Architectural Support for Efficient Multicasting in Irregular
Networks

RAJEEV S1VARAM, RAM KESAVAN, DHABALESWAR K. PANDA, AND CRAIG B. STUNKEL

Technical Report
OSU-CISRC-10/98-TR41

A preliminary version of this paper appears in the Proceedings of the 27th International Conference on
Parallel Processing, August 1998 (pp. 452-459). This manuscript is under review for publication in the
IEEE Transactions on Parallel and Distributed Systems.

Architectural Support for Efficient Multicasting in Irregular
Networks*

Rajeev Sivaram* Ram Kesavan| Dhabaleswar K. Pandal Craig B. Stunkelt

*IBM Power Parallel Systems JfDept. of Computer and Information Science 1IBM T. J. Watson Research Center

522 South Road, P963 The Ohio State University P. O. Box 218
Poughkeepsie, NY 12601 Columbus, OH 43210 Yorktown Heights, NY 10598
Phone: (914) 433-2913 Phone: (614) 292-5199, Fax: (614) 292-2911 Phone: (914) 945-3090
Email: rsivaram@us.ibm.com Email: {kesavan, panda}@cis.ohio-state.edu Email: stunkel@watson.ibm.com
Abstract

Parallel computing on networks of workstations is fast becoming a cost-effective high-performance
computing alternative to MPPs. Such a computing environment typically consists of processing nodes
interconnected through a switch-based irregular network. Many of the problems that were solved for
regular networks have to be solved anew for these systems. One such problem is that of efficient multi-
cast communication. In this paper, we propose two broad categories of schemes for efficient multicasting
in such irregular networks: network interface-based (NI-based) and switch-based. The NI-based multi-
casting schemes use the network interface of intermediate destinations for absorbing and retransmitting
messages to other destinations in the multicast tree. In contrast, the switch-based multicasting schemes
use hardware support for packet replication at the switches of the network and a concept known as
multidestination routing to convey a multicast message from one source to multiple destinations.

We first present alternative schemes for efficient multi-packet forwarding at the NI, and derive an
optimal k-binomial multicast tree for multi-packet NI-based multicast. We then propose a spectrum of
switch-based multicasting schemes that differ in the power of the encoding scheme, and the complexity
of the decoding logic at the switches. These multicasting schemes range from using multidestination
worms that can only cover the nodes of a single switch, to path-based multidestination worms that can
cover all nodes connected to switches along a valid unicast path, to tree-based multidestination worms
that can cover entire destination sets in a single phase using one worm. For each scheme, we describe
the associated header encoding and decoding operation, the method for deriving multidestination worms
that cover arbitrary multicast destination sets, and the multicasting scheme using the derived multides-
tination worms. We then compare the NI-based multicasting scheme to the switch-based multicasting
schemes with path-based and tree-based multidestination worms using simulation to determine the sys-
tem parameters that affect each of the schemes, and the range of system parameters for which each
scheme performs best.

Our results show that the switch-based multicasting scheme using a single tree-based multidestination
worm performs the best among the three schemes. However, the NI-based multicasting scheme is capable
of delivering high performance compared to the switch-based multicast using path-based worms especially
when the software overhead at the network interface is less than half of the overhead at the host. We
therefore conclude that support for multicast at the NI is an important first step to improving multicast
performance. However, there is still considerable gain that can be achieved by supporting hardware
multicast in switches. Finally, while supporting such hardware multicast, it is better to support schemes
that can achieve multicast in one phase.

Keywords: Parallel computer architecture, cut-through routing, multicast, broadcast, collective com-
munication, switch-based networks, irregular networks, performance evaluation.

*This research is supported in part by NSF Career Award MIP-9502294, NSF Grant CCR-9704512, an IBM Cooperative
Fellowship, and an Ohio State University Presidential Fellowship. A preliminary version of this paper has been presented at
ICPP 98 [40].

Contents

1

2

Introduction

System Model
2.1 Network Model e
2.2 Routing Issues e e

Multicasting Approaches

3.1 Traditional Communication Support L e e e e

3.2 Lightweight Communication Software

3.3 Multi-phase Software Approaches to Multicast

3.4 Enhanced Multicasting Schemes o
3.4.1 Multicasting using Smart Network Interface Support
3.4.2 Multicasting using Switch Support oL Lo

Optimal Multicasting using Smart Network Interface Support

4.1 Multicasting over Smart Network Interface,

4.2 TImplementations of Smart Network Interface Support for Packet Forwarding
4.2.1 First-Child-First-Served (FCFS) Implementation
4.2.2 First-Packet-First-Served (FPFS) Implementation
4.2.3 Comparison of FCFS and FPFS Implementations

4.3 Optimal Multicast with FPFS
4.3.1 Non-optimality of Binomial Tree
4.3.2 A Pipelined Model for FPFS Multicast
4.3.3 Optimal k-binomial Trees L
4.3.4 TImplementation Issues L

Efficient Multicasting using Switch Architecture Enhancements

5.1 Multidestination Routing: Background oo
5.1.1 Encoding and Decoding Multidestination Worm Headers
5.1.2 Replication Mechanism L
5.1.3 Routing oL

5.2 Multi-phase Multicast using Multidestination Worms
5.2.1 Single Switch Replication (SSR) Multidestination Worms
5.2.2 Path-based Multidestination Worms
5.2.3 Encoding and Decoding Multidestination Headers
5.2.4 Finding the Multidestination Worms for Arbitrary Multicasts
5.2.5 Algorithms for Performing Multi-Phase Multicast
5.2.6 Comparison of Multi-phase Multicasting Schemes

5.3 One-phase Multicast using Tree-based Multidestination Worms
5.3.1 Encoding Multidestination Headers
5.3.2 Setting up Reachability Information
5.3.3 Decoding Multidestination Headers

Comparative Evaluation

6.1 Qualitative Evaluation e e e e

6.2 Experiments and Performance Measures e

6.3 Generating Irregular Topologies

6.4 Single Multicast Performance Lo
6.4.1 Effect of R e
6.4.2 Effect of Software Overhead at Host Processor
6.4.3 Effect of System Size
6.4.4 Effect of Switch Size L e

6.4.5 Effect of Number of Switches 34

6.4.6 Effect of Message Length 34
6.4.7 Effect of Packet Size e 35
6.5 Latency versus Applied Load for Multicast, 35
6.5.1 Effect of R e e e e e 36
6.5.2 Effect of Number of Switches 36
6.5.3 Effect of Message Length 36

7 Conclusion 37

1 Introduction

In a world where computing needs are increasing by the day, there is a constant search for cost-effective high-
performance computing solutions. Switch-based networks of commodity workstations present an attractive
alternative platform for cost-effective high-performance computing. Much recent research has therefore
focussed on extending parallel processing solutions to such networks of commodity workstations (NOWs).

Traditionally, parallel processing machines have been built with processing nodes interconnected in regular
topologies such as a mesh [14], torus [7], hypercube [13], multistage interconnection network (MIN) [26, 47],
etc. Such regular topologies have important mathematical properties that make message communication
easier /better by making message routing simpler, lowering the average distance per communication, and/or
increasing the bisection bandwidth [9]. However, networks of workstations environments have typically
evolved from computing environments where communication requirements are much lower (both in terms
of latency and bandwidth). In such an environment, the workstations that form the processing nodes are
typically interconnected in arbitrary, irregular topologies. Using such topologies allows easy addition and
deletion of nodes to the computing environment making the overall environment more amenable to network
reconfigurations and resistant to faults. However, these topologies do not possess many of the attractive
mathematical properties of regular topologies. A lot of the problems relating to inter-processor/inter-node
communication that were solved for regular topologies (such as the deadlock-free cut-through routing of
packets [1, 36, 38]) are therefore being revisited for such irregular topologies.

Collective communication is an important type of communication operation in parallel systems, and
involves communication among groups of (2 or more) processes [24, 30]. Examples of collective operations
include multicast [28], barrier synchronization [44], reduction, etc. The importance of these operations is
underlined by the inclusion of several primitives for collective communication in the Message Passing Interface
(MPI) standard [27]. Some collective operations are also used for system level operations in distributed shared
memory systems, such as for cache invalidations, acknowledgment collection, and synchronization [8].

Of these collective operations, multicast is most fundamental and important, and is used for implementing
several of the other collective operations. Traditionally, multicast has been implemented using the underlying
support for point-to-point (unicast) communication. In the naivest multicast implementation, the multicast
source individually sends a unicast message to every one of its n destinations. However, such a scheme leads to
poor performance because it consists of n sequential communication steps, where every communication step
involves the high software overhead for sending and receiving a message. To improve multicast performance,
many schemes that use a multi-phase approach have been proposed for systems with regular [25, 52] and
irregular topologies [16, 21]. In this approach, first, the source sends out a multicast message to one of its
destinations. In subsequent phases, the source and the destinations that have received the message act as
secondary sources and forward the message to other destinations. Such an approach reduces the impact of
the high overhead associated with sending/receiving point-to-point messages by allowing multiple nodes to
simultaneously transmit/receive messages in a given phase. However, even the best multicast algorithms
using this approach need at least [loga(n + 1)] steps to complete. This is due to the fact that unicast
communication delivers a message to only a single destination in a step. Thus, techniques which allow
the delivery of a message to multiple destinations in a single step can provide substantial performance
improvement.

One such technique can be proposed by augmenting the firmware support at the network interface (NI).
Each node in modern switch-based systems has a NI plugged into the I/O bus, which connects to a port

in a switch. The NI has a processor, some memory, DMA engines, and most importantly, firmware which
executes on the NI processor. Modern networks allow the firmware to be modified and downloaded at system
initialization [4]. This modification of the firmware can be done in an intelligent fashion so that the NI can
recognize multicast packets and handle the forwarding of packets from intermediate destinations without
involving the host processor [49]. Using such a technique, the source node can initiate a multicast and the
NIs of the participating nodes can cooperate to get the message delivered to all members of an arbitrary
destination set. Thus, the significant software overhead at each intermediate destination host processor can
eliminated. However, there are several issues that must be addressed when proposing enhanced multicasting
using such support. For example, the choice of the forwarding mechanism at each intermediate node, the
buffering requirement at the NIs, etc., are issues associated with the implementation of this technique.
Furthermore, most current day systems break up messages longer than a given maximum packet size into
multiple packets. It is not clear what multicast trees will be optimal for efficient multicast of such multi-
packet messages [6] using support at the NIs of the participating nodes, and deriving such an optimal tree
for multi-packet multicast is a challenging problem.

Another technique to allow delivery of a message to multiple destinations with reduced software overhead
can be proposed by augmenting the hardware support at the switch. Prior work on traditional regular
topology parallel systems has shown how a message can be sent to multiple destinations in a single step
(called a multidestination message) [22, 32, 33]. Some modern cut-through switches possess the capability
of simultaneous replication of an incoming message to multiple output ports [37]. Although replication of
messages in cut-through switches is deadlock-prone, deadlock-free replication methods have been proposed
[43, 48]. This replication capability can be utilized to deliver a message to multiple destinations while
incurring a single software overhead for sending the message. Using such a technique, the source node can
initiate a multicast message and the switches in the network can deliver the message to multiple destinations.
However, there are several problems associated with proposing enhanced multicasting using such support.
For example, efficient header encoding/decoding schemes need to be designed keeping in mind that the
new messages must conform to the base (unicast) routing supported by the system. (Such a requirement
prevents multicast messages from introducing additional deadlock scenarios [32].) Furthermore, the tradeoffs
associated with the cost and complexity of the encoding/decoding schemes need to be evaluated against the
ability of the corresponding multicast messages to cover arbitrary multicast destination sets. For encoding
schemes that are unable to capture arbitrary destination sets within a single worm header, alternative multi-
phase algorithms need to be proposed to cover arbitrary multicast destination sets efficiently.

In addition, enhanced multicasting schemes which use the above mentioned techniques need to be eval-
uated. In particular, there is a need to compare the effect of improved support for multicast at the switches
to support for multicast at the NI to decide which of these schemes results in better performance and when.
A number of questions need to be answered, such as the following: How quickly can multicast be performed
with support at the NI and low overhead messaging layer support? How does multicast with switch/router
support (alone) compare with multicast implemented with NI support? For what range of system parameters
does it make sense to use one over the other?

The goal of this paper is to propose and evaluate enhanced multicasting schemes to further improve mul-
ticast performance. As described above, the proposed schemes can be classified into two main categories: (a)
network interface-based or NI-based multicasting schemes and (b) switch-based multicasting schemes. First,
we describe the system model, traditional multicasting support, and the above classification of the proposed

schemes for improved multicasting. Then, we propose and evaluate smart NI support, and two implemen-

tations of smart NI support: First-Child-First-Served (FCFS) and First-Packet-First-Served (FPFS). It is
shown that the FPFS NI support is more practical and efficient in terms of buffer requirement and ease
of implementation. We then consider multicasting with FPFS NI support and show that the binomial tree
is not optimal for an arbitrary multicast set size and an arbitrary number of packets. To provide optimal
multicast with FPFS NI support we develop a new concept called k-binomial trees and show them to be
optimal for multi-packet multicast. We also present a method to construct contention-free k-binomial trees.

Next, switch-based multicasting schemes are examined in detail. We extend the concept of multides-
tination messaging to irregular switch-based networks and briefly examine related issues such as header
encoding/decoding, replication mechanisms, and routing. We present two subclasses of switch-based multi-
casting schemes: multi-phase [19, 42] and single-phase [42]. The multi-phase multicasting schemes typically
require multiple multidestination worms to perform multicast to arbitrary destination sets. These worms
are transmitted in multiple phases with the destinations in a phase acting as secondary sources in succeed-
ing phases of the multicast [19]. Two multi-phase multicasting schemes using multidestination routing are
described which differ in the type of encoding used for their multidestination headers, and which require
more than one multidestination worm to cover arbitrary multicast destination sets. We present the concept
of path-based multidestination routing on which one of these schemes is based and develop a number of
the associated theoretical issues. We also present algorithms to organize these multidestination worms into
multiple phases to perform efficient multicast. In the single-phase multicasting scheme, multicast can be
performed in a single phase using one multidestination worm from the source node to all the destinations
[42, 48]. We present a multicasting scheme that uses a single bit-string encoded multidestination worm.

We then consider three schemes for comparing the relative performance of the enhanced multicasting
schemes: the NI-based multicasting scheme using the k-binomial tree, the multi-phase multicasting scheme
using path-based multidestination worms, and the multicasting scheme that uses a single multidestination
worm. We perform extensive simulations to evaluate the impact of the various system parameters on the
performance of the three schemes by considering the performance of single multicasts and by varying each
of the parameters one at a time. These parameters include, system size, switch size, message length, packet
size, number of switches, software overhead at the hosts, and the ratio of the overhead at the host to the
overhead at the network interface. Finally, we study the latency of these schemes under increasing multicast
load with a variation of a few selected parameters. It is clear that a multicasting scheme with enhanced
support at the NI and the switches will perform better than a scheme that makes use of support at either the
NI or the switches. Therefore, to clearly compare NI-based schemes with switch-based schemes, we assume
no smart NI support for the switch-based multicasting schemes in our simulation experiments, i.e., every
communication phase under the tree-based and path-based schemes incurs software overhead at the host and
NT of the source and (intermediate) destinations.

Our analysis and simulations show that the single-phase switch-based multicasting scheme studied in this
paper is the most powerful scheme. However, the NI-based scheme can deliver extremely high performance,
especially when the software overhead for absorbing and retransmitting messages at the interface is con-
siderably lower than the corresponding overheads at the host. The multi-phase switch-based multicasting
scheme’s performance varies with variation in a number of network parameters and it can perform worse
than the NI-based scheme in a number of cases. We therefore conclude that support for multicast at the
NI is an important first step to improving multicast performance. However, there is still considerable gain
that can be achieved by supporting hardware multicast in switches. Finally, while supporting such hardware
multicast, it is better to support schemes that can achieve multicast in one phase.

The remaining part of the paper is organized as follows. Section 2 presents the network model and the
underlying routing algorithm assumed in this paper. Then, Sec. 3 presents the communication support in
a NOW environment and the classification of the multicasting schemes proposed in this paper. Smart NI
support and the proposed NI-based scheme is discussed in Sec. 4. Issues in switch support for multidestination
routing and various switch-based multicasting schemes are described in Sec. 5. An qualitative and an
exhaustive simulation based comparison of the three schemes is presented in Sec. 6. Finally, we present our

conclusions in Sec. 7.

2 System Model

In this section, we present the network model assumed in this paper. The related deadlock-free routing issues

for such a network are also discussed.

2.1 Network Model

Figure 1(a) shows a typical parallel system using a switch-based interconnect with irregular topology. Such
a network consists of a set of switches where each switch has a set of ports. The system in the figure consists
of eight switches with eight ports per switch. Some of the ports in each switch are connected to processors,
some ports are connected to ports of other switches to provide connectivity between the processors, and some
ports are left open for further connections. Such connectivity is typically irregular and the only thing that
is guaranteed is that the network is connected. Thus, the interconnection topology of the network can be
denoted by a graph G = (V,E) where V is the set of switches, and E is the set of bidirectional links between
the switches [4, 37]. Figure 1(b) shows the interconnection graph for the irregular network in Fig. 1(a). It

is to be noted that all links are bidirectional and multiple links between two switches are possible.

Processing
Element

— Up direction

A
Bidirectional Link

[o]
@ (b) (©

Figure 1: a) An example system with switch-based interconnect and irregular topology; b) corresponding intercon-
nection graph G; c¢) corresponding BFS spanning tree rooted at node 6.

2.2 Routing Issues

Several deadlock-free routing schemes have been proposed in the literature for irregular networks [4, 12, 36,
37]. Without loss of generality, in this paper we assume the routing scheme for our irregular network to be
similar to that used in Autonet [37] due to its simplicity and its commercial implementation. The Autonet
routing allows adaptivity, and is deadlock-free. However, the multicasting solutions proposed in this paper
can be applied to irregular switch-based networks with other routing schemes.

In this routing scheme, a breadth-first spanning tree (BFS) on the graph G is first computed using a
distributed algorithm. The algorithm has the property that all nodes will eventually agree on a unique

spanning tree. Deadlock-free routing is based on a loop-free assignment of direction to the operational links.
In particular, the “up” end of each link is defined as: 1) the end whose switch is closer to the root in the
spanning tree; or 2) the end whose switch has the lower ID, if both ends are at switches at the same tree
level. The result of this assignment is that the directed links do not form loops. Figure 1(c) shows the BFS
spanning tree corresponding to the interconnection graph shown in Fig. 1(b), and the assignment of the “up”
direction to the links. To eliminate deadlocks while still allowing all links to be used, this routing uses the
following up/down rule: a legal route must traverse zero or more links in the “up” direction followed by zero
or more links in the “down” direction. Putting it in the negative, a packet may never traverse a link along
the “up” direction after having traversed one in the “down” direction. Details of this routing scheme can be

found in [37]. This routing is also referred to as up*/down* routing or UD routing.

3 Multicasting Approaches

In this section, we present an overview of the various multicasting schemes that we compare in this paper.
We begin by describing the traditional support for point-to-point communication in NOW environments.
We then describe the current-day state-of-the-art lightweight communication layers used to enhance the
performance of unicast communication. Next, we describe the traditional approach to multicasting using
multiple phases of unicast messages. Finally, we present two categories of techniques for providing enhanced
support for efficient multicast.

3.1 Traditional Communication Support

Both hardware and software are used for providing efficient communication support in NOWSs. The hardware
includes cut-through switches, network interface cards (NICs) at the host workstations, and the physical
wiring that connects the switches to each other and to the NICs at the hosts. The software enables the
sending of messages through this hardware, and implements the desired communication protocols.

Let us first consider the switches and the NIs which comprise the hardware. Figure 2(a) shows the
architecture of a generic cut-through switch with & ports. Each port consists of one input and one output
link. A port can be connected to the port of another switch, a host workstation, or kept open. Each port
consists of an input and an output buffer. Although these buffers only need to be big enough to capture the
header flit of an incoming worm so that the routing decision can be made as soon as the header flit arrives,
deeper buffers are usually required to perform flow control efficiently across long links and to reduce link
contention. A k-port switch typically provides a k x k crossbar connectivity in order to enable concurrent
transfer of messages from the input buffers to any of the output buffers [4, 37, 45, 46, 47].

Figure 2(b) shows the architecture of a generic NIC which typically plugs into the I/O bus of the host. A
dedicated communication processor is embedded in the NI. This allows sophisticated processing of network
transactions to be off-loaded to the NI processor, thus freeing up the host processor for computation. The
NT also contains some amount of memory, up to three DMA engines, and the link interface. All messages
sent in/out of the workstation are staged through send/receive queues implemented in this memory. The
memory is also used to store the instructions and data associated with the NI processor. One DMA engine
is used to transfer the messages between the host memory and the send/receive queues on the NI memory,
and the other two DMA engines are used to transfer data between the link interface and the send/receive

queues on the NI memory.

Buffer associated with every

input link. Every bufer has a

size greater than the maxi- Output bufer :
mum worm length. The Size =1 chunk

divisions represent “chunks?.
Node /O
Bus|nterface

Input Links / _LOulputhks
~ Wit
Crossbar wdqumel NI processor
(TN ==

receive queue

(b)

Figure 2: Generic diagrams of (a) a typical cut-through switch and (b) a typical network interface at a workstation.

network

Link Interface

Now, let us consider the software portion of the communication support. This software portion has
multiple responsibilities. First, it enables transmission of messages from the sender host node to the receiver
host node by adding appropriate header information to data. Modern day networks typically limit the size
of the largest packet. This is done to minimize network contention, to support efficient buffer utilization
in the network and the NIs, and to minimize the effect of long messages on short message latency. The
communication software on the sender side is responsible for breaking up a long message into multiple
packets and sending them out into the network. Similarly, the software on the receiver side is responsible
for collecting all the arrived packets and assembling them into the complete message. Second, the software
provides protection between various processes sharing the same physical NI. Finally, the software is often
responsible for ensuring that messages are reliably delivered, although current day network hardware also
guarantee a high degree of reliability [4, 11].

Conventionally, communication protocols like TCP/IP are implemented by the communication software.
Using such traditional communication protocols involves operating system calls to send and receive messages.
These calls introduce hundreds of microseconds or more of overhead in a message transmission which is orders
of magnitude higher than the actual latency of the message through the physical network. This has led to
a considerable amount of research devoted to the design and development of lightweight communication

software.

3.2 Lightweight Communication Software

We now examine how the software overhead is reduced by using such lightweight messaging software.
Lightweight high performance messaging layers often bypass the operating system, mapping the NI memory
into user address space and accessing it directly via load/store operations. Protection is achieved by virtu-
alizing the physical NI device to provide a virtual NI device for each process trying to access the physical
NI device. Each process has a communication endpoint consisting of a send queue, a receive queue, and
a certain amount of state information. A process can deliver a message to any of the receive queues by
depositing the message in its own send queue with an appropriate destination identifier. Such messaging
systems also try to minimize buffer copying which contributes to a major part of the overhead. Examples
of such messaging systems are Active Messages [23, 51], U-Net [50], Fast Messages (FM) [29], and SHRIMP
[3, 10].

Let us examine how these lightweight messaging systems achieve message transfer. An application is
typically linked to a communication library, and a portion of the host memory is allocated for DMA to and

from the network interface. A typical message transfer in these systems is done in the following way. At

the sender side, one of two schemes is used: (a) programmed I/O, or (b) DMA. The host processor at the
sender fragments the message into fixed size packets and transfers them into the send queue of the NI using
programmed I/O [29]. Alternatively, the host processor copies data into the host DMA memory, writes
the message pointers to memory-mapped NI memory, and the NI processor uses DMA to copy the packets
to the send queue [50]. The DMA setup overhead makes the programmed I/O method more efficient for
small message sizes, but DMA may prove more efficient for large message sizes. Subsequently, the software
executing at the NI processor detects entries in the send queue, and sends the packets out to the network
channel. At the receiver side, the incoming packets join the receive queue at the NI. The NI processor
detects the received packets and uses DMA to copy them to the host memory. Without loss of generality,
the discussions in this paper assume DMA for transfer of data between host memory and NI device on the
sender and receiver side.

Collective communication operations like multicast can be built on such messaging systems. Let us

examine how the multicast operation is implemented on such a messaging system.

3.3 Multi-phase Software Approaches to Multicast

Efficient multicast algorithms are typically hierarchical in nature. This means that some destinations serve
as intermediate sources, i.e., when they receive a message, they forward copies of it to other destinations.
Many such hierarchical algorithms have been proposed in the literature [16, 24, 25, 35] to implement mul-
ticast. Figure 3 shows an example of a multicast from a source node to seven other destinations. In the
figure, the numbers in brackets indicate the step numbers. It can be easily observed that [logs(n + 1)]
communication steps are required for such a binomial tree based hierarchical multicast to be completed
[25]. A communication step is the time required for a message to be sent from one host node to another.
Even with lightweight messaging layers, the latency of such a multicast operation is still dominated by the

communication software overhead.

Figure 3: Example of a hierarchical multicast algorithm on a destination set size of 7.

Much recent research has concentrated on improving multicast mechanisms. A simple multi-phase ap-
proach to perform multicast in wormhole-routed irregular networks with reduced/minimized contention
among the constituent messages of the multicast has been proposed by Kesavan et al. [16]. Verstoep et
al. [49] have proposed (and implemented) a method for performing multicast in switch-based systems using
NI support for absorbing and retransmitting messages. However, the scheme uses only a heuristically de-
rived binary multicast tree. The scheme makes no optimizations for the case where multiple packets may
be transmitted in a message and where each of the packets has to be absorbed and retransmitted into the
network.

In this paper, we focus on two main directions for improving multicast mechanisms.

3.4 Enhanced Multicasting Schemes

The two major directions in which enhancements can be proposed for improving multicast latency are:
(a) increasing the functionality of the software/firmware running at the NI processor (henceforth called NI
software), and (b) supporting hardware multicast at the switch.

3.4.1 Multicasting using Smart Network Interface Support

The NI software controls the sending/receiving of packets into/from the network. A packet received from
the network is copied from the receive queue of the NI to host memory using DMA. A packet to be sent is
copied from the host memory to the send queue in the NI using DMA, and then transferred from the send
queue to the link interface (using DMA) to be sent out into the network.

Let us consider the multicast of a message that spans multiple packets. Figure 4(a) shows the forwarding
of a 2-packet multicast message at an intermediate node of a multicast tree. Each of the packets of the
message is received at the NI and copied to host memory using DMA. The host processor at the intermediate
node receives the complete message and then initiates send operations to each of its children in the multicast
tree. For each of the send operations, a copy of the message is sent to the NI, from where it is sent into
the network. Therefore, an intermediate node undergoes the message send overhead for every copy of the
message that it forwards to other destinations. This overhead includes the software start-up overhead and
the overhead at the NI for each packet transmission.

intermediate host intermediate pog o
source destination memory destination source application destination degtination

&= CERCI R

' network DMA " : network DMA! ! "
I interface i | ! | interface . i
s \C :]] j (t j’ @y [1 j
i >(/
packet #1 packet #1 packet #1 packet #1
packet #2 packet #2 packet #2 packet #2

@ (b)

Figure 4: Forwarding of a 2-packet long multicast message by intermediate node using (a) conventional NI support,
and (b) smart NI support.

Smart NI support can reduce this overhead for multicast, especially for multi-packet messages. Current
lean messaging layers allow modification of the NI software. This software can be modified to allow it to
identify a multicast packet [2, 15, 20, 49]. If the next outgoing packet in the send queue of the source node
is a multicast packet, the NI processor forwards replicas of the packet to the nodes adjacent to the root of
the multicast tree. When a multicast packet is received at the NI of an intermediate node, the NI processor
starts copying (using DMA) the packet to host memory. Simultaneously, it forwards replicas of the packet
to its children in the multicast tree. Thus, the overhead at the intermediate node’s host to receive a packet
is hidden, and the overhead at the host to send the packet to its children in the multicast tree is eliminated.
Figure 4(b) shows an example of such forwarding with smart NI support. An example of the use of such a
smart NI has been described in [49]. A detailed discussion on the use of such smart NI support, the related

implementation and architectural issues, and optimal algorithms for multicast is given in Section 4.

3.4.2 Multicasting using Switch Support

Another method for improving multicast performance is to provide switches with support for replicating

incoming messages to multiple output ports. The basic idea behind such a scheme is to communicate a

single message (called a multidestination message) from a source to multiple destinations in almost the same
time it takes to send a unicast message to another node [22, 33]. The number of destinations covered depends
on the type of encoding/decoding used for the message header.

Replication of messages in switches that support cut-through routing is deadlock-prone. The deadlock-
free replication method has been proposed in [39, 43, 48] that depends on the guarantee that the multicast
packet can eventually be completely buffered at the switch. This ensures that the available resources can
be used and freed up while continuing to wait for other resources (output ports in our case) to be freed. In
an input buffered switch, this guarantee reduces to the requirement that the buffers in the switch be larger
than the largest multicast packet. We will assume such input buffered switches in the rest of this paper.
For simplicity, we will assume that each input buffer uses a single FIFO queue to store packets (as in the
switches of [11]).

Given such support for replication at the switches, a number of schemes can be proposed for carrying
out multicast in switch-based irregular networks. These schemes differ in the restrictions placed on worm
replication, the number of worms required to perform multicast to an arbitrary destination set, the complexity
of multicast header formation, and the complexity of the header decoding logic required at the switches.
However, we assume the multidestination worms under either scheme conform to the base UD routing
algorithm, i.e., the path followed by a multicast packet does not violate any of the rules for routing unicast
packets in the system [32]. A detailed discussion of these schemes, the related implementation issues, and

efficient algorithms for performing multicast are given in Section 5.

4 Optimal Multicasting using Smart Network Interface Support

The concept of smart NI support has been described in Section 3.4.1. In this section, we present a detailed
discussion on building optimal multicast trees using such support. We first estimate the latency of a multicast
operation using smart NI. Next, we discuss two implementations of smart NI support and compare them.

Finally, we present an optimal multicast algorithm using the better of the two implementations.

4.1 Multicasting over Smart Network Interface

Let us estimate the latency of a multicast operation using smart NI support. We assume that the software
overhead for message initiation at the host processor is ts, and the overhead for receiving a message at the
host processor is t5,. The software start-up overhead, s, is incurred once at the host processor of the source
of the multicast to transfer the data to the NI memory. Consequently, the multicast tree is implemented at
the network interfaces of the participating processors. The host processor at each destination undergoes the
software overhead, tp,, for receiving the message. Although, these software overheads at the host processor
are large, they are independent of the choice of the multicast tree. However, the overhead incurred at the NIs
of the participating nodes depends on the choice of the multicast tree. Therefore, the latency of a multicast
is determined by the time required for the actual transmission of all the packets of the multicast message to
the NIs of the destinations. Hereafter, we refer to the transmission of a packet from the NI of one node to
the NI of another node as a step. The time for this step, denoted ts¢p, includes the overhead at the sender
NI for sending a packet, propagation overhead, and the overhead at the receiver NI for receiving the packet.

Let us take a simple example of a single-packet multicast using a binomial tree over three destinations to
illustrate the advantage of using smart NI support. Figures 5(a) and 5(b) show the multicast over conven-

tional and smart NI, respectively. It can be easily observed that the multicast latencies using conventional

and smart NIs are 2(tps + tstep + thr) and (ths + 2tstep + thr), respectively. For an arbitrary multicast set
size of n nodes, these values will be [logan]|(ths + tstep + trr) and (tns + [l0gan|tstep + thr), respectively.
Therefore, multicast latency can be lowered significantly by using smart NI support.

interface interface

@ (b)

Figure 5: Performance benefits of the smart network interface: (a) binomial single-packet multicast tree over the
conventional NI and (b) binomial single-packet multicast tree over the smart NI.

This improvement in performance is due to two main reasons. First, the host processor at the intermediate
node is not involved in the forwarding of multicast packets, thereby reducing the forwarding overhead.
Second, an intermediate node can forward a packet of the message as soon as it arrives, independent of
the arrival of the remaining packets. We consider alternative implementations of the NI support for packet

forwarding in the next section.

4.2 Implementations of Smart Network Interface Support for Packet Forward-
ing

There are two possible implementations of the smart NI support: First-Child-First-Served (FCFS) and First-
Packet-First-Served (FPFS). Here we describe and compare both implementations, and show why the FPFS

implementation is more efficient and practical.

4.2.1 First-Child-First-Served (FCFS) Implementation

In this implementation, the NI at the source node sends all packets of the multicast message to its first child
in the multicast tree, then to its second child, and so on. When the NI of an intermediate node receives the
first packet of a multicast message, it forwards the packet to its first child. When the second packet of the
multicast message arrives at the NI, it also forwards this packet to the first child. Similarly, the complete
multicast message is forwarded, one packet at a time, to the first child. Subsequently, the NI forwards the
message to the second child, followed by the third child, and so on. Figure 6(a) formally expresses this

implementation in a pseudo-code format.

4.2.2 First-Packet-First-Served (FPFS) Implementation

In this implementation, the NI forwards the message on a per-packet basis. The NI at the source node
sends the first packet to all the children of the source, then sends the second packet to all the children of
the source, and so on. When the first packet of the multicast message arrives at the NI of an intermediate
node, it forwards the packet to each of the children of the intermediate node. Subsequently, when the second
packet of the multicast message arrives at the NI, it forwards the packet to each of the children, and so on till

the last packet is forwarded. Figure 6(b) formally expresses this implementation in a pseudo-code format.

10

Sender Receiver with Forwarding Receiver Sender Receiver with Forwarding Receiver

(Intermediate Node) (Intermediate Node)
for j = 1tonum_children for j= 1to num children for j = 1tonum packets for j= 1tonum packets for j= 1tonum packets{ forj = 1tonum packets
for i= 1to num_packets for i= 1to num packets{ receive(packe}); for i= 1to num children receive(packet); receive(packef);
send(child , packef); if (i==1)) send(child;, packeg); for i= 1to num_children
receive(packetj); d(chil et):
| enchild, packey); y sendlchilg, packey);

@ (b)

Figure 6: Pseudo-code description of (a) the FCFS and (b) the FPFS implementations of the smart NI for multicast.

4.2.3 Comparison of FCFS and FPFS Implementations

Let us evaluate and compare these two implementations of smart NI support with respect to ease of imple-
mentation and buffer requirement.
Ease of Implementation: The FPFS is an easier implementation than the FCFS. Let us consider packets
of multiple messages coming into the receive queue of the NI at an intermediate node. To implement FCFS,
the NI processor has to maintain a counter for each incoming message. Each arriving packet increments the
counter corresponding to its message. When the counter value becomes equal to the message length, all the
packets are sent to the remaining children. To implement FPFS, the NI processor handles the forwarding of
the multicast message on a per-packet basis. When the NI processor reads the header of a multicast packet
from the receive queue, it forwards the packet to all its children in the multicast tree. The NI processor
does not have to maintain a counter for each incoming multicast message. Therefore, the FPFS is an easier
implementation than the FCFS.
Buffer Requirement at NI: It can be quantitatively shown that the FPFS implementation is more efficient
than the FCFS implementation in terms of buffer requirement. Let us take an example of an intermediate
node with k children in the multicast tree of a p-packet multicast. Let t,s be the time for a copy of a packet
to be sent out from NI memory to the network. Let us consider the time interval starting from when the NI
processor reads an incoming packet until all copies of this packet have been sent to its children. Let T, and
T, denote this time interval for FCFS and FPFS implementations, respectively. Let us assume the best case
of zero time delay between incoming packets. In the FCFS implementation a packet needs to be buffered at
the NI of an intermediate node until all packets of the corresponding message have been forwarded to all the
children of the node. Thus, the ith packet needs to be buffered till the ith packet and the remaining (p — 1)
packets are forwarded to the first child of the intermediate node, all p packets are forwarded to the next (k—2)
children, and the first i packets are forwarded to the kth child. Therefore, T, = (p—i+1)tns+ (k—2)ptps+itns.
In the FPFS implementation, a packet only needs to be buffered at the NI of an intermediate node until
it has been forwarded to all the children of the node. Thus, the ¢th packet needs to be buffered only until
it is forwarded to the k children of the intermediate node. Therefore, T, = kt, ;. Here we have assumed
the best case conditions of zero delay between incoming packets for both implementations. If there is delay
between incoming packets, each packet requires longer buffering in the FCFS implementation. It can be easily
observed that even with the best case assumptions, T}, < T,. This translates to larger buffer requirement for
the FCFS implementation as compared to the FPFS implementation.

The above discussion shows that the FPFS implementation is a more practical and efficient approach.

Next, we develop optimal multicast trees for systems with FPFS support.

11

4.3 Optimal Multicast with FPFS

In this section, we first describe the problem of optimal multicast. We then propose an optimal multicast
tree on a system with FPFS NI support and discuss related implementation details.

4.3.1 Non-optimality of Binomial Tree

Prior work in the literature has shown the binomial tree to be optimal (in terms of number of start-ups)
for multicast on systems with conventional NI support [25]. However, it is not clear whether this is true
for systems with smart NI support. Let us consider an example multicast of a 3-packet message to three
destinations on a system with smart network interface support. Figures 7(a) and 7(b) show the number of
steps taken to complete such a multicast using a binomial and a linear tree, respectively. In the figures, the
numbers in brackets indicate the step numbers and the subscripts indicate the packet numbers. For example
[4]2 indicates the second packet being transmitted in the fourth time step. It can be easily observed that the
binomial tree takes 6 steps and the linear tree takes 5 steps. The multicast latency for the binomial tree is
(ts + 6 % tgep + tr), and the multicast latency for the linear tree is (t5 + 5 * tstep + ¢r). This simple example
shows that the binomial tree is not the optimal tree for multicast of packetized messages with smart NI
support.

[, (2,3
1772773
(4], 81, 1el [, 12, 3,

%15 31, 14,

@ (b)

(@, [3l, [,

(31, (4, 5]

Figure 7: The number of steps to complete multicast of a 3-packet long message to 3 destinations using: (a) a
binomial tree and (b) a linear tree.

4.3.2 A Pipelined Model for FPFS Multicast

The discussion in Section 4.1 clearly shows that multicast latency for a single packet on a system with smart
NI support can be written as (tns + num_steps * tsiep + thy). The same formula can be extended to multi-
packet multicast latency where ¢y, (t,-) denote the send (receive) overhead at the host processor to transfer
the message to (from) the NI. In this section, we analyze multicast latency in terms of steps occurring at
the NI layer, as discussed in Section 4.1.

Let us first model the multicast latency at the NI layer assuming the FPFS implementation. The
multicast of the complete message can be treated as a sequence of single-packet multicasts following one
another. Figure 8 shows the break up of the multicast of a 3-packet message to 7 destinations over an
example binomial multicast tree. The numbers in brackets indicate the step numbers, and the subscripts
indicate the packet numbers. It can be easily observed that the 3-packet multicast is equivalent to three
single-packet multicasts where each packet lags the previous one by three steps. We generalize this basic
concept in the following discussion to accurately model FPFS multicast latency.

In the following discussion, we develop the theory to prove that multicast of m packets can be modeled
as m pipelined multicasts of 1 packet each. First, the delay between the arrival of consecutive packets of a

multicast at a node is calculated. Then, it is shown that this interval is dependent only on the number of

12

[314[61,915 1 1[4] (73
[21,[51,18]

[2],[5],18],

0»4512[9]3

Figure 8: The break up of a 3-packet multicast over 7 destinations using a binomial multicast tree.

[31,161,9],

children the root (of the multicast tree) has. Thus, a pipelined model of an m-packet multicast is developed.
When designing multicast trees, it is a desirable feature that a vertex in a multicast tree does not have a
larger number of children than any of its ancestors. This is obvious since vertices higher up in the tree get
the message earlier, and can therefore cover more destinations. We limit the following discussion to such
trees where the root has the maximum number of children.

Let T = (V, E) be a multicast tree, and let r be the root vertex of T'. Let the function § : V' — N be
such that 0(v) be the number of children v has in T'. Starting at time zero, let L; denote the time at which
the multicast of ith packet is completed, i.e. the time at which the ith packet has been received by the NIs
of each destinations. Let the set Ch(v) be defined as the set of vertices which are children of the node v in
T, and let the set Lv(T) be the set of leaves of T'. We now define and quantify the delay between arrival of
consecutive packets of a multicast at a node.

Definition 1 The function delay;(v) is defined as the time elapsed (in terms of number of steps) between
the arrivals of the ith packet and the (i + 1)th packet at the network interface of node v.

Lemma 1 For any vertez v € V, and any vertex ¢ € Ch(v), the value of delay;(c) is given by the function
Mazx(delay; (v),6(v)).

Proof: Let the ith packet arrive at the NI of vertex v at time zero. The (i + 1)th packet arrives at
time delay;(v) steps. The NI of vertex v sends the ith packet to each of its children in §(v) steps. If
delay;(v) < §(v), the NI of vertex v is available to send out a replica of the (i + 1)th packet to the first
child only at time d(v). Therefore, Vz € Ch(v),delay;(z) = 6(v). If delay;(v) > §(v), although the NI of
vertex v is available to send out the next packet at time d(v), the (i + 1)th packet has not arrived. The NI
of vertex v can only send out a replica of the (i + 1)th packet to its first child at time delay;(v). Therefore,
Ve € Ch(v),delay;(c) = Max(delay;(v),d(v)).]

Lemma 2 The function delay;(v) for any vertez v (v # 1) in T is equal to §(r).

Proof: Since r is the root of T', and the source of the multicast delay;(r) = 0. It can be easily observed that
Vx € Ch(r)delay;(x) = 6(r). Similarly, if the delay; value is calculated for all vertices of T' by iteratively
applying the equation in Lemma 1, it can easily be shown that Vv € V delay;(v) = §(r). n

Now, we try to derive a relationship between the delay function and the interval between the completion

of multicasts of consecutive packets, i.e. the interval (L;y; — L;).

Lemma 3 The time interval (Liy1 — L;), i.e. the time between the completions of multicast of any two
successive packets of a multicast, is equal to the function delay;(v;) where vy is the is the last vertex in T

which receives the multicast packets.

13

Proof: Since each packet of the multicast follows the same pattern as the previous one, there is one fixed
vertex, vy, of T' which is the last vertex to receive each multicast packet. The time at which the multicast of
the ith packet is completed, L;, is determined by the time at which v; receives the ith packet. The value of
delay;(v;) determines the interval between the arrivals of the ith and the (i + 1)th packet at v;. Therefore,
delay;(v;) determines the time interval (L;y 1 — L;). n

The results from Lemmas 1, 2, and 3, lead to the following theorem.

Theorem 1 The time interval (L;y1 — L;), i.e. the time between the completions of multicast of any two

successive packets of a multicast, for a multicast tree T is given by the function d(r), where r is the root of
T.

Proof: Follows from the above discussion. n

From Theorem 1 it can be observed that the time interval (L;31 — L;) is independent of i. Also, each
successive packet completes its multicast §(r) steps after the completion of the previous one. We will refer
to &(r) as &, in the remainder of this discussion. Therefore, an m-packet multicast can be modeled as m

single-packet pipelined multicasts. This leads to the following theorem.
Theorem 2 The time for completion of the m pipelined single-packet multicasts is Ly + (m — 1)d, steps.

Proof: Follows from the above discussion. n

It can also be observed from Fig. 8 that the multicast of each packet lags the previous one by exactly
3 steps, which is equal to the number of children of the root. Also, the complete multicast takes 9 steps,
which is 3+ (3 —1) % 3.

4.3.3 Optimal k-binomial Trees

The optimal multicast tree is one that produces the minimum value for the expression L; + (m — 1)4,. Let
us consider a multicast set of size n nodes. The value of §, in a multicast tree determines the value of L;. In
the case of a linear tree (Fig 5(b) for example), 6, = 1 which leads to Ly = (n—1). If §, of a tree is increased,
the value of Ly decreases. In the case of the binomial tree [25] where §, = [logan]|, L1 reaches a minimum
of [logan] since this tree recursively doubles the number of destinations covered in each step. However, on
further increase of 8, of a multicast tree beyond [logan], the value of Ly increases. Therefore, for getting the
minimum value for Ly + (m — 1)d,, we need to only consider the interval [1, [logan]] to compute the optimal
value of §,. If §, of a tree is less than [logan], we get the special case of a restricted binomial tree. Let us
call this tree a k-binomial tree.

Definition 2 A k-binomial tree is defined as a recursively doubling tree where each vertex has at most k
children, i.e. §, <k.

Figures 9(a) and 9(b) show examples of 3-binomial and 4-binomial trees with multicast set size of 16.
To calculate the optimal value of §, which produces the minimum value for L; + (m — 1)d,., let us derive a
relationship between L; and 6, using the k-binomial tree. Let N (s, k) denote the number of nodes covered in
s steps by a k-binomial multicast tree. For the boundary condition k£ = 0, we fix N (s, k) = 1 which denotes

that the source node already has the message to be multicast.

14

N(sk)

©

Figure 9: Examples of k-binomial trees on a multicast set size of 16: (a) the 3-binomial tree, and (b) the 4-binomial
tree. (c) The number of nodes covered by a k-binomial tree in s steps when s > k. The number of nodes in the ith
subtree from right is given by N(s — 4, k)

Lemma 4 The value of N(s,k) is given by

28 if s <k
N(s,k) =4 1+ N(s—1,k)+ N(s —2,k)+
...+ N(s—k,k) if s>k

Proof: If s < k, the k-binomial tree is like a binomial tree, so N(s, k) = 2°. For the case of s > k, Fig. 9(c)
illustrates the structure of a k-binomial tree after s steps. The root has k subtrees, and each of the subtrees
is recursively a k-binomial tree. It can be seen that after s steps the number of nodes in the first subtree is
given by N(s — 1, k) since the depth of this subtree is (s — 1). Similarly, the number of nodes in the second
subtree is given by N(s—2, k), and so on. Therefore, N (s, k) is equal to the summation of the nodes in each
of the subtrees, and one (the source).]

Thus, for a given §, and n, the value of L, is the minimum value of s such that N (s, d,) > n. Using this

relation, the optimal multicast tree for a given n and m can be calculated as follows.

Theorem 3 Given n and m, the optimal multicast tree is that k-binomial tree which produces the minimum
value of Ly + (m — 1)k, where 1 < k < [logan], and Ly is equal to the minimum value of s for which
N(s, k) > n.

4.3.4 Implementation Issues

There are two major issues for implementing k-binomial trees for packetized multicast in a given system.
These issues are: a) computing the optimal value of k for given n and m, and b) constructing contention-free
k-binomial multicast trees on the interconnection network of the system.

Precomputation of Optimal k: For given n and m, it can be shown using Theorem 3 and Lemma 4 that
there is no closed form solution for the optimal value of k& which produces the minimum value for L+ (m—1)k.
However, this value can be easily computed by checking all possible values of k in the interval [1, [logan]]
Thus, the optimal value of k£ can be precomputed and stored in a table for all possible values of n and m.
The optimal value of k is identical for a range of m values and the optimal value of k converges to 1 with
increase in m [20]. Thus, this table requires less than O(mn) memory. Therefore the precomputation of the
optimal value of k for a given range of n and m is a feasible implementation.

Contention-free k-binomial Trees: For optimal multi-packet multicast performance, the multicast tree

should be depth contention-free [25]. This means that the paths that the tree edges get mapped to in the

15

network should be edge-disjoint with respect to each other. The concept of contention-free ordering of nodes
in a system has been used to construct contention-free binomial trees [25]. A similar approach can be used
to construct contention-free k-binomial trees. Let the n participating nodes of a multicast be ordered, and
let the symbol <4 denote the ordering. An ordering is said to be contention-free if Vw, x,y, z in the ordered
chain such that w <4z <4 y <4 z, messages between processors w and z do not contend for any links with
messages between processors y and z, even for the boundary condition x = y. Without loss of generality,
let us assume that the source of the multicast is the first node in the ordering. Figure 10 gives a pictorial
representation of the construction of a contention-free, k-binomial tree on this ordering in a recursive manner.
In the first step, the source sends the message to the node, a, which is N(s — 1, k) places from the right end
of the chain, where s is computed using Lemma 4 and Theorem 3. In the second step, the source sends the
message to the node, b, which is N(s — 2, k) places away from the previous recipient. Similarly, the source
sends messages to k — 2 other nodes. The intermediate nodes, like a and b cover the destinations to their
right by building k-binomial trees in a recursive fashion.

.~ N _
KT N(sk k) N(s-2,k) N(s-1k)

N(sk)

Figure 10: The construction of contention-free k-binomial tree from a given contention-free ordering of participating
nodes.

This construction can be applied to different types of systems. For k-ary n-cubes, the dimension-ordered
chain [25] can be used to construct contention-free k-binomial trees. For irregular networks, we have recently
shown that no contention-free ordering exists for up */down* routing [16]. A concept of Partial Ordered Chain
(POC) has been proposed to create an ordering with minimal contention on these networks. Such an ordering

can be used to construct k-binomial trees with minimal contention on irregular switch-based networks.

5 Efficient Multicasting using Switch Architecture Enhancements

In the previous section we have described a method to improve multicast performance using enhancements to
smart NIs to support reception and forwarding of messages. We now examine methods to improve multicast
performance by making use of architectural enhancements at the switches to support a concept known as
multidestination routing. We first present the basic concepts behind multidestination routing. We then
present a spectrum of multicasting schemes using multidestination routing which differ in the complexity
of the encoding/decoding operations that need to be supported and in the number of phases required to

perform multicast to arbitrary destination sets.

5.1 Multidestination Routing: Background

Multidestination message passing is a technique that has recently been proposed for routing messages from a
single source to multiple destinations. Proposed originally in the context of parallel systems based on direct
(router-based) networks [22, 33], this work has been extended recently to switch based networks [41, 48]. A
multidestination worm covers multiple destinations in a switch-based network by replicating at the switches

on its path. The copies of the multidestination worm formed by replication at a switch are forwarded to

16

other switches or nodes depending on whether the output ports to which they are replicated are connected to
switches or nodes. There are three main issues w.r.t. implementing multidestination worm based multicast
in a switch based parallel system: multidestination header encoding/decoding, the replication mechanism
adopted at the switches of the network, and the routing algorithm used for the multidestination messages.

5.1.1 Encoding and Decoding Multidestination Worm Headers

A multidestination worm header encodes information that helps the switches on the worm’s path decide the
set of output ports to which the message should be forwarded. This set of ports may be determined either
statically at the source or dynamically by the switches on the worm’s path. In the former case, the header
encodes a route to the set of destinations that it covers. The switches on the worm’s path use this route
information (possibly after some decoding) to decide the set of output ports to which the multidestination
message must be forwarded. Route table information is stored at the processing nodes: the switches in the
network just require the ability to decode the header. In the latter case, the multidestination worm header
typically encodes the set of destinations to which the worm is directed. Under this scheme the switches in
the network must store enough routing information to decide the output ports that must receive a copy for
the worm to reach all its destinations.

5.1.2 Replication Mechanism

Multidestination routing in switch based parallel systems requires an efficient replication mechanism at the
switches [28]. In this paper, we assume that switches adopt the deadlock-free input-buffer-based asynchronous
replication mechanism of [48]. Under such a replication mechanism, an arriving multidestination worm at
an input buffer of a switch is read by multiple output ports. Furthermore, the various output ports proceed
independently of each other so that blocked branches do not inhibit other non-blocked branches. A count
value associated with packet units known as chunks, is initialized to the number of output ports to which the
multidestination worm is to be forwarded. Every output port decrements the count value associated with a
chunk as soon as it is read: a chunk is deleted once it has been read by all destination output ports.

5.1.3 Routing

Although many static encoding schemes encode the entire path of a multidestination worm, dynamic encoding
schemes do not restrict the path of a multidestination worm in any way (except in requiring that the
multidestination worm’s destinations be eventually covered). The Base Routing Conformed Path (BRCP)
model restricts multidestination worms to paths that are valid for unicast worms in the system [32]. By
restricting multidestination worms to such paths deadlock problems can be avoided without making special
rules for multidestination messages. A ‘parent’ of a particular branch (or copy) of a multidestination worm
is the multidestination worm copy that replicates at a switch to give rise to the said branch. An ‘ancestor’
branch is similarly (and inductively) defined. In this paper we assume that multidestination worms conform
to the UD routing in the following sense: no worm or branch (copy) of a worm takes an ‘up’ link after it or

any one of its ancestors has taken a ‘down’ link.

5.2 Multi-phase Multicast using Multidestination Worms

The number of destinations that can be covered by a single multidestination worm depends on the scheme

used for encoding multidestination messages. The scheme used for encoding multidestination worms in turn

17

affects the cost and complexity of the decoding logic used at the switches. Encoding schemes that require
very simple decoding logic may be unable to encompass arbitrary multicast destination sets into a single
header. Conversely, some encoding schemes may allow arbitrary multicast destination sets to be captured
in a single header, but may require more complex decoding logic at the switches.

In this section, we discuss two methods for multi-phase multicast that differ primarily in the complexity
of finding multidestination worms to cover arbitrary multicast sets. Both schemes use headers that are
simple to decode, but which are unable to capture arbitrary multicast destination sets in the same header,
thereby requiring multiple multidestination worms for multicast to arbitrary destination sets. We present
the header format for each scheme and the method used to derive the set of multidestination worms that
are needed to cover any arbitrary multicast destination set. We then present two algorithms to divide the
derived multidestination worms into multiple phases so that the source sends out a multidestination worm
to a subset of the destinations in the first phase, and in each of the succeeding phases, the source and some
of the destinations that have been covered act as secondary sources and send out multidestination worms to

the remaining destinations.

5.2.1 Single Switch Replication (SSR) Multidestination Worms

A simple method for multicasting can use the replication mechanism described above at a single switch. In
this method, called single switch replication (SSR), a multidestination worm covers a set of destinations that
are all connected to the same switch. If the multicast destination set spans multiple switches, a multi-phase
approach is used for multicast [41]. Under this approach multicast proceeds in multiple phases with the
recipients of a multicast in any given phase acting as secondary sources in the next phase of the multicast.

Figure 11(a) shows an example of a multidestination worm that replicates at a single switch.

destination port numbering destination port numbering

(@) (b)

Figure 11: An example of (a) a multidestination worm using single switch replication, and (b) a path-based
multidestination worm.

5.2.2 Path-based Multidestination Worms

Path-based multidestination worms cover destinations connected to any number of switches, provided that
the switches lie on a valid unicast path from the source to a destination. In other words, a path-based
multidestination worm uses the capability at switches to replicate and to forward copies to several output
ports simultaneously, but the replication is restricted. A path-based multidestination worm is defined as
follows.

Definition 3 A worm is defined to be a path-based multidestination worm if a) it can replicate to multiple
outgoing ports on a traversed switch, b) no more than one of these ports is connected to another switch, and

¢) the remaining outgoing ports are connected to processors (destinations).

Such a multidestination worm is also called a multi-drop worm [19]. Path-based multidestination worms

allow easy construction of paths (of switches) in an irregular network. Obviously it can potentially cover

18

more destinations than an SSR multidestination worm. However, the complexity of identifying valid paths
to create worms to cover an arbitrary multicast is higher in the case of path-based worms. This will be
discussed further in Sec. 5.2.4. Figure 11(b) shows an example of a path-based multidestination worm. The
route of a path-based multidestination worm is defined by the set of inter-switch links taken by the worm.
From this point on, we refer to a path as a sequence of inter-switch links.

5.2.3 Encoding and Decoding Multidestination Headers

We now present a simple method for encoding and decoding the headers of the multidestination worms
described above. Let us first consider SSR multidestination worms. Since replication is only allowed at
a single switch, a simple method of encoding the multidestination header is to store information that the
intermediate switches can use to route to the particular switch whose nodes are the destinations of the
multidestination worm. In addition, the header must also encode the list of the switch’s nodes that are the
destinations of the multicast.

Figure 12(a) shows a generic representation of the header encoding for SSR multidestination worms. The
first portion of the header consists of a node or switch ID along with a 1 bit tag to denote whether the
message is a unicast or multidestination message. The choice of whether a node or a switch ID is used can
be made depending on whether or not the system allows messages to be directed to switches (as allowed
in Autonet [37]). If a node ID is used, this field may carry the ID of any one of the worm’s destinations
attached to the destination switch. The second field consists of a p bit string where p is the number of output
ports in a switch: the ith bit in this string is set to ‘1’ if output port ¢ of the destination switch leads to a
multicast destination. Figure 12(b) shows the header encoding for the sample SSR multidestination worm
shown in Fig. 11(a). The switch ID is used in this example.

Worm Header

Node/Switch ID| gyt o1
+Tag Bit DIBlt String|

~+—— Worm Header—

Node/Switch ID
+Tag Bit Data Data

Bit String

o o o

Node/Switch IDf g:: i
+Tag Bit l:1B||Str|ng

(a) (b)

10110010| Data

(©) ()

s, +ag|101 1000(1 4 +tagl11011000fs4 +to+0100000| Data

Figure 12: Header encodings: (a) Generic representation for SSR worms, (b) generic representation for
path-based worms, (¢) example encoding for SSR worm shown in Fig. 11(a), and (d) example encoding for
path-based worm shown in Fig. 11(b).

The multi-drop header encoding scheme for path-based multidestination worms is an extension of the
above proposed encoding scheme. Figure 12(c) shows a generic representation of the header encoding for a
path-based worm. It consists of a sequence of node or switch ID (depending on whether or not the system
allows messages to be directed to switches) and p bit string pairs. Each pair encodes a set of destinations
connected to a switch which lies in the path of the worm. It should be noted that the encoding does not
have to specify the complete route taken by the worm—intermediate switches with no destinations can be
excluded. Figure 12(d) shows the header encoding for the sample path-based worm shown in Fig. 11(b).
Like in the example shown in Fig. 12(b) the switch ID is used. Since switch s; is the first switch with
destinations on it, the encoding begins with the switch ID s;. The following 8 bits encode the information
about which output ports the worm replicates to in switch s;. Similarly, information about switches s3 and

s4 (the switches with destinations connected to them) is encoded in the header.

19

For decoding the multidestination header, the information set up for routing unicast messages is sufficient.
Let us consider decoding of the SSR header encoding. The decoding operation for the multi-drop header
at a switch is identical to that for the SSR worm header, and we, therefore, restrict this discussion to the
decoding of the SSR header. Let us assume the case where the first field of the multidestination header
encodes a node ID. A switch on the worm’s path examines the first field of the header and the tag bit. If
the tag bit is off (a unicast packet), the worm looks up its routing table to decide the port to which the
worm is to be forwarded. If the tag bit is on (a multidestination packet), the switch first examines if the
destination is one of the nodes connected to it. If so, the second field is read to determine the output ports
that should receive copies of the packet. Otherwise, the worm is forwarded to an appropriate output port
as determined from the switch’s routing tables just as if it were a unicast message. Since the routing table
lookup and the determination of whether a destination is connected to a given switch can potentially be
performed concurrently, the multidestination header causes no additional decoding overhead (in terms of
latency) at the intermediate switches. In the case when the first field of the header carries a switch ID,
decoding can become even simpler. An intermediate switch examines the switch ID field with its own ID
and forwards the message to an appropriate output port in the case of a mismatch. If the switch ID field
matches its ID, the tag field is used to determine whether the packet must be consumed by the switch or
whether it is a multidestination packet intended for nodes connected to the switch. In the latter case, the
second field of the header is examined and the worm is replicated accordingly to the ports which correspond
to ‘1’ bits in the string. Decoding of the multi-drop header encoding is an easy extension of the above. It
must be noted that the header encoding used in all cases is source independent, i.e. the set of destinations
covered by a multidestination worm depends only on the contents of the header and not on the source from
which it originates.

It is obvious that a path-based worm can cover more destinations an SSR worm. This is because SSR
worms are path-based worms which have no destinations in the intermediate switches. The header encoding
and decoding complexity is quite similar in both kinds of worms because the header encoding for path-based
worms is a simple extension of the encoding for SSR worms. Although path-based worms can cover more
destinations than SSR worms, the complexity of finding worms to cover an arbitrary multicast destination

set is much less with SSR, worms. The following section discusses this aspect in more detail.

5.2.4 Finding the Multidestination Worms for Arbitrary Multicasts

An SSR multidestination worm can only cover a set of destinations connected to the same switch. Therefore,
given a set of destinations connected to a switch it is a simple operation to construct an SSR worm from
any possible source to cover the destination set. Also, to perform multicast to arbitrary destination sets, we
need as many multidestination worms as the number of switches that have destination nodes. Deriving a
set of headers (one for each multidestination worm) is a simple operation. Given a mapping between nodes,
switches, and the ports at which they are attached, subsets of the destination set can be found that are all
attached to the same switch. From each subset a header for a corresponding multidestination worm can be
derived by choosing one of the nodes in the subset for the node ID field of the header. The second field
in the header can be obtained by looking up the mapping between the destinations in each subset and the
switch ports to which they are attached.

However, construction of path-based worms to cover a given a set of destinations is a much more difficult
problem. Given an arbitrary destination set, it may not always be possible to find a path from the source
(conforming to UD routing) to any one of the destinations, such that all the destinations are connected to

20

the switches that lie on that path. In the remaining part of this section, we examine the problem of defining
valid path-based worms to cover a given destination set.

Let us define the list of participating switches, Ly, (w), of a path-based multidestination worm w as
follows. Lg,(w) consists of switches directly connected to the destinations of w, in the order in which
the corresponding destinations will be covered. Let us denote the jth processor on the ith switch as p; ;.
If w starts from source processor p,;; and covers the processors pi,i,p1,2,--.,P2,1,02,2,--->Pn,m, i that
order, then Ly, (w) is given by the switches < s;, $1, $2,. .., 8, >. Therefore, generating a valid path-based
multidestination path for w on an arbitrary switch-based irregular network N is equivalent to generating
a valid path which covers the switches in Ly, (w) (in that order) on the interconnection graph G of that

network.

Definition 4 Let P;q and P]; be defined as the sets of all paths allowed between a source switch s to a

destination switch d under the UD routing and UD minimal routing, respectively.

Section 2.2 discussed the minimal UD routing support at the routing tables on each switch. We now try
and construct valid UD paths for supporting multidestination worms. It should be noted that although the
routing tables support only minimal UD, our construction might result in non-minimal UD paths. However,
minimal UD and non-minimal UD paths can coexist without deadlock because UD routing is deadlock-free.

In a separate work [16], we defined the concept of a Partial Ordered Chain (POC), with the specific
purpose of constructing an ordering among switches in an irregular network to reduce link contention between
two messages of the same multicast using unicast message passing. In this paper, we use this concept to

construct valid path-based multidestination paths.

Definition 5 A partial ordered chain (POC) is any ordered list of switches < s1,82,...,8, >, where s; is
connected to s;11 by a “down” tree link (from the BFS spanning tree) or a “down” cross link connecting
switches at different levels of the BFS spanning tree.

Definition 6 The path set of a path-based multidestination worm w, denoted as PS™(w) is defined as the
set of all paths that can be taken by w when routed in a piece-wise manner using the routing tables which

support UD minimal routing.

Lemma 5 The path set of a path-based multidestination worm w, PS™(w), is given by P™, X P™ x...X

8581 8182
P, where Ly, (w) =< 84,51,82,...,8, >.
Proof: The worm w starts from the switch s; and covers s1, so,. .., S,, in that order. Since w is routed in a

piece-wise manner using UD minimal routing, it first takes one of the paths from P", . Then, it takes one
of the paths from P, , and so on. Thus, PS™(w) = P, X P™ X ...x P™" m

1827 5581 8182 Sn—18n"

We now show that if some conditions hold, each element of the set P.S™(w) also belongs to the set of all
non-minimal UD paths from s to s,. In that case, any path taken by piece-wise minimal UD routing of w
is a UD path (possibly non-minimal), and therefore will not result in deadlock.

Theorem 4 If Ly, (w) =< 85,51, 82, .. .,5, > and if the switches s1, s2,. .., 8, lie on some POC, P, in that
particular order, then PS™(w) C P;_s,, .

Proof: It can be easily observed that all paths in P". are minimal UD paths. If it can be shown that

8s81

Vi, (1 < i < n), all paths in P, L are down* paths, then using the result from Lemma 5 it can be seen that

21

all paths in PS™(w) are UD paths. Let P be given by the ordered list of switches < swy, swa, ..., swy, >.
Then Vi, (1 < i < n), s; € P. Let us use the symbol <, to denote the order in the above list P. Therefore,
Vi, (1 <4 < m), sw; <poec SWit1, and Vi, (1 < i < n), 8; <poe Si+1. Let E =< eq,ea,...,ep_1 > denote
the list of “down” links such that switch sw; is connected to the switch sw;y; by the “down” link e;, where
sw; and sw;;; € P. Let us consider two arbitrary switches s, and s,4; such that 1 < a < n, s, = sw;,
and sq41 = sw;. Therefore, sw; <poc sw;. It can be easily observed that the path described by list of links
Dij =< €;,€i4+1,...,€j_1 > is one of the valid minimal paths between sw; and sw;. Also, each link in this
path is a down link, and the path is j — 4 links long. Any path from sw; to sw; that contains an up link is
definitely longer than p; ; because an up link takes the worm higher up the BFS routing tree, whereas sw;
is exactly j — ¢ levels lower than sw; in the BFS tree. Since a routed worm from s, to s,41 takes only down

links, all paths in P]" are down* paths. Therefore, piece-wise routing from s; to s, results in a down*

Sa41
path only. Therefore, all paths in PS™(w) are UD paths. [
Theorem 5 A path-based multidestination worm w, where Lgy(w) =< Sg,81, 82, ..., 5, > and the switches
81,82,-.., 8, lie on some POC, P, in that particular order, always follows a valid UD path and introduces

no deadlocks.

Proof: This can be easily derived from Theorem 4, and the fact that non-minimal UD routing is deadlock-
free, and non-minimal and minimal UD paths can coexist without deadlock. n

Given the above background, we can see that finding a set of POCs that cover an arbitrary multicast
destination set is equivalent to finding a set of path-based multidestination worms that cover the same
multicast set. Furthermore, instead of just finding a set of path-based multidestination worms that cover
a given destination set, we would like to find a minimal set of the path-based multidestination worms that
cover the multicast set. To do this, we adopt a greedy heuristic. We first try to find POCs that have
maximal number of destinations (called the longest POCs). After eliminating the destinations covered by
these POCs, we then repeat the procedure of trying to find POCs with maximal number of destinations
among the remaining nodes. This procedure is repeated till a set of POCs is obtained that cover the given
destination set. The path-based multidestination worms corresponding to these POCs then represent a
near-optimal number of worms for covering the given destination set.

A formal specification of the algorithm to find POCs is given in Fig. 13 as a five-step approach. In the
first step, a depth-first-search (DFS) is applied on the BFS spanning tree discussed in Section 2.2, starting
with the root node and considering only the “down” links. This is to facilitate the construction of the longest
POCs. The step results in a DAG, T'. Figure 14(a) shows the BFS graph of a sample irregular network. Let
us assume there are two processors connected to each switch of the irregular graph, and let the processors
on the switch numbered i be labelled as p;; and p;>. Let us consider a multicast with the source as pio,1
and two destinations on each switch except switches 10 and 6. Figure 14(b) shows the DAG, T, which is
created when the above DFS is applied on the BFS tree in Fig. 14(a). A participating switch is defined as
one with at least one participating processor connected to it. In the third step, the resultant DAG, T', from
the DFS is reduced to a DAG, T”, which contains only the participating switches. Figure 14(c) shows the
T' created when the T from Fig. 14(b) is reduced.

In order to determine the longest POCs and form an set of such POCs, we carry out a weighted de-
scendents approach. As indicated in step 4, each switch is given an appropriate weight according to the
number of participating processors connected to it and to all its descendent switches. Figure 14(c) shows the

corresponding weights. The child with the largest weight indicates how to proceed while building the longest

22

Finding a set of POCs

Inputs: G: irregular graph, B: a breadth first spanning tree on the switches of G, D: set of destinations, ns: the
source; ¢(n, s): node n is connected to switch s.

Output: A set of POCs, L.

Procedure:

1. Apply the DFS on B from the root node r of B. Only down tree links belonging to B, and down cross links which
connect switches in different levels of B are used. Let the resulting DAG be T'.

2. S« {s| sisaswitch in G, and 3d,d € DU {n;s} and ¢(d,s)}. S is the set of participating switches.

3. Reduce T to a DAG T which contains all switches in S and no other switches. Reduction is done by removing
all non-participating switches from 7. Every time a switch s and all links incident on s are removed, directed
down links are drawn from each parent of s to each child of s.

4. Calculate the weight wt of each switch in 7" as follows:
wt(s) + ZsieDesc(s) p(s;) where Desc(s) is the set containing s and all the descendents of s in T, and p(s) is
the number of participating processors connected to the switch s.

5. L+ null; i+ 0

while T is not empty

(a) Let p1 be a switch with maximum weight in T".
li << p1,p2,...> such that p;11 is the switch with the maximum weight among all children switches of p;.

(b) T« T —{p|p€el}

(c) I; +< mi,1,m1,2,...,M2,1,M2,2,... > where {n;1,n;2,...} are the participating processors connected to
switch pPj in ;.

(d) L+ Lu{li};i+i+1

end while

Figure 13: Finding a set of POCs.

[0]1 [5]8 4 4
[&]

[z]6 [7]2 2

[o]2 2
© (d

Figure 14: Illustrating steps for construction of POCs: (a) sample BFS graph of an irregular network, (b) DFS T’
created by step 1, (c) DAG T created according to step 3 and the weights for switches computed according to step
4, and (d) the set L of chains.

23

POC from the parent. After the weights have been calculated, chains of switches are stripped off from 7"
according to their weights in step 5. In other words, the heaviest chain gets stripped first from T”, and the
lightest the last. The chains of switches stripped off from the T" are shown in Fig. 14(d) in chronological
order from left to right (except the chain with switch 10).

5.2.5 Algorithms for Performing Multi-Phase Multicast

In this section we propose two multicast algorithms using the multidestination worms that were derived in
the previous sections to cover given (arbitrary) multicast destination sets. Under the Multi-phase multicast
with SSR worms (MPM-SSR) scheme, each of these multidestination worms cover only destinations that
are all connected to the same switch. On the other hand, while using path-based multidestination worms,
each worm can cover a destinations connected to switches along a valid (unicast) path from the source that
conforms to the base routing scheme. The algorithms presented differ in the number of phases required to
perform the multicast and in the amount of contention that is caused among the constituent multidestination
worms of the multicast.

The Greedy (G) Algorithm

This algorithm uses a greedy approach on the set of multidestination worms that were derived in the above
subsections. The first step of the algorithm is to find a set of multidestination worms to cover the given
set of multicast destinations and to order these worms in decreasing order of the number of destinations
covered (this set is obtained as a result of the previous subsections). In the next step of the algorithm, the
source sends a multidestination worm that covers the largest subset of the destinations. In every succeeding
step, the source and destinations covered up to the beginning of that step act as secondary sources and
send out multidestination worms from the ordered list to some of the remaining destinations. This process
continues till all the multidestination worms in the set have been sent out i.e. until the multicast is complete.
Figure 15(a) shows these steps using SSR multidestination worms for the example of Fig. 14(a). In the first
step, an SSR worm from the source on switch 10 covers both destinations on switch 5. In the second step,
the source and each destination on switch 5 cover all destinations on switches 3, 9, and 1, respectively, and so
on. The multicast completes in 3 steps. Figure 15(b) shows the steps for the same example multicast using
path-based multidestination worms: In the first step, the source on switch 10 covers all the destinations on
switches 5, 3, and 9 with a single path-based multidestination worm. In the second step, the source covers
all destinations on switches 1 and 7 using a multidestination worm, one destination on switch 5 covers all
destinations on switches 4 and 8, and the other destination on switch 5 covers all destinations on switch 2.
Therefore, the multicast completes in two steps.

Since at each step of the algorithm, the maximum possible destinations are being covered (under each of
the multi-phase schemes), this algorithm takes minimum number of steps to execute. However, it has the
drawback that the number of multidestination worms starting from a single switch might be large, leading

to link contention.

The Less Greedy (LG) Algorithm

We propose the LG algorithm to address the above drawback. Like the Greedy algorithm, this algorithm
also finds a set of multidestination worms to cover the given destination set in the first step, and sends out

a multidestination worm that covers the largest subset of the given multicast destination set in the next

24

12

Figure 15: Illustrating the Greedy multicast algorithm for: a) the MPM-SSR scheme and b) the Multi-drop Path-
based scheme. The numbers in brackets denote step numbers.

step. However, following this step, only one destination from each switch that has been covered sends out
multidestination worms from the set of remaining multidestination worms. Since all destinations covered in

the particular step do not send out worms, this scheme is given the name Less Greedy.

@ (b)

Figure 16: Illustrating the Less Greedy multicast algorithm for: a) the MPM-SSR scheme and b) the Multi-drop
Path-based scheme. The numbers in brackets denote step numbers.

Figure 16(a) shows these steps using SSR multidestination worms for the example of Fig. 14(a). In the
first step, an SSR worm from the source on switch 10 covers both destinations on switch 5. In the second
step, the source and one destination on switch 5 cover all destinations on switches 3 and 9, respectively.
In the third step, the source covers both destinations on switch 1, one destination on switch 5 covers both
destinations on switch 7, and so on. The multicast completes in 4 steps. Figure 16(b) shows the steps for
the same example multicast using path-based multidestination worms: In the first step, the source on switch
10 covers all the destinations on switches 5, 3, and 9 with a single path-based multidestination worm. In
the second step, the source covers all destinations on switches 1 and 7 using a multidestination worm, one
destination on switch 5 covers all destinations on switches 4 and 8, and one destination on switch 3 covers
all destinations on switch 2. This algorithm may take more steps to complete, but it reduces link contention

by making sure that only one multidestination worm starts from a switch during one step.

5.2.6 Comparison of Multi-phase Multicasting Schemes

We now compare the two multi-phase multicasting schemes that we have proposed in the above subsection.
It is fairly obvious that the each of the multidestination worms under the MPM-SSR, scheme is also a valid
path-based multidestination worm, since it replicates at only one switch and at that switch it replicates to
one or no other switch (actually it only replicates to those ports that lead to other destinations). However,

25

each of the path-based multidestination worms can cover at least the same number of destinations as a
multidestination worm under the MPM-SSR scheme. Thus the number of worms required for multicast
using path-based multidestination worms is always less than or equal to the number of worms required
under the MPM-SSR scheme. Thus, multicasting using path-based multidestination worms will always
perform as well or better than the MPM-SSR scheme.

However, the MPM-SSR scheme has some advantages over the path-based scheme in that deriving the set
of multidestination worms for multicast is a simpler operation under the MPM-SSR scheme. Furthermore,
the node need not really be equipped with the complete topology of the network: it suffices for the nodes
to know the mapping from the nodes to the switch IDs and the port numbers of the switches to which
they are connected. However, as described above, the path-based scheme will almost always outperform the
MPM-SSR scheme. We therefore do not consider the MPM-SSR scheme for the rest of this paper.

Under the path-based multicasting scheme, the actual multicast latency may differ depending on the
algorithm used for multicast and the multicast destination set given as input. Our previous study [19] has
shown that the Less Greedy algorithm performs better than the Greedy algorithm on the average because
it reduces the contention for network links among the constituent multidestination worms of the multicast.
We therefore only consider the path-based multicasting using the Less Greedy algorithm as a representative

of the multi-phase multicasting schemes using multidestination worms in the rest of this paper.

5.3 One-phase Multicast using Tree-based Multidestination Worms

We have presented methods for multicasting using multiple phases of multidestination worms in the previous
section. We now propose a method to perform multicast with a single multidestination worm using a method
of multidestination header encoding called bit string encoding.

Multicast using bit-string encoded multidestination worms has been proposed in the context of regular
networks [5, 34, 48]. An efficient, single phase multicasting scheme using such a multidestination worm
with a bit-string encoded header has been proposed in [34, 48]. Figure 17(a) shows a sample tree-based
multidestination worm which completes the sample multicast shown in Fig. 14(a) in a single phase. Key to
the efficient implementation of this multicast is the presence of reachability strings at each of the network
switches. Although such reachability strings are fairly easy to determine in regular networks, determining
such reachability strings in irregular networks is harder. Furthermore, multiple paths exist to a given destina-
tion from a given switch, a property not present in many regular networks such as many of the unidirectional
and bidirectional MINs. One important contribution of this paper is to outline a method for setting up these
reachability strings as an enhancement of the setup procedure used for the UD routing algorithm in irregu-
lar networks. Another contribution is the presentation of simple header modifying procedure that prevents
multiple copies of a worm from being forwarded to a destination along different paths. Before examining
these however, we briefly review the strategy adopted for encoding such multidestination worms.

5.3.1 Encoding Multidestination Headers

Bit string encoding is an example of a dynamic encoding scheme. In this form of encoding the header carries
an N-bit string where N is the number of nodes in the system. The ith bit of this string is set to 1 if node
i is a multicast destination; otherwise the bit is set to 0. In addition, a bit (called the up-down bit) may be
added to the header to indicate whether the worm is currently traveling along the ‘up’ or ‘down’ direction.
This bit is initially set to ‘1’ to indicate that the worm is traveling in the ‘up’ direction: it is reset when the

26

Figure 17: (a) A tree-based multidestination worm which completes the sample multicast of Fig. 14(a) in a
single phase. (b) A sample existence of multiple paths to a destination on switch 7.

worm begins traveling ‘down’-wards.
To decode such a header efficiently, the switches of the system must possess information about the nodes
that are reachable from each of their output ports. This information can be efficiently captured using a

bit string similar to the one described above. Bits that are ‘1’

in this bit string represent nodes that are
reachable through a particular ‘down’ output port. In addition, every switch maintains a bit string that
captures the set of nodes reachable through all of its ‘down’ output ports. Given these reachability strings
[34], decoding a bit string header reduces to a simple logical operation. Before examining this logic however,

we first examine the procedure adopted for setting up these reachability strings.

5.3.2 Setting up Reachability Information

The setup procedure used for the UD routing algorithm assigns a direction as one of ‘up’ or ‘down’ to every
link in the system. From the root switch, the ‘down’ links along with the other switches form a Directed
Acyclic Graph (DAG). This implies that more than one of the switch’s ‘down’ links may lead to a given
set of destinations. Furthermore, two different switches may lead to the same set of destinations (following
‘down’ links alone). If reachability strings captured all the destinations reachable through a given switch’s
(‘down’-ward) output ports, we may end up forwarding a multidestination worm to more than one output
port to cover the same set of destinations—this set of destinations will receive multiple copies of the message.
To prevent this we can restrict the reachability strings at a switch so that only one ‘down’ port leads to a
given destination. We call these reachability strings restricted reachability strings.

However, even this does not prevent multiple copies of the worm from reaching some of the destinations.
For example, consider a variation of Fig. 17(a) with a bidirectional link between switches 4 and 7. Two
of switch 6’s ‘down’ ports lead to switch 7, one through switch 1 and the other through switch 4. Even
if the reachability strings at switch 6 were made mutually exclusive, a multidestination worm intended for
destinations in switches 4 and 7 will result in two copies of the message being forwarded to switch 7. This
is because that switch is reachable through the ‘down’ links of switches 1 and 4. Switch 1 forwards copies of

the worm! along its ‘down’ ports to switches 4 and 7. However switch 4 will end up forwarding the arriving

INote that switch 4’s nodes will be included in the reachability strings of two of switch 6’s ports: the port that leads to
switch 1 and the port that leads directly to switch 4. However, the reachability string at switch 1 also includes the nodes of
switch 4 (and those of switch 2) since these are reachable through its down links. We are assuming here that when the restricted
reachability strings are calculated, the nodes of switch 4 (and switch 2) will be included in the restricted reachability string of
the port that leads to switch 1 from switch 6. The port that leads to switch 4 will have an all 0 restricted reachability string
in this case.

27

worm to switch 7 because: (i) switch 7 is reachable through its down links and (ii) the header of the worm
still encodes the destinations in switches 4 and 7. This situation is shown in Fig. 17(b). There are two
methods by which such forwarding can be prevented. The first method is to restrict multicasts so that they
are adhere to a strict (common) BFS tree, i.e. to ignore cross-links. In a strict BFS tree the link between
switches 4 and 7 would not be usable, preventing the situation described above.

A second alternative is to modify the headers of multidestination worms so that the worm copies carry
only the subset of the multicast destinations that are reachable through the restricted reachability strings.
In this case, only one of switch 1’s ports will have a restricted reachability string that includes the nodes of
switch 4. Depending on how the restricted reachability strings are set up, this string may or may not include
the nodes of switch 7. If it does include the ports of switch 7, no other ports of switch 1 will have restricted
reachability strings that include nodes of switch 7. Therefore, one copy of the worm will be forwarded to
switch 4, which will in turn forward a copy to switch 7. If, on the other hand, the port whose restricted
reachability string includes the nodes of switch 4 does not include the nodes of switch 7, then some other
port of switch 1 will have these nodes in its restricted reachability string. Switch 1 will therefore forward
two copies of the worm to switches 4 and 7 respectively. However, because of the header modification, the
copy that is forwarded to switch 4 will not include the destination of switch 7 in its header, preventing a
copy from being forwarded for switch 4 to switch 7.

If we decide to modify multidestination worm headers for each of the replicated copies, additional logic
is required to perform this header modification. However the method has the important advantage that
multicast need not be restricted to one common tree. We therefore choose to modify multidestination headers.
It is to be noted that with header modification, we can even relax the requirement for restricted reachability
strings (i.e. the original reachability strings can be used instead). However the header modification logic
becomes considerably more complex without the restricted reachability strings. We therefore use such
restricted reachability strings for the scheme discussed in this paper. A procedure to set up the restricted
reachability strings at the switches given the network topology (found as a result of the setup algorithm for
UD routing) is shown in Fig. 18. The notation used in this procedure is as follows: By is the set of switches at
level [of the BFS tree B, r; is the total reachability string of switch sw;, and r;; is the restricted reachability

string of port p; of switch sw;.

5.3.3 Decoding Multidestination Headers

For the purposes of this paper, the decoding method adopted is as follows. If an arriving multidestination
worm has its up-down bit set to ‘1’, the worm’s header is compared with the total reachability string
associated with the switch (a bit-wise AND is performed of the two strings). If all the worm’s destinations
are reachable from the switch’s ‘down’ output ports (the fore-mentioned bit-wise AND operation results in a
string that is identical to the bit-string header), the up-down bit is set to ‘0’ and the header is compared with
the (restricted) reachability strings of each of the switch’s output ports that lead to ‘down’ links (another
bit-wise AND). If the output port leads to any of the worm’s destinations (the result of the bit-wise AND
is non-zero), the worm is replicated to the specified output port. Before being forwarded to the specified
output port, the worm header has to be modified. If a multidestination worm arrives at a switch with its
up-down bit set to ‘0’, the worm’s header is directly compared with each of the ‘down’-ward ports’ restricted
reachability strings.

If not all the multidestination worm’s destinations are reachable from the switch’s output ports that lead

to ‘down’ links, the worm is routed to any one of the switch’s output ports that lead to ‘up’ links. The

28

Calculating Reachability Information

Inputs: B: the BFS tree derived for the UD routing algorithm
Output: Set of restricted reachability strings for each switch
Procedure:

1. for | = maxlevel downto 0 /* root switch is at level 0 */
foreach switch sw; € B;
for j =1 to num_ports
if port p; connects to node ny via a down link
set kth bit of r;; and r;
elseif port p; connects to switch swy via a down link
rij = bit-or(ri;, Tk); rs = bit-or(rs, rx);
/* for each switch, make sure only one of the down ports leads to a given destination */
2. foreach switch sw; € B
for j = 1 to num_ports — 1
for k = j + 1 to num_ports
if ports p; and pi outbound to down links
r;; = bit-and(r;;, bit-not(r:x))

Figure 18: The setup algorithm to find the restricted reachability strings and the total reachability string for each
switch in the network.

choice may be made adaptively depending on local traffic conditions or may be made arbitrarily (for eg.,
round robin among the output ports that lead to ‘up’ links). The worm should eventually arrive at a switch
from which all its destinations are reachable. Note that this is a property that exists because of the UD
routing algorithm and the method followed for assigning ‘up’ and ‘down’ directions to the links (the set-up
procedure). A sample implementation that performs this function has been presented in [42]. We assume

such an implementation for the rest of this paper.

6 Comparative Evaluation

Having described the three different efficient multicasting schemes that we are comparing in this paper, we

now compare their performance qualitatively and by using detailed simulation study.

6.1 Qualitative Evaluation

The NI-based multicasting scheme requires the computation of the entire k-binomial multicast tree. It may
also require additional memory at the network interfaces to buffer multicast packets. This is because each
packet is forwarded to multiple destinations, and has to be buffered until the NI-processor has injected all
required copies into the network. However, the NI-based multicasting scheme requires no additional support
at the switches than what is required for traditional point-to-point message communication.

The tree-based multicasting scheme only requires a single multidestination worm to perform multicast.
Furthermore, encoding the multidestination worm header is fairly simple: start with an N bit string and set
the bits in the positions corresponding to the destinations to ‘1’. However, decoding the multidestination

header is more complex. First, the switches need to be equipped with reachability strings, which means

29

space is required at the switches for this. Second, there is a one time cost of setting up the values in the
strings (which can be done at the time of network startup or reconfiguration). Finally, the N bit string
has to be compared with the reachability strings of each of the N output ports and the copy of the worm
forwarded through a given output port should carry a modified header. Depending on the size of the bit
string (which in turn depends on the system size), the cost of such logic may be significant. Finally, support
for deadlock-free replication is required at the switches.

The path-based multicasting scheme also requires support for replication at the switches. Furthermore,
encoding the worm header is relatively harder. The source needs to know the network topology and needs to
run an algorithm to decide on paths that can cover the destination set using very few multidestination worms.
Once the paths have been formed, the header must be formed in the format described above. However,
decoding the multidestination header may be relatively easy. First, there is no necessity for maintaining
reachability strings at each of the switches. Second, the decoding operation at the switches is relatively
simple: it is the same table lookup operation required for unicast messages or it is the simple processing of
a k-bit string. Finally, the cost of decoding logic does not increase with increase in system size.

The relative performance of the three multicasting schemes may depend on a number of parameters. To
study the factors that may affect multicast performance in the presence of network contention, we performed
simulation experiments varying a number of system parameters one at a time. In the following subsection we
present the experiments we performed and the parameters that we varied. We then describe our method for
generating different irregular topologies. The results of our experiments with single multicast are presented
next, followed by the results for our experiments to measure the impact of increasing applied load on multicast
latency.

6.2 Experiments and Performance Measures

We used a C++/CSIM based simulation test-bed [31] for our experiments. The simulation test-bed is capable
of modeling a large number of topologies, and can model a variety of flow control techniques ranging from
wormhole routing to virtual cut-through routing. In this paper, we assume cut-through routing as the flow
control technique. Keeping in mind the total amount of buffer space in current-day switches such as the
IBM SP, and accounting for an increase in this amount with advances in technology, we choose an input
buffer size of 640 flits for the simulated switches. While this value is greater than the largest packet that we
assume (viz. 128 flits), the flow control technique places weaker requirements than virtual cut-through: a
packet is allowed entry into the input buffers even if there isn’t space for the entire packet to be buffered in
the switch. As specified before, for an input buffered scheme a buffer larger than the largest packet ensures
that a multicast can eventually be completely buffered and this is sufficient to prevent deadlock.

For each of our experiments, we assume the following default parameters. We assume that the I/O Bus at
every host has a bandwidth of 266 MB/s. The current PCI Bus standard calls for a bandwidth of 133 MB/s:
our assumptions reflect the belief that I/O bus bandwidths will increase in the future. We use the term R to
denote the ratio of 55 to t,s, and we assume a default value of R = 1, i.e., in our default case, tps = t,s. This
reflects our belief that messaging layers will become thin and efficient, and that while most work relating
to initiating a message may still be done on the host processor, the relatively low speed of the NI processor
makes the value of t,,5 comparable to t,,. We assume a default cycle time of 5 ns, and a default value of 1000
cycles for ¢y, (this time includes the time for initiating the DMA transfers and any other operations that the

messaging layer at the host may perform). This value corresponds to the software overhead incurred at the

30

host using many of the current-day lightweight messaging layers (such as FM [29]). For all our experiments,
we assume that the (portions of the) overhead for receiving a message at the host (¢,) and at the NI (¢,.),
are equal to their counterparts for the sending overhead (i.e. tp, = ths and tn, = tys).

In the network, we assume that links are 1 byte wide and that this is equal to the flit size. The link
propagation time for a flit across a physical link is assumed to be 1 cycle, as is the time to propagate through
a switch crossbar from the input to the output buffer of the switch. We assume a uniform routing overhead
of 1 cycle for all three schemes. This reflects our assumption that while the cost of the logic involved for
decoding and routing a header under the different schemes may vary, the approximate latency for doing these
operations is likely to be kept within a cycle in most switch implementations. We assume a default packet
size of 128 flits, and a default message size of 1 packet. Finally, we assume a default system of 32 nodes that
are interconnected by eight 8-port switches in an irregular topology. Our method for generating different
irregular topologies is described in the next subsection.

We use two types of experiments to measure the performance of the three multicasting schemes. In the
first type of experiments, we measure the latency of single multicasts for each of the three schemes and study
the effect of different parameters on the relative latencies of the three schemes. We assume that exactly one
multicast occurs in the system at any given time and that there is no other network traffic. This gives us
an estimate of the best possible performance of each of the three schemes in isolation. Furthermore, we can
isolate the effect of the various network parameters on the performance of each of the three schemes. For
our study, we vary each of the following parameters one at a time: the ratio R of s to t,s, the software
startup overhead (tss) at the host, system size, switch size, message length, number of switches, and packet
size.

In a real parallel system however, it is unlikely that at any given moment the only traffic in the network is
due to a single multicast [18, 17]. A more likely traffic scenario consists of multiple concurrent multicasts in
the system. We use such traffic for our second type of experiments. We apply an increasing load consisting
of multicast traffic alone and examine the load at which the network saturates with each of the three
multicasting schemes under the influence of the various parameters. As in [48], we use effective applied load
as a measure of our stimulus. For a multicast of degree m and a load of B;, the effective applied load is
mB;. We study the performance of two different degrees of multicasts over the range of loads till saturation.
We also study the impact on this type of traffic of three network parameters: the ratio R, the number of
switches, and the message length.

6.3 Generating Irregular Topologies

We now describe the method that we adopted for generating different irregular topologies for our exper-
iments. To generate a topology with s k-port switches and p nodes, we reduce the problem to that of
generating interconnections among (sk — p) switch ports so that the graph with the switches as vertices
remains connected. We assume that all ports of a switch are full duplex and that at most one full duplex
link runs between a pair of switch ports. Links are not allowed between ports of the same switch.
Depending on a parameter which we call the percentage connectivity, we allow a certain number of
switch ports to remain unconnected (i.e. they have no attached links). For an interconnection with 100%
connectivity, we have a total of s x k — p ports available, each of which are connected to the port of another
switch via a bidirectional link. On the other hand, for a percentage connectivity of 80% we have (s x k—p)x0.8

switch ports which are connected to other switches: (s x k —p) x 0.2 of the switch ports remain unconnected.

31

We use a random number generator to generate the port and switch to which a given switch port should
be connected or to decide if the port should be connected to a processing node. Using this methodology, we

generate 10 different topologies for a default connectivity of 80%.

6.4 Single Multicast Performance

We now present our results for the effect of single multicasts on the three different multicasting schemes. One
by one, we examine the effect of each parameter on the performance of the schemes. As mentioned in Sec. 1,
it must be kept in mind that the multi-phase path-based multicasting scheme can also make use of support
at the NI to further enhance multicast performance. However, since we are evaluating the effect of support
at the NI versus support at the switches, we assume that under the path-based scheme, every intermediate
destination receives the incoming message completely at the host and then retransmits the message to the
NT and then onto the network.

6.4.1 Effect of R

We first examine the effect of variation in the ratio R (tps/tns) on the performance of the three multicasting
schemes. Given our default value of ¢ = 1000 cycles we vary the value of ¢,s to take on the values 2000,
1000 (default), 500, and 200 cycles (to generate the following values of R: 0.5, 1, 2, and 5, respectively).
Figure 19 presents the results of our experiments. We find here (as well as in the other single multicast
experiments to follow) that the tree-based multicasting scheme performs extremely well, since it requires
only one message and therefore only one communication phase. The interplay between the NI-based and
path-based schemes is more interesting. As the ratio increases (i.e. t,s shrinks relative to ty,), the NI-based
multicasting scheme begins to outperform the path-based scheme. This is because although the NI-based
scheme involves more communication phases, every communication phase incurs a receive overhead of ¢,
and a send overhead of t,;. On the other hand, the fewer phases of the path-based scheme each incur a

receive overhead of t,, + tp, and a sending overhead of tp,s + ;5.

R=05 Default Parameters R=2 R=5
24000 T T 13000 T T T T 8000 T T T 6000 T T

——
A s
22000 12000 7500 ss00 | e p
20000 11000 7000
18000 10000 6500
16000 9000 6000
14000 8000 5500
5000 |-
12000 7000 as00 [
10000 6000 4000 | J
8000 5000

3500
6000 4000

3000
0 5 0 35 0 5 30 35 0 5

path -+-
5000 tree p8-—

4500 |/
4000 ,/
3500 | ’«"
3000 |-

ni ——f
path —+-|
tree -B-
T
"
A

Multicast Latency in cycles
Multicast Latency in cycles
Multicast Latency in cycles
Multicast Latency in cycles

o-88BEBREE66-688880 1
2500 il
0 35 [

o §-8-8;8-8588,06-5-0-58

10 15 20 25 30 35
Number of destinations

10 15 20 25 3
Number of destinations

10 15 20 25 3 10 15 20 25
Number of destinations Number of destinations

Figure 19: Effect of R on single multicast performance.

6.4.2 Effect of Software Overhead at Host Processor

We also studied the performance of varying the startup overhead at the hosts (t5s) while keeping R at a
constant value of 1 (i.e. t,5 was changed proportionately with ¢55). As can be seen from Fig. 20, we find that
the relative performance of the three schemes remains largely unaltered by the change in the value of tjs.
This is perhaps intuitive: given that the number of phases for multicast under the three schemes remains
unchanged because of the change in the software overhead at the host processor, and that the ¢, changes

with 5, the relative performance of the three multicasting schemes should remain unchanged. We therefore

32

conclude that the relative performance of the path-based and NI-based schemes is more sensitive to the ratio

R than to the value of ¢ (or t,5) alone.

Ths = 200 cycles Default Parameters Ths = 3000 cycles
T T T T 13000 T T T T 40000 T T T T

12000
11000
10000
9000
8000
7000
6000
5000
4000

3500

3000 1 35000 |-

30000
2500

b
S
ni ——
path ~+-
20000 - tree -8--]

25000
2000

1500 - 15000 |- R

00088888 06888688
L L L L L L

Multicast Latency in cycles

Multicast Latency in cycles
Multicast Latency in cycles

copsssoaspaas. e

1000

10000
30 35 0 5

0 5 30 35 0 5 1

10 15 20 25 0 15 20 25 30 35
Number of destinations Number of destinations

10 15 20 25
Number of destinations

Figure 20: Effect of Software Overhead at Host Processor.

6.4.3 Effect of System Size

To study how multicast performance scales with system size we performed experiments for 4 different system
sizes: 32 nodes (default), 64 nodes, 128 nodes, and 256 nodes. With increase in system size we also increased
the number of switches so that the percentage connectivity remained 80% and the percentage of switch ports
connected to processing nodes remained unchanged. For example, we used eight 8-port switches (64 switch
ports in all) for our experiments with a 32 node system, sixteen 8-port switches (128 switch ports in all) for
our 64 node experiments, and so on.

Figure 21 presents our results. We find that the tree-based multicast again remains almost unaffected
by change in system size. The path-based multicasting scheme is adversely affected by increase in system
size. As the system size increases, the number of phases required for the path-based multicasting scheme
also increases. Note that there is an increase in the number of phases required to perform multicast to the
same number of destinations in a larger system than in a smaller system under the path-based scheme. This
is because our random choice of multicast destinations spreads the destination set among the larger number
of switches present in larger systems. The number of path-based multidestination worms required to cover
a given destination set (and hence the number of phases required in the multicast) depends inversely on the
average number of multicast destinations per switch. Again, the fact that the path-based scheme incurs send
and receive overhead at both the host and network interface causes its performance to worsen more rapidly
than the NI-based multicast, which actually requires more communication phases for performing multicast.

Default Parameters System Size = 64 System Size = 128 System Size = 256

13000 — 16000 hdhiballetainh s 20000 e 35000 T
$ 12000 4 4 L s il @ At ni ~—
2 £ 1a000 2 18000 . 8 so000 [- >
S 11000 2 g . =} ; p
3 3 & 16000 | T ree -5--]
£ 10000 £ 12000 - oo £ ni o] < %
g 9000 g / path -+ g oo ¥ path =1 3 20000 ,
I3 & 10000 | tree -0 & 12000 | / ree -8 15 /
% 8000 E / E [1 1 8 1s000} |
7 7000 7 8000 R 3 10000 - ¢ % 10000 | |
£ s g / £ o000t 1 £]
2 5000 ERR T 1 2 eo00 1 2 s000fsocosscecoonaasa

2000 EEFEEEEROOEEGE0 s000 BEBEEPERBEpO O DM 4000 EEBB BB EEEE 0 0E0E0 o L L L . .

0 5 10 15 20 25 30 35 0 10 20 30 40 5 60 70 0 20 40 60 80 100 120 140 0 50 100 150 200 250 300
Number of destinations Number of destinations Number of destinations Number of destinations

Figure 21: Effect of System Size.

6.4.4 Effect of Switch Size

We studied the effect of increasing switch size on multicast performance by keeping the system size constant
(at the default value of 32 nodes), and by increasing the switch size from 8 ports to 32 ports. We decreased
the number of switches so that the total number of switch ports remain the same. We therefore have four

switches in our experiments with 16-port switches and two switches in our experiments with 32-port switches.

33

Our results are shown in Fig. 22. We find that increasing switch size favors the path-based scheme since
the number of path-based multidestination worms (and the number of phases in the multicast) reduces with
increasing switch size. For our experiments with 32-port switches, the path-based and tree-based multicasts
perform identically since they require exactly one multidestination worm and a single phase to perform
multicast. The performance of the NI-based and tree-based schemes remain unaffected by increase in switch

size: the number of phases for both schemes is independent of switch size.

Default Parameters Switch Size = 16 Switch Size = 32
13000 T T T T 13000 T T T T 14000 T T T T

12000 12000 13000
11000 11000 12000
10000 10000 11000
9000 9000 10000

9000
8000 8000 8000
7000 7000 7000
6000 6000 - ¥ g 6000
5000 5000 |-/ g 5000
2000 w000 FEEEEEEgOEDEgBEE

4000
30 35 0 5 30 35 0 5

e

Multicast Latency in cycles
Multicast Latency in cycles

Multicast Latency in cycles

o §-8-8;8-8588,0-6-5-0-58 - - - - B

0 5 10 15 20 25 10 15 20 25 10 15 20 25 30 35
Number of destinations Number of destinations Number of destinations

Figure 22: Effect of Switch Size.

6.4.5 Effect of Number of Switches

To see the effect of increase in number of switches on multicast performance we increased the number of
switches used while keeping the system size constant. However, all switches had 8 ports. Therefore, unlike
the previous experiment, the total number of switch ports are not kept constant: they increase with increase
in the number of switches.

As the number of switches for a given system size increase, the average number of nodes per switch
decreases as does the average number of multicast destinations per switch. The results of Fig. 23 corroborate
the results of Sec. 6.4.3, viz., the number of multidestination worms, the number of phases for multicast, and
the multicast latency for the path-based scheme increase with decrease in the average number of destinations
per switch. The other two multicasting schemes remain largely unaffected by this increase in the number of
switches.

Number of Switches = 6 Default Parameters Number of Switches = 10 Number of Switches = 12
13000 ;
et

13000 T T T T T T
12000
11000
10000
9000
8000
7000
6000
5000
4000

13000 ——
12000
11000
10000
9000
8000
7000
6000
5000

4000
30 35 0 5

13000 T T T T T T
12000
11000
10000
9000
8000
7000
6000
5000

4000
10 15 20 25 30 35 0 5
Number of destinations

12000
11000
10000
9000
8000
7000
6000
5000

4000
10 15 20 25 30 35 0 5 10 15 20 25
Number of destinations Number of destinations

ni
path -+
tree -8--

bt

ni
path -+-

P e tree -@--

Multicast Latency in cycles

Multicast Latency in cycles
T T T

Multicast Latency in cycles

Multicast Latency in cycles
— T

G- -850 5§08 5,0-0-5-8-8,8

0 5§ 10 15 20 25
Number of destinations

- G- G- 0-8,6 -8 6 0 4,0-0-§-8-58

-G080 508085880

-G--0-58 -5 5 0 0,0-0-8-0-80
30 35

Figure 23: Effect of Number of Switches

It is to be noted that for the NI-based scheme, the average path length changes in each of the last three
sections. However, this affects only the propagation time of the worms. Furthermore, since we are using
cut-through routing (which is almost “distance independent”) this increase in propagation time is negligible.

6.4.6 Effect of Message Length

Figure 24 shows the effect of increasing message length on multicast performance. Here too, the path-based
scheme begins to perform worse than the NI-based multicast beyond a message length of 512 flits. However,
the reason for this decrease in the relative performance of the path-based scheme can be attributed to the

34

increase in the latency of each of its phases: the number of phases remains unchanged. We assume a packet
size of 128 flits. Messages larger than this size are split into multiple packets. Under the path-based scheme,
a phase finishes only when all the packets of the message arrive at an intermediate destination: only then
can the node initiate the path-based multidestination worm of the next phase. On the other hand, under
the NI-based scheme (and following the FPFS discipline outlined earlier), a packet can be forwarded to the
each of the recipients of the next phase as soon as it arrives at the network interface of an intermediate
destination node. The NI-based scheme therefore begins to gain in performance as the number of packets in

a message increases.

Default Parameters Message Length = 256 Message Length = 512 Message Length = 1024
13000 T T T T 20000 T T T T T T 26000 T T T T T T 40000 T T T T T T
8 12000 |- 1 8 18000 1 g 24000 - 2 om0 sl
& 11000 - & 16000 | g § 220001 5 #
£ 10000 |- S 000 | £ 20000 | S 30000 ni ~—|
2 9000 |- g R g 18000 - 3 path -
g 3 12000 g B & 16000 B & 25000 tree 8-
g 8000 [& e ni & &
Z = 10000 - path —+-| S 14000 - 4 s
g 70001 q 4 tree - @ 12000 - q g 20000 1
£ 000 | g 8o0F 1 £ 10000 | 1 =
2 s000 2 6000 I 1 2 oo 3 15000 i
I, 7 - 0-0-6-8-8-8-8800-6-8-8-8-8 G888 aREEE68888E T -8-8- I -o-8- BB
4000 EEEEEE TR EEFEEE 4000 PR 6000 it Jooop L2 EEEEEGEEAETEEE
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of destinations Number of destinations Number of destinations Number of destinations

Figure 24: Effect of Message Length

6.4.7 Effect of Packet Size

The results of this section underline the importance of the number of packets on the relative performance
of the NI-based and path-based schemes. In the experiments of this section, we keep the message length
constant at 128 flits but vary the packet size from 32 flits to 128 flits. Figure 25 shows the results. We
see that as the number of packets increases, the NI-based scheme begins to perform comparably to the
path-based scheme. The graphs for multicast with four packets (a packet size of 32 flits in this section,
and the graph for a message length of 512 flits in the previous section) are almost identical in terms of the
relative performances of the schemes. We therefore conclude that the number of packets in a multicast has
greater bearing than the actual message length on the relative performance of the NI-based and path-based
multicasts.

Packet Size = 32 Packet Size = 64 Default Parameters
26000 T T T T 18000 13000 T T T T

24000 12000
22000 11000
20000 10000
18000 9000
16000
14000 8000
12000 7000
6000

10000
8000 sooBnoocoooaaBa | 5000
6000 L . — 4000
30 35 [

16000
14000
12000
10000

8000

Multicast Latency in cycles
Multicast Latency in cycles

6000

4000
30 35 0 5

Multicast Latency in cycles

©-0-0-8-8-8608806-6-0-8-8-0 B-8,8-81 L 8-5-6-8-81
i L L I T L o §-8-8;8-8588,06-5-0-58

0 5 30 35

10 15 20 25 10 15 20 25 10 15 20 25
Number of destinations Number of destinations Number of destinations

Figure 25: Effect of Packet Size

6.5 Latency versus Applied Load for Multicast

We now present our results for multicast latency under an increasing multicast load for each of the three
schemes. We used two different multicast degrees in our experiments: 3-way multicasts (i.e., multicasts with
3 destinations) and 15-way multicasts. For each of our experiments, our simulations were run for at least
one million cycles, with measurements beginning after a cold-start time of 500,000 cycles. It is worth noting

that for each of the networks, the maximum unicast throughput (assuming no software overheads and no

35

contention for the I/O bus) was observed to be less than 0.18 using up*/down* routing. Also, each of the

plots in this section show multicast latency against effective applied load as discussed in Sec. 6.2.

6.5.1 Effect of R

Figure 26 shows the results of our experiments under variation of R. In general, for a value of R less than or
equal to 1.0 the NI-based scheme performs worst followed by the path-based scheme. The tree-based scheme
performs best for such values of R. However, when R becomes greater than 1.0, we note an interesting
trend. Now the NI-based scheme performs comparably to the tree-based scheme and much better than the
path-based scheme. A possible reason for this is that the tree-based scheme causes an almost simultaneous
reception in all its recipients causing an increase in the contention for resources at the recipient nodes. On
the other hand, NI-based scheme “spreads” the receive times among the recipients of the multicasts, causing

the performance improvement.

R = 0.5, 3-way Default Parameters; 3-way
600000 T T T T 450000 PO L A
500000 |- path , 490000 I path
tree -8-- 350000 - tree -8--
400000 - q 300000
250000
200000
150000
100000

e 50000 -
SOPTREN) L o S S R R

70000
60000
50000
40000
30000
20000
10000

300000

200000 [

Multicast Latency in cycles
h

Multicast Latency in cycles

Multicast Latency in cycles

100000

0 0 0 L
0.010.0150.020.0250.030.0350.040.0450.05 0.010.020.030.040.050.060.070.080.09 0.1 0.4 12 0.14
Effective Applied Load Effective Applied Load

R =0.5, 15-way Default Parameters; 15-way
T T 700000 —— T T T

nic o—

600000 | path —+-

tree -8--

600000

70000
60000
50000
40000
30000
20000
10000 |- ___

500000
400000 500000 -
400000
300000
300000

200000 200000 |

Multicast Latency in cycles
.

Multicast Latency in cycles
*

Multicast Latency in cycles

100000 100000

0 . . 0 —— 0

0.01 0.02 003 0.04 0.05 006 0.07 0 0.02 0.04 006 0.08 0.1 012 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Effective Applied Load Effective Applied Load Effective Applied Load

ey

Figure 26: The effect of parameter R on the latency of multicasts under increasing multicast load for 3-way and
15-way multicasts.

6.5.2 Effect of Number of Switches

Our experiments with single multicasts in systems with increasing number of switches has shown that the
path-based scheme begins to perform worse as the number of switches in the system increases. We observe
a similar trend for our results with multiple multicast traffic (shown in Fig. 27). As the number of switches
increases, the saturation load for the path-based scheme approaches that of the NI-based scheme. However,
the NI-based scheme results in a greater amount of traffic and higher contention in the network. The tree-
based multicast performs almost uniformly well with increase in the number of switches and saturates much
later than the other two schemes.

6.5.3 Effect of Message Length

Our results for multicast performance under increasing message length are shown in Fig. 28. The results
show that the tree-based multicasting scheme performs best for all message lengths. Furthermore, as was
noted for single multicasts, the performance of the NI-based and path-based schemes become comparable as
the message lengths increase. However, for a single multicast with a message length of 1024 flits we observed
that the NI-based scheme performs better than the path-based scheme. Under multiple multicast traffic, the

36

450000

§ 400000
350000
300000
250000
200000
150000
100000
50000

Multicast Latency in cyc

0
0.

600000
500000
400000
300000
200000

100000

Multicast Latency in cycles

6 switches, 3-way

T T T T T T
- *

T
[nic

path ~-
I tree -8--

010.020.030.040.050.060.070.080.09 0.1
Effective Applied Load

6 switches, 15-way
T T T

T
nic +—
L path —+- P
tree -8-- v

L A S

S N S

0
0 002 004 006 008 01 0.12

Effective Applied Load

450000
400000
350000
300000
250000
200000
150000
100000

50000

Multicast Latency in cycles

700000
600000
500000
400000
300000
200000

Multicast Latency in cycles

100000
0

Default Parameters; 3-way
T

R R R R T
[path —~— b
- tree -8-- q
L]
L P
il i L L L
.010.020.030.040.050.060.070.080.09 0.1

Effective Applied Load

Default Parameters; 15-way

T T T T T
nic -—
L path —+- 4
tree -8--
L P
#
L # 4
r /l A
/ g
L y T
= . Y !
0 002 004 006 008 01 0.12

Effective Applied Load

Multicast Latency in cycles

Multicast Latency in cycles

12 switches, 3-way
400000 T T T T T

350000
300000 [
250000
200000 [
150000
100000
50000

°
0.010.020.030.040.050.060.070.080.09 0.1
Effective Applied Load

12 switches, 15-way

600000 T T T

ﬂ‘IC -
500000 (- path —+- 4
400000
300000 [
200000

100000 [

0

0 002 0.04 006 008 01 012
Effective Applied Load

Figure 27: The effect of the number of switches on the latency of multicasts under increasing multicast load for
3-way and 15-way multicasts.

NI-based scheme performs worse (has a lower saturation point and higher latencies) than the path-based

scheme for this value of message length, especially for large multicast degrees. This is because the NI-based

scheme involves more communication phases and results in more traffic than the path-based scheme, thereby

increasing the contention in the network.

450000
400000
350000
300000
250000
200000
150000
100000

50000

Mutticast Latency in cycles

700000
600000
500000
400000
300000
200000

Mutticast Latency in cycles

100000
0

.010.020.030.040.050.060.070.080.09 0.1

Default Parameters; 3-way
T

—

nic >—
[path —~—
I tree -8--

T

Effective Applied Load

Default Parameters; 15-way
T T T T T
nic —
L path —+- 4
tree -8

0 002 0.04 006 008 01 012
Effective Applied Load

600000

500000

400000

300000

200000

Mutticast Latency in cycles

100000

0

256 flit messages, 3-way

04 P ek SO
0.010.020.030.040.050.060.070.080.09 0.1

Effective Applied Load

256 flit messages, 15-way

————

nic -—
path ~-
tree -8--

e

0

0.02 004 0.06 008 01 0.12
Effective Applied Load

Mutticast Latency in cycles

Mutticast Latency in cycles

Figure 28: The effect of the message length on the latency of multicasts

and 15-way multicasts.

7 Conclusion

1024 flit messages, 3-way
500000 . —
450000 !
400000
350000
300000
250000
200000
150000
100000
50000

nic o
path -
tree -2

0 |
0.010.020.030.040.050.060.070.080.09 0.1
Effective Applied Load

1024 flit messages, 15-way

600000 T : T ——r
nic <— ¥

500000 - path ——- 1

tree -8-- i

e a

400000 I

300000 - =

200000 |- s

100000 |- 4

oL
0 002 0.04 006 008 01 012
Effective Applied Load

under increasing multicast load for 3-way

In this paper, we have proposed and compared various schemes for performing multicast efficiently in switch-

based irregular networks. After describing the network and routing models, we discussed in detail multi-

casting schemes from two categories of schemes: NI-based and switch-based. We then selected the optimal

NI-based scheme, the best multi-phase switch-based scheme, and the single-phase switch-based scheme and

compared them qualitatively and using simulation experiments.

We find that the single-phase switch-based multicasting scheme performs better than the multi-phase

switch-based and NI-based schemes. The relative performance of the multi-phase and NI-based schemes is

sensitive to a number of parameters. The most important of these parameters is the ratio R of overhead

37

at the host to the overhead at the NI. We find that the multi-phase scheme performs better than the NI-
based scheme for values of R less than 1, smaller system sizes, larger switch sizes, fewer switches for a given
system size, and for multicasts with fewer packets. In all other cases, the NI-based scheme outperforms the
multi-phase scheme.

Since a wealth of research has focussed on more efficient network interfaces, the value of R is likely to rise
in the future. It is also important that the performance of multicast scale with increasing system size and
with increase in the number of switches. We therefore conclude that support for multicast at the NI is an
important first step to improving multicast performance. However, there is still considerable gain that can
be achieved by supporting hardware multicast in switches. In particular, unlike with the NI-based schemes,
the performance of the switch-based multicasting schemes is able to scale with the trend of increasing switch
size. Finally, while supporting such hardware multicast, it is better to support schemes that can achieve
multicast in one phase even at a (perhaps) additional cost.

Additional Information: A number of related papers and technical reports can be obtained from http://www.cis.ohio-
state.edu/"panda/pac.html. This work was done while Rajeev Sivaram was a graduate student at The Ohio State
University.

References

[1] B. Abali. A Deadlock Avoidance Method for Computer Networks. In Proceedings of the First Interna-
tional Workshop on Communication and Architectural Support for Network-Based Parallel Computing
(CANPC °97). , pages 61-72, February 1997. Available as Lecture Notes in Computer Science
#1199, Springer-Verlag.

[2] R. A. F. Bhoedjang, T. Ruhl, and H. E. Bal. Efficient Multicast on Myrinet Using Link-Level Flow
Control. In Proceedings of the 27th International Conference on Parallel Processing (ICPP ’98), pages
381-390, August 1998.

[3] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 96-107, April 1991.

[4] N.J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro, pages
29-35, Feb 1995.

[5] C. M. Chiang and L. M. Ni. Multi-Address Encoding for Multicast. In Proceedings of the Parallel
Computer Routing and Communication Workshop, pages 146-160, May 1994.

[6] L. De Coster, N. Dewulf, and C.-T. Ho. Efficient Multi-packet Multicast Algorithms on Meshes with
Wormbhole and Dimension-Ordered Routing. In International Conference on Parallel Processing, pages
I1T:137-141, Aug 1995.

[7] Cray Research, Inc. Cray T38D System Architecture Overview, 1993.

[8] D. Dai and D. K. Panda. Reducing Cache Invalidation Overheads in Wormhole DSMs Using Multidesti-
nation Message Passing. In International Conference on Parallel Processing, pages 1:138-145, Chicago,
IL, Aug 1996.

[9] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering Approach. The IEEE
Computer Society Press, 1997.

[10] E. W. Felten, R. A. Alpert, A. Bilas, M. A. Blumrich, D. W. Clark, S. N. Damianakis, C. Dubnicki,
L. Iftode, and K. Li. Early Experience with Message-Passing on the SHRIMP Multicomputer. In
International Symposium on Computer Architecture (ISCA), pages 296-307, 1996.

38

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

D. Garcia and W. Watson. Servernet II. In Proceedings of the 2nd Parallel Computer Routing and Com-
munication Workshop, pages 119-135, June 1997. Available as Lecture Notes in Computer Science
#1417, Springer Verlag.

R. Horst. ServerNet Deadlock Avoidance and Fractahedral Topologies. In Proceedings of the Interna-
tional Parallel Processing Symposium, pages 274-280, 1996.

Intel Corporation. Intel iPSC System Overview, 1986.
Intel Corporation. Paragon XP/S Product Overview, 1991.

R. Kesavan. Communication Mechanisms and Algorithms for Supporting Scalable Collective Commu-
nication on Parallel Systems. PhD Thesis, The Ohio State University, October 1998.

R. Kesavan, K. Bondalapati, and D. K. Panda. Multicast on Irregular Switch-based Networks with
Wormbhole Routing. In Proceedings of the International Symposium on High Performance Computer
Architecture (HPCA-3), pages 48-57, February 1997.

R. Kesavan and D. K. Panda. Multiple Multicast with Minimized Node Contention on Wormhole k-ary
n-cube Networks. IEEFE Transactions on Parallel and Distributed Systems. accepted for publication.

R. Kesavan and D. K. Panda. Minimizing Node Contention in Multiple Multicast on Wormhole k-ary n-
cube Networks. In Proceedings of the International Conference on Parallel Processing, pages 1:188-195,
Chicago, IL, Aug 1996.

R. Kesavan and D. K. Panda. Multicasting on Switch-based Irregular Networks using Multi-drop Path-
based Multidestination Worms. In Proceedings of the 2nd Workshop on Parallel Computer Routing and
Communication (PCRCW ’97), Lecture Notes in Computer Science # 1417, pages 217-230, June 1997.

R. Kesavan and D. K. Panda. Optimal Multicast with Packetization and Network Interface Support.
In Proceedings of International Conference on Parallel Processing, pages 370-377, Aug 1997.

R. Libeskind-Hadas, D. Mazzoni, and R. Rajagopalan. Optimal Contention-Free Unicast-Based Mul-
ticasting in Switch-Based Networks of Workstations. In Proceedings of the Merged 12th International
Parallel Processing Symposium and the 9th Symposium on Parallel and Distributed Processing, pages
358-364, April 1998.

X. Lin and L. M. Ni. Deadlock-free Multicast Wormhole Routing in Multicomputer Networks. In
Proceedings of the International Symposium on Computer Architecture, pages 116-124, 1991.

R. P. Martin. HPAM: An Active Message Layer for a Network of HP Workstations. In Proceedings of
the Hot Interconnects Symposium, 1994.

P. K. McKinley and D. F. Robinson. Collective Communication in Wormhole-Routed Massively Parallel
Computers. IEEE Computer, pages 39-50, Dec 1995.

P. K. McKinley, H. Xu, A.-H. Esfahanian, and L. M. Ni. Unicast-based Multicast Communication in
Wormbhole-routed Networks. IEEE Transactions on Parallel and Distributed Systems, 5(12):1252-1265,
Dec 1994.

Meiko Limited. Meiko CS-2 System Owverview, 1994.
Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Mar 1994.

L. Ni. Should Scalable Parallel Computers Support Efficient Hardware Multicasting? In ICPP Workshop
on Challenges for Parallel Processing, pages 2-7, 1995.

S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Workstations: Tllinois Fast Messages
(FM). In Proceedings of the Supercomputing, 1995.

39

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

D. K. Panda. Issues in Designing Efficient and Practical Algorithms for Collective Communication in
Wormbhole-Routed Systems. In ICPP Workshop on Challenges for Parallel Processing, pages 8-15, 1995.

D. K. Panda, D. Basak, D. Dai, R. Kesavan, R. Sivaram, M. Banikazemi, and V. Moorthy. Simulation
of Modern Parallel Systems: A CSIM-based approach. In Proceedings of the 1997 Winter Simulation
Conference (WSC’97), pages 1013-1020, December 1997.

D. K. Panda, S. Singal, and R. Kesavan. Multidestination Message Passing in Wormhole k-ary n-cube
Networks with Base Routing Conformed Paths. Technical Report OSU-CISRC-12/95-TR54, The Ohio
State University, December 1995. IEEFE Transactions on Parallel and Distributed Systems. In Press.

D. K. Panda, S. Singal, and P. Prabhakaran. Multidestination Message Passing Mechanism Conforming
to Base Wormhole Routing Scheme. In Proceedings of the Parallel Computer Routing and Commu-
nication Workshop, pages 131-145, 1994. Available as Lecture Notes in Computer Science #853,
Springer-Verlag.

D. K. Panda and R. Sivaram. Fast Broadcast and Multicast in Wormhole Multistage Networks with
Multidestination Worms. Technical Report OSU-CISRC-4/95-TR21, Dept. of Computer and Informa-
tion Science, The Ohio State University, April 1995.

J. Y. L. Park, H. A. Choi, N. Nupairoj, and L. M. Ni. Construction of Optimal Multicast Trees Based on
the Parameterized Communication Model. In Proceedings of the International Conference on Parallel
Processing, Chicago, IL, Aug 1996.

W. Qiao and L. M. Ni. Adaptive Routing in Irregular Networks Using Cut-Through Switches. In
Proceedings of the International Conference on Parallel Processing, pages 1:52-60, Chicago, IL, Aug
1996.

M. D. Schroeder et al. Autonet: A High-speed, Self-configuring Local Area Network Using Point-to-point
Links. Technical Report SRC research report 59, DEC, Apr 1990.

F. Silla, M. P. Malumbres, A. Robles, P. Lopez, and J. Duato. Efficient Adaptive Routing in Networks of
Workstations with Irregular Topology. In Proceedings of the First International Workshop on Commu-
nication and Architectural Support for Network-Based Parallel Computing (CANPC ’97), pages 4660,
February 1997. Available as Lecture Notes in Computer Science #1199, Springer-Verlag.

R. Sivaram. Architectural Support for Efficient Communication in Scalable Parallel Systems. PhD
Thesis, The Ohio State University, August 1998.

R. Sivaram, R. Kesavan, D. K. Panda, and C. B. Stunkel. Where to Provide Support for Efficient Mul-
ticasting in Irregular Networks: Network Interface or Switch? In Proceedings of the 27th International
Conference on Parallel Processing (ICPP ’98), pages 452-459, August 1998.

R. Sivaram, D. K. Panda, and C. B. Stunkel. Efficient Broadcast and Multicast on Multistage Inter-
connection Networks using Multiport Encoding. In Proceedings of the 8th IEEE Symposium on Parallel
and Distributed Processing, pages 36—45, Oct 1996.

R. Sivaram, D. K. Panda, and C. B. Stunkel. Multicasting in Irregular Networks with Cut-Through
Switches using Tree-Based Multidestination Worms. In Proceedings of the 2nd Parallel Computer Rout-
ing and Communication Workshop (PCRCW ’97), Lecture Notes in Computer Science # 1417, pages
39-52, June 1997.

R. Sivaram, D. K. Panda, and C. B. Stunkel. Efficient Broadcast and Multicast on Multistage Intercon-

nection Networks using Multiport Encoding. IEEE Transactions on Parallel and Distributed Systems,
9(10), October 1998.

R. Sivaram, C. B. Stunkel, and D. K. Panda. A Reliable Hardware Barrier Synchronization Scheme. In
Proceedings of the 11th IEEE International Parallel Processing Symposium, pages 274-280, April 1997.

40

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

R. Sivaram, C. B. Stunkel, and D. K. Panda. HIPIQS: A High Performance Switch Architecture using
Input Queuing. In Proceedings of the 12th International Parallel Processing Symposium, pages 134-143,
April 1998.

C. B. Stunkel, D. Shea, D. G. Grice, P. H. Hochschild, and M. Tsao. The SP1 High Performance Switch.
In Scalable High Performance Computing Conference, pages 150-157, 1994.

C. B. Stunkel, D. G. Shea, B. Abali, et al. The SP2 High-Performance Switch. IBM System Journal,
34(2):185-204, 1995.

C. B. Stunkel, R. Sivaram, and D. K. Panda. Implementing Multidestination Worms in Switch-Based
Parallel Systems: Architectural Alternatives and their Impact. In Proceedings of the 24th IEEE/ACM
Annual International Symposium on Computer Architecture (ISCA-24), pages 50-61, June 1997.

K. Verstoep, K. Langendoen, and H. Bal. Efficient Reliable Multicast on Myrinet. In Proceedings of the
International Conference on Parallel Processing, pages I11:156-165, Aug 1996.

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-level Network Interface for Parallel
and Distributed Computing. In ACM Symposium on Operating Systems Principles, 1995.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: A Mechanism for
Integrated Communication and Computation. In International Symposium on Computer Architecture,
pages 256-266, 1992.

H. Xu, Y.-D. Gui, and L. M. Ni. Optimal Software Multicast in Wormhole-Routed Multistage Networks.
In Proceedings of the Supercomputing Conference, pages 703—-712, 1994.

41

