approximately the same time,
node one following shortly thereafter and node three being
the last to begin.
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Fig. 2. Example time line for four processes involved in a reduction
operation. The large vertical arrows represent the progress of the operation for
each process. The gray portions of the large arrows represent CPU utilization
associated with the reduction. Each small horizontal arrow represents a point-
to-point message involved in the reduction.

Fig. 2(a) shows the default non-application-bypass imple-
mentation. We can see that node two must wait idly on node
three, which is late due to process skew. Fig. 2(b) illustrates the
application-bypass implementation. Here we can see that node
two’s reduction processing has been split into two components.
The first portion is performed synchronously and is associated
with the call to MPI _Reduce. Instead of waiting for node
three, node two returns from MPI _Reduce and delegates the
remainder of the reduction to asynchronous processing. The
reduction operation resumes only when the message from node
three finally arrives, and the time in between the synchronous
and asynchronous portions can be utilized for other processing.



Under conditions of process skew, application-bypass tech-
niques can reduce both the amount of time that processes
spend waiting on each other and the amount of implicit
synchronization associated with collective operations. These
improvements can help reduce the amount of CPU utilization
associated with the operation and increase the opportunity
for overlap of communication and computation. The benefits
of application-bypass operations are especially relevant in
large-scale clusters where skew between processes becomes
inevitable.

I1l. OVERVIEW OF GM AND MPICH oVER GM

GM [5] is a user-level message-passing subsystem
for Myrinet networks. Myrinet [6] is a low-latency,
high-bandwidth interconnection network that employs pro-
grammable network interface cards (NICs), cut-through cross-
bar switches and operating-system-bypass techniques to
achieve full-duplex 2 Gbps data rates. GM consists of a
lightweight kernel-space driver, a user-space library and a
control program which executes on the NIC processor. The
kernel-space code is only used for housekeeping purposes like
allocating and registering memory. After taking care of such
initialization tasks, the user-space library can communicate
directly with the NIC-based control program, removing the
operating system from the critical path.

MPI [7] is a standard interface for message passing in
parallel programs. MPICH [3] is the reference implementation
of MPI and has been ported to a variety of hardware platforms
including GM over Myrinet. As previously mentioned, the
standard MPICH implementation does not include application-
bypass techniques. In order to illuminate the design challenges
discussed in the next section, we will first highlight some of
the relevant MPICH implementation details.

One such detail is the way in which MPICH handles the
receipt of messages, both those which are expected by the
application and those which are not. While there are multiple
functions that may be used to receive messages with different
semantics, we focus on the default case in this discussion.
When a process is ready to receive a message, it calls the
MPI _Recv function, providing criteria to identify the message
to be received as well as an appropriate buffer for storage
of the message. If a message arrives before a matching call
to MPl _Recv has been made, MPICH allocates a temporary
buffer, copies the message into the buffer and then adds it
to the unexpected queue. When a process calls MPl _Recv,
MPICH first searches the unexpected queue for a matching
message. If a match is found, it simply copies the message
from the unexpected queue to the buffer provided by the
application. Otherwise, it polls the network until a matching
message is received, at which point the message is copied into
the application buffer and returned.

Another notable detail relates to the way GM uses memory
when sending messages. GM can only send data located
in memory which has been registered for DMA transfers
(pinned). Since pinning and unpinning memory requires rela-
tively expensive system calls, MPICH over GM uses two send
modes to efficiently handle both small and large messages.

Small messages are sent using eager mode and large messages
are sent in rendezvous mode. Basically, in eager mode message
data is copied into a pre-pinned buffer for sending, while in
rendezvous mode the message data is pinned in-place and
sent from its original location. Eager mode eliminates the
overhead of pinning for small messages at the expense of a
memory copy, while rendezvous mode eliminates the overhead
of copying for large messages at the expense of pinning
memory.

IV. DESIGN CHALLENGES

This section discusses the design challenges we encoun-
tered while implementing application-bypass reduction. The
specifics regarding our solutions to each issue will be ad-
dressed in detail in the next section.

A. Communication Progress

In order to support splitting the processing of reduc-
tion operations into synchronous and asynchronous compo-
nents, some mechanism must be used to trigger the asyn-
chronous processing upon receipt of late messages. By default,
MPICH relies on the application layer to make communication
progress. When an application makes calls to functions in the
MPICH library, the progress engine is triggered to check for
incoming messages and either match them to posted receives
or queue them for later consumption. This mechanism is
clearly inadequate for our purposes as we want to decouple
the application from the reduction communication.

One potential solution would involve using a dedicated
thread to monitor incoming messages and activate the asyn-
chronous processing as necessary. Another method would
involve generating an interrupt upon the receipt of a late mes-
sage. Both alternatives have benefits and disadvantages. The
thread-based option would consume additional CPU resources
while polling for late messages, but would not require the
overhead of interrupts. The interrupt-based option would incur
a certain amount of interrupt overhead with the arrival of late
messages. However, this overhead would only occur when
asynchronous processing is actually required, as opposed to
the constant overhead of polling for late messages.

Based on our previous experience with the implementation
of application-bypass broadcast [8], we decided to use an
interrupt-based approach. Since interrupts incur a substantial
performance penalty, this introduced another challenge in
how to avoid the generation of unnecessary interrupts. For
example, interrupts need not be generated while MPICH is
already checking for receives within MPI _Reduce. They
are also unnecessary if there are no outstanding children to
be processed asynchronously. In this case, messages can be
unexpected but not late. Also, note that interrupts are only
required for internal nodes, as the root node must perform all
of its processing synchronously and the leaf nodes have no
children.

B. Maintenance of Intermediate State

Another requirement for splitting the reduction processing
into synchronous and asynchronous components is the mainte-
nance of intermediate reduction state. First, note that a parent



node may have multiple children, each of which may be
processed synchronously or asynchronously at different points
in time. Therefore, we need to keep track of the running result
of the reduction operation between the initial synchronous
processing and potentially multiple periods of asynchronous
processing.

Second, note that in addition to processing messages from
children, internal nodes must also send their final result to
their parent. However, this must not happen until all children
have been processed. So we need a way to know when the
processing of all children has completed and the send to the
parent may be performed.

Also, if the last child processed is handled by the asyn-
chronous portion of the code, then we need to be able to deter-
mine the appropriate parent associated with the reduction. The
parent-child relationships between nodes can vary between
reduction instances depending on which process is designated
as the root of the reduction. A node’s parent is calculated
during the synchronous call to MPI _Reduce and must be
recorded for potential use during asynchronous processing.

C. Handling Early Messages

We encountered another challenge involving the handling
early or unexpected messages. The semantics for unexpected
messages are simple in the default MPICH implementation.
Because all reduction processing is performed synchronously,
unexpected messages are simply those messages that arrive
before the application calls MPl _Reduce. However, in our
application-bypass implementation we need to perform some
additional checking due to the asynchronous nature of the
processing. First, as in the non-application-bypass case, the
message must fail to match a receive associated with the syn-
chronous processing in MPl _Reduce. Second, the message
must also fail to satisfy a pending receive which is being
managed asynchronously after exiting a call to MPl _Reduce.
If the message matches a pending asynchronous receive, then
it’s actually a late message as opposed to an unexpected
message, and must be handled appropriately as discussed
below. Otherwise, the message is truly unexpected and must
be saved for later processing.

D. Handling Late Messages

As mentioned above, late messages are those messages
associated with a reduction operation that arrive after exiting
a call to MPl _Reduce. These messages must be handled by
the asynchronous component of our application-bypass imple-
mentation. So first, we need a way to differentiate these late
messages from other messages and trigger the asynchronous
processing. We also need to be able to match late messages to
the proper reduction instance, as multiple reductions may be
active concurrently and overlapped due to skew. For example,
consider the eight-node case illustrated in Fig. 1. Assume that
our application performs several reductions back to back and
that process six is consistently late in performing its send to
process four. Each time process six is late, process four will
delegate the associated operation to the asynchronous compo-
nent of the implementation. Since there are several reductions

performed back-to-back, there may be several outstanding
receives from process six, each associated with a separate
reduction instance. So when process four finally receives a
message from process six, it needs to be able to match it to the
appropriate reduction instance in order to maintain correctness.

E. Reducing Frequency of Late Messages

Interrupts associated with incoming application-bypass mes-
sages are not necessary if MPICH is already checking for
receives while inside MPI _Reduce. We explored a potential
optimization involving the addition of a small delay before
exiting MPl _Reduce in the case where all children had not
been processed. By delaying, we hoped to allow receives from
the outstanding children to complete within MPI _Reduce
and thus avoid interrupts. The crucial decision here is how
long to delay. If the delay is too short, then late children will
not be able to catch up, but if the delay is too long, then
unnecessary latency may be incurred.

We experimented with a simple scheme in which we cal-
culated the delay based on the number of processes involved
in the reduction. A more sophisticated scheme could be con-
structed by taking into account the position of the parent and
child processes in the logical tree. However, such calculations
become quite speculative when random skews are involved
and we are still investigating these issues.

V. OUR IMPLEMENTATION

In this section we present the details of our implementa-
tion of application-bypass reduction. The section is organized
as follows. First we discuss the changes that we made to
the MPICH infrastructure to support application-bypass pro-
cessing. Next we walk through both the synchronous and
asynchronous components of the processing to illustrate the
associated logic.

A. Infrastructure Changes

First, we modified GM 1.5.2.1 to include the ability to
generate signals from within the NIC-based control program.
We added a new collective packet type for use when sending
messages related to application-bypass reduction. In addition,
we added the capability to disable and enable signals from
within the MPICH layer via calls to the GM library. These
modifications are used together to minimize the number of sig-
nals that are generated. Signals are only generated by the NIC
for messages of the new collective packet type, isolating them
to only those situations where they are actually required. We
initialize MPICH with signals in a disabled state, as initially
there can not be any outstanding reductions. We only enable
signals when outstanding reductions need to be processed
asynchronously, and then again disable signals as soon as
all outstanding reductions have been completed. Details on
exactly how and when we choose to enable and disable signals
are included below. When a signal is received by the host, it
triggers the activation of the MPICH communication progress
engine so that asynchronous processing may be performed.

The remainder of the changes were made to MPICH over
GM version 1.2.4..8a. As mentioned in Section IV, we needed



to develop a strategy for handling both unexpected and late
messages. We explored one solution which involved using
the non-blocking versions of the MPICH send and receive
primitives for internal point-to-point communication within
the collective call to MPI _Reduce. The default MPICH
implementation uses the blocking versions of the send and
receive primitives. By switching to the non-blocking versions
we hoped to gain the extra control required to support asyn-
chronous processing, while still re-using as much as possible
of the existing MPICH infrastructure. While this solution
did enable reuse of the existing MPICH message matching
and queuing mechanisms, it also required the allocation and
management of additional buffers for use in the non-blocking
receives. In addition, it introduced extra complexity associated
with trying to use the MPICH infrastructure in ways other than
those in which it was intended to be used.

We instead chose to implement our own unexpected queue
specifically for application-bypass messages. This enables
us to manage unexpected messages in an efficient manner,
reducing the maximum number of required message copies
from two to one. It also prevents our optimizations from
affecting the common case of non-collective point-to-point
communications, which are left to the default MPICH mecha-
nisms. In addition to the unexpected queue, we also added
a descriptor queue to manage descriptors containing state
information for pending reductions. Each descriptor includes
the intermediate result of the reduction operation, the identity
of the parent process to which results should be sent and a list
of children from which receives are pending. The child list is
also used for matching late messages to the appropriate entry
in the descriptor queue (i.e. the appropriate reduction instance).
Details on how both queues fit into our implementation are
provided in the following subsections.

B. Synchronous Processing

Recall that in MPICH, each process involved in a reduction
calls the MPI _Reduce function at the application level to
initiate the operation. The synchronous component of our
application-bypass processing takes place within this call to
MPI _Reduce as described below.

First, we determine whether or not to perform a given
reduction in application-bypass mode. This decision is made
based on the position of the node in the binomial tree as well
as the size of the message. If the node is a root or leaf node, we
simply perform a standard non-application-bypass reduction.
As discussed in Section I, application-bypass techniques only
apply directly to internal nodes, so we choose to leave the
processing of root and leaf nodes to the default MPICH
mechanisms. We also fall back to performing a standard non-
application-bypass reduction if the size of the message is
beyond the limit of eager-mode processing. We have not yet
investigated a rendezvous-mode implementation due to the
additional complexities involved in buffer management.

Assuming the reduction is being processed in application-
bypass mode, we proceed as illustrated in Fig. 3. First we
ensure that signals are disabled, as we will be explicitly
making communication progress while inside MPI _Reduce.

Application calls
MPI_Reduce
Disable All children
signals handled?
Enqueue reduce ves
descriptor Send result
— to parent
Trigger 1
progress Dequeue reduce
descriptor

Enable
signals

Exit call to
MPI_Reduce

Process

child

Fig. 3. Synchronous component of application-bypass reduction processing.
This logic does not apply to root and leaf nodes, which are processed using
the standard non-application-bypass code. The Message Received test simply
checks to see if an unexpected message has been received from a given child,
as opposed to blocking for a receive.

Next, we build a descriptor containing the intermediate state
needed to manage the reduction operation or operations as
well as a list of the child or children of the current process.
This descriptor is added to a queue of outstanding reductions.

From this point onward, the reduction may actually be
processed in parallel by both MPI _Reduce and our asyn-
chronous code. The logic within MPl _Reduce basically
walks through the list of children in the reduce descriptor,
checking for unexpected messages and making communication
progress if pending receives are detected. When progress is
made, the asynchronous portion of the code processes expected
and late messages as detailed in the next subsection. If an
unexpected message from a child is encountered, the corre-
sponding operation is performed and the associated descriptor
is updated to reflect the fact that the child has been processed.
If all children are processed within MPI _Reduce, the final
result is sent to the parent and the descriptor is removed from
the queue. If at the end of MPI _Reduce the descriptor queue
is not empty, then signals are enabled.

Note that even though unexpected messages must be
buffered in our unexpected queue, they are processed directly
from the queue in MPI _Reduce, eliminating the need for a
second copy to a buffer associated with a point-to-point receive
as in the default MPICH implementation. This results in a 50%
reduction in the number of message copies for unexpected
messages.

C. Asynchronous Processing

In addition to the synchronous processing performed within
MPI _Reduce, we also added code to enable pre-processing
of incoming packets before they are examined by the MPICH
matching and queuing mechanisms. This pre-processing com-
prises the asynchronous portion of our implementation.
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Fig. 4. MPICH communication progress logic. The default non-application-
bypass logic is shown in white, while the new application-bypass logic is
colored gray.

The MPICH communication progress logic is illustrated
in Fig. 4. Assuming signals are enabled, the arrival of an
application-bypass reduction packet generates a signal that
triggers communication progress. (Note that if a signal hap-
pens to occur while progress is already underway, it is simply
ignored.) After the progress engine dequeues the incoming
message, it checks to see whether the current process is the
root of the reduction instance with which the message is
associated. If so, then no extra asynchronous action is taken.
This is because the behavior of the root process is necessarily
synchronous, so we can utilize the default synchronous point-
to-point communications. In such a case where we decide
not to process a packet, it is handled by the default MPICH
mechanisms.

Progress calls
async handler

Send result
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Process l
child

Dequeue reduce

descriptor

Copy to AB
unexpected
queue

Disable
signals

( Exitcall to
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Fig. 5. Asynchronous component of application-bypass reduction processing.
The Descriptor Match test succeeds if an outstanding reduction instance is
waiting for a message from the sender of the packet.

If the current process is not the root, the progress engine
hands the packet off to a routine which handles the asyn-
chronous component of the reduction processing. This logic
is illustrated in Fig. 5. First, the descriptor queue is searched to
see if the sender of the packet matches an outstanding receive.
If so, the appropriate reduction operation is performed and the
descriptor is updated to reflect the fact that the child has been
processed. If all children have been processed, the final result
is sent to the parent and the descriptor is removed from the
queue. If this action renders the queue empty (i.e. there are
no outstanding reductions) then signals are disabled.

If the packet fails to match an entry in the descriptor queue,
the message is added to our custom unexpected queue for
later synchronous processing. Note that if the message is
expected it is processed directly from the buffer associated
with the packet, eliminating the need to copy it into a buffer
associated with a point-to-point receive as in the default
MPICH implementation. This results in a 100% reduction in
the number of message copies for expected and late messages.

V1. EXPERIMENTAL RESULTS

We evaluated our implementation on a 32-node cluster
consisting of 16 quad-SMP 700-MHz Pentium-111 nodes with
66-MHz/64-bit PCI, and 16 dual-SMP 1-GHz Pentium-I1II
nodes with 33-MHz/32-bit PCI. The nodes were connected via
a Myrinet-2000 network built around a 32-port switch. Four
of the 1-GHz nodes contained PCI164C network interface cards
with 200-MHz LANai 9.2 processors, while the remaining
28 nodes utilized PCI64B cards with 133-MHz LANai 9.1
processors. Our application-bypass implementation is based on
MPICH 1.2.4..8a over GM 1.5.2.1, and all comparisons were
performed against the original, unaltered software packages of
the same versions.

The MPICH over GM distribution provides a script to
launch MPI applications. This script accepts a list of machines
on which the application should be executed. We configured
the list of machines such that the nodes from each of the two
groups of 16 are interlaced, thereby ensuring a balanced mix
of nodes for all system sizes used in our evaluations. Although
our 32-node cluster is heterogeneous, we compared it to both
of the groups of homogeneous machines separately for system
sizes up to 16 nodes and observed nearly identical results.
The SMP differences between the two classes of machines
are mitigated by the fact that we only utilize one processor
per node in our experiments. The differences in PCI and NIC
capabilities are not much of a factor either, as our reduction
operations involve fairly small amounts of data.

We created a pair of microbenchmarks for use in evaluating
our implementation. The first microbenchmark measures the
average per-node CPU utilization associated with performing a
reduction under varying amounts of process skew. The second
microbenchmark measures the total time (latency) to perform
a reduction in the absence of process skew. As discussed in
Section Il and illustrated in Fig. 2, CPU utilization is the metric
that our application-bypass implementation aims to improve.
Skew will inevitably increase the overall latency, but if we
can reduce the CPU utilization, additional computation may
be performed while the reduction completes asynchronously.



The latency benchmark works as follows. First, we deter-
mine the one-way message latency between the root node and
the node which is furthest away from the root in the logical tree
(the last node). Next, we time a series of 10,000 reductions
and take the average, using a barrier to separate iterations.
We start timing just before the last node begins the reduction.
Then, when the root node completes the reduction, it sends
a notification message to the last node, which stops timing
and subtracts off the one-way latency associated with the
notification message to determine the total reduction latency.
The benchmark is repeated for varying system and message
sizes.

For the CPU utilization benchmark, in addition to varying
the number of nodes and the message size, we also introduce
a variable amount of delay at each node to simulate process
skew. First, we convert a given maximum amount of delay
from microseconds to busy-loop iterations at each node. All
delays are then generated using busy loops as opposed to
absolute timings so that the CPU utilization associated with
asynchronous processing may be captured. Next, we perform
a series of 10,000 reductions and take the average across all
nodes, using a barrier to separate iterations.

Within each loop iteration, the timing measurements are
taken as follows. We first start timing, then introduce a
random amount of delay between zero and the maximum
delay, perform the reduction, introduce a catchup delay and
finally stop timing. The skew delay as well as the catchup
delay are then subtracted from the measured time at each node
to calculate the CPU utilization. The catchup delay is equal to
the maximum skew delay plus a conservative estimate of the
maximum reduction latency. The intent here is to be sure to
delay long enough to capture all asynchronous processing in
the overall time measurement.

The remainder of this section is organized as follows.
First we present CPU utilization results under conditions of
process skew. These are the common conditions in large-scale
clusters. Our solution is designed for such scenarios and we
can clearly see its benefits over the default non-application-
bypass implementation. Next, we present CPU utilization and
latency results without process skew. Such conditions are very
optimistic for large-scale clusters. Note that this is the worst-
case scenario for our implementation, where we see all of
the overhead involved in the application-bypass techniques.
However, even under these worst-case conditions, we begin
to see the benefits of our implementation as increased system
and message sizes naturally introduce process skew.

A. Results with Process Skew

Fig. 6(a) shows the results of the CPU-utilization benchmark
for 32 nodes with increasing amounts of process skew and
double-word messages of 4, 32 and 128 elements. We can
see that the application-bypass implementation consistently
outperforms the non-application-bypass implementation for
all combinations of skew and message size. As the amount
of skew increases, the non-application-bypass implementa-
tion spends more and more time polling the network for
messages from late child nodes. However, the application-
bypass implementation simply notes that there are pending

receives from these late child nodes and then processes the
messages asynchronously whenever they finally arrive. The
overhead associated with polling in the non-application-bypass
implementation quickly outweighs the overhead due to signals
in the application-bypass implementation. Fig. 6(b) shows
a maximum factor of improvement of 5.1 for four-element
messages when the maximum skew is 1,000 us.
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Fig. 6. Average CPU utilization of application-bypass (ab) and non-

application-bypass (nab) reduction for 32 nodes with varying process skew
and 4, 32 and 128-element double-word messages.

Fig. 7(a) shows the results of the CPU-utilization benchmark
for 2, 4, 8, 16 and 32 nodes with a maximum process skew
of 1,000 us and double-word messages of 4, 32 and 128
elements. These results confirm that the trends demonstrated
in Fig. 6 apply for varying numbers of nodes. Again, the
application-bypass implementation consistently outperforms
the non-application-bypass implementation, with Fig. 7(b)
showing a maximum factor of improvement of 5.1 for 32
nodes and four-element messages. Furthermore, we can see
that the factor of improvement increases with the num-
ber of nodes, demonstrating the enhanced scalability of the



application-bypass implementation.
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Fig. 7. Average CPU utilization of application-bypass (ab) and non-
application-bypass (nab) reduction for 2, 4, 8, 16 and 32 nodes with maximal
process skew and 4, 32 and 128-element double-word messages.

Note that in both cases, the factor of improvement is greatest
for small message sizes. This is encouraging, as profiling
efforts conducted by Moody et. al. [9] have shown that in
typical large-scale parallel scientific applications, 95% of all
reductions are performed on three or less elements and 100%
typically use less than eight elements.

B. Results without Process Skew

Fig. 8 shows the results of the CPU-utilization benchmark
without process skew for 2, 4, 8, 16 and 32 nodes and
double-word messages of 4, 32 and 128 elements. We can
see that as the number of nodes increases, the performance
of the application-bypass implementation improves. Even for
our relatively small 32-node cluster, the application-bypass
implementation eventually outperforms the non-application-
bypass implementation for all message sizes. Fig. 8(b) shows

a maximum factor of improvement of 1.5 for 32 nodes and
128-element messages.

Clearly, the application-bypass implementation scales with
system size while the non-application-bypass implementation
does not scale. Even though we are not introducing artificial
process skew, the effects of naturally-occurring skew appear
as the number of nodes involved in a reduction operation
increases. We also see that the application-bypass imple-
mentation begins to outperform the non-application-bypass
implementation at smaller numbers of nodes as the message
size increases. Larger messages require more time for trans-
mission and processing, introducing delays that accumulate
corresponding to the number of descendants a node has in
the binomial tree. These variations in processing requirements
between nodes introduce process skew. Also, recall that the
application-bypass implementation has the additional benefit
of requiring less message copies than the default implementa-
tion.
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Fig. 8. Average CPU utilization of application-bypass (ab) and non-

application-bypass (nab) reduction without process skew for 2, 4, 8, 16 and
32 nodes and with 4, 32 and 128-element double-word messages.



Fig. 9 shows the results of the latency benchmark without
process skew for 2, 4, 8, 16 and 32 nodes and single-
element double-word messages. The results in Fig. 9(a) were
taken on our heterogeneous 32-node cluster, while those in
Fig. 9(b) were taken using only the 16-node cluster of 700-
MHz machines. For small numbers of nodes, the latency
of the application-bypass and non-application-bypass imple-
mentations are nearly identical. This is especially evident
on the homogeneous cluster, where there is less potential
for natural process skew. In this case, the application-bypass
implementation actually does slightly better than the default
implementation for a system size of four nodes. However, once
the number of nodes increases past four, the asynchronous
component of the application-bypass implementation begins
to be utilized as the processes become naturally skewed. This
results in an increase in latency for the application-bypass
implementation due to overhead from signals associated with
late messages.

Figure 10 shows the results of the latency benchmark for 32
nodes with the number of message elements increasing from
one to 128. Again, we see a difference in latency due to over-
head from signals in the application-bypass implementation.
However, note that this latency penalty stabilizes and remains
fairly constant as the number of elements increases.

VII. CONCLUSIONS AND FUTURE WORK

We have described both the design challenges and imple-
mentation details of our application-bypass version of reduc-
tion in MPICH over GM. Upon evaluation of our implemen-
tation, we found a factor of improvement of up to 5.1 when
compared to the default non-application-bypass MPICH imple-
mentation under conditions of process skew. Furthermore, we
note that the factor of improvement increases with system size,
indicating that the skew-tolerant benefits of our application-
bypass implementation will lead to better scalability than the
non-application-bypass implementation on larger clusters.

In the future, we intend to evaluate the performance of
application-bypass operations on large-scale clusters. We also
intend to perform application-based evaluations to better un-
derstand how application-bypass solutions perform under real
loads. Another area of investigation which we plan to pur-
sue is the incorporation of NIC-based techniques [10] [11]
into our application-bypass implementations. Using NIC-based
techniques, part or all of the operation may be performed on
the NIC processor, as opposed to being performed on the host.
This frees the host processor for use in other computation,
naturally bypassing the application. Such abilities will deliver
further advantages to the proposed framework.

ADDITIONAL INFORMATION

Additional papers related to this research can be ob-
tained from the Network-Based Computing Laboratory
(http://nowlab.cis.ohio-state.edu) and Parallel Architecture
and Communication Group (http://www.cis.ohio-state.edu/
~panda/pac.html) web pages.
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Fig. 9. Average latency of application-bypass (ab) and non-application-
bypass (nab) reduction without process skew for 2, 4, 8, 16 and 32 nodes and
single-element double-word messages.
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