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Abstract

Software based DSM systems like TreadMarks have tra-
ditionally not performed well compared to message pass-
ing applications because of the high overhead of commu-
nication associated with traditional stack based protocols
like UDP. Modern interconnects like Myrinet offer reliable
message delivery with very low communication overhead
through user level protocols. This paper examines the via-
bility of implementing a thin communication substrate be-
tween TreadMarks and Myrinet GM, the rationale being
that a layer tuned to the needs of the application would
offer better performance and scalability as opposed to a
generic UDP layer. Trade-offs for various design alter-
natives for buffer management, connection setup, advance
posting of descriptors and asynchronous messages are dis-
cussed. We have implemented the best of these strategies in
alayer that is bound to TreadMarks at compile time. Results
Jfrom micro-benchmarks and applications show that not only
does the specialized implementation perform better, it also
exhibits better parallel speedup and scalability. A reduction
in total application execution time of up to a factor of 6.3
for a 16 node system is demonstrated in comparison with
the original implementation. The implementation also ex-
hibits superior scaling properties as the application size is
increased.

1 Introduction

Clusters are becoming increasingly popular for provid-
ing cost-effective and affordable high-performance comput-
ing for a wide range of applications. Such environments
consist of clusters of workstations connected by Local Area
Networks (LANSs). In the past the nodes were connected
through Ethernet which offered a peak bandwidth of 100
Mbps and a small message latency of the order of 100 mi-
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croseconds. Inter node communication was therefore an ex-
pensive operation and minimizing communication while de-
signing applications for cluster based applications was one
of the main goals. There has been a lot of research con-
ducted in the development of Software Distributed Shared
Memory (SDSM) Systems [17, 12, 7]. SDSM systems
such as TreadMarks [13, 4] which provided an easy appli-
cation development environment as opposed to the Message
Passing Interface (MPI) standard did not catch on earlier
primarily because the communication intensive nature of
SDSM protocols led to poor performance on earlier clus-
ter interconnects. Increasingly a variety of interconnects
offering low latency and high bandwidth have been devel-
oped for clusters. Examples include Gigabit Ethernet [11],
Myrinet [9] and InfiniBand [1] which can deliver a peak
bandwidth of 1, 2 and 10 GBps respectively and a latency
under 10 microseconds for small messages. These develop-
ments have significantly reduced the communication costs.
In this paper we revisit the question of whether a SDSM
based system could be a viable option for high performance
application development in the light of advances in current
networking technology.

It has been shown that having the operating system in
the critical path of communication significantly reduces
performance due to the latency of context switching and
other overhead. This has fueled the development of user-
level communication protocol systems such as AM [10],
VMMC [8], FM [14], U-Net [18, 19], LAPI [16] and
BIP [15]. GM [3] is a user-level communication proto-
col that runs over the popular Myrinet interconnect [9]. It
gives reliable in-order delivery of packets with very low la-
tency, and high bandwidth. Thus, it is interesting to an-
alyze whether Myrinet interconnect with GM communi-
cation layer is suitable for designing the next generation
SDSM system. TreadMarks uses UDP, which forces us to
use the inefficient sockets implementation over GM. To the
best of our knowledge, there has not been any work on de-



veloping a middleware for supporting TreadMarks on top of
GM for clusters which we attempt in this paper.

The rest of the paper is organized as follows. Section 1.1
describes the implementation of TreadMarks. Section 1.2
describes the GM message passing layer. Section 2 dis-
cusses the challenges with designing and implementing a
substrate between GM and TreadMarks. Section 3 evaluates
the performance of our design using various microbench-
marks and applications. Section 5 presents conclusions and
future directions.

1.1 Overview of TreadMarks

TreadMarks [13] is a popular software DSM system
which runs without any modifications to the operating sys-
tem kernel. TreadMarks implements the lazy release con-
sistency protocol (LRC) and relies on user-level memory
management techniques to provide coherency among par-
ticipating processes. UDP is the communication protocol
used. Due to the high overhead of UDP communication ef-
forts have been made in TreadMarks to reduce the amount
of communication. In the next section we discuss the the
communication model and primitives used by TreadMarks.

1.1.1 Communication Model and Primitives

TreadMarks relies on a request-reply type of communica-
tion; Request messages are sent out using socket function
calls. Upon arrival of a Request message at a node, an in-
terrupt is issued and after the message has been processed
by the kernel, the SIGIO signal is raised. The SIGIO sig-
nal handler then processes the Request message and sends
a Response message if needed. It is possible that the Re-
quest message may get forwarded to another node to pre-
pare and send the response. Whenever a response is ex-
pected, the node which has sent the Request message waits
until the Response message is received. Then the received
response message is processed. The communication ser-
vices required by TreadMarks can be divided into three ma-
jor groups: sending Request messages, sending Response
messages, receiving Response messages. These services
along with the corresponding UDP/TCP function calls are
shown in Figure 1.

1.2 GM over Myrinet

Myrinet offers low latency and high bandwidth commu-
nication. The switch fabric is based on wormhole routed
crossbar technology. The links which are full duplex can
deliver at the rate of either 1.28+1.28 or 2+2 gigabits per
second. The Myrinet NIC is programmable with a LANai
processor running at speeds up to 200 MHz and equipped
with up to 4AMB SRAM.

Treadmarks Routines

] !

g — Recv Request

= | Send Request/Response ) Recy Response ~Contiguous/Noncontiguous

£ | ~Contiguous/Noncontig - Contig ~From any user buffer

S| ~From any user buffer ~From any user buffer —Connection oriented/Connectionless

E ~Connection oriented/Connectionless | | ~Receiving from any node of a group ~Automatic allocation of temporary buf

I \

SIGIO handler

. Send Recv Recv_any

‘é Send, sendto(contig) Recv,recvfrom(contig) Select

g Sendmsg(non-contig Recvmsg(non—contig)

]

Figure 1. Three major groups of communication services
required by TreadMarks and their implementation using
UDP/TCP communication primitives

GM is a user-level protocol which runs over the Myrinet
network. GM provides reliable, connectionless data de-
livery services to the user. GM transmits a message from
pinned memory to the receiver. GM does not provide any
form of asynchronous notification, and the user is instead
required to poll for messages. GM also does not offer any
scatter/gather operations.

2 Challenges in Designing the Communica-
tion Substrate

This section delves into the communication require-
ments of TreadMarks followed by the disparity in function-
ality offered by GM. Following that is a discussion of the
components involved in bridging this gap and the design
alternatives for each of these components. Some of these
issues were encountered while implementing TreadMarks
over VIA [6, 5].

2.1 Major Issues

Lets look closely at the requirements and characteristics
of the services offered by GM and compare them with the
communication requirements of TreadMarks. The major
mismatches are :

e The communication model of TreadMarks on top of
UDP, receives Request messages asynchronously and
Response messages synchronously. GM does not pro-
vide any asynchronous notification mechanism. In par-
ticular, it can be seen that while Request messages ar-
rive in an asynchronous manner, Response messages
are exchanged in a synchronous fashion. GM does
not provide any mechanism for handling asynchronous
messages such as a notify message or an interrupt.
The application is required to continuously poll the



receive queue for an incoming message. This makes
implementing the request / response mechanism much
harder when compared to traditional UDP. A way out
is to implement a polling thread at the application
layer which generates a signal when a request comes
in. However this is an expensive solution which is
extremely CPU intensive and robs the application of
processing resources. Another solution is to modify
GM to generate an interrupt on a particular port when
a message is received on that port. A minimal bound
on the response time to an asynchronous message is
critical to the overall performance of the application.

In the UDP protocol, temporary buffers are automat-
ically allocated on the arrival of messages. The user
may examine these buffers later on. GM however re-
quires the user to prepost a receive descriptor before
the arrival of a message. Failure to do so within a
bounded amount of time (30 seconds) fires a timer in
the sender, which returns a failure code in the form
of a callback for the particular send. This drasti-
cally increases application execution time and has to
be avoided at all costs. This problem is complicated
by the fact that TreadMarks often disables interrupts
for consistency reasons. which may result in the asyn-
chronous buffers filling up for the interrupt driven im-
plementation. The sending port is disabled, forcing the
sender to reenable the port before attempting another
send. This is an expensive operation requiring GM to
probe the network. Worse yet the receiving port may
deadlock, preventing the application from running any
further.

Memory used for communication in GM has to be
locked down before the communication commences.
This eliminates the need for copying data between the
user buffers and intermediate kernel buffers typically
used in traditional network transports. No such mem-
ory registration is needed by UDP.

In traditional UDP, a message of any length may be
received into a particular buffer as long as it is big
enough to hold the message. The only requirement is
that the buffer should be large enough to accommodate
the incoming message. TreadMarks takes advantage of
this by making sure that there is a buffer large enough
to receive the biggest message which can be sent. GM
uses the concept of size to decide the buffer into which
a message of length / may be received where size is the
smallest integer less than or equal to loga(/+2). This
complicates matters since now there potentially has to
be a buffer for each possible size of message that may
be received.

e TreadMarks uses two ports between every process as

discussed in Section 1.1.1; one for sending and re-
ceiving requests (asynchronous) and another one for
sending and receiving replies (synchronous). GM of-
fers connectionless reliable delivery and a maximum
of eight ports which may be used out of which one of
them is reserved for the mapper. That gives us only
seven ports which may be used. This would entail
mapping several connections to a particular port.

2.2 Components of the Substrate

Inorder to alleviate the above mismatches, the architec-
ture shown in Figure 2 is proposed. The main driving force
behind proposing this architecture has been three-fold: 1)
not making any changes to the coherency protocol of Tread-
Marks or its communication model, 2) minimal changes to
the GM layer, and 3) minimal modifications to the com-
munication primitives of TreadMarks so that they can be
interfaced with the new substrate.

The substrate can be broadly divided into four main com-
ponents as shown in Figure 2; connection setup and man-
agement, receive buffer preposting and allocation, buffer
management, and finally asynchronous message manage-
ment techniques. The design alternatives behind each of the
four components and their cost-performance trade-offs are
discussed in detail in the following subsections.
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Figure 2. Components of the communication substrate
and their relation to GM services and TreadMark require-
ments

2.2.1 Connection Management

As mentioned earlier, under the communication model of
TreadMarks, the arrival of a request message at the receiver



cannot be predicted. A request message also requires an in-
terrupt to be generated. This interrupt need not be generated
for a response message and the corresponding overhead can
be avoided. Therefore we use one port for sending and re-
ceiving request and another port for sending and receiving
the response. Furthermore to allow for an interface with the
connectionless services of GM we multiplex multiple con-
nections over the same two ports. The descriptors now re-
turned by Connect are nothing more than the GM ID of the
destination node. This elegant solution allows for much bet-
ter scalability since we now only need two ports, no matter
how many processes are present. This also not only helps us
reduce the overhead by generating an interrupt only when a
request comes in, but also helps us to separate the buffering
strategies required for the two different types of services.

2.2.2 Pre-posting of Receive Buffers

As discussed earlier in Section 2 we need to prepost receive
buffers to guarantee that a message will be received and to
avoid the possibility of deadlock. GM differentiates mes-
sages based on size as discussed in Section 2 which allows
us to optimize the number and size of receive buffers. We
have to guarantee that for (n-1) processes there should be
at least o*(n-1) buffers available at any given time if o out-
standing messages are allowed at any point in time. Since
most asynchronous request are small typically of the order
of eight bytes, we could prepost a large number of buffers
of size four (corresponding to eight bytes) to allow for GM
communication pipelining. The minimum required would
be (n-1) if only one outstanding message per process is re-
quired. The larger request messages are only required for
sending asynchronous responses to a barrier. Given the
characteristics of the barrier (one message per process at the
root node) we only need to provide (n-1) buffers for each of
the larger sizes five (corresponding to a maximum length
of 24 bytes) to 15 (corresponding to a maximum length of
32K, which is the largest message TreadMarks could po-
tentially send). This requires an allocation of 64K bytes for
each of the (n-1) processes. For the synchronous case we
may receive a response only after sending a request, which
means we need to allocate a single buffer for each of the
sizes (for a single outstanding request allowed per process).
We use sizes from four to fifteen which give us a buffer re-
quirement of approximately 64K. Totally the requirement
is 64K*(n-1)+64K after combining the requirements of the
synchronous and asynchronous cases. For a system with
256 nodes our systems memory requirement is 16 MB (ap-
prox) which is reasonable for most high-end systems to-
day. For systems for which the allocation is too high, the
sizes thirteen and above can be eliminated and in its place a
rendezvous protocol can be implemented, where a user first
sends a message to the receiver to pin down a memory area

larger than 8K before actually sending the message. This
brings the total requirement down to 6MB for a 256 node
cluster which is very reasonable. This however increases
the communication overhead.

2.2.3 Buffer Management

GM requires that send and receive buffers be in registered
memory regions. Registered memory regions contain mem-
ory pages which are pinned down in physical memory.
Therefore, the size of registered memory is limited by the
size of physical memory and the OS requirements on each
node and can affect the performance of running applica-
tions.

Outgoing Request and Response messages are con-
structed by TreadMarks. By calling the send function in
GM multiple times it is possible to send messages from
non-contiguous buffers. In order to avoid extra data copies,
TreadMarks is modified such that outgoing messages are
constructed in registered memory regions. We did not fol-
low this approach. Instead, we used a pool of send buffers
in registered memory for outgoing messages and copied
outgoing messages into these buffers before sending them.
This also allows for pipelining synchronous sends in the
case where a sender receives multiple request in a short
span of time. The incoming messages can be received into a
buffer in registered memory before being processed. Since
a pointer to incoming requests is passed to TreadMarks rou-
tines, request messages can be processed without any extra
data copies. The Response messages are copied from the
buffer in which they have been received to TreadMarks data
structures before being processed. This approach does re-
quire an extra data copy on the receive side but does not
require any changes in TreadMarks. We used this approach.
Alternatively, TreadMarks can be modified such that re-
ceived Response messages can be processed without mak-
ing any extra copies.

2.2.4 Handling Asynchronous Messages

TreadMarks makes use of the SIGIO signal handler to deal
with asynchronous requests. GM does not provide a sig-
nal handler which we can use. To deal with the lack of
this functionality, we investigated three options; 1) a timer
which wakes up a thread intermittently to check for asyn-
chronous messages, 2) modifying GM to produce interrupts
and 3) finally a polling thread based approach. A detailed
analysis of these approaches can be found in [6, 5]. The
conclusion from these studies was that the interrupt based
approach works best which was also the method adopted
in this case. The NIC firmware was modified to generate
an interrupt whenever a message was received on the asyn-
chronous port.



3 Performance Evaluation

This section evaluates the performance of the pro-
posed implementation. We first describe the testbed used
to run the experiments. Following that a suite of micro-
benchmarks for barriers, locks, diffs and pages is used to
evaluate the proposed substrate and UDP. A suite of appli-
cations is then used to compare the performance of the sub-
strate with that of UDP. The applications are used to eval-
uate the implementations both in terms of application size
and system size.

3.1 Experimental Testbed and Setup

The experiments were conducted on a cluster of sixteen
PCs interconnected with Myrinet. Each PC is equipped
with four 700 MHz Pentium III processors with 1 GB of
SDRAM and a 66 MHz/64-bit PCI bus. Linux 2.4.18 which
has a SMP kernel is the operating system on all these ma-
chines. The Myrinet network runs at a speed of 2.0 Gbps
and is connected by a low-latency, cut-through, crossbar
switch through fiber links to LANai 9 network cards. The
experimental setup consists of TreadMarks running over
the Myrinet implementation of Sockets (Sockets version
1.1) from Myricom referred to as UDP/GM and Tread-
Marks running over the proposed substrate referred to as
FAST/GM in the rest of the paper. Latency and bandwidth
tests were run for GM alone, UDP/GM and FAST/GM.
For GM it was observed that the latency was 8.99 us for a
message of 1 byte and the raw bandwidth was 235 Million
bytes per second (MBps) for a message size of 32678. For
FAST/GM the latency was 9.04 us and the bandwidth was
225 MBps. For UDP/GM the latency was 11 us. However
bandwidth could not be measured accurately because of the
unreliable nature of UDP which was reflected in UDP/GM.

3.2 Microbenchmark level Evaluation

The microbenchmark-level evaluation was carried out
by using the four microbenchmarks included in the Tread-
Marks distribution. These microbenchmarks are: Barrier,
Lock, Diff and Page. These microbenchmarks measure the
time required for performing basic TreadMarks operations.
The Barrier microbenchmark reflects the time for perform-
ing a barrier across a set of nodes. In the Lock microbench-
mark, the cost of acquiring a lock is measured. There are
two versions of this microbenchmark: direct and indirect.
The direct case reflects the situation where the lock being
acquired has already been acquired and released by its man-
agers node. The indirect case reflects the situation where
the lock being acquired has been acquired and released by
a third node.

The Page and Diff microbenchmarks are used to evalu-
ate the performance of TreadMarks when shared memory
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Figure 3. Performance results of four microbenchmarks
(Barrier, Lock, Page and Diff). Different cases of Bar-
rier, Lock and Diff are shown. Barrier (x) indicates the
time to achieve a barrier on x nodes. For each of the mi-
crobenchmarks and their individual cases, the four bars
(left to right) reflect the time on 2 different communica-
tion subsystems UDP/GM and FAST/GM

is accessed and diffs are obtained and applied to a page.
In the Page microbenchmark, a shared memory region con-
sisting of multiple memory pages is first created (by using
Tmk_malloc) and then distributed among participating pro-
cesses (by using Tmk_distribute) by process 0. After pro-
cess 0 reads one word from each page, process 1 reads the
same word from each page.

The Diff microbenchmark has two cases: small and
large. In the first case, one word from each page is read
by one process while the same words have been written into
by another process earlier. The second case is similar to
the first case with the difference being that all words of the
shared memory region are accessed by the writer and reader
processes.

Figure 3 presents performance results of four mi-
crobenchmarks and their different cases. In all cases
FAST/GM outperforms UDP/GM. For the barrier operation
FAST/GM outperforms UDP/GM by a factor of 1.5. For the
indirect lock operation replacing UDP/GM with FAST/GM
gives a factor of improvement of 3.85. For the direct lock
case the factor improvement is 3.36. For the Page mi-
crobenchmark the factor of improvement is 6.0 while on
the case of Diff the improvement is 3.80.

3.3 Application Level Evaluation

This section starts with a description of the applications
used in the evaluation and then discusses the results. The
section following that looks at the effect of system size on
the performance of the applications. Finally, the last sec-
tion looks at the effect of application size on performance.
It should be noted that no attempt was made to improve the



performance by modifying the applications. These are the
same applications from the original TreadMarks distribu- Jacobi
tion.
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to 1.79. For 3D FFT from 4 to 16 nodes the speedup de-
creased from 11.5 to 5.75, while for UDP/GM a slowdown
was observed at 16 nodes. 3D FFT has a high communi-
cation to computation ratio which reduces overlapping and
pipelining of communication and computation accounting
for the lower speedups obtained. In the next section we will
discuss the effect of application size on performance.

3.4 Effect of Application Size

The application execution times on a 16 node system for
different problem sizes listed in Table 1 are shown in Fig-
ure 5. Here FAST-1/GM and UDP-1/GM refer to the ex-
ecution time for 1-process while FAST-16/GM and UDP-
16/GM refer to the execution time on 16 nodes.

| Application | Size 4 | Size 3 | Size 2 | Size 1 |
Jacobi(ZxZ) 2000 | 1500 | 1000 500
SOR(2000xZ) | 4000 | 3000 | 2000 [ 1000
TSP(cities) 18 17 16
FFT(ZxZxZ) 64 32 16 8

Table 1. Application sizes

When UDP/GM is replaced with FAST/GM, 3D FFT
shows a factor of improvement of 4.34. For Jacobi the fac-
tor of improvement is 1.54. For SOR an improvement of
5.5 is obtained. Finally for TSP the improvement is 2.84.
Also in all cases the graphs show an increasing separation
between the curves as the application size increases. This
is particularly prominent in the case of 3D FFT. For Jacobi
which has the highest computation to communication ra-
tio there is a deviation between the curves indicating that
any application will benefit from an efficient communica-
tion sub-system. These trends together with the observed
parallel speedup in Section 3.3.2 clearly demonstrate the
benefits of the proposed sub-system.

4 Related Work

A comparison between the performance of PastSet Soft-
ware DSM system using TCP/IP and VIA is discussed in
[7]. In this, it is shown that by replacing TCP/IP by the
MVIA implementation of VIA improves the performance
of a few microbenchmarks. The authors indicate that due to
problems with the MVIA implementation they haven’t been
successful in designing and implementing the complete sys-
tem. A few issues involved in taking advantage of low-
latency high-bandwidth communication layers in SDSM
systems are discussed in [12]. The communication sys-
tem used in this work is Fast Messages (FM) on Myrinet.
In this work, a new mechanism called MultiView for pro-
viding small-size pages is proposed for avoiding false shar-
ing, reducing the size of messages, and preventing excessive
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Figure 5. Execution times for four applications for differ-
ent problem size sets. See the text for details of the size
representation



