Implementing Multidestination Worms in Switch-Based Parallel
Systems: Architectural Alternatives and their Impact *

Rajeev SivaramS$ Craig B. Stunkel Dhabaleswar K. Pandaf
$IBM Power Parallel Systems TIBM T. J. Watson Research Center iDept. of Computer and Information Science
522, South Road, MS P963 P. O. Box 218 The Ohio State University
Poughkeepsie, NY 12601 Yorktown Heights, NY 10598 Columbus, OH 43210
rsivaram@us.ibm.com stunkel@watson.ibm.com panda@cis.ohio-state.edu
Abstract

Multidestination message passing has been proposed as an attractive mechanism for effi-
ciently implementing multicast and other collective operations on direct networks. However,
applying this mechanism to switch-based parallel systems is non-trivial. In this paper we pro-
pose alternative switch architectures with differing buffer organizations to implement multides-
tination worms on switch-based parallel systems. First, we discuss issues related to such imple-
mentation (deadlock-freedom, replication mechanisms, header encoding, and routing). Next, we
demonstrate how an existing central-buffer-based switch architecture supporting unicast mes-
sage passing can be enhanced to accommodate multidestination message passing. Similarly,
implementing multidestination worms on an input-buffer-based switch architecture is discussed,
and two architectural alternatives are presented that reduce the wiring complexity in a prac-
tical switch implementation. The central-buffer-based and input-buffer-based implementations
are evaluated against each other as well as against the corresponding software-based schemes.
Simulation experiments under a range of traffic (multiple multicast, bimodal, varying degree
of multicast, and message length) and system size are used for evaluation. The study demon-
strates the superiority of the central-buffer-based switch architecture. It also indicates that
under bimodal traffic the central-buffer-based hardware multicast implementation affects back-
ground unicast traffic less adversely compared to a software-based multicast implementation.
These results show that multidestination message passing can be applied easily and effectively
to switch-based parallel systems to deliver good multicast and collective communication perfor-
mance.

*This research is supported in part by NSF Career Award MIP-9502294, NSF Grant CCR-9704512, and an IBM
Cooperative Fellowship. A preliminary version of this paper has been presented at the 24th Annual International
Symposium on Computer Architecture (ISCA-24) [43], June 1997. This research was performed when Rajeev Sivaram
was a graduate student at The Ohio State University.

Contents

Introduction
Switch-Based Parallel Systems

Issues in Implementing Multidestination Worms

3.1 Deadlock-free Replication o oo
3.2 Header Encoding
3.3 Routing e

Central Buffer (Output Queue) based Switch Architecture

4.1 Buffered Wormhole Routing o oL
4.2 The Shared Central Buffer Replication Method
4.2.1 Replication Implementation
4.2.2 Emulating Virtual Cut-Through

Input Buffer based Switch Architecture

5.1 Enhancing an Input-Buffered Architecture for Multicast
5.2 Reducing Switch Complexity,
5.2.1 Register-Staircase Approach,
5.2.2 Split-RAM Approach
5.3 Summary . . oL .. e e e e e e e e

Comparing the two architectures

Performance Evaluation

7.1 Simulation parameters and methodology
7.2 Multicast simulation issues oo oL
7.3 Impact of multicast degree oL
7.4 TImpact of message size it e e e e e e
7.5 Impact of systemsize oL
7.6 Interaction between multicast and unicast traffic
7.7 Measuring latency in an alternate way
7.8 Summary e e e e e e

Related Work

Conclusion

10

11
11
14
14
15

16
17
19
19
20
22

22

23
23
24
25
27
28
28
29
30

30

31

1 Introduction

The wormbhole-routing switching technique is the current trend in building parallel systems due
to inherent advantages such as low-latency communication and reduced communication hardware
overhead [9, 23, 10]. This switching technique is being used with a wide variety of topologies.
Examples include k-ary n-cube networks (Cray T3D [7], Cray T3E, Intel Paragon [12], Ncube [11]),
fat-tree networks (CM-5 [17], Meiko CS2 [3]), and bidirectional multistage interconnection networks
(IBM SP1/SP2[41, 42]). All of these systems are being used to support either the distributed-
memory or distributed-shared memory programming paradigms. For efficient support of either
paradigm, these systems require fast collective communication [4, 21| support, as defined by the
Message Passing Interface (MPI) Standard, from the underlying communication subsystem. Among
the set of collective communication operations, broadcast and multicast are fundamental and they
are used in several other operations like barrier synchronization and reduction [26]. Thus, reducing
the latency of broadcast and multicast operations on these systems is vital for achieving high
performance parallel computation.

Many software schemes have been recently proposed in the literature to efficiently implement
broadcast and multicast in wormhole-routed k-ary n-cube networks [2, 22], multistage interconnec-
tion networks [46], and irregular networks [15]. All of these schemes use point-to-point (unicast)
message passing and require multiple contention-free phases to achieve fast broadcast and multicast.
For multicasting to m destinations, these schemes typically require [logs(m + 1)] communication
phases. Since the ratio of communication start-up time to propagation time is quite high on current
parallel systems [7, 12, 41], such a software-based unicast message-passing approach leads to very
high latency for broadcast and multicast operations. In addition, under hybrid unicast and mul-
ticast traffic, the software-based approach leads to low throughput from the network. This is due
to increased network contention because of the multi-phase implementation of the multicast. Such
performance degradation has forced researchers and designers of parallel systems to investigate
hardware support for multicast [24].

A new concept, multidestination wormhole message passing, has been introduced recently [19,
28] for efficient implementation of collective communication operations using a fewer number of
communication phases. Unlike a unicast message which has a single destination, such a mechanism
allows a message to have multiple destinations. A multidestination worm provides the flexibility to
distribute data to multiple nodes or to gather data from multiple nodes using a single message and
a single communication start-up. These worms get routed on the data network together with the
unicast messages. Using such worms, it has been shown that broadcast and multicast operations on
k-ary n-cube networks with different routing schemes (e-cube, adaptive, Hamiltonian, etc.) can be
implemented with significantly reduced latency [19, 28] compared to unicast-based schemes. This
mechanism and the associated schemes were specifically developed for direct networks with k-ary

n-cube topologies in mind and cannot be easily extended to deliver high-performance multicast in

switch-based systems.

In recent work [36, 38], we have extended the multidestination message passing concept to
multistage interconnection networks. This extension involves a new concept called multiport en-
coding and an asynchronous replication mechanism at the input buffers of a switch to implement
deadlock-free multicast. Using this new encoding, a set of algorithms for multicast/broadcast have
been developed and evaluated. In this work, it has been shown that the latency of a single mul-
ticast/broadcast operation can be reduced by up to a factor of 4 compared to the software-based
scheme using unicast messages.

The results in [36] show the proof-of-concept of multidestination message passing in MINs. How-
ever, the paper does not explore other architectural alternatives and their impact. For example, the
IBM SP2 [42] uses a central-buffer-based buffer organization in a switch for unicast message passing,
and this potentially provides a powerful basis for worm replication. Similarly, the multiport-based
encoding in [36] often requires a multicast to be implemented in multiple phases. Even though this
approach requires fewer phases than the unicast-based software scheme, a challenging problem is
to implement multicast in even fewer phases using better encoding schemes.

In this paper, we address these challenges and consider architectural alternatives and their
impact on the implementation of multidestination worms for multicast/broadcast on switch-based
parallel systems. We consider a bit-string encoding scheme to implement multidestination worms.
This encoding allows a multicast/broadcast to be implemented using a single communication phase.
Two alternative switch architectures, central-buffer-based and input-buffer-based, are considered.
Detailed designs for implementing multidestination worms on these two switch architectures are
derived, and methods for reducing the complexity of practical switch implementations are presented.
It is shown that multidestination worms can be implemented on both switch architectures with
little additional hardware. These designs also provide realistic timing parameters for routing and
propagation of multidestination worms.

Next, the implementations on both switch architectures are evaluated under different traffic
scenarios. Two performance measures (latency vs. throughput and received vs. applied load) are
studied for multiple multicast traffic as well as hybrid traffic consisting of both multicasts and uni-
casts. The hardware-based implementations are also compared with the software-based multicast
schemes using unicast messages. The results demonstrate the benefits of the hardware-based multi-
cast schemes compared to the software-based schemes. Furthermore, with equal amounts of buffer
space in a switch, the central-buffer-based implementation shows an improvement of up to a factor
of 2 (in terms of saturation load) compared to the input-buffer-based implementation. These results
clearly demonstrate the superiority of the central-buffer-based scheme to support multidestination
worms for fast multicast/broadcast on switch-based parallel systems.

The remaining paper part of this paper is organized as follows. Section 2 provides an overview
of switch-based parallel systems. Issues related to implementing multidestination worms are pre-

sented in Section 3. Detailed designs to implement multidestination worms on central-buffer-based

and input-buffer-based switch architectures are presented in Sections 4 and 5, respectively. A com-
parison of these two implementations is carried out in Section 6 and Section 7 shows performance
evaluation results. Related work is reviewed in Section 8 and our conclusions are presented in

Section 9.

2 Switch-Based Parallel Systems

In this section we briefly describe the various categories of switch-based parallel systems and define
the scope of this work. Switch-based parallel systems fall into two broad classes: (i) systems based
on regular interconnects and (ii) systems based on irregular interconnects.

Communication and synchronization issues on parallel systems based on regular interconnects
have been studied quite extensively. Architectures using unidirectional multistage interconnection
networks (MINs) and bidirectional MINs (bidi-MINs) or fat-tree networks [17, 31] fall into this cat-
egory. In such networks, the regular pattern of interconnection between switches allows for simple
routing functions to be defined for routing messages between nodes. In unidirectional MINs, mes-
sages must traverse all switch stages to reach the destination processors. In bidirectional MINs on
the other hand, turnaround routing can be used, which rewards local communication. Figures 1(a)
and (b) show examples of unidirectional and bidirectional MIN networks respectively.

Another class of switch-based parallel systems that is becoming popular is a network/cluster of
workstations (NOW/COW). These systems typically consist of workstations interconnected with
switches in irregular topologies. Deadlock free routing of messages in such networks is a challenging
problem [30, 32]. Figure 1(c) shows an example of an irregular network of workstations.

The schemes and designs proposed in this paper are applicable to all categories of switch-based
parallel systems. However, for performance comparisons we restrict ourselves to bidirectional MIN
topologies. In the next section, we introduce the concept of multidestination worms in the context
of switch-based parallel systems and discuss some of the issues to be considered in implementing
them.

3 Issues in Implementing Multidestination Worms

The path-based multicast proposed for direct networks [19, 28] has been shown to lead to deadlock
in unidirectional MINs [6]. Even without this constraint, path-based multicast is highly inefficient
because the network has to be traversed multiple times, and flits of the message have to be copied
and forwarded by the network interface associated with the nodes.

An alternative method for implementing multidestination worms is to augment switches with
replication capability. A switch replicates flits of an arriving multidestination worm to one or more
of its output ports. In strict or pure wormhole routing, switches buffer only a single flit of an

arriving worm and cannot accept the next flit until this buffer is freed. For a multidestination

Unidirectional Links Processing Elements
Turnaround Routing

00
00
01 7]
02 02
03 03 |
10 10 [
1 11,

20 20
21 21
22
23 %3
30]
31 30
32 31,
33 32

Interconnection /
Pattern

9999
W

Bepe

L]
...

——

o
IRl

o

Bidirectional Links

- Omega

- Butterfly ~Switching Elements (Switches) 4x4 Bidirectional Switches

- Cube (8x8 Unidirectional Switches)
- Baseline

(a) Unidirectional MIN (b) Bidirectional MIN

PrZessing Element

Switching Elements (Workstation)

Bidirectional Lij

O O

(c) Irregular Interconnect

Figure 1: Examples of switch-based parallel systems.

worm that has to be forwarded to multiple output ports, this buffer cannot be freed until the
switch can forward the flit to all (required) output ports. Thus deadlock can easily occur if two
multidestination packets that must be forwarded to the same set of output ports arrive at a switch
with one of the worms reserving a subset of the output ports and the other worm reserving the
rest. This deadlock problem exists even if the switch can buffer more than one flit.

Figure 2 presents two examples of such deadlock scenarios. In the first example, deadlock occurs
between two multidestination worms at a single switch because each worm reserves a subset of the
output ports required by the other. If the buffers are smaller than the size of the packet, the buffers
cannot be freed because the data in the buffer has not been forwarded to all the required ports.
Furthermore, the ports cannot be released because only a part of the packet has been transmitted
to them. Even if we can perform arbitration so that such a situation never occurs at a single switch
(by, say, using some form of prioritized reservation of ports), deadlock can still occur over multiple

switches as shown in the second example of Fig. 2. In this example, the numbers identify the

flit numbers within the corresponding packets. Two multidestination worms entering at the left
are each destined for the four output ports at the right. The upper multidestination worm in the
figure reserves the output ports of the top right switch, whereas the bottom multidestination worm
reserves the output ports of the bottom right switch. If the buffers at the switches are smaller
than the packet size, deadlock can occur because the input ports of the right hand switches fill up
with flits from each of the multidestination worms, and once again, neither the buffer space nor the

output ports can be freed.

'
—p2 \ —> 2 (2nd flif)
Deadlock Scenario
Mdest-Worm1 — —= 2
—— T Reserved |
— Quiput
| - Ports S

—2

[equested = ——
> %u?puT

-
Ports /
— 2

—

Mdest-Worm?2
—

32

N
Vi

Figure 2: Typical cases of deadlock for multidestination worms that use replication at the switches.

In the next section we describe two replication mechanisms that have been proposed in the

literature and the methods that they adopt to overcome this deadlock problem.

3.1 Deadlock-free Replication

Two replication methods have been proposed in the literature: synchronous and asynchronous.
Synchronous replication requires that flits of a multidestination worm proceed in lock-step. Thus
any branch of the multidestination worm that is blocked can block all other branches. This replica-
tion mechanism was originally proposed in the context of pure wormhole routing and is susceptible
to deadlock. Furthermore it requires some kind of feedback architecture to ensure that the flits
proceed in lock-step [6].

Asynchronous replication [6, 29] is an alternative mechanism that allows flits of a multidesti-
nation worm to be forwarded to the subset of requested output ports that the worm successfully
reserves. If a switch is equipped with a buffer of size f flits, under asynchronous replication at most
f flits can be forwarded to the output ports that have been reserved by the multidestination worm
before the worm is blocked because of the required output ports which it could not reserve. This
is because none of the f flits in the buffer can be freed as they haven’t been forwarded to all of the
required output ports, and more flits cannot enter the full buffer. Bubbles are therefore introduced
if the remaining requested output ports cannot be obtained before the input buffer fills up. Even
this method of replication is susceptible to deadlock.

To prevent deadlock under synchronous replication, deadlock avoidance schemes have been
proposed that arbitrate between multidestination packets at a switch to prevent cyclic wait [6].

To prevent deadlock under asynchronous replication, switches must be equipped with buffers large

enough to store the largest packet in the system. Deadlock is prevented if the switches can guarantee
that a packet accepted for transmission can be eventually completely buffered at the switch [36], a
requirement that is weaker than virtual cut-through [14].

Asynchronous replication may be preferred for a practical implementation due to the following
reasons. Firstly, it does not require the costly feedback architecture required under synchronous
replication. Secondly, it is more efficient because blocked branches don’t block other branches (in
fact, there is no dependence across branches). Finally, many current day switches already provide
for relatively large buffers at the switches [3, 42] making the satisfaction of the deadlock-freedom
requirement under asynchronous replication easier.

In this paper we present two alternative implementations of multidestination worms with asyn-
chronous replication. The two implementations differ primarily in the way they guarantee that
an arriving multidestination worm can eventually be completely buffered. One of the implemen-
tations uses a central-buffer-based switch architecture. This architecture uses an output queuing
technique similar to the ones used in switches of the IBM SP2 [42] for unicast message passing.
The other implementation uses an input-buffer-based switch architecture. Detailed designs to im-
plement multidestination worms on these two switch architectures are discussed in Sections 4 and
5 respectively. In the remaining part of this section we discuss two additional issues related to

implementing multidestination worms: header encoding and routing.

3.2 Header Encoding

A variety of header encoding mechanisms for routing multidestination headers have been proposed
in the literature. These schemes differ in the following characteristics: size of the header required
for encoding, knowledge required at the switches about the system topology, complexity and speed
of the decoding logic required at the switches, and the multicast sets that can be covered using these
schemes [5, 36]. It must be emphasized that the encoding and decoding mechanism used for routing
a multidestination worm is independent of the scheme adopted for replicating a multidestination
worm at a switch.

In [36] we have proposed a multiport encoding scheme for multidestination worms. This encod-
ing mechanism allows extremely simple decoding logic at the switches. In addition, switches are not
required to know the topology of the MIN network. Depending on the network topology, the source
node encodes the header of a multidestination worm based on the path that needs to be followed to
reach a set of destinations. However, all arbitrary multicast destination sets cannot be encoded in
a single worm using multiport encoding. Instead, given an arbitrary multicast destination set, a set
of multiport encoded worms are required to cover the destinations. A multi-phase multinomial tree
based approach is adopted to perform multicast using this set of multiport encoded worms. Even
though this scheme performs better than software-based multicast using unicast message passing,
a multi-phase implementation may not be desirable for system level multicasts such as cache inval-

idation traffic in distributed shared memory systems. This is because with cache invalidation only

the source node has information about the destination set [8]. Thus, a single phase implementation
may be preferable in such systems, perhaps at a slight additional decoding logic cost.

One form of header encoding that accomplishes multicast to arbitrary multicast destination
sets in a single communication phase is bit-string encoding [5, 29]. The encoding consists of N bits
where N is the system size, with a ‘1’ bit in the ¢th bit position indicating that processor i is a
multicast destination.

To decode a bit-string encoded header a switch must possess knowledge about the processors
that can be reached through each of its output ports. This reachability information [29] can be
encoded using a similar NV bit string for each output port with ‘1’ bits denoting processors that are
reachable via the output port. Such an N-bit string is associated with each output port. For some
unidirectional MINs, the space required to store this information can be reduced by taking into
account the fact that a processor may be reached from only one of the switch’s output ports because
of the unique path property possessed by some of these networks. The reachability information
can be set up at the switches at the time of system startup or reconfiguration. Figure 3 shows
a bidirectional MIN network along with the reachability information associated with some of the
output ports. The figure also shows a bit string encoded header and the path followed by the

corresponding multidestination worms.

0000 0000 0000 1111

oo} 0000 0000 1111 0000
01() | a1
o2} [«—{0000 1117 0000 0000
03(]) "
0000 0110 0000 1101 11110000 0000 0000}
0 > >
3 L

0l 000 0000 0000
00100000 0000 0000 0000 1111 1111 1111
0100 0Q00 0000 0000
1000 0000 0000 0000

Figure 3: An example of a bidirectional MIN network with 16 processors, bit-string encoded header
with the path of the corresponding multidestination worm, and the reachability strings associated
with some of the output ports.

When a multidestination worm with a bit-string encoded header arrives at a switch, the switch
compares the bit-string in the header with the reachability information associated with every one
of its output ports. A bit-wise AND operation on the strings can be used to determine if the strings
have one or more ‘1’ bits at common positions, indicating that the multidestination worm should
be forwarded to the corresponding output port. The logic required to compare these bit-strings is

simple and the output ports required by the worm can thus be determined quite easily.

3.3 Routing

Although the bit-string encoding presented in the previous section allows a multidestination worm
to be replicated along a fixed path from a source to its destinations, the presence of alternative
paths between nodes in some switch-based networks may not be adequately exploited using the bit-
string encoding alone. In networks like the bidi-MINs, there exists considerable choice in the way
a multidestination message can be routed. A multidestination message could replicate downwards
on its forward path while going to the least common ancestor (LCA) [31] stage of the source and
destinations and then cover the remaining destinations by replicating on the way back from the
LCA stage!.

Alternatively, a multidestination worm could just travel to the LCA stage and then cover all
the destinations by replicating on the way back [29]. Since the same set of destinations can be
reached from any switch in the LCA stage, choice exists in both methods for determining the path
taken upto the LCA stage—one can decide to deterministically route messages to the LCA stage
or to make the choice adaptively.

In this paper, we assume that multidestination worms travel adaptively up to the LCA stage
and that the destinations are covered by replicating on the downward path from the LCA stage.
In addition to the bit-string encoded header, the worm may carry a count field which is initialized
to the LCA stage. The count is decremented at each switch on the worm’s forward path and the
worm begins its backward journey when the count value becomes zero. It is to be noted that such
choices of path do not exist for unidirectional MINs with the unique path property.

For irregular topologies, routing can be performed much like the routing described for bidi-
MINs by assuming a tree structure superimposed on the irregular network. Such tree structures
are typically used in irregular networks to provide deadlock-free routing of unicast messages. For
example, in the up*/down* [32] routing algorithm, a tree structure is imposed on the networks and
links are uniquely identified as ‘up’ links or ‘down’ links depending on whether they take you closer
or farther away from the root. Such a tree can be used to determine reachability information for
the ‘down’ links of the switches. Multidestination routing can then be performed by adaptively
routing a message to a LCA switch by following ‘up’ links and then replicating the message on the
‘down’ path at the intermediate switches using the reachability information associated with each
of the switches’ ‘down’ links [37].

In this section, we have described some of the issues with respect to implementing multidesti-
nation worms in switch-based architectures. In the next two sections we discuss how asynchronous
replication of multidestination worms can be implemented on two alternative switch architectures:

central-buffer-based (output-queue-based) and input-buffer-based.

!Such a method allows replication to proceed in both directions within a switch. This introduces deadlock problems
because of multidestination packets traveling in one direction using up the entire buffer space at a switch that uses a
shared central buffer for replication. Such deadlock can be avoided by ensuring that at all times there exists at least
one packet’s space in the buffer for multidestination packets traveling in either direction.

10

4 Central Buffer (Output Queue) based Switch Architecture

We now describe a switch architecture with output queuing modified for implementing multides-
tination worms. We first describe an output queue-based switch architecture very similar to the
high performance switch in the IBM SP2 [42]. We then present modifications that could be made

to this architecture to implement multidestination worms.

4.1 Buffered Wormhole Routing

The buffered wormhole routing used in the IBM SP2 is a variation of wormhole routing wherein
every switch in the network is equipped with a central buffer and a crossbar, as illustrated in Figure

4. When a packet arrives at an input port and encounters no contention for the chosen output

Output | fow

porf Control
8| it
i N
K flits g .
Central 3
Queue
Recv || Xmlt
Ab || Ab o
| sl chunk || L4
™ RAM
°
L ||
ok x k|-
&hiol - /Crossbar || ggﬁpui
L | &
" ~| it
h .
)
(2]

Figure 4: A switch equipped with a central buffer

port, the packet uses the crossbar path for minimal delay. However, when packets are blocked at an
input port due to a busy output port, the switch attempts to store the packet in this central buffer,
thus freeing the links held by the trailing packet flits. There may be enough space in the central
buffer to store the entire packet. However, there is no guarantee that a packet arriving at a switch
will find enough space in the central buffer to be completely stored. If the central buffer does not
have adequate space to store the entire blocked packet, as many as possible of the packet flits are
stored in the central buffer and the remainder of the packet is blocked in place. Note that in the
absence of contention, packets may propagate through the network just as in a purely wormhole
routed network, and the central buffers will remain empty.

An SP2-like central buffer is an extremely attractive resource for packet replication because
multiple output ports can retrieve the identical packet flits from the same shared buffer. However,
because there is no assurance that this central buffer can store an entire multidestination packet, the
central buffer as described cannot guarantee to prevent multicast deadlock. To address this problem,

we will describe minor modifications to the basic central buffer free-space logic that are similar to

11

virtual cut-through operation. Specifically, these changes guarantee that any packet admitted to
the central buffer can (eventually) be entirely stored. This guarantee effectively decouples the
interdependence of the replicated output packets at a switch, eliminating the cause of multicast
wormhole routing deadlock.

In the SP2 buffered wormhole implementation, the central buffer effectively forms a separate
FIFO queue of packets for each output port. Each input port can write flits into the buffer, and
each output port can read flits. The central buffer space is dynamically allocated to requesting
input ports on a least-recently-served basis.

For a k-port switch, & flits are buffered (deserialized) by an input port into a k-flit chunk before
being written into the central buffer. These k-flit chunks are read from the central buffer and are
disassembled (serialized) into k flits again by the intended output port. This reduces the number
of central buffer RAM read and write ports required. As an example, in the 8-port SP2 switches,
up to 1 flit is received (transmitted) at each of the 8 input (output) ports every cycle. An SP2
chunk is therefore 8 flits, and the central buffer only requires 1 RAM write port and 1 RAM read
port to match the input and output bandwidth of the switch. In general, for a switch with & input
and k output ports, a chunk size of k flits is required for a 2-port RAM to match the input and
output bandwidth of the switch.

The central buffer logic maintains a list of free chunk locations. A central buffer write allocates
a free chunk, and a read returns a free chunk. There must be a mechanism—the next-packet list—
to order the packets within each packet queue. Each packet is divided into chunks, and thus there
is also a mechanism—the next-chunk list—to order the chunks within a packet. To record these
two types of linking information, two pointer fields are associated with each chunk of data: the
next-packet (N P) field and the next-chunk (NC) field (see Figure 5). In addition, each output port

Chunk
Chunk
Chunk

Figure 5: Organization of a central buffer

Data NP | NC

o maintains first-packet (firstP[o]) and last-packet (lastP[o]) pointers into its packet queue, and
a first-chunk (firstC[o]) field that points to the next chunk to be read if output port o has already
read the header chunk of the current packet. Each input port ¢ maintains a last-chunk (lastC[i])
field that points to the last chunk written by input port 7. All pointers are assumed to be nil when
invalid.

In the following discussion, we shall assume input port ¢ is writing chunks to be read by output

port 0. The next-packet list is updated each time the first chunk (the header chunk) of a packet is

12

written. The updation of the list is done as follows. If no packets are currently on the destination
output port’s packet queue (firstPlo] = nil), then firstP|o] < writeloc, where writeloc is the
address where the header is written. Otherwise, N P[lastP[o]] <— writeloc. The last-packet pointer
is updated (lastP|o] « writeloc), and the packet-list is terminated (N P[writeloc| < nil).

The next-chunk fields provide a similar linking function between packet chunks. On a write,
when a valid last-chunk pointer exists, the central buffer next-chunk location pointed to by last-
chunk is updated with the location of the currently written chunk (if lastC[i] # mnil, then
NCllastC[i]] < writeloc). When an input port writes a chunk, it also updates its last-chunk
pointer with the write location (lastC[i] < writeloc).

The logical structure of a typical output port queue within the central buffer is shown in Figure

6. There are two packets shown, each with its associated chunks displayed in a column. Pointer

fstC | [fistP | [lastP \

Data NP | NC Data NP | NC
! !
Data NP | NC Data NP | NC
! !
Data NP | NC Data NP | NC
l v
Data NP | NC
i

Figure 6: Structure of an output port queue within the central buffer

fields with no arrows emanating from them are currently invalid (e.g., next-packet fields are not
used except for header chunks). It should be evident that the order of packets in a queue is entirely
determined by the order of header chunk writes.

On the output port side, except for when a header chunk is being read, the output port first-
chunk field is used to determine the location of the next central buffer chunk read (readloc <+
firstClo]). For header chunk reads, the first-packet pointer is used to determine the location to
read from (readloc < firstP[o]). When a header chunk is read from the central buffer, the next-
packet list must be updated (firstP[o] < N P|readloc]). Furthermore, on every chunk read the
output port’s first-chunk pointer is updated with the associated central buffer next-chunk pointer
(firstC[o] <~ NC][readloc]). Figure 7 shows the structure of the queue from Figure 6 after the first
two chunks of the first packet in the queue have been read by the output port. Note that firstP
and firstC have been updated, and firstC is now a valid pointer field required for retrieving the
next chunk from the queue.

Having examined the architecture of a typical central-buffered switch, we now describe how such

an architecture can be enhanced to support asynchronous replication of multidestination worms.

13

fistC | [firstP | [lastP \

Data |NP [NC|
l
Data NP | NC
l
Data NP | NC Data NP | NC
l 4

Data | NP |NC

\\F

Figure 7: Structure of the same output port queue after two chunk reads

4.2 The Shared Central Buffer Replication Method

We desire a replication method that requires only one copy of the packet to be transmitted from the
input port, and a method which acquires the deadlock-avoidance advantages of virtual cut-through
operation. This goal can be achieved via the central buffer, with replication occurring during the
read of the chunk out of the central buffer by the output port.

In this single-copy replication method, the input port writes each chunk into the central buffer
once, but also initializes an associated counter c to ks, where k; is the degree of replication required
at that switch. When an output port reads the chunk from the central buffer, it checks c. If ¢ =1,
then the chunk is thrown away. Otherwise, ¢ is decremented.? The relatively large size of a chunk
minimizes the impact of adding a counter to the storage space for each central buffer chunk.

The multiple-flit size of a chunk provides another striking advantage for this method: an input
port can write a multidestination packet into the central buffer at full bandwidth, while simultane-
ously all ks output ports are reading the packet at full bandwidth. Thus latency and required buffer
space are minimized. We have established the motivation for the single-copy replication method;

in the next section we examine the implementation issues.

4.2.1 Replication Implementation

In this section we describe modifications to the basic buffered wormhole strategy that provide
efficient single-copy replication. The basic change is to provide a counter, ¢, with each chunk that
indicates the number of output ports that have not yet read the chunk from the central buffer, as
introduced in the preceding section. However, there remains a problem with the next-packet lists.

If a single header chunk is written to the central buffer, then there exists only a single next-packet

pointer associated with this header chunk. Therefore, even if the last-packet and appropriate next-

2An implementation need not strictly follow this convention. For instance, ¢ could initially be set to k; — 1, in
which case if ¢ = 0 then the last output port is reading the chunk. This choice might allow ¢ to be implemented with
1 less bit.

14

packet pointers are updated for every destination output port, we will be faced with an unacceptable
situation in which the next-packet lists are converged. i

One solution is to write ks copies of the header chunks, one for each destination output port.
This immediately provides a distinct next-packet pointer for each queue, maintaining their disjoint
nature. All other chunks of the multidestination packet are written once. This method requires
ks — 1 more chunks of central buffer space. In addition, because it requires several cycles for the
header write, this also temporarily reduces the achievable total bandwidth into (but not out of) the

central buffer. Figure 8 illustrates this solution. In this figure, output ports = and y share the same

Output port x 3 Output port 'y
[isic| [fistP] fiostP] listc| [fistP] [lostP \
- ‘Do‘ru o=1|NP ‘NC‘ Data | o=1 ‘ NP ‘NC‘ i
Data| c=2 | NP ‘NC ‘ Data r_z‘ NP ‘NC‘
‘Do‘rc c=2| NP ‘NC ‘ Data @2‘ NP ‘NC ‘

1
sl e o] |
Figure 8: Replicated header chunks pointing to the same second chunk

(multidestination) packet at the start of their queues, yet their next-packet lists remain separate.

If hardware cost is not a constraining factor, there is another solution which does not require
ks — 1 extra cycles for writing the header chunk. Completely separate next-packet RAMs can
be implemented for each of the k& output ports (as opposed to the one shared next-packet RAM
implemented by the NP fields shown in Figure 5). With separate next-packet RAMs, all ks next-
packet lists can be updated during the same cycle that the header chunk is written. Due to the
replication of hardware, the next-packet lists are prevented from converging.

For the simulations studies in this paper, we have assumed the first option since hardware cost

is an important constraint.

4.2.2 Emulating Virtual Cut-Through

As explained before, the equivalent of virtual cut-through (VCT) operation is required to avoid
the dependence between output ports which can lead to multicast deadlock. VCT designs perform
flow-control on a packet basis, allowing transmission of a packet from a switch only when the entire
packet can be buffered at the downstream switch or node. Wormhole flow-control designs can
be augmented to provide the aspects of VCT that are essential for multicasting, given sufficient
buffering capability within each switch. To use a central buffer for emulating VCT, the total central

buffer size must be as large or larger than the largest packet to be buffered.

15

When a multicast packet is replicated at a switch, each chunk of this packet must be stored in
the central buffer before being read by all destination output ports. The packet header chunk is not
allowed to enter the central buffer until there is a guarantee that the entire packet will eventually
obtain space within the central buffer. This does not necessarily require that space for the entire
packet exists prior to writing the header chunk.®> When the header chunk is written (at least before
any other chunk from any input port is subsequently written) the required number of chunks are
reserved for use by that multicast packet only. In designs that maintain a “free chunk counter,” this
is most easily accomplished by decrementing the free space count by the total number of multicast
packet chunks to be written.

To summarize, although the normal wormhole switch-to-switch flow-control is used between
switches, the multicast packet header chunk is prevented from entering the central buffer until the
entire multicast is guaranteed to fit within this buffer. This is a weaker requirement than VCT,
and is only applied to multicast packets which are to be replicated within that switch. Thus,
multidestination worms can be implemented in central buffer-based switch architectures with very
little additional hardware support.

If some or all of the destination output ports are idle, it is possible to forward flits directly
to these idle ports via the crossbar to minimize latency. However, because the idle ports could
soon block from downstream traffic congestion, these ports might eventually require use of the
central buffer as well. Conversely, a full central buffer could prevent the multicast packet from
being written into the buffer (for the “busy” output ports) at full bandwidth, and this would slow
the progress of succeeding flits destined for the idle ports. To simplify the accompanying design

issues, we did not consider forwarding multicasts through the crossbar.

5 Input Buffer based Switch Architecture

In this section we describe an input-buffer-based switch architecture for implementing multidesti-
nation worms. We first describe the basic idea behind the switch architecture and then provide
two alternative implementations that can reduce the wiring complexity in a switch implementa-
tion. The important change from an architecture that supports only unicast packets, is that the
input buffers must be larger than the largest multicast packet allowed in the system. This ensures
that any multicast packet that arrives at an input port is guaranteed to be completely buffered
eventually. (The packet at the head of the buffer will be eventually freed. This implies that the
packets behind it will definitely progress one by one to the head of the buffer. Since the buffers are
assumed to be larger than the largest packet, at this point the packet will be completely buffered
at the switch.)

3If the designer can identify cases in which chunks currently within the central buffer are guaranteed to be read
and freed, then these chunks may be able to be counted toward the available buffer space. These cases will vary from
design to design and may also be topology-dependent.

16

5.1 Enhancing an Input-Buffered Architecture for Multicast

We now describe the basic idea behind enhancing an input buffered architecture to support multi-
casting using multidestination worms.

Just as with the central-buffered architecture, flits of an arriving multidestination worm are
assembled into chunks and stored in a chunk-wide RAM that constitutes the input buffer. When
a multidestination worm arrives at the switch, a count value is associated with every one of its
chunks. The switch decodes the multidestination worm header to determine the output ports to
which the worm should be forwarded. A request is then enqueued for each of these output ports
and the idle output ports begin reading chunks of the message from the appropriate input ports. As
a chunk is read, the count value associated with it is decremented and the chunk is discarded once
all output ports have read it. The chunk that is read is stored in an output buffer from where it is
transmitted onto the next link on a flit by flit basis. Note that the header chunk is also read by each
of the output ports as part of the message—every branch of the multidestination worm carries the
same bit string header implying that no header manipulation needs to be done at the intermediate
switches. As discussed in the previous section, chunking allows output ports to maintain a flit
per cycle rate while requiring only a 2 port (1 read, 1 write) RAM. Figure 9 shows a snapshot of
a multidestination worm with asynchronous replication making progress in an input-buffer-based
switch architecture. In the figure, the multidestination worm enqueues a request for a busy port,
while the ports that are available read chunks of the worm from the input buffer, simultaneously
decreasing the associated count value. The ports take turns reading from the input buffer.

Count values Switch CrOSSborRequesT Enqueued

Multidestination Waky,

Qutput Ports “‘read’’
_chun

Available Ports
Proceed

Chunks ™|

N A
r ——
—

UnicasfWorm]

Figure 9: Snapshot of a multidestination worm making progress through a switch with an input
buffer based architecture.

An implication from the above description is that a k-flit chunk is transmitted in a single cycle
across the switch crossbar. This would require a chunk-wide crossbar in a naive implementation,
which would increase the wiring complexity within the switch chip. Assuming a MUX implemen-
tation of a crossbar, Fig. 10 shows an organization of the input and output buffers as well as the
connectivity between them. Let us define a flit-MUX as a flit-wide k£ to 1 MUX.* The suggested
organization uses k large MUXs where each large MUX has k k-flit wide inputs and one k-flit

4A flit-MUX may actually be implemented as flitsize smaller MUXs, each of which has k 1-bit inputs and one
1-bit output.

17

wide output. Each of these larger MUXs is actually implemented using k flit-MUXs. Such an

implementation incurs high wiring complexity.

Chunk-wide

From
i7p Ik Input Bufer (RAM) MUX Output Buffer (1 chunk)
................... '/ o
| H o/p link
Register (chunk-wide)
From Chunk-wide
S Input Bufer (RAM)] MUX Output Buffer (1 chunk)
................... /o
| D o/p link

Register (chunk-wide)

Chunk-wide
ﬁéﬂﬂk Input Bufer (RAM))

i

Register (chunk-wide)

Output Buffer (1 chunk)
MUX

/ To
H o/p link

Frol Chunk-wide
i/p link Input Buffer (RAM;

Loy

Register (chunk-wide)

Output Buffer (1 chunk)

MUX

To
o/p link

yyvyy LHW yyvy YYvYY

Figure 10: Switch organization to implement multidestination worms using larger MUXs in a 4 x 4 switch.
The thick lines represent chunk-wide (k x flitsize) lines; the thin lines represent flit-wide lines.

To alleviate this problem, we propose alternative implementations which perform as well as an
implementation with a chunk-wide crossbar in the next section. These implementations pipeline
the transfer of flits in a chunk from the input to output by either (i) using a series of registers
to pipeline the transfer of the flits from the chunk-wide RAM, or (ii) using k separate flit-wide
RAMs instead of a single chunk-wide RAM (where k is the number of input and output ports in
the switch, which defines the chunk size as described before).

Another important design decision in this architecture is whether packets at different points in
the input buffer should be allowed to make progress or whether progress should be restricted to
the packet at the ‘head’ of the input buffer [40]. The former option implies that a fairly complex
next packet list must be associated with every output port, much like the next packet list described
in the context of the central buffer in the previous section. While this list is associated with the
single central buffer in the previous section, the presence of multiple input buffers complicates the
structure of this list. This complexity is eliminated if only packets at the head of the input buffer
are allowed to make progress—an output port need only know which input port it must serve next,
the location to read from to begin transfer is implicit. We therefore decided to adopt the approach

with packets being processed in FIFO order from the head of the input buffer for our study.

18

5.2 Reducing Switch Complexity

We now propose two modified switch architectures that can reduce the cost and wiring complex-
ity when compared to the design outlined in the previous subsection, while retaining all of the
functionality and performance. Both methods reduce the width of the MUXs in the multicasting

circuit.

5.2.1 Register-Staircase Approach

This method uses a set of k registers associated with every input buffer in an effort to reduce the
MUX width. A schematic of the proposed architecture for a 4 x 4 switch is shown in Fig. 11. This
approach makes use of the following observations to achieve performance similar to that achieved
by the model specified in the previous section: (i) all output ports transmit the chunk that they
read from an input port on a flit by flit basis to their corresponding output link, and (ii) output
ports can proceed in parallel if they read from different registers.

Output Bufer (1 flit)

E
iplnk Chunk-wide Input Bufer (RAM)

To
[l] MUX MUX" ¥y olplink

==
Output Bufer (1 flit)
From . =
i/p link Chunk-wide Input Bifer (RAM) To
[l MUx ofp link
Output Bufer (1 flit)
ik Chunkewide Input Bufer (RAM) o
I K 2] UK L MYXy ol link
e =
Sl
Output Bufer (1 flit)
From) =]
ilplink Chunk-wide Input Buer (RAM)
MUX MUX - 3 ik
=]
=1 |
e
=]

Figure 11: The switch organization under the Register-Staircase Approach.

The basic idea is as follows. Let us assume that all k¥ output ports want to read from the same
input buffer. The output ports that are ready take turns reading from the input buffer. Note that
there is no restriction that all output ports have to be ready at the same time. An output port may
begin contending with other output ports for the input buffer whenever it is ready. This flexibility

allows output ports to be reading chunks from possibly different points in the input buffer. Flits

19

are transferred in a pipelined fashion as depicted in Fig. 12. In a given cycle, one of the contending
output ports (say O1) succeeds in reading a chunk from the input buffer. The chunk that is read
is transferred to the first of the & registers (R0) in this cycle. In the next cycle, the next available
output port (say O2) reads a chunk from the input buffer and transfers it to R0. In the same cycle,
01 reads the first flit from RO and transfers the remaining flits of RO to R1. In the third cycle, an
output port O3 may read from the input buffer and transfer a chunk to R0 and O2 reads the first
flit from RO and transfers the remaining flits of RO to R1. In the same cycle, O1 reads the first flit
from R1 and transfers the remaining flits of R1 to R2 while putting the flit it read in the previous
cycle onto the output link. This pipelined transfer continues with each output port transferring a

flit to its corresponding output link once every cycle and is shown in Fig. 12.

! : flits from R1 X

|
1" 04 reads chun‘(04 reads first |
I “into RO flitfromRO !
| 1 R1 <- Remaining
04 | I flits from RO |
I | |
I I I
L)

r T T T T 1
| Output, CYCLE#1 | CYCLE#2 | CYCLE#3 | CYCLE #4 | CYCLE#5
| Ports | | | |
I |
| 1" 01 reads chunkO1 reads first | 01 puts 1st flit | O1 puts 2nd flit| O1 puts 3rd fiit |
| I into RO I flitfrom RO | onoutputlinkl on output linkl on output link!
| | | R1 <- RemainingO1 reads next fjtO1 reads next flitO1 reads next fjit
| 01, | flitsfromRO| fromR1 | fromR2 | fromR3and |
| | | | R2 <- RemammpR3<- Remalmnq next chunk info
| | \ \ flits from R1 | flits from R2 | RO |
—t
| X | 02 reads chunk O2 reads first | O2 puts 1st flit | O2 puts 2nd fit,
into RO flit from RO on output link, on output link
! ! ! R1<- RemaminFOZ reads next fhtO2 reads next ffit
| o2 ! | I flits from RO from R1 I from R2 |
| I I | | R2 <- RemainingR3<- Remainind
| | | | | flitsfromR1 | flits fromR2 |
1 1 1 1 1 1]
| ! | | O3 reads chunk O3 reads first 1 O3 puts 1st flit |
| | I into RO I _flitfrom RO 1 on output link!
| | I | R1 <- RemainingO3 reads next fiit
. 03 | , flits from RO " from R1
R2 <- Remaininp
| | I
| | |
I] T
| | I
| | I
| | I
| | I
| I I
L

Figure 12: The pipelined transfer of flits in a 4 x 4 switch under the register staircase approach in a scenario
where all output ports read concurrently from the same input buffer.

It is to be observed that such an implementation reduces the size of the k& output port MUXs
in the circuit of Fig. 10 although the total number of flit-MUXs has increased (a total of (k% + k)
flit-MUXs are used in a k X k switch). Furthermore, there is no loss in performance when compared
to the previous approach. Most importantly, we have moved much of the dense wiring complexity
into the separate input port modules, avoiding huge multi-drop buses from crossing the chip to the

output ports.

5.2.2 Split-RAM Approach

We now present an alternative organization for reducing the complexity of the wiring used in the
switches. The basic idea behind this organization is to use k flit-wide RAMs (FWRs) instead of a
single chunk-wide RAM. The k flits of the chunk are written into the FWRs with the ith flit of the
chunk being written to the ith FWR (0 < i <k — 1). Figure 13 gives a schematic of the proposed
design.

The output ports read flits from each of the RAMs in sequence. To set up the pipeline, an

20

Output Bufer (1 flit)
Input Buffer

from, (Fiitwide RAMs) N
H‘_ﬂ MUX olp link
=T |
H:=0;
Output Bufer (1 flit)
Input Buffer =]
|/ Ilnk (Fln -wide RAMS)
p MUX) T8 ik
:‘H MUX ——
SN
Output Bufer (1 flit
F Input Buffer i P! (1 flity
i/ﬁmk (Fllt -wide RAMSs)
MUX g?p link
‘ MUX =
Input Buff Output Bufer (1 flit)
nput Buffer =3
|/p ik (Fllt -wide RAMs)]
MUX o?p link
‘ MUX
= —

W

Figure 13: The switch organization under the Split-RAM Approach.

output port reads a flit from one of the FWRs and stores the flit in the corresponding register. In
the next cycle, the output port reads the flit from this register and stores it in the output buffer
while reading the next flit from the next FWR into the corresponding register. In every succeeding
cycle, the output port transfers the flit in its output buffer to the output link, reads in the next flit
from an appropriate register into the output buffer, and reads in the next flit from a FWR into a
corresponding register. The destination output ports of the multicast packet that are ready, read
flits from the ¥ FWRs in this pipelined fashion. Once the pipeline is established, each of the ready
destination output ports transmits one flit every cycle on their associated output links.

The number and size of MUXs used under this approach is exactly the same as with the register
staircase approach. However, there is no need for the register staircase logic. Also, k flit-wide RAMs
are needed instead of a single chunk-wide RAM. This implies that for the flits to be read from the
k FWRs in parallel, k separate copies of the read control logic are required. It is to be noted that
this method performs as well as the method using the register staircase. Again, the complexity of
the wiring problem between the input ports and output ports is much improved. The Split-RAM

method is similar to the pipelined memory approach proposed in [13].

21

5.3 Summary

We have presented an internal switch architecture capable of providing dynamic multicast via a
crossbar with chunk-wide data paths. The switch crossbar requires k of these flit-MUXs for each of
the k output ports, for a total of k? flit-MUXs. Each input port sends a k-flit output to all output
ports, creating a difficult wiring problem aggravated by multi-drop signals.

We suggested two alternatives to address this wiring problem while maintaining the same per-
formance. In each alternative, (k? + k) flit-MUXs are used, but each input port sends a separate
single flit to each output port. We anticipate that the dramatic improvement in the input port
to output port wiring congestion will easily offset the extra MUX cost and the additional logic
required to set up these 1-flit outputs. In addition, each of the suggested alternatives requires only
a 1-flit register at each output port, compared to a k-flit register used in the original approach. The
Register-Staircase approach will be advantageous for technologies in which latches are relatively
cheap, while the Split-RAM approach will be advantageous when the penalty for dividing RAMs
into multiple thinner RAMs is not excessive. These considerations vary with technology, and we
therefore refrain from supporting one approach over the other.

In summary, the primary modifications we propose to an input-buffered switch supporting only
unicast messages so that it supports multidestination messages are: (a) an input buffer per input
port which is larger than the largest worm allowed in the system, (b) an arbitration mechanism
to select among competing output ports, and (c) counters associated with packet chunks. The
changes proposed for supporting the multidestination mechanism are therefore few and can be

easily incorporated into existing switch architectures.

6 Comparing the two architectures

In this section we qualitatively examine the two proposed architectures before comparing them to
software multicasting in the next section. Both schemes will benefit from using fewer links overall
for a multicast, compared to the links used by the m messages required for the software multicast.
The central buffer approach is significantly more complex, thus it is not worth considering unless
it is expected to provide better performance. It is well-known that shared central buffers provide
superior performance for most unicast traffic [42, 44].

The central buffer based architecture provides a dynamically-shared resource for input and out-
put ports. In contrast, the input buffer implementation statically and evenly divides the available
storage among the input ports. If the load among the input ports is unbalanced, the central-
buffer-based scheme is likely to benefit because the ports have shared access to a larger buffer and
can potentially use nearly the entire space available even when some or all of the intended output
ports are busy with other traffic. In a bidi-MIN network, multidestination worms adaptively travel
from the source to the least common ancestor and then turn back. They then replicate on their

downward path, tending to cause more blocking on the “right” input ports than on the “left” input
g g g put p p

22

ports, and a centrally-buffered scheme can adjust better to this imbalance.

Another expected drawback of the input buffer based implementation is head-of-the-line block-
ing: a blocked packet at the head of the FIFO blocks all packets behind it. Multicast is likely
to exacerbate this problem, as the packet at the head of the input FIFO will not be dislodged
until all destination output ports have read the entire packet. In the next section, our simulation

experiments attempt to quantify these comparisons.

7 Performance Evaluation

To assess the performance impact of input FIFO replication and central buffer replication schemes,
we conducted simulations on a C++/CSIM-based model [27] incorporating these options. To judge
hardware multicasting versus software multicasting methods, we also implemented the binomial
tree-based U-Min algorithm [46] that eliminates link contention among the unicast messages of a

software multicast.

7.1 Simulation parameters and methodology

The default performance parameters and the central buffer model were based roughly on a contem-
porary switch: the SP Switch of the IBM RS/6000 SP systems which is a successor to the SP2 High
Performance Switch [42]. Each switch in these systems has 8 input ports and 8 output ports, where
input and output ports are typically paired and connected to another switch’s input/output port
pair over a bidirectional link. Each output (input) port can send (receive) a 2-byte flit every 13.33
nsec cycle, for a maximum of 300 MB/s of bidirectional traffic over the link. For our simulations,
we count latency in cycles and we assume 2-byte flits. Minimum latency through each switch is
assumed to be 6 cycles, with 4 cycles required for reading data out of the input FIFO, determining
the route, requesting output port(s), and granting the request. For input port FIFO replication or
for traversing the switch via the central buffer, flits are deserialized into a chunk, requiring 7 extra
cycles for the 8-flit chunks.

As in the SP Switch, we assume the central buffer accommodates 256 chunks, each of which
contains eight 2-byte flits, for a total of 4 Kbytes of storage. In the central buffer model, each of
the 8 input FIFOs contains 64 flits, for a total on-chip packet buffer space of 5 Kbytes. To equalize
storage between the central buffer and input buffering models, we assume 640 bytes (320 flits) of
storage for each input FIFO in the input buffering model.

We assume that packet flits are immediately pulled from the network upon arrival at a node. As
with most network simulations, in our experiments we measure latency vs. applied load and received
vs. applied load (under both switch architectures). We simulated random traffic for 128-byte and
512-byte messages, and we assumed that both of these message sizes fit within a single packet.
For an m-way multicast simulation on an n-node system, for each message we randomly chose m

uniformly distributed destinations among the n — 1 non-source nodes. Message transmission times

23

for each node were exponentially distributed. Latency results include queuing time at the source
node, and latency curves are not plotted above the saturation bandwidth (latency is infinite in a
stable but saturated system). To create a stable environment for statistics collection, we typically
ran the simulations with 100,000-150,000 cycles (or more) of cold start time before commencing

data collection.

7.2 Multicast simulation issues

Multicast traffic evaluation raises new issues beyond unicast traffic. The definition of multicast
latency is problematic: latency can be defined as (a) the latency of the last received message of the
multicast, or (b) as average of the latencies of each received message of the multicast. Nupairoj
and Ni [25] argue that (a) is the more important term in assessing message-passing collective
communication performance. In another example, shared-memory systems multicasts might be
used for cache line invalidations to multiple destinations, and the source must wait for the last
received (and acknowledged) invalidation before modifying the cache line. Except for graphs in
which we directly compare definition (a) with (b), we choose definition (a) for recording latency.

A second issue: when the network is operating below the saturation bandwidth for m-way
hardware multicasts, the packet injection bandwidth B; does not equal the packet receive bandwidth
B,. Instead, B, = mB;. Thus mB; is effectively the load being injected into the network. One is
tempted to simply plot latency versus B,, but we prefer to plot performance measures against a
stimulus, not a response. Most of our graphs display “effective input load” (mB;) on the x-axis.
Let a load of 1 for B, represent full bandwidth received at each node. Although it is possible that
mB; > 1, a stable system will already be in saturation for mB; = 1 anyway. Thus we do not show
results for mB; > 1.

A final issue is message startup overhead. In network simulations, unicast messages are typi-
cally assumed to have negligible startup overhead. With this assumption the network can easily
be stressed beyond saturation during simulation, yielding more insights into its behavior. In im-
plementing software multicast, most real systems have a non-negligible overhead between receiving
a multicast packet and forwarding the packet along the next stage of the binomial tree. In our
simulations we “zero” this overhead—minimizing the latency of software multicasting—to give it
the best chance of competing against hardware multicasting.

We conducted simulations for both 16-node and 64-node fat-trees constructed from switching
elements with 4 parents and 4 children (8 ports). Our default message size is 128 bytes (64
flits), which could correspond roughly to message sizes of request and reply packets for shared-
memory systems. To further stress the network, we also plot performance for 512-byte messages.
In the rest of this section we discuss the effects of varying a number of input loading and network

characteristics.

24

7.3 Impact of multicast degree

To understand the effect multicast on network performance, we begin by varying the degree of the
multicast m for a 16-node system, for switches with and without central buffers.
The top-left graph in Figure 14 compares software versus hardware multicasting latency us-

ing centrally-buffered switches in both cases, and the top-right graph shows a similar comparison

for input-buffered switches. As m increases, the software multicast latency increases and satu-

Hardware (FIFO) vs. Software (FIFO) Multlcastlng 16- nodes 128-byte msgs

Hardware (CB) vs. Software (CB) Multlcasung 16-| nodes 128-byte msgs
5000 + 8000 T
SW-CB, 2 -way % ! gw E:Eg éway]
- SW-CB, 6-way -+- | 4 -way -+-
4500 SW-CB, 9-wa¥ 8- & / 7000 [SW-FIFO, 9-way -8-- B
4000 | SW-CB, 12-way -* ! | i SW-FIFO, 12-way -x 5
— SW-CB, 15-way -2~ i { =~ 6000 | SW-FIFO, 15-way -4~ i 7
8 500 | HW-CB 2way - / 1 3 HW-FIFO, 2-way - 3
E HW-CB, 6-way ¢~ i ! E HW-FIFO, 6-way -©-- :
& 3000 | HWCB 9way - | i | & 5000 | HW-FIFO, g-way - |
2 HW-CB, 12-way -& - i i 2 EWE:ES ﬁ-way R i
! | -FIFO, 15-way —~»— ;
E 2500 | HW-CB, 15-way ~— | i | E’ 2000 |- y i - |
s ; / K P
[N L ! 4 [N
$ 2000 i | © 3000 i
£ 1500 | i a
L 1]
= = 2000 i
1000 ,
500 B 1000 4
0 0
0 1

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Effective applied load (fraction of max. bandwidth) Effective applied load (fraction of max. bandwidth)

Hardware (CB) vs. Hardware (FIFO) Multicasting, 16-nodes, 128-byte msgs
7000

HW-FIFO, 2 -way %
HW-FIFO, 6-way -+~ X
6000 - HW-FIFO, 9-way -8-- E
HW-FIFO, 12-way -
HW-FIFO, 15-way -&--

3 5000 | HW-CB, 2-way - -
S HW-CB, 6-way -<-- R
< HW-CB, 9-way -+ g
2 4000 - HW-CB, 12-way -&- v i b
5 HW-CB, 15-way —~<— ! : !
k] | A
» 3000 ; , -
j=2}
© i
% i
L ! .

$ 2000 ;

1000 i

0 | s

0 0.2 0.4 0.6 0.8
Effective applied load (fraction of max. bandwidth)

Figure 14: Latency vs. Effective applied load for software multicast and hardware multicast with

central buffering and input buffering.

rates quickly. For a similar increase in m, hardware multicast latency actually decreases, since the
same effective applied load results in less traffic under hardware multicast. Furthermore, hardware

multicast saturates at a much higher applied load than the corresponding software multicast. Hard-

ware multicast therefore performs significantly better than software multicast under both buffering
schemes.

The bottom plot of Figure 14 compares our two proposed hardware replication methods. Com-
paring the top and bottom graphs, we can observe that for small m, input FIFO replication actually
performs worse than software multicasting with a central buffer. This follows from the superiority

of central buffer queuing over input queuing for unicast packets. However, in contrast to software

25

multicasting, input FIFO replication latencies decrease with increasing m, and saturation band-
width increases. As m increases, a larger percentage of the replication occurs late on the paths to
the destination nodes. For example, for m = 2 in a 16-node system, most replication occurs at the
2nd-level switches, whereas for m = 15 most replication occurs at the 1st-level switches just before
reaching the nodes. And as noted before, for B, = mB;, increasing m decreases B;.

Figure 15 allows a better inspection of saturation bandwidth by plotting output bandwidth B,
versus effective input bandwidth mB;. The bottom graph confirms that for input FIFO replication,

Hardware (CB) vs. Software (CB) multicasting, 16-nodes, 128-| byte msgs Hardware (FIFO) vs. Software (FIFO) multicasting, 16-nodes, 128-byte msgs
1

SW-CB, 2-way <—— | ‘ ‘ ‘ ‘ ‘
0.95 | SW-CB, 6-way -+--
SW-CB, 9-way -8--
0.9 |SW-CB, 12-way -x

"~ |SW-CB, 15-way -4~
0.85 - HW-CB, 2-way - -
: HW-CB, 6-way -¢--
HW-CB, 9-way -
0.8 IHwW-CB, 12-way -
HW-CB, 15-way ~—

SW-FIFO, 2-way <—
SW-FIFO, 6-way -+~
0.7 | SW-FIFO, 9-way -B--
SW-FIFO, 12-way
06 L SW-FIFO, 15-way

. HW-FIFO, 2-way -
HW-FIFO, 6-way -<--
05 F HW-FIFO, 9-way -
HW-FIFO, 12-way -
HW-FIFO, 15-way

b+o

Received traffic (fraction of max. BW)
Received traffic (fraction of max. BW)

075 0.4 i
07 03 -
0.65
0.2 g
06
0.55 01 1
05 g 0 1 1 I I 1 1 1
05 055 06 065 07 075 08 085 09 095 1 01 02 03 04 05 06 07 08 09

Effective applied load (fraction of max. bandwidth) Effective applied load (fraction of max. bandwidth)

Hardware (CB) VSs. Hardware (FIFO) multicasting, 16-nodes, 128-| byte msgs
T T T T
HW-| FIFO 2 -way %
0.9 - HW-FIFO, 6-way -+-
HW-FIFO, 9-way -8--
0.8 FHW-FIFO, 12-way -x
HW-FIFO, 15-way -4~
0.7 F HW-CB, 2-way -*--
<
+
-

HW-CB, 6-way -o--
|l HW-CB, 9-way -+---

0.6

HW-CB, 12+ -way -

HW-CB, 15-way —~<—

05 |
0.4
0.3
0.2

Received traffic (fraction of max. BW)

0.1 %

0 Il Il
01 02 03 04 05 06 07 08 09 1
Effective applied load (fraction of max. bandwidth)

Figure 15: Received vs. Effective applied load for software multicast and hardware multicast with
central buffering and input buffering.

saturation bandwidth increases with m. For the software multicasts shown in the top graph, the
opposite is true. Unlike the characteristic flattened B, lines for the bottom graph, the software
multicast B, does not flatten out after B, becomes less than mB;. This is because the software
forwarding of messages is happening less frequently as latency increases, and this acts as a drag
on the input bandwidth. Thus it may not be appropriate to characterize the software multicast
as in saturation; the centrally-buffered switches continue to increase delivered bandwidth for this
message size.

For the central buffer-based replication scheme, saturation bandwidth is near enough to 100%

that it is hard to distinguish the curves, although the highest bandwidth is achieved for large m.

26

To better see the impact of m on saturation for central buffer replication, we increase the message

size in the next section.

7.4 Impact of message size

The graphs we have shown thus far use 128-byte messages, which the large central buffers typically
handle quite easily to over 90% of the maximum load. In this section, to stress the network further
we examine the impact of a larger message size of 512 bytes.

Figure 16 is a latency graph for a 16-node system for small hardware and software multicasts.
The 2-way and 4-way hardware central-buffer-based multicasts now saturate before 0.9 effective

Hardware (FIFO) vs Software (FIFO) Multicasting, 16-nodes, 512 byte msgs
20000 - T T

Hardware (CB) vs. Software (CB) Multicasting, 16-nodes, 512 bytes msgs
14000

SW-CB, 2-way -o—' i SW-FIFO, 2-wa C
, ! | , 2-way —— ¥
SW-CB, d-way -+ j 18000 |- SW-FIFO, 4-way ~+- [}i ¥ i
12000 - SW-CB, 6-way -B-- / g SW-FIFO, 6-way -8-- |/ !
SW-ng g-Way e ; 16000 |- SW-FIFO, 9-way -x-- i/ ; i
HW-CB, 2-way / HW-FIFO, 2-way -&-- i} i

I HW-FIFO, 4-way -x--
14000 HW-FIFO, 6-way -©--

10000 } HW-CB, 4-way -%-- {‘ i
| HW-FIFO, 9-way —+ |

HW-CB, 6-way -<-- !
HW-CB, 9-way -+-- !
8000 !

Message latency (cycles)
Message latency (cycles)
=
o
o
o
o

6000 ['
8000 fe i
4000 |- E 6000 - G 1
*T g
4000 §oF R
2000 [g
2000 g
0 0 :

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Effective applied load (fraction of max. bandwidth) Effective applied load (fraction of max. bandwidth)

Hardware (CB) vs Hardware (FIFO) Multicasting, 16-nodes, 512 byte msgs
20000

T T
HW-FIFO, 2-way —<—
18000 | HW-FIFO, 4-way -—+-- t E
HW-FIFO, 6-way -£-- i
16000 [HW-FIFO, 9-way - -
@ HW-CB, 2-way -4--
k] I HW-CB, 4-way -*-- -
S 14000 HW-CB, 6-way -¢--
KA HW-CB, 9-way -+-- i
S 12000 - y
j=
2 10000 B
8
g 8000 E
I
2
2 6000 [E
=
4000 | E
2000 B
0
0

0.2 0.4 0.6 0.8
Effective applied load (fraction of max. bandwidth)

Figure 16: Latency vs. Effective applied load for a 16-node system, 512-byte messages

load, although the 6-way and 9-way multicasts still saturate at effective loads higher than 0.9.
A similar decrease in the effective load for saturation is also observed for the input-buffer-based
multicasts. Again this is because, for equivalent B, = mB;, larger m implies smaller B;, resulting
in less packets traversing the first stages of the network, although in the last stage of the network
bandwidth is equivalent.

The software multicasts also saturate more quickly than for the 128-byte case. Just as for the

128-byte messages, saturation bandwidth decreases as m increases, because for software multicasts,

27

B, = B;.
The results for 128-byte and 512-byte simulations are qualitatively similar, and throughout the

rest of the paper we shall choose message size arbitrarily.

7.5 Impact of system size

To this point we have relied on 16-node simulations to test various parameters. To assess whether
lessons learned from 16-node simulations are applicable to larger systems, we now compare 16-node
and 64-node hardware multicasting experiments for the central buffer model. We do not show
software multicast results for 64-node systems, because they grow even worse as m increases.
Figure 17 shows latency and bandwidth for low, medium, and high values of m for each system

size. The 64-node system exhibits higher latency and slightly lower saturation bandwidth than the

HW-CB multicast in 16 and 64 node systems, 512 byte msgs HW-CB multicast in 16 and 64 node systems, 512 byte msgs
1

5500

n=64, 3—\)vay —-— ‘n:64,‘3-way‘ P
5000 | =64, 15-way —-- i B 0.95 n=64, 15-way —+-
n=64, 63-way -8-- i n=64, 63-way -8--

4500 | n:%g, (23—way * ! E g 09 L n=16, 2-way -x
. n=16, 6-way -& - i % . n=16, 6-way -&--
§ 4000 - n=16, 15-way -* - ! q g€ gl n=16 15way -
[5) - o
3 3500 [/ E S
> ; 5 08
g 3000 i E 3
g 2500 |- / | % 0.75
@ i & 0.7
g 2000 |- Lox A s
(%] , =]
L 1500 | PR 7 065
- =
1000 e 4 § 0.6
. S T Iv4
500 |- T o i 055 | .
0 ! ! ! ! 05 A ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 05 055 06 065 0.7 075 08 085 09 095 1
Effective applied load (fraction of max. bandwidth) Effective applied load (fraction of max. bandwidth)

Figure 17: Performance of 16-node and 64-node systems, 512-byte messages

16-node system for comparable multicasts. This fits well with experience from unicast simulations
on fat-trees: although fat-trees theoretically scale bandwidth linearly, in a larger network random
traffic requires more hops on average and therefore encounters more contention, lowering achievable
bandwidth. Just as for the 16-node system, the low m multicast has low latency but saturates

earliest.

7.6 Interaction between multicast and unicast traffic

The experiments so far have stressed the network by applying a single mode of input traffic :
random m-way multicast traffic. In a typical parallel application, however, message traffic will not
be entirely multicast or entirely unicast at any moment.

To better understand the interaction of multicast and unicast traffic, we simulate random bi-
modal traffic in which 20% of the received load is due to multicasts. Thus B, consists of two
components By, and By, (where By, and B, are the packet receive bandwidths of the unicast
and multicast messages respectively), and B,,,, = 0.2B,. For example, if B, = 0.7, then B,,, = 0.14

and By, = 0.56. Figure 18 shows the result of combining unicasts with 4-way multicasts.

28

For 80% unicast traffic, it is natural that the average latency should closely follow the unicast
message latency unless multicast latency grows disproportionately large. Hardware multicasts
perturb unicast traffic much less than do software multicasts, resulting in a lower combined latency.
This is because hardware multicasts occupy network links for less time than software multicasts,

due to both lower latency and a lower number of links traversed during the multicast.

Bimodal Traffic, 128 byte msgs

1400 . _ : . : _
All traffic, SW-CB, 4-way ——
Unicast traffic, SW-CB, 4-way -+--
1200 Mcast traffic, SW-CB, 4-way -2-- |
All traffic, HW-CB, 4-way - ;
— Unicast traffic, HW-CB, 4-way -4 ;
3 1000 - Mcast traffic, HW-CB, 4-way - - i
S :
8 ‘,
& 800 | |
8 ;
5 I
o 600 K |
(o)) . ,
I
@
2 B =
< 400
200 |
0 1] | .
0 0.2 0.4 0.6 0.8 1

Effective applied load (fraction of max. bandwidth)

Figure 18: Bimodal latency for a 16-node system with central buffers, 128-byte messages

7.7 Measuring latency in an alternate way

We mentioned in Section 7.2 that there are two alternatives for calculating the average latency of
multicasts. To this point, we have chosen definition (a): the latency of the last received message of
the multicast. In this section we compare (a) to (b): the average of the latencies of each received
message of the multicast.

Figure 19 displays this comparison for m = 6 on the top, and m = 15 on the bottom. For the
m = 6 case, (a) and (b) are nearly equal for the hardware central buffer multicast at low loads,
but for higher loads (a) exceeds (b) by almost 60%. For hardware input FIFO replication, the
difference between (a) and (b) grows more rapidly, as does the magnitude of the latencies. For
software multicasts with either of the buffering approaches, there is always a significant difference.
As noted in Section 7.3, for small m software multicasting with central buffers actually saturates
later than hardware multicasting with input FIFO replication, hence the crossovers in the graph.

For the m = 15 hardware multicast cases, the (a) and (b) definitions match closely throughout
a large load range. Software multicast has no such property due to the [logy(m+1)] steps required
to complete it.

To summarize, when (a) and (b) definitions are nearly equal, it indicates that different branches

of the multicast messages are arriving nearly synchronously. This is an attractive property for

29

loosely synchronous algorithms and collective operations such as barrier synchronization that can
be aided by multicasting. Hardware multicasting displays this nearly synchronous behavior for low
loads or high degree of multicast (when all other traffic is multicast traffic of similar degree, and

the network is not saturated).

Latency definitions for multicasting, 6-way, 16-nodes, 512-byte msgs Latency definitions for multicasting, 15-way, 16-nodes, 512-byte msgs
T T T T 14000 T : : .
SW-FIFO, def (a) <— 2 o SW-FIFO, def (a) <—
SW-FIFO, def §b§ - i : SW-FIFO, def (b) -+
7000 - " Sw-CB. def (a) -8- | | [1 12000 L SW-CB. def (a) 8- ¢]
SW-CB, def (b) > | | o SW-CB, def (b) -x ,
— L HW- o | T | — HW-FIFO, def (a) -&—4 ! A&
% 6000 [- HW-FIFO, def (a)] i : 3 ! i
@ HW-FIFO, def (b) -*-- | ! il 2 10000 |- HW-FIFO, def (b) %/ | @ i |
S HW-CB, def (a) -o-~ || ; R S HW-CB. def (a) o/ | . o
& 5000 |- HW-CB, def (b) -+ |/ £ g HW-CB, def (b) -+ | i
) y : > 8000 | * i
5 1
& 4000 | / b 8 4
< < i
® * > 6000 | I i
2 3000 [i ; i S ?
0%; * 0%)’ 4000 ,
= 2000 Wi e =
087 . . i
. 'x,o”,
1000 K o ; 4 2000 o 4
T T Pt
PP e A s
o Il Il Il o |
0 1 0

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Effective applied load (fraction of max. bandwidth) Effective applied load (fraction of max. bandwidth)

Figure 19: Comparing latency definitions for a 16-node system, 512-byte messages

7.8 Summary

We now summarize our simulated performance results. The hardware replication schemes using
architectures with either buffering organization exhibited a number of desirable characteristics
in comparison to software multicasting using the corresponding buffering organization. Latency
was much lower and saturation bandwidth was higher for the entire range of multicast degree m,
system size n, and message size. When random multicasts are part of bimodal traffic along with
random unicast messages, the hardware multicasts perturb the unicasts less than do the software
multicasts. Hardware multicast latency varies less over the range of destinations of a particular
multicast, especially for light loads or large m.

The input-FIFO-based hardware replication scheme did not fare as well as the central-buffer-
based schemes, especially at high loads, but for large m this scheme outperformed the software
multicasting with a central buffer. This is significant considering that central buffers perform much
better than input FIFOs for unicast traffic. The software multicasting scheme using input-buffered

switches performs worse than the other three options that were simulated.

8 Related Work

Other recent research has focussed on hardware multicasting schemes. As mentioned before, a
path based model was proposed for multicasting on two dimensional mesh networks by Lin and Ni
[19, 18]. This work was extended to a Base Routing Conformed Path (BRCP) model by Panda et
al. [28] applicable to any k-ary n-cube network. Kesavan and Panda [16] have studied the problem

30

of multiple multicast for meshes using both software based and hardware path based multicasts.

In the context of switch based parallel systems, Chiang and Ni have proposed a method for
synchronous replication of multidestination worms [6] adopting a deadlock avoidance scheme at the
switches. A somewhat related multicasting technique proposed in the context of DSM systems based
on direct networks is the tree based multicasting scheme proposed in [20]. Instead of guaranteeing
freedom from deadlock, a deadlock recovery scheme is proposed that “prunes” blocked branches.
This method is effective only for short messages, as is prevalent in a distributed shared memory
system. The architectures proposed in the current paper allow multicast for packets as large as the
buffer size at the switches and the technique works well for both long and short messages. Andrews
et al. [1] have proposed a method for tree based multicast using bit-string encoding in the context
of dance-hall architectures. However this work only focuses on store and forward networks and
short message lengths.

Some parallel systems like the CM-5 [17], Meiko CS2 [3] etc. provide facilities for multicasting.
However, the CM-5 uses a separate network for multicast operations and only one multicast is
allowed in this network at any given time. Data-less multicasts or “eurekas” are supported in the
Cray T3E [33] in the same network used for normal data communication. Using data-less multicast
packets avoids the deadlock scenarios outlined in this paper and the solution does not extend
to multicast of data packets. The approach presented in this paper allows arbitrary numbers of
multicasts, each of size upto the maximum packet size allowed in the system, to proceed concurrently
while using the same network as all other data to achieve multicast communication. Furthermore,

unlike the approach proposed for the Meiko CS2, multicast to arbitrary destination sets is allowed.

9 Conclusion

In this paper we have presented two switch architectures with differing buffer/queue organizations
for implementing multidestination worms in switch-based parallel systems. We have described in
detail how a central-buffer-based switch architecture that supports only unicast message passing can
be modified to support multidestination message passing at little additional cost. We also showed
how an input-buffer-based switch architecture can be similarly extended to support multidestina-
tion message passing, and presented two alternatives for implementing such an input-buffer-based
architecture that can reduce wiring complexity in a practical switch implementation. We then
performed extensive simulations to evaluate the relative performance of our proposed switch ar-
chitectures and to compare the achieved hardware multicast performance with the best software
multicast algorithm. To make the comparisons more interesting, we factored out the high start-up
overhead associated with the software schemes in our performance comparisons. The performance
achieved by such a software multicast algorithm is the best that can be achieved using point to
point communication primitives alone.

Our performance studies have shown that central-buffer-based switch architectures prove ex-

31

tremely beneficial in improving hardware multicast performance. Such architectures can deliver
good performance across an entire range of applied loads, message lengths, multicast degrees, and
system sizes. Although the alternative implementation using an input FIFO buffer delivers mul-
ticast performance similar to the central-buffer-based implementation for single multicasts and
multiple multicasts at low loads, the degradation in performance is rapid and occurs at relatively
light loads. If the associated start-up overhead is neglected, the central-buffer-based software multi-
cast outperforms hardware multicast using the input-FIFO-based implementation for low multicast
degrees on a 16 node system. This implies that software multicast, using efficient messaging layers
and support at the network interfaces to reduce start-up overhead, has the potential to offer good
performance when used in conjunction with central-buffer-based switches.

We are currently studying the impact of enhancements to the switch architecture to support re-
liable multicast, and efficient and reliable barrier synchronization [39, 34]. The relative performance
of such a scheme compared to an efficient software-based scheme in terms of absolute barrier latency
and in terms of their impact on other network traffic is being evaluated. We are also studying the
impact of hot spot traffic and other traffic patterns. We are also studying the relative performance
of multicast with switch support and multicast with network interface support [35]. Finally, we will
also be working on measuring the impact of these enhancements to the communication subsystem

on benchmark application performance in the DM and DSM [45] domains.

References

[1] J. B. Andrews, C. J. Beckmann, and D. K. Poulsen. Notification and multicast networks for
synchronization and coherence. Journal of Parallel and Distributed Computing, 15:332—350,
Aug. 1992.

[2] M. Barnett, D. G. Payne, and R. Van de Geijn. Optimal Broadcasting in Mesh-Connected
Architectures. Technical Report TR91-38, Dept. of Computer Science, University of Texas at
Austin, Dec 1991.

[3] J. Beecroft, M. Homewood, and M. McLaren. Meiko CS-2 Interconnect Elan-Elite Design.
Parallel Computing, 20:1627-1638, Nov 1994.

[4] J. Bruck, R. Cypher, P. Elustando, A. Ho, C.T. Ho, V. Bala, S. Kipnis, and M. Snir. CCL: A
Portable and Tunable Collective Communication Library for Scalable Parallel Computers. In
Proceedings of the International Parallel Processing Symposium, 1994.

[6] C. M. Chiang and L. M. Ni. Multi-Address Encoding for Multicast. In Proceedings of the
Parallel Computer Routing and Communication Workshop, pages 146-160, May 1994.

[6] C. M. Chiang and L. M. Ni. Deadlock-Free Multi-Head Wormhole Routing. In Proceedings of
the First High Performance Computing-Asia, 1995.

[7] Cray Research, Inc. Cray T38D System Architecture Overview, 1993.

32

8]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

D. Dai and D. K. Panda. Reducing Cache Invalidation Overheads in Wormhole DSMs Using
Multidestination Message Passing. In International Conference on Parallel Processing, pages
1:138-145, Chicago, IL, Aug 1996.

W. J. Dally and C. L. Seitz. Deadlock-Free Message Routing in Multiprocessor Interconnection
Networks. IEEE Transactions on Computers, pages 547-553, May 1987.

J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering Approach.
The IEEE Computer Society Press, 1997.

B. Duzett and R. Buck. An Overview of the Ncube-3 Supercomputer. In Proceedings of the
Frontiers of Massively Parallel Computation, pages 458-464, 1992.

Intel Corporation. Paragon XP/S Product Overview, 1991.

Manolis Katevenis, Panagiota Vatsolaki, and Aristides Efthymiou. Pipelined Memory Shared
Buffer for VLSI Switches. In Proceedings of ACM SIGCOMM, pages 39-48, August 1995.

P. Kermani and L. Kleinrock. Virtual Cut-Through: A New Computer Communications
Switching Technique. Computer Networks, 3(4):267-286, Sept. 1979.

R. Kesavan, K. Bondalapati, and D. K. Panda. Multicast on Irregular Switch-based Networks
with Wormhole Routing. In Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA-3), pages 48-57, February 1997.

R. Kesavan and D. K. Panda. Minimizing Node Contention in Multiple Multicast on Wormhole
k-ary n-cube Networks. In Proceedings of the International Conference on Parallel Processing,
pages 1:188-195, Chicago, 1L, Aug 1996.

C. E. Leiserson et al. The Network Architecture of the Connection Machine CM-5. In Pro-
ceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 272-285,
1992.

X. Lin, P. K.McKinley, and L. M. Ni. Deadlock free multicast wormhole routing in 2-D mesh
multicomputers. IEEE Trans. on Parallel and Distributed Systems, 5(8):793-804, Aug. 1994.

X. Lin and L. M. Ni. Deadlock-free Multicast Wormhole Routing in Multicomputer Networks.
In Proceedings of the International Symposium on Computer Architecture, pages 116—124, 1991.

M. P. Malumbres, J. Duato, and J. Torellas. An Efficient Implementation of Tree-Based
Multicast Routing for Distributed Shared-Memory Multiprocessors. In Proceedings of the
FEighth IEEE Symposium on Parallel and Distributed Processing, pages 186-189, New Orleans,
LA, October 1996.

P. K. McKinley and D. F. Robinson. Collective Communication in Wormhole-Routed Massively
Parallel Computers. IEEE Computer, pages 39-50, Dec 1995.

P. K. McKinley, H. Xu, A.-H. Esfahanian, and L. M. Ni. Unicast-based Multicast Communica-
tion in Wormhole-routed Networks. IEEE Transactions on Parallel and Distributed Systems,
5(12):1252-1265, Dec 1994.

L. Ni and P. K. McKinley. A Survey of Wormhole Routing Techniques in Direct Networks.
IEEE Computer, pages 62-76, Feb. 1993.

33

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Lionel Ni. Should Scalable Parallel Computers Support Efficient Hardware Multicasting? In
ICPP Workshop on Challenges for Parallel Processing, pages 2-7, 1995.

N. Nupairoj and L. M. Ni. Performance Metrics and Measurement Techniques of Collective
Communication Services. In First International Workshop on Communication and Architec-
tural Support for Network-Based Parallel Computing (CANPC ’97), Lecture Notes in Computer
Science 1199, pages 212-226, February 1997.

D. K. Panda. Issues in Designing Efficient and Practical Algorithms for Collective Communica-
tion in Wormhole-Routed Systems. In ICPP Workshop on Challenges for Parallel Processing,
pages 8-15, 1995.

D. K. Panda, D. Basak, D. Dai, R. Kesavan, R. Sivaram, M. Banikazemi, and V. Moorthy.
Simulation of Modern Parallel Systems: A CSIM-based approach. In Proceedings of the 1997
Winter Simulation Conference (WSC’97), pages 1013-1020, December 1997.

D. K. Panda, S. Singal, and R. Kesavan. Multidestination Message Passing in Wormhole
k-ary n-cube Networks with Base Routing Conformed Paths. Technical Report OSU-CISRC-
12/95-TR54, The Ohio State University, December 1995. IEEE Transactions on Parallel and
Distributed Systems. In Press.

D. K. Panda and R. Sivaram. Fast Broadcast and Multicast in Wormhole Multistage Networks
with Multidestination Worms. Technical Report OSU-CISRC-4/95-TR21, Dept. of Computer
and Information Science, The Ohio State University, April 1995.

W. Qiao and L. M. Ni. Adaptive Routing in Irregular Networks Using Cut-Through Switches.
In Proceedings of the International Conference on Parallel Processing, pages 1:52—-60, Chicago,
IL, Aug 1996.

I. D. Scherson and C.-H. Chien. Least common ancestor networks. In Proc. 7th Int. Parallel
Processing Symp., pages 507-513, 1993.

M. D. Schroeder et al. Autonet: A High-speed, Self-configuring Local Area Network Using
Point-to-point Links. Technical Report SRC research report 59, DEC, Apr 1990.

S. L. Scott. Synchronization and communication in the T3E multiprocessor. In ASPLOS-VII,
Sept. 1996.

R. Sivaram. Architectural Support for Efficient Communication in Scalable Parallel Systems.
PhD thesis, The Ohio State University, 1998.

R. Sivaram, R. Kesavan, D. K. Panda, and C. B. Stunkel. Where to Provide Support for
Efficient Multicasting in Irregular Networks: Network Interface or Switch? In Proceedings of
the 27th International Conference on Parallel Processing (ICPP ’98), pages 452-459, August
1998.

R. Sivaram, D. K. Panda, and C. B. Stunkel. Efficient Broadcast and Multicast on Multi-
stage Interconnection Networks using Multiport Encoding. In Proceedings of the 8th IEEE
Symposium on Parallel and Distributed Processing, pages 3645, Oct 1996.

34

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. Sivaram, D. K. Panda, and C. B. Stunkel. Multicasting in Irregular Networks with Cut-
Through Switches using Tree-Based Multidestination Worms. In Proceedings of the 2nd Paral-
lel Computer Routing and Communication Workshop (PCRCW ’97), Lecture Notes in Com-
puter Science # 1417, pages 39-52, June 1997.

R. Sivaram, D. K. Panda, and C. B. Stunkel. Efficient Broadcast and Multicast on Multi-
stage Interconnection Networks using Multiport Encoding. IEEFE Transactions on Parallel
and Distributed Systems, 9(10):1004-1028, October 1998.

R. Sivaram, C. B. Stunkel, and D. K. Panda. A Reliable Hardware Barrier Synchronization
Scheme. In Proceedings of the 11th IEEE International Parallel Processing Symposium, pages
274-280, April 1997.

R. Sivaram, C. B. Stunkel, and D. K. Panda. HIPIQS: A High Performance Switch Architecture
using Input Queuing. In Proceedings of the 12th International Parallel Processing Symposium,
pages 134-143, April 1998.

C. B. Stunkel, D. Shea, D. G. Grice, P. H. Hochschild, and M. Tsao. The SP1 High Performance
Switch. In Scalable High Performance Computing Conference, pages 150-157, 1994.

C. B. Stunkel, D. G. Shea, B. Abali, et al. The SP2 High-Performance Switch. IBM System
Journal, 34(2):185-204, 1995.

C. B. Stunkel, R. Sivaram, and D. K. Panda. Implementing Multidestination Worms in Switch-
Based Parallel Systems: Architectural Alternatives and their Impact. In Proceedings of the 24th
IEEE/ACM Annual International Symposium on Computer Architecture (ISCA-24), pages 50—
61, June 1997.

Y. Tamir and G. L. Frazier. High-performance multi-queue buffers for VLSI communication
switches. In Proc. 15st Ann. Int. Symp. on Computer Architecture, pages 343-354, May 1988.

N. F. Tzeng and A. Kongmunvattana. Distributed Shared Memory Systems with Improved
Barrier Synchronization and Data Transfer. In Proceedings of the 1997 ACM International
Conference on Supercomputing (ICS ’97), pages 148-155, July 1997.

H. Xu, Y.-D. Gui, and L. M. Ni. Optimal Software Multicast in Wormhole-Routed Multistage
Networks. In Proceedings of the Supercomputing Conference, pages 703-712, 1994.

35

