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ABSTRACT

Collective Communication operations form a vital part of most high performance
computing applications. The traditional implementations of these operations in the
Message Passing Interface (MPI) implementations are based on the point-to-point
messaging operations. Modern interconnects like InfiniBand Architecture (IBA) pro-
vide high performance primitives like Remote Direct Memory Access (RDMA) and
hardware-based multicast for communication. Exploiting these features of InfiniBand
to efficiently implement the collective operations is a challenge in itself.

In this thesis, a discussion of the issues involved in the design of a collective
communication library using the features available in the IBA networks is provided.
The design alternatives available, the feasible algorithms, implementation issues and
the performance benefits achieved using the new implementations are also discussed.

The new Barrier and Allreduce implementations give considerable performance
improvements over the traditional implementation based on the point-to-point mes-
sage passing model. The barrier implementations improve the performance up to
1.29 times on a 16-node cluster. The allreduce implementations provide a factor of
improvement of up to 2.06.

This is the first attempt to characterize the multicast performance in IBA and
to demonstrate the benefits achieved by combining it with RDMA operations for

efficient implementations of collective operations.
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CHAPTER 1

INTRODUCTION

In the past decade, the high performance computing community has seen a shift
from mainframe and host-centric computing to a parallel and network-centric comput-
ing approach. Network interconnects that offer very low latency and high bandwidth
have been emerging to complement the increasing computational power of commod-
ity PCs. This trend has enabled the deployment of high-end production scientific
computing environments, built using clusters of commodity PCs and high speed in-
terconnects. The high performance-to-price ratio of these commodity-off-the-shelf
(COTS) clusters has been the most important factor that has accelerated this trend.

Parallel applications developed for these computing environments, by definition
require co-operation between the processors to solve a task and this requires some
means of communication. Thus, the performance of such applications depends to
a great extent on the inter-processor communication provided by the communica-
tion subsystem. The networking interconnects, the communication protocols, and
the messaging middleware form some of the vital components of the communication
subsystem.

In this chapter we provide a brief overview of the networking interconnects, pro-

tocols and messaging middleware.



1.1 Interconnect Technologies

Some of leading products in the network interconnects market include Myrinet [2],
Giganet cLAN [8], Gigabit Ethernet [4], Quadrics [19] and InfiniBand Architecture
(IBA) [9]. Some of these interconnects provide very low latencies (even less than 10 us)
and very high bandwidth (of the order of Gbps). These interconnects provide memory-
protected user-level access to the network interface, thereby allowing data transfer
operations to be performed without kernel intervention. Thus the interconnect no
longer is the bottleneck in the critical path of the communication. Some of the
interconnects like IBA provide hardware-based support for Quality of Service(QoS)
and for multicast operations. These provisions at the hardware level open avenues to

develop higher-level layers using a novel approach.

1.2 Communication Protocols

The Gbps speeds offered by the network interconnects has shifted the onus of
reducing the communication latencies from the networking hardware to the software
messaging layers. Kernel-based protocols like TCP/IP are not capable of effectively
utilizing the performance provided by the underlying network. Consequently, vari-
ous OS-bypass protocols like AM [27], LAPI [5], EMP [18], VIA [3] and IBA were
developed to remove the kernel from the critical path and to thereby reduce end-
to-end latencies. They reduce the protocol processing overheads like copying data
into intermediate buffers, kernel context switches, etc. Some protocols also offer the
option of offloading some of the processing to the NICs, therefore leading to further

reduction in the communication latencies. IBA was the result of the effort taken by



the industry to consolidate the benefits provided by the user-level protocols and to

standardize the specifications.

1.3 Message Passing Programming Model

High performance applications are written using a variety of programming models.
The programming models are chosen based on the target system architecture, which
could be shared memory processors (SMPs), massively parallel processors (MPPs)
or distributed memory network of workstations (NOWSs). For the NOWs with dis-
tributed memory, the Message Passing programming model has been one of the most
efficient and easy-to-use approaches. Message Passing Interface (MPI) [16] is a pop-
ular standard for the message passing programming model.

In this model, as shown in Figure 1.1, processes do not share an address space.
The processes are named and data transfer is done using explicit communication
through send and receive calls. Apart from the send-receive communication calls,
the programming model can also include synchronous and asynchronous operations,
group communication, and aggregate operations.

These message passing middleware libraries now need to be designed to derive the
maximum benefit possible from the high performance communication protocols. A
number of factors like the copying of messages between buffers, handling the posting
of descriptors, buffer alignment, etc. affect the message passing performance. Ideally,
the middleware should be a light-weight substrate that provides the applications with

performance very similar to that of the underlying protocols.



(Sender) (Receiver)

Node A Node B

Memory Memory

=

Network Interconnect

< >

Figure 1.1: Message Passing Programming Model

1.4 Collective Communication

The message passing programming models specify operations for both point-to-
point messaging and for group or collective communication. Unlike point-to-point
messaging where data transfer happens between two processes (called the sender and
receiver), collective communication involves data transfer or synchronization between
a group of processes.

Collective communication operations are important to parallel and distributed
applications for data distribution, global processing of distributed data, and process
synchronization. High performance parallel applications are often involved in oper-
ations that require the co-operation of a group of processes. Collective operations
are used in these applications whenever there is a need for global communication
interleaved with stages of local computation.

Some of the commonly used collective operations in parallel applications include:

1. Barrier - This is a synchronization operation involving no transfer of data.

2. Broadcast - A data transfer operation that is used to send the data from one

process to all the processes in the group.



3. Gather- An operation to collect data from all processes in the group and transfer

it to a single process.

4. Reduce - Used to perform some operation, say summation or calculating the
minimum, on data from all the processes and to transfer the result of the oper-

ation to a single process.

There are many other variations of these operations available. For example, in the
gather and reduce operations, the collected data may be broadcast to all the processes.
The collective communication libraries are tailored to meet the diverse requirements
of the applications. Most of these operations are supported by the Message Passing
Interface (MPI) standard.

The fast improving performance of the underlying interconnects has led to the
shift in communication bottleneck from the network fabric to the software layer at the
sending and receiving ends. Hence it is vital that the software developers of message
passing libraries make the best use of the primitives offered by the interconnects and

implement the messaging layers with minimal overheads.

1.5 Problem Statement

Developers of message passing libraries that support collective communication,
have to consider not only the various algorithms available for the operations, but
also the support from the underlying protocols for efficient implementations of these

operations.



In the earlier generation MPP and SMP systems, collective operations were achieved
by using special hardware support. The current generation clusters typically use soft-
ware based collective operations built using the point-to-point communication oper-
ations.

Most user level protocols provide a send /receive or channel semantics based model
of communication, which requires explicit function calls at the sender and receiver
ends. Recent technologies like VIA and IBA also offer a different model based on
memory semantics. They allow transfer of data directly between user level buffers
on remote nodes without the active participation of either the sender or the receiver.
This method of operation is called Remote Direct Memory Access (RDMA). RDMA
allows a process to directly access a remote process’ user buffer without the remote
process making an explicit function call.

Another attractive feature in the IBA networks is the support for hardware-based
multicast. This primitive is provided under the Unreliable Datagram (UD) transport
mode. IBA allows processes to attach to a multicast group and then the message sent
to the group will be delivered to all the processes in the group. This means that a
single descriptor needs to be posted in order to perform a collective operation.

Given these powerful and efficient features in IBA we are faced with the interesting
question of whether these remote memory data transfer primitives and multicast
support in IBA clusters can be made use of for optimizing the performance of collective
operations. The performance characteristics of IBA networks and the additional
features lead us to reevaluate the efficacy of the current implementation of collective

operations.



As a part of this research, we explore the idea of developing collective communi-
cation libraries using the efficient low-level data transfer primitives. Replacing the
point-to-point communication calls in the collective operations with faster lower-level
operations can provide significant performance gains. Performance improvement is

possible due to various reasons, some of which are:

1. Reducing Data Copies - The number of data copies between buffers in the mes-
saging layer can be reduced by avoiding point-to-point messaging protocols.
Also for multi-stage algorithms, data can be directly transferred from interme-

diate buffers, and copies to and from the user buffers can be avoided.

2. Avoiding Tag Matching - The software overhead of matching tags of messages
can be avoided by assigning specific buffers for messages and using RDMA calls

to write to them.

3. Eliminating Unexpected Message Handling overhead - If the message arrives
before a receive call is made, it is placed in a temporary buffer. The receive
function has to then search the “unexpected” queue of buffers for the message
and copy it into the user buffer when found. All this processing adds consid-
erable overhead to the basic send-receive latency. Using RDMA writes, such

extra copies of messages can be avoided.

4. Reducing Number of Posted Descriptors- The hardware multicast feature allows
a single descriptor to be posted at the sender end to send data to multiple
receivers. This primitive fits in well with the semantics of collective operations

and hence can be utilized to our advantage.

In this work, we aim to provide answers to the following two questions:
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1. Can we optimize the MPI collective operations by using algorithms that leverage
the RDMA primitives in IBA instead of algorithms that use the existing MPI

point-to-point operations?

2. Can the multicast primitives in IBA be used to implement scalable collective

communication operations?

1.6 Owur Approach

In this thesis we discuss the various design issues and challenges faced in the devel-
opment, of a collective communication library using RDMA and Multicast primitives
for IBA-based clusters. We discuss the issues like buffer management, buffer reuse
mechanisms, data reception and reliability for Unreliable Datagram messages. As a
proof of concept, we have designed, implemented and evaluated two popular collective
operations. We have considered the Barrier operation, which is a synchronization op-
eration between all the processes in the group. This operation involves no transfer of
data and is thus a good starting point for understanding the basic issues involved in
RDMA and Multicast based collective operations. For this operation, we also discuss
three different implementations. Two of these are pure RDMA based solutions and
the other uses both RDMA and Multicast support.

We also look at the Allreduce operation, which involves a global reduction and
broadcast of data. We discuss the design issues for two different implementations of
this algorithm.

The rest of this thesis is organized as follows. In Chapter 2 we provide an overview
of the InfiniBand Architecture and the various features it provides. We also take a look

at the MVAPICH [17] implementation of the MPI standard for IBA-based clusters.



Chapter 3 delves into motivation for the work and the core issues of implementing the
collective communication library. In Chapter 4 we go into details of the algorithms,
design and performance evaluation of the Barrier operation. Chapter 5 discusses the
solutions offered for the Allreduce operation. We conclude and discuss the areas for

future work in Chapter 6.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter we provide an overview of InfiniBand Architecture and the set
of features that can be utilized for the efficient implementation of point-to-point
and collective message passing operations. We also provide a brief overview of the

MVAPICH message passing library.

2.1 InfiniBand Architecture

InfiniBand Architecture [9] defines a System Area Network (SAN) for connect-
ing multiple independent processor platforms, I/O platforms and I/O devices. This
industry standard uses scalable switched serial links to design clusters and servers
offering high bandwidth and low latency. IBA makes use of kernel-bypass techniques
to offer zero-processor copy data transfers between user level processes on remote
nodes. Figure 2.1 shows the different components of an IBA SAN.

In an InfiniBand network, nodes are connected to the IBA fabric using Chan-
nel Adapters (CA). Host Channel Adapters (HCA) are installed into the processing
nodes and initiate communication within the fabric. Target Channel Adapters (TCA)

connect I/0O nodes to the fabric.

10



Host Platform
o JL ey Jeee [CFU | Host Platform

l I E lf| ' [ ' ] . [CFU |[ CFU | =2 [ CPLY |
CPU CPU | 222 | CPU
/ -I:J'- m - CA

-
T,
|
[
;
»
3
N
l
r

- - Fabric
Fanswrd

-

. RAID Subsystem™, ‘
0 w S Other 1B Siubrets
ml-: WaNs
o  tem | :i \‘ LANs
i i (& -1,.-’" ‘ [ H’m[s
e TRl ! -
FHaes
\ Pala
" ~TH
.
-

c:m . ) s 00
5 iy

Elharmat Fibre Channel Graphits

Colsdles
5C8

Figure 2.1: IBA System Area Network (Courtesy IBATA)
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The InfiniBand specification classifies the channel adapters into two categories:
Host Channel Adapters (HCA) and Target Channel Adapters (TCA). HCAs are
present in servers or even desktop machines and provide an interface that is used
to integrate the InfiniBand with the operating system. TCAs are present on 1/0O de-
vices such as a RAID subsystem. Each channel adapter may have one or more ports.
A channel adapter with more than one port, may be connected to multiple switch
ports. This allows for multiple paths between a source and a destination, resulting in
performance and reliability benefits.

IBA defines a semantic interface called Verbs to configure, manage and operate
a HCA. VAPI is the Verbs implementation provided by Mellanox Technologies [14]
for the HCAs. It supports two kinds of communication semantics: channel semantics
and memory semantics. In channel semantics, send/receive operations are used for
communication. In this model, each send descriptor needs to be associated with
a receive descriptor on the remote node. If a send descriptor is posted without a
corresponding receive descriptor on the remote node, the message will be dropped.
In memory semantics, remote direct memory access operations (RDMA write and
RDMA read) are used. Here the initiator of the operation specifies both the local
and remote virtual addresses. There is no need of posting a descriptor on the remote
end.

In order to communicate, each process creates a Queue Pair (QP) which consists of
a Send Queue and a Receive Queue. The transport service needed has to be specified
when the QPs are created. Each Queue Pair is also associated with a Completion
Queue (CQ) and a CQ can be associated with many QPs. Communication requests

are initiated by posting Work Queue Requests (or descriptors) to the work queues.
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The HCA executes these work requests in the order that they are placed in the work
queue. When the HCA completes a request it places a Completion Queue Entry
(CQE) in the Completion Queue. The processes can then poll on the CQs to check
for completion of the requests. Figure 2.2 shows the IBA communication architecture.
User buffers used for transferring data must be registered first before they can be used
for communication. This allows the pinning down of the virtual memory region in

order to prevent it from being swapped out when the HCA is accessing it.

Consumer Consumer
s ™ s ™
Y Y

*HEE “HEE

CQE CQE

Send Recv Q Send Recv Q
IBA Swiched
I nterconnect

Channel Adapter Channel Adapter

) ¢ ¢
|PORT| | POI\RT‘ | PfRT\ |PORT|

A A

Figure 2.2: IBA Communication Architecture

The IBA transport mechanisms provide multiple classes of communication ser-
vices. A connected service requires each consumer to create a QP for each consumer
with which it wishes to communicate. The unreliable datagram service allows the

consumer of the QP to communicate with any unreliable datagram QP on any node.
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When a QP is created, it is configured to provide one of these classes of transport

services:

1. Reliable Connection (acknowledged - connection oriented)

2. Reliable Datagram (acknowledged - multiplexed)

3. Unreliable Connection (unacknowledged - connection oriented)
4. Unreliable Datagram (unacknowledged - connectionless)

5. Raw Datagram (unacknowledged - connectionless).

The VAPI implementation currently supports only RC and UD transport services.
Some of the features of IBA that are of interest in the message passing context

are described below.

RDMA Read

This is a memory semantic operation that allows a process to read a virtually
contiguous buffer on a remote node and write to a local memory buffer. RDMA
service is available only with the RC transport service type. It is possible to read
data from a contiguous buffer at the remote process and scatter it into multiple buffer

segments at the local process.

RDMA Write

This memory semantic operation allows a process to write to a virtually contigu-
ous buffer on a remote node. This is a one-sided operation that does not incur a
software overhead at the remote side. However, for the RDMA Write with Immedi-
ate operation, a receive descriptor will be needed at the receiver end. There is also a

14



gather list available to send data from non-contiguous local buffers. Figure 2.3 shows
the difference in latencies between the Send/Receive and RDMA write operations as
measured on Cluster 1, which is described in Section 4.4. We see that the performance
of RDMA write is much better than that of a Send/Receive operation and hence it

would be beneficial to use this primitive for our purposes.

14 : . . .
Send/Recv ———

12 L RDMA Write —=— k

Time (usec)

N
T

o

4 8 16 32 64 128 256 512 1024 2048
Message Size (bytes)

Figure 2.3: Comparison of RDMA write latency with Send/Recv latency at the VAPI
layer (Cluster 1)

Multicast

Multicast is the ability to send a single message to a specific address and have it
delivered to multiple processes which may be on different end nodes. This feature is
implemented as a combination of the capabilities of the IBA HCA, switch and soft-
ware layers by replicating the multicast message and sending it to all the designated
receivers. Performance evaluations of this multicast primitive on Cluster 1 show that

it takes about 9.6us to send a 1-byte message to 1 node and 9.8us to send the message

15



to 7 nodes. This implies that the operation is very scalable and can be used effec-
tively to design scalable collective operations. The multicast facility is available only
with the UD service type. The UD service is connectionless and unacknowledged.
It allows the consumer of the QP to communicate with any UD QP on any node,
and thus greatly improves the scalability of IBA. Current version of VAPI supports
a single multicast group that includes all the nodes in the subnet. We have made
use of this “broadcast” primitive in our implementations. When the later versions of
VAPI provide support for attaching to different multicast groups it will be possible

to design new algorithms where messages are sent only to a select group of processes.
2.1.1 Message Passing Interface

Message Passing Interface (MPI) [16] is a standard library specification for the
message passing programming model for parallel applications. Portability and ease
of use make MPI the most popular interface for developing high performance appli-
cations.

The MPI specification defines a wide variety of operations for both point-to-point
and collective communication, all scoped to a user-specified group of processes.

MPI defines a concept called the communicator, which is a data structure that
contains the information about the processes in the group and the context of commu-
nication. The identification of processes in an application is done by means of logical
ranks that are assigned to all the processes in the communicator (or group).

On most current generation systems it is possible to overlap communication with

computation in order to improve performance. The MPI standard provides the ability

16



to utilize this factor in the means of asynchronous or non-blocking operations. A syn-
chronous operation blocks a process till the operation completes. An asynchronous
operation is non-blocking and only initiates the operation. The caller could discover
completion by polling, by software interrupt, or by waiting explicitly for comple-
tion later. There are blocking and non-blocking counterparts for the point-to-point
messaging functions.

The MPI standard, as mentioned in Chapter 1, provides a variety of collective com-
munication operations. All collective operations are currently defined to be blocking

in nature.
2.1.2 MVAPICH - MPI over InfiniBand Architecture

MPICH [6] from Argonne National Laboratory is a popular open source imple-
mentation of the MPI standard. At the core of the MPICH design is a small set
of functions that form the Abstract Device Interface (ADI) [23]. The ADI contains
the protocol and network dependent code. The MPI functions are built using the
functions provided by the ADI. The ADI allows easy porting of MPICH to various
interconnect technologies. MVICH [10] from Lawrence Berkeley National Laboratory
is one such implementation of ADI2 for VIA based clusters. MVAPICH [11] is the
implementation of ADI2 for the VAPI interface of the InfiniHost HCAs and is derived
from MVICH.

In the original MPICH design, the collective operations are implemented using
the MPI point-to-point operations above the ADI. A collective operation like Barrier

is implemented using the MPI_Send and MPI_Recv functions. The MPI_Send and
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MPI_Recv functions are in turn implemented by using the device specific functions
present in the ADI.
The collective communication library design, implementation and evaluations in

this thesis have been done using the MVAPICH 0.8.5 [17] code base.

2.2 Related Work

The benefits of using RDMA for point-to-point message passing operations for
IBA clusters has been described in [12]. The methods and issues involved in imple-
menting point-to-point operations over one-sided communication protocols in LAPI
are presented in [1]. However using these optimized point-to-point operations does
not eliminate the data copy, buffering and tag matching overheads. A lot of research
has taken place in the past to design and develop optimal algorithms for collective
operations on various networks using point-to-point primitives, but not much work
has been done on selection of the communication primitives themselves.

RDMA based design of collective operations for VIA based clusters [20, 21] has
been studied earlier. Combining remote memory and intra-node shared memory for
efficient collective operations on IBM SP has been presented in [26]. In [7] the perfor-
mance of collective operations using optimized algorithms over SCI, a shared memory
based interconnect, is discussed. None of these papers focus on taking advantage of

the novel mechanisms in IBA to develop efficient collective operations.
2.2.1 Summary

In this chapter we provided an overview of the features and architecture of Infini-

Band based clusters. We also provided an overview of the Message Passing Interface
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standard. In the next chapter we introduce some of the key issues to be considered

in the design of a library based on RDMA and Multicast features of IBA.
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CHAPTER 3

DESIGN ISSUES

The remote memory access and multicast features available in IBA clusters pro-
vide us with a wide range of options to implement the collective operations. The
RDMA primitives help create a logical shared memory illusion across the processes
on different nodes with distributed memory. The hardware based multicast primitive
allows data to be collectively transferred to all the processes in the application in an
efficient and scalable manner. This makes us consider the viability of implementing
the collective operations using these low-level calls at the ADI layer instead of the
traditional method of implementing them above it.

In this chapter we discuss the motivation for this work and the design issues that

were considered as a part of the development of the library.

3.1 RDMA based design

As mentioned earlier, the RDMA primitives provide us with the ability to con-
struct a logical shared memory space between processes. This allows us to apply
simple algorithms for collective operations. Let us consider the case of a Barrier op-

eration. A barrier is a synchronization point operation wherein each process blocks
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until all the processes in the application have reached the barrier. So the only informa-
tion that needs to be shared between the processes is whether they have reached the
logical synchronization point. Once they get this information about all the processes,
they can continue with their computation.

In shared memory systems, a barrier operation can be done in a simple manner.
Each process can update a well-known shared location by incrementing it. This
updation needs to be done in an atomic operation. All the processes wait for this
memory location to contain value equal to that of the number of processes in the
application. Once this happens, all the processes exit the barrier, since they have the
information that all the other processes have reached the barrier.

An alternative approach would be to have an array of bytes (of length equal to the
number of nodes in the barrier) allocated at a well-known shared memory location.
Each process on arriving at the barrier, toggles the initial value of the array element
that corresponds to its rank. The processes then check to see if all the other elements
of the array have been toggled, and wait until they are. This means that every process
has arrived at the barrier and the barrier can be exited.

As seen in the previous examples, shared memory provides the advantage of im-
plementing simple and efficient barriers. In clusters with distributed memory the
collective operations are implemented using algorithms that use the MPI point-to-
point communication calls. When an operation like barrier is executed, the nodes
make explicit send and receive calls. The receive operation is generally an expensive
operation since it involves posting a descriptor for the message. Also, if the message
arrives before the receive call is made, it is placed in a temporary buffer. The receive

function then has to search the unexpected queue for the message and copy the data
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into the user buffer. All this processing adds considerable overhead to the basic send-
receive latency, thereby making the entire barrier operation slower. This is the kind
of overhead that can be effectively eliminated using RDMA operations.

In order to use RDMA writes, each process allocates a set of buffers and registers
them. In Figure 3.1, there are two processes PO and P1. The addresses of the buffers
are exchanged between the processes. Once the initial address and memory handle
exchanges are done, all the buffers in the remote process become a part of the local
process’ logical address space. P0 can directly write to the buffer in P1’s address
space and vice versa. Therefore the algorithms used for shared memory architectures
can be applied. We also see that in the case of each step of data transfer, there is no
involvement of the receiver in the critical path. The receiver only needs to check the
local registered buffer for the data from the remote processes, and there is no need

to post a receive descriptor.

Address space Address space

RDMA Writes

= - Logically shared memory

Figure 3.1: Logical Shared Memory created using RDMA operations
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3.2 Advantages of using Multicast primitive

The multicast primitive in IBA, by its very definition, seems like a natural choice
for implementing collective operations. Many collective operations like broadcast,
allgather, allreduce, etc., require that data from one source buffer be transferred to
buffers in all the processes in the group.

IBA provides support for processes to attach QPs to multicast groups. The QPs
need to be of the Unreliable Datagram service type. Once a message is sent to this
QP, it is delivered to all the QPs that are attached to the specified group. This
primitive involves replication of the message at the switch and simultaneous delivery
to all the receivers. The receivers will need to have posted receive descriptors to the
receive queues.

The brute-force method of performing the broadcast-type operations would typ-
ically involve executing sequential sends to each process from the source process, in
the form of a flat-tree. The implementation of such algorithms is done by using
MPI_Send and MPI_Recv calls for each step of the data transfer. There also exist
multi-stage algorithms that improve on this brute-force approach by reducing the
total number of sends done from one process. For example, a broadcast maybe done
using a binomial tree algorithm, wherein each process sends the data it has received
to its children. But even in these optimized cases, there is posting of descriptors at
the send queue of each parent process and at the receive queue of each child process.
The posting of descriptors at each parent process can be avoided by making use of
the multicast primitive. This is illustrated in Figure 3.2. Consider the broadcast of
data from PO to P1, P2, P3. In the implementation with point-to-point calls, there

are two send descriptors posted by PO and one by P2. In the implementation using
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the multicast primitive we see that there needs to be only one send descriptor posted
by PO. Thus, the multicast feature provides us with the ability to do a broadcast

with lesser overheads.

(ii) Multicast Primitive

Figure 3.2: Illustration of Send and Receive Descriptors posted in the Broadcast
Implementation using (i) Point-to-Point Messaging and (ii) Multicast Primitive

3.3 Design Issues

We now discuss the intrinsic issues associated with the design and implementation
of the library using the RDMA Write and multicast operations. We discuss the buffer
management and data reception issues to be handled when using RDMA. We also
discuss the techniques to add reliability for the UD multicast. In this section, we
present different alternatives for each of these issues. In the following chapters we

focus on our choices and their implementations.
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3.3.1 Buffer Management

IBA specification requires that all the data to be transferred be present in buffers
that are registered. Implementing collective operations on top of point-to-point mes-
sage passing calls leads us to rely on the internal buffer management and data transfer
schemes which might not always be optimal in the collective operations context. In
using RDMA, we have better control of the buffer consumption patterns. In order to
use the RDMA method of data transfer, each node is required to pin some buffers and
send /receive data using them. Also, the remote nodes should be aware of the local
buffer address and memory handle, which means that a handshake for the address
exchange should be done. The allocation and registration can be done at various
stages during the life of the MPI application.

The first option is for each process to statically allocate a set of buffers for each
collective operation and exchange the addresses during the initialization phase (i.e,
as a part of MPI_Init). These buffers can now be used throughout the life of the
application by following some buffer reuse schemes. We discuss some such schemes in
the following chapters. The disadvantage of this approach is that the buffers will be
allocated and pinned even if the application does not execute the collective operation.

The second option is for the buffers to be registered during the first collective
operation call. This means that the buffers are allocated only when there is a need
for them. Even in this case the buffers maybe reused for the subsequent collective
operations. However, buffer registration is an expensive process and so the first

collective operation call is likely to take more time than the ones that follow.
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Another alternative is to allow dynamic allocation and registration of buffers dur-
ing every collective call. This calls for an address exchange operation during each

operation and can hence be very expensive.
3.3.2 Data Reception

The RDMA write operation is transparent at the receiving end since it does not
require the receiver to post a descriptor for the data. Hence the receiver is not aware
of the arrival of data, after it has been written by the remote process. We need a
mechanism to notify the receiver of the completion of the RDMA write.

One method that can be used is to make use of the RDMA with immediate data
feature. This operation consumes a descriptor at the remote end and hence deprives
us of the transparency benefit of the RDMA write .

The other method is for the receiver to poll on the buffers for arrival of data. This
means that when the buffers are allocated, they will need to be initialized with some
special data so that the data arrival can be recognized. The processes can write the
data associated with the collective operation into the remote buffers and also write
the special data to indicate the arrival of data at the remote end. Each process polls
for this special notification value to be written in the local buffers, and once it is
available, it knows that the data for the operation has arrived as well. RDMA write
does not allow for the scatter of data to non-contiguous buffers at the remote end.
Hence we will need to make use of two RDMA writes, one for the actual data and the
other for the notification data. Posting two RDMA writes can be an expensive task.
Hence we can try to avoid the second RDMA write by piggybacking the notification

value with the actual data. The sender places the notification data in the bytes that
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follow the actual data. In most collective operations, the receiver process is aware of
the amount of data that is being transferred. Hence it can poll for the notification
value at the end of the data buffer. Thus the arrival is recognized at the receiving
end using a single RDMA write.

The above mentioned scheme works well if the total amount of data that is being
transferred is less than the M'TU of the underlying network. If not, the data will be
transferred as multiple packets and the order in which the contents of the packets are
written by the NIC to memory might vary. That is, just polling for the notification
data does not guarantee message arrival because the data from the other packets
might not have yet been written by the NIC to the memory. In this case we are
forced to use two RDMA writes to indicate completion. When the second RDMA
write is completed (by polling for the notification data), the receiver can be assured

that the data has arrived completely.

3.3.3 Buffer Reuse

As mentioned in Section 3.3.1, it is possible to allocate a single contiguous buffer in
the beginning and partition it into blocks as per the need of the collective operation.
Since the sender writes to the receiver’s virtual memory, it needs to be aware of
when these buffers are free for use. That is, they might contain data from an earlier
collective operation and it might not be safe to overwrite the data. One option that
can be used to handle this issue is for the receiver to send a notification to the sender
when the buffers are free for reuse. When the sender receives such a notification, it

can write to the buffers in the receiver safely.
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Another option would be make use of the intrinsic properties of the collective
operation as an indication of the safety of buffer reuse. Consider the Allreduce oper-
ation. We can make use of a scheme where there are two sets of buffers being used.
For the first operation, all processes write to buffer 1 of the remote processes. For
the second operation, they write to buffer 2. When the second allreduce operation is
completed, the processes are sure that all the other processes have exited from the
first allreduce, and buffer 1 is free to be used. So for the next allreduce operation
they can write to buffer 1. Thus the “double buffer” scheme can be used to safely
reuse the buffers in a collective operation.

3.3.4 Reliability for Unreliable Datagram multicast opera-
tions

The MPI specification assumes that the underlying communication interface is
reliable and that the user need not have to cope with communication failures. Since
the multicast operation in IBA is unreliable, reliability has to be handled in our
design.

One of the alternatives is to provide an acknowledgment (ACK) message from
the processes after every multicast message is received. The sending process waits
for the ACKs from all the nodes and retransmits the message if it does not receive
the ACKs within a specific time period. This technique is expensive since there is
a message being sent back from every process to the root, even after the barrier is
logically completed.

Another alternative would be for each receiving process to maintain a timer and
send a negative acknowledgment (NAK) to the sending process when it has not re-

ceived a message. This NAK could be sent using the Send/Recv primitives. When
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the root process receives this message, it can retransmit the multicast message. How-
ever, this means that the application should make some MPI communication call in
order for the root node to receive the packet and make progress.

The IBA specification allows for event handlers to be called when a completion
queue entry is generated. There is the option of triggering these event handlers on the
receive side only if the “solicit” flag is set in the message by the sender. This facility
can be used in the NAK message. By setting the solicit flag, this message triggers the
event handler at the sender process. The event handler then checks for the validity

of the retransmit request and does a retransmission of the multicast message.

3.4 Summary

In this chapter we discussed the advantages of using the RDMA write and mul-
ticast primitives for the collective operations. We also discussed the issues to be
handled when the library is implemented. In Chapter 4 we go into the details of
the algorithms and implementations for the Barrier operation. We also present the

performance evaluations performed for the different implementations.
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CHAPTER 4

BARRIER

In this chapter we discuss the Barrier operation [22] which is a commonly used
collective operation in parallel applications that are developed using the MPI pro-
gramming model. Barriers are used for synchronizing the parallel processes and in-
volve no transfer of data. They maybe used to separate phases of an application
program. The MPI _Barrier function call is invoked by all the processes in a group.
This call blocks a process until all the other members in the group have invoked it.
An efficient implementation of the barrier is essential because it is a blocking call and
no computation can be performed in parallel with this call. Faster barriers improve
the parallel speedup of applications and helps in scalability. Therefore it is important
to minimize the time spent waiting on barriers. The syntax for the barrier routine in
the MPI standard is as follows:

MPI_Barrier(MPI_Comm comm)

where:

MPI_Comm is an MPI predefined structure for communicators.

comm 1S a communicator
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We explain the various algorithms that can be used to perform a barrier and the
implementation details. We also provide the experimental results obtained for each

of the implementations.

4.1 Algorithms

In this section we present three different algorithms that can be used to implement
a barrier. The aim is to leverage the RDMA and multicast features offered by IBA to
the fullest extent possible. We discuss the algorithms and the number of steps that
are taken in the execution of each algorithm.

In the following subsections we denote processes using symbols 7, 7, £ and the total
number of processes involved in the barrier is denoted by N. We refer to the process
that has a distinguished role to play in some algorithms as the root. We indicate the

number of the current barrier by the symbol barrier_id.

4.1.1 RDMA-based Pairwise Exchange (RPE)

The algorithm for the barrier operation in the MPICH distribution is called the
Pairwise Exchange (PE) recursive doubling algorithm. MPICH makes use of the
MPI_Send and MPI_Recv calls for the implementation of this algorithm. This is a
recursive algorithm where the processes are paired up and each process does a send
and receive with its partner. Each pair of processes now forms a group. The groups
are now paired with each other and every process in one group does a send and receive
with a process in the other group. The pairs of groups are now merged to form a
bigger group. This pairing and message exchange continues until all the processes are

merged into one group. This indicates the completion of the barrier.
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If the number of nodes performing the barrier is a power of two, then every process
in this algorithm makes log, N sends and receives.

If N is not a power of two, then the algorithm proceeds as follows. The largest
power of two value less than NN, that is N’ is calculated. The processes are divided
into two groups, G containing all processes of rank less than or equal to N’ and
G' containing the remaining processes. All the processes in G’ send a message to a
process in G. The nodes in G perform the pairwise exchange algorithm. Then the
processes that received messages initially reply to the corresponding processes in G'.
The number of steps taken in this case is |log, N| 4+ 2. Figure 4.1 shows the steps
performed for a 5 node barrier. In this case N is 5 and N’ is 4. In the first step,
P4 (belonging to G') sends a message to PO (belonging to G). Then PO, P1, P2, P3
perform the pairwise exchange algorithm in two steps. In the last step, PO sends the
barrier completion message to P4.

Now we describe how this algorithm can be performed using the RDMA Write
primitive. The barrier is a collective call, and so each process keeps a static count
of the current barrier number, barrier_id. Each process allocates an array of bytes
of length N and registers it. The address of this array is exchanged among all the
processes. In each step of the PE, process ¢ writes the barrier_id in the i * position
of the array of the partner process j. It then waits for the barrier_id to appear in
the j ™ position of its own array. Since each process is directly polling on its local
memory for the reception of data, and it avoids the overhead of posting descriptors
and copying of data from temporary buffers, as is the case when the MPI_Recv call

is used.
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Figure 4.1: Steps in the Pairwise Exchange Algorithm for a 5-node Barrier

4.1.2 RDMA-based Dissemination (RDS)

In the Dissemination Barrier algorithm as described in [15], the synchronization is
not done pairwise as in the previous algorithm. In step m, process 7 sends a message
to process j = (i + 2™)modN. It then waits for a message from the process k =
(1 + N — 2™)modN. This algorithm makes [log, N| synchronization operations in
the critical path regardless of whether there are power of two or non-power of two
number of nodes and thus is a more symmetric pattern of synchronizations.

The barrier signaling operations using RDMA write are done exactly as in the
RPE algorithm, and this algorithm only varies in the way in which the processes are

grouped for communication in each step.
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Figure 4.2: Steps in the Dissemination Algorithm for a 5-node Barrier

The Figure 4.2 shows the communication in the various steps of this algorithm for

a barrier on 5 nodes. The number of steps taken in this case is 3.
4.1.3 RDMA-based Gather and Multicast (RGM)

In this scheme, based on the gather-and-broadcast algorithm [13], the barrier
operation is divided into two phases. In the first phase called the gather, every
process, except the root, on arrival at the barrier waits for a message from each child,
and then sends a message to its parent. The root waits for the gather message from
all its children and then sends a broadcast message to each of then and exits the
barrier. As each process receives this message, its forwards it to its children and exits
the barrier. The process of gather can be done in a hierarchical fashion by imposing a
logical tree structure on the processes. The performance of this algorithm depends on
the dimension of the tree. The height of the tree varies with the maximum number of

children that each parent has. We call this value the fan-in value of the tree. Based
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on the parameters of the networking interconnect, the fan-in value can be chosen to
get optimal performance.

In this two-step technique we use RDMA writes in the gather phase. The processes
are arranged in a tree structure. Each process allocates an array of bytes and registers
it. The address of this array is exchanged among the processes. The process on
entering the barrier, polls for the barrier_id to appear in its array at the indices
corresponding to each of its children. Once it receives messages from all its children,
the process does an RDMA write to the array at its parent process.

When root receives all the RDMA messages, it does a hardware multicast to all
the processes. The multicast message contains the barrier_id. This phase is a one
step process, since the multicast primitive is such that the single message gets sent
to all the members of the multicast group.

Let us assume that the gather phase is done with a maximum fan-in of [. The
value of [ is chosen to be a (powerof2—1) value, and [ < N. So the number of levels
in the tree created in this phase will be [log,,; N, and this is the number of hops
done by the barrier signal to reach root. In the multicast phase just one step is taken
by the root to signal completion of the barrier to all nodes.

Figure 4.3 shows how this algorithm works for a barrier on 8 processes. Here the
gather is done using a tree of height 2, with the value of [ as 3, in each step. Process
0 is root. The value for [ can be chosen based on the number of nodes and the
performance of the RDMA write operation. For 8 nodes, the possible fan-in values
are 1, 3 and 7. If the fan-in is 1, then the tree becomes a binomial tree. There is
a trade-off between the height of the tree and the overhead incurred at each parent

node as the number of children increases. For example, for an 8-node barrier, if the

35



tree has maximum fan-in of 1, the height of the tree becomes 3. The time taken for
the barrier signal to reach the root is at least 3 times the base RDMA write latency.
However, the NIC at each parent node has to process only one incoming receive. If
the fan-in of the tree is 7, the signal reaches the root in a single step. However, the
NIC at the root has to process 7 incoming RDMA write messages. Based on the base
RDMA write latency and the time to process the message by the NIC, the optimal

fan-in value can be chosen.

()
JIN

Step 1- Gather with Fan-in value 3

SASRRER

Step 2 — Mutlicast

Figure 4.3: Steps in the Gather and Multicast Algorithm for an 8-node Barrier with
Fan-In value of 3
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4.2 Implementation Detalils

In this section we present the design choices made and the implementation details

for the three barrier algorithms.
4.2.1 Buffer Management and Address Exchange

Since the barrier is a collective call, during the first MPI_Barrier call, all the pro-
cesses allocate memory for the barrier. The number of elements in the array allocated
is N. Each element in this allocated array will be written by the corresponding pro-
cess using an RDMA write operation. Since every process in the communicator is
identified by a rank the array elements can be indexed using this rank value.

In order to perform an RDMA write, a process needs to provide the remote mem-
ory’s virtual address and the memory handle that is obtained after the registration of
the memory. After the allocation of the buffers, the nodes exchange these addresses
and memory handles. This address exchange happens using the send and receive
primitives.

This design option seems to be the best among the ones mentioned in Chapter 3,
since it ensures that the memory is registered only if the application is involved in
collective operations. The overhead is also not increased since the time for address
exchange will always be spent, either during the initialization phase, or in the first
barrier as is done currently. Once the buffers are allocated, they can be used for all

the barriers executed during the life of the process.
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4.2.2 Data validation at the receiving end

There is a static count called the barrier_id that is maintained by each process.
This value is always positive. So during the initialization we assign a negative value
to all the array elements. When a process needs a message from a remote process,
it polls the corresponding array element. It waits for the value to be greater than
or equal to the current barrier_id. This is needed to handle cases with consecutive
barriers. If one process is faster than the other, it will enter the second barrier before
the other can exit the first one. Thus it will write the larger barrier number in
the array. Since the barrier number is stored in a 1-byte datatype, we restrict the
maximum value for the barrier_id to be 127. After every 127 barriers, the static count
rolls back to 1. The processes during the poll for the arriving message are aware of
this roll-back procedure. This design alternative seems to give the best performance
among all those mentioned in Chapter 3.

Figure 4.4 gives a pictorial representation of this implementation using RDMA
writes. Here N is 4, and the processes are called PO, P1, P2, and P3. In the first
step PO does an RDMA write of barrier_id, in this case 1, to index 0 of P1’s array
and waits for P1 to write in index 1 of its own array. In the second step it performs

the same operations with P2.
4.2.3 Buffer Reuse

The barrier involves no transfer of data between the processes. It only involves a
signal from the processes when they arrive at the barrier. Hence just a single data
element is needed to indicate the arrival of the process at the barrier. Since the static

count, of the barriers is maintained, the value written to this data element changes
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Figure 4.4: Illustration of RPE for a 4-node barrier

with every consecutive barrier. Thus the buffer can be safely reused without any need
for reuse notifications to the sender process.
4.2.4 Handling UD multicast messages along with the RC
messages

In the broadcast phase of the RGM algorithm we make use of the multicast feature
which uses UD packets. This requires that every process create a QP for the UD
service type. This is done as a part of the MPI_Init call. The address of the QPs
is also exchanged among all the processes. The QP of each process is also attached
to the global multicast group in order to enable it to receive messages sent to the

multicast group.
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In the IB specification the UD messages have the initial 40 bytes assigned for the
Global Route Header (GRH). If the RC and UD QPs are associated with the same
CQs, and it becomes difficult to distinguish between RC and UD messages based
on the data content because we don’t know where the actual data starts. Hence we
create a separate CQ for the UD work request completions. During the progress check

function, we poll on this new CQ also to check if any multicast messages have arrived.
4.2.5 Reliability

Once a process sends the barrier message to its parent in the gather phase, it
begins to wait for the multicast message from the root. We impose a timeout on this
phase. If a message is not received within this period, the process sends a NAK to the
root. The NAK message is sent using the Send primitive and it contains the “solicit”
flag set to true. The NAK message also contains the barrier_id that the process is
currently waiting to complete.

When the NAK message arrives at the root, it triggers the registered completion
event handler. The root then checks if the message is valid retransmit request by
looking at the barrier number. It then does a retransmit of the multicast message for
that barrier number.

We have seen in our clusters that the rate of dropping UD packets is very low,
and hence this reliability feature is not called upon often. Also, since IBA allows us
to specify service levels to QPs, we could assign high priority service levels to the UD
QPs. Thus the chances of these messages getting dropped is reduced even further.

We also see that in the normal scenarios where there are no packets dropped, there
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is no overhead imposed by the reliability component. The reliability components do

not affect the performance of the critical path under the no-packet drop scenario.

4.3 Integration with MVAPICH

Developing the collective communication library using the low-level primitives
requires support at the ADI level for implementing the algorithms. In the traditional
implementations, the algorithms were implemented above the ADI.

In our implementation, we move the barrier algorithms to the ADI layer. Based
on the compilation options, if the new implementations of the barrier are to be used,
the MPI_Barrier() function makes a call to the MPID_RDMA Barrier() function at
the ADI. This function implements the three algorithms mentioned in this chapter.
ADI2 does not provide any calls to perform RDMA writes. Hence we implement
a function vapi RDMA _Send() that is used to perform the RDMA writes and the
MPID_RDMA Barrier() function makes use of this call.

We also implement the function to do the UD multicast sends. The progress

function DeviceCheck() is modified to poll on the CQ associated with the UD QP.

4.4 Experimental Evaluation

In this section, we present the results obtained for the implementations of the
barrier algorithms and compare them with the performance of the existing imple-
mentation.

We conducted the performance evaluations on the following set of clusters.

Cluster 1: A cluster of 8 SuperMicro SUPER P4DL6 nodes, each with dual Intel

Xeon 2.4GHz processors, 512MB memory, PCI-X 64-bit 133MHz bus, and connected
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to a Mellanox InfiniHost MT23108 DualPort 4x HCA. The nodes are connected using
the Mellanox InfiniScale MT43132 eight 4x port switch. The Linux kernel version is
2.4.7-10smp. The InfiniHost SDK version is 0.1.2 and the HCA firmware version is
1.17.

Cluster 2: A cluster of 16 Microway nodes, each with dual Intel Xeon 2.4GHz
processors, 2GB memory, PCI-X 64-bit 133MHz bus, and connected to a Topspin
[24] InfiniBand 4x HCA [25]. The HCAs are connected to the Topspin 360 Switched
Computing System, which is a 24 port 4x InfiniBand switch with the ability to include
up to 12 gateway cards in the chassis. The Linux kernel version is 2.4.18-10smp. The
HCA SDK version is 0.1.2 and firmware version is 1.17.

The barrier performance was measured by executing the MPI_Barrier() function

1000 times, and the average of the time taken across all the processes was calculated.

4.4.1 Comparison with MPI-PE

Figures 4.5 and 4.6 show the performance comparisons of the three barrier algo-
rithms, RPE, RDS and RGM, with MPI-PE, the standard pairwise exchange MPICH
implementation of the barrier. On the left-hand side we show the absolute values of
the barrier latency and on the right-hand side we show the factors of improvement.

In Figure 4.5(a) and 4.5(c), we consider barriers for only the powers-of-2 group
sizes. We see that RPE and RDS perform better than MPI-PE for all the cases. We
also see that the latency for the 2-node barrier is very close to the base RDMA latency
(about 5.8us) and the overhead imposed by the MPI layer is just about 0.5us. For
group sizes of 2 and 4, RGM does worse because the base latency of the UD multicast

operation is greater than that of a single RDMA write. The performance of RPE
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Figure 4.5: Comparison of MPI-PE with the proposed algorithms for power-of-2 group
size on Clusters 1 and 2

and RDS for powers-of-2 group sizes is very similar. For 8 nodes in Cluster 1, we
gain as much as 1.25 factor of improvement with RPE and 1.27 with RDS, as seen
in Figure 4.5(b). The benefits of the RGM implementation are seen as the number
of nodes increases. The scalability of the multicast operation provides the benefit in

these cases. Figure 4.5(d) shows that in Cluster 2, RGM does the best for 16 nodes
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Figure 4.6: Comparison of MPI-PE with the proposed algorithms for all group sizes
on Clusters 1 and 2

with an improvement of 1.29. This is because for larger group sizes, RGM has the
benefit of the constant time multicast phase.

Figure 4.6 illustrates the performance gains obtained for all group sizes. We see
that the pairwise exchange algorithms, MPI-PE and RPE, always penalize the non-
power-of-2 cases, and this is not seen in RDS and RGM. Hence on Cluster 1, RDS

and RGM gain a performance improvement of up to 1.64 and 1.71 respectively. On
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Cluster 2, we see that RGM performs best in most cases and the maximum factor of
improvement seen is 1.59. We see that the factor of improvement for RPE is almost a
constant in all cases because the benefit is obtained by the constant difference in the
latency between a point-to-point send/receive operation and an RDMA-Write/poll

operation.
4.4.2 Choosing the optimal fan-in values for RGM

The performance of the RGM algorithm varies with the values for maximum fan-
in in the gather phase. As this value decreases, the height of the tree increases
and this will increase the number of RDMA writes being done. But if this value
is large, the parent node becomes a hot-spot, that could possibly cause degradation
in performance. Hence we need to choose the optimal value for the fan-in. From
Figure 4.7, we see that the fan-in value of 7 performs the best. Hence for all our

performance evaluations we choose this value in the RGM implementation.
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Figure 4.7: Performance of RGM algorithm for varying fan-in values on Cluster 2
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4.4.3 Comparison with MPI-DS

As mentioned earlier, the pairwise exchange algorithm performs worse for non-
power-of-2 group sizes because of 2 extra operations. Hence in order to do a fair
comparison, we implemented the Dissemination algorithm with the point-to-point
MPI functions. We refer to this implementation as MPI-DS. We see that the barrier
latencies of the proposed RDMA and multicast based implementations are better
than that of MPI-DS too. Figure 4.8 shows the comparison of the RDS and RGM
implementations with MPI-DS. It is to be noted that in spite of providing benefits
to the current MPI implementation, RDS achieves up to 1.36 factor of improvement,
and RGM achieves 1.46 on Cluster 1. We see an improvement of 1.32 with RDS and

1.48 with RGM on Cluster 2.
4.4.4 Summary

In this chapter we presented three new approaches to implement the barrier op-
eration. We also compared the relative performances of these new implementations.
We see that all three schemes outperform the existing implementation of the barrier.
We also see that the RDS and RPE algorithms perform well for smaller group sizes,

while RGM performs the best for large group sizes.
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CHAPTER 5

ALLREDUCE

In this chapter, we focus on the algorithms, design issues, implementation, and
experimental evaluations for the Allreduce collective operation. Initially, we provide
an introduction to the Allreduce operation and then go into the issues of implementing
this routine with the RDMA and multicast support. Since this collective operation
involves transfer of data and not just synchronization, as in the case of the barrier,

the buffer handling and reuse issues are more complex.

5.1 The Allreduce Collective Operation

The Allreduce is a global computation routine. It is the generalization of another
computation routine called the reduce. The reduce routine performs an operation on
the data from all the processes and transfers the result to a specified process. In the
Allreduce routine, the results are shared with all the processes in the communicator.
The operation performed by this routine is either a predefined MPI operation or a
user-defined operation.

The syntax for the Allreduce operation according to the MPI standard is as follows:

MPI_Allreduce(void *sbuf, void *rbuf, int count, MPI_Datatype stype, MPI_Op

op, MPI_.Comm comm)
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where:

sbuf is the address of the send buffer

rbuf is the address of the receive buffer

count is the number of elements in the send buffer

stype is the datatype of the elements in the send buffer

op is the reduce operation (either predefined or user-defined)

comm is the communicator

For the Allreduce routine, each process can provide either one element or a se-
quence of elements. In both cases the combine operation is executed element-wise on
each element of the sequence.

MPI provides 12 predefined routines for the reduce operation, the most commonly
used ones being summation, minimum, maximum, product, logical and bit-wise op-
erations. All the operations performed by the reduce are assumed to be associative.
The MPI predefined functions are also commutative, but the user is allowed to define
operations that are not commutative.

The implementation of the Allreduce operation can be altered based on the oper-
ation being performed and the type of the target cluster. After the execution of the
Allreduce operation, the value in the result buffer at each process should be the same.
In the case of heterogeneous systems, variation in floating point arithmetic (like choice
of round-off mode), could lead to varying results when the results are computed on
different nodes. Hence for heterogeneous clusters, this imposes the restriction that
a single process calculates the final result and broadcasts it to all the processes. In

the case of homogeneous clusters, we can come up with faster algorithms where the
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calculation of results is done in a distributed manner. In this chapter we propose two

techniques, one for the heterogeneous systems, and other for homogeneous systems.
Let us consider an example of an Allreduce operation on 4 nodes. The operation

being performed is MPI_MAX, which calculates the maximum value. The operation

is illustrated in Figure 5.1.
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Figure 5.1: Illustration of buffer contents before and after the Allreduce operation on
4 nodes

We see that after the operation, the maximum among the values seen for each

element are stored in the receive buffer of all the processes.

5.2 Allreduce Algorithms

As mentioned earlier, the types of algorithms used to implement Allreduce may
differ on how the result is calculated. Some algorithms perform the calculation in a
distributed manner, wherein there is no need for a final broadcast phase. Other algo-
rithms perform the operation such that one process has the result and it broadcasts

it to all the other processes. In this section we present two algorithms - one RDMA
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write based algorithm that does the result computation in a parallel manner, and
the other RDMA and multicast based scheme which follows a reduce and broadcast

pattern.
5.2.1 RDMA based Pairwise Exchange (RPE)

This algorithm is similar to the one discussed in Section 4.1.1. The results are
calculated in a parallel manner at all the processes. The processes are paired up and
they exchange the contents of their send buffers with each other. Once a process gets
the data from its partner, it combines its own data with the data received using the
specified reduce operation. In the next step it exchanges this newly calculated data
with its partner. This cycle of data exchange, intermediate result calculation and
grouping of processes continues until all the processes are merged into one group. At
this point, every process has reduced the data from all the processes in its local buffer.
Thus the Allreduce operation can complete simultaneously on all the processes.

Let us consider Figure 5.2 to understand how this algorithm works. The opera-
tion is an MPI_SUM on one integer element, and it is performed using data from 5
processes.

We see that in the first step P4 sends its data to PO and PO reduces this data with
its own data. Then PO, P1, P2, P3 perform the pairwise exchange and reductions.
Finally PO sends the result to P4. P4 simply retains the data received as the final
result and does not perform any reductions itself.

The number of steps performed for this operation is log, N for powers of 2 values
of N. In the case of non-powers of 2 values of N, processes in set G ' (described in

Section 4.1.1) send the data to the processes in set G. The processes in G' perform
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Figure 5.2: Allreduce operation for MPI_SUM on one data element using the RPE
algorithm for 5 processes

the operation and pairwise exchanges. The final result is sent back to the processes
in G ', which do not perform any reductions themselves. The number of steps taken
in this case is |log, N | + 2.

This algorithm can be implemented using just the RDMA write calls. In each
step a process RDMA writes the data to the remote buffers. The receiving process
then uses this data in the reduction operation and sends out the results using RDMA

write in the subsequent step.
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5.2.2 RDMA based Gather and Multicast (RGM)

In this case the Allreduce operation is implemented as a reduce followed by a
broadcast. The node with rank 0, is chosen as the root and the reduction is done at
this process. After the reduction root broadcasts the results to all the processes. We
make use of the RDMA write operations in the reduce phase and make use of the
multicast primitive for the broadcast phase.

The reduction phase involves gathering of data using a logical tree pattern of the
processes. The height of the tree is decided by the maximum fan-in value (maximum
number of children) at each parent node. We represent this value by [ and choose it
in a manner as described in Section 4.1.3. As the fan-in value increases, the height of
the tree reduces, but the number of reductions to be performed at each parent node

1ncreases.

[X] — Data sent with the RDMA write
(y)—- New data after the reductions

Figure 5.3: Reduce phase of the RGM algorithm
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Figure 5.3 shows how the reduction happens for an 8-node Allreduce operation
using a tree with [ as 3. The operation performed is MPI_.SUM and the data is a
single integer.

Here PO is the root and the final result is calculated at PO. Once it has the result,

PO sends it to all the processes using the multicast primitive.
5.3 Implementation of RPE

We now discuss the design solutions for the RPE algorithm using the RDMA write
primitives. There are two protocols being used in this implementation, based on the

size of the data being operated on and for each design issue we consider the two cases.
5.3.1 Buffer Management

The RPE implementation is done using two modes based on the size of the data.
For data of size less than or equal to 2K we make use of the “single-transfer” scheme.
For sizes between 2K-4K we make use of the “notify-buffer” scheme. In both the
schemes the buffers are allocated statically. The allocation, registration and address
exchange happens during the first Allreduce call. Once these buffers are allocated they
are used all through the life of the application using the buffer reuse mechanisms.

Small messages

For this mode, the size of the data is less than or equal to 2K bytes. Each process
allocates two contiguous buffers, each of size N*(2K+1) bytes. We refer to these
buffers as the odd buffer and even buffer. Each buffer is then broken down into N
blocks of 2K+1 bytes each. We need only /N blocks because there are only a maximum

of N —1 other processes that will need to write data to each process. For transferring
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the data in this scheme, the sender + RDMA writes to the block 7 of either the odd
or even buffers of the receiver.

Messages between 2K-4K bytes

In this mode, each process allocates two contiguous buffers, each of size N*4K
bytes. These are also called the odd and even data buffers. Each process also allocates
two buffers, each of size N bytes and these are referred to as the odd and even notify
buffers. These buffers are used to ensure the completion of data transfer at the
receiving end. The addresses of both the data and notify buffers is exchanged during

the first Allreduce call involving data of size between 2K and 4K.
5.3.2 Data reception at the receiver end

Since the data transfer happens using RDMA writes, we need schemes by which
the receiver can recognize the arrival of data. We make use of the polling technique,
where the receiver polls on the contents of the local buffers for a special value to be
written. In order to use this scheme, all the buffers allocated are initialized to -1.
The special value that is to be polled on is the allreduce_id which is a static count of
the current Allreduce number.

Small messages

In this case, whenever data is transferred, the allreduce_id is appended as the last
byte of the data. The data is written to the receiver in a bottom-fill manner so that
the last byte of the data block contains the allreduce_id. The receiver is aware of
the current allreduce_id and so it can poll on the last byte of the data buffer for the
allreduce_id to appear. The MTU of data transfer for the IBA links is 2K bytes, and

so all the data fits into a single packet. Thus the NIC transfers all the data at once.
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This means that the appearance of the allreduce_id in the last byte of the data block
is a proof of the data having arrived at the receiver’s buffer.

Messages between 2K-4K bytes

In this case, the data is larger than 2K, and so the transfer of the data at the
physical layer happens in terms of multiple packets. The NIC receives these packets
and DMAs the data to the registered buffer. Though there is order maintained
between messages on a reliable connection, there is no guarantee on the order of
arrival of packets belonging to a single message. Hence polling on the last byte of
data does not assure us of the completion of data transfer. Hence we make use of
the property that order is maintained between messages. The sender always sends
the data to the receiver’s data block using RDMA write. Then the sender does a
second RDMA write to the notify buffer of the receiver. This message contains the
allreduce_id of the current operation. The receiver instead of polling on the data
blocks as in case of small messages, now polls on the notify buffers for the appearance
of the allreduce_id. Once the poll is successful, the receiver is assured that the previous
message which contained the data has also arrived. Thus the receiver can proceed to

operate on the data that has arrived.

5.3.3 Buffer Reuse

As mentioned in Section 5.3.1, each process allocates two sets of buffers, odd and
even, for both data and notification values. This “double-buffer” scheme is used
in order to ensure safe reuse of buffers without the need for any additional reuse-

notification messages.
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During every Allreduce operation, the sender process checks the current allre-
duce_id. If it is an odd value, it does the RDMA write to the odd buffer at the receiver
process and to the even buffer otherwise. Let us see why this is ensures safety of the
buffer contents. Assume that the processes execute the first Allreduce operation. In
this case all the data is being written to the odd buffers and the reduce operations are
also carried out in these buffers. During the second Allreduce operation, all the data
is written to the even buffers. At the completion of the second Allreduce operation,
every process is assured that the other processes have definitely exited the first Allre-
duce operation. This means that the contents of the odd buffers are no longer useful
and maybe overwritten. Thus the scheme of using the double-buffers alternatively
ensures that the data is always being written to a free data block.

Let us now consider an example of an Allreduce operation across four processes
to understand the various steps in this implementation. The operation we consider

here is MPI_SUM.

Small messages

The various steps performed for the Allreduce operation are as follows.

Step 1: There are four processes in the communicator and hence each process
allocates two buffers of size 4%(2K+1) bytes. The buffers are registered and the
addresses of the buffers are exchanged. Assume the current value of allreduce_id is 1.
Process 4 copies the data from the user-specified sbuf to block i of the odd buffer. It
copies the data in a bottom-fill manner and the last byte of block i is the allreduce_id.
Figure 5.4 illustrates this step.

Step 2: In this step each process i, RDMA writes the contents of its data block
into the block 7 of the odd buffer at its partner process j. For example PO, writes to
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block 0 in the odd buffer set of P1. Each process then polls for the data to arrive at
block j from the partner process j. Once the data has arrived, the process does the

reduce of the data. The result is stored in block j itself. Figure 5.5 illustrates this

&K+1 bytes$ 2 0

step.

)
—_

0bD EVEN 0bD EVEN 0bD EVEN 0bD EVEN

Figure 5.4: Step 1 of Allreduce using RPE for small messages - Initial buffer allocation
and copy from user-buffer

Step 3: In this step, the second round of pairwise exchange of messages takes
place. The processes do an RDMA write of the intermediate result calculated in the
Step 2 to the partner processes of this round. For example, PO writes the data from
block 1 to the block 0 of P2. It then polls for data to arrive from P2 in block 2. Once
the data arrives, it adds the data contents of block 1 and 2 and the results are stored
in block 2. Figure 5.6 illustrates this step.

Step 4: This is the last step of the operation. All the reductions have been done

and the data is available in the block to which the last RDMA write was done from
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Figure 5.5: Step 2 of Allreduce using RPE for small messages - First round of pair-wise
exchange and reduce
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Figure 5.6: Step 3 of Allreduce using RPE for small messages - Second round pair-wise
exchange and reduce
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the remote process. The results are now copied by each process to the user-specified

rbuf. This indicates the completion of the Allreduce operation. Figure 5.7 illustrates

this step.
PO
8
2K+ bytes 2 4 8 / 0
1 1 1
Intermediate
result % 1 %13 1
Find 8 2 4 2
result 1 1 1
8 4 2 3
1 1 1
0DD EVEN 0DD EVEN 0DD EVEN 0DD EVEN

Figure 5.7: Step 4 of Allreduce using RPE for small messages - Final copy of results
to user buffer

Messages between 2K-4K

The steps involved in the RDMA writes and reductions of the data are similar to
the ones seen for the small messages. However, in this case the data is not written to
the blocks in a bottom-fill manner. Every time the data is transferred using RDMA
write, it is followed by a second RDMA write to the notify buffer. A process polls
on the notify buffer instead of the data buffer to identify data arrival. Figure 5.8

illustrates the buffer allocations and RDMA writes performed in this case.
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(10 [0 1D 010 00 000 010 000 e
0123 0123
[1] - RDMA write of data block [2] - RDMA write of allreduce id to notify buffers

Figure 5.8: Buffer allocation and order of RDMA writes in RPE implementation for
messages of size 2K-4K bytes

5.4 Implementation of RGM

In this section we discuss the issues involved in the implementation of the Allreduce
operation using the RGM algorithm that makes use of the RDMA write and multicast
operations.

The maximum size of the message that can be sent using the UD service type is
equal to the MTU, which in our IBA systems is 2K bytes. Hence we consider the
Allreduce operations to be performed only on data of this size less than 2K bytes.

For the implementation of the reduce operation using the RDMA writes, the
buffer handling and reuse mechanisms are similar to the schemes described in the
implementation of RPE algorithm for small messages. The “double-buffer” schemes
are used to ensure safe reuse. The data is written to the blocks in bottom-fill manner

and the data arrival is identified by polling till the last byte of the data block contains
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the current allreduce_id. The reduce takes place in the form of a tree and the root
contains the final result for the reduction.

For the second phase of the RGM algorithm we make use of the multicast primitive.
Every process creates a QP of the UD service type and attaches it to the multicast
group. The root sends out the result of the reduce data using this QP. All the non-
root processes wait for the UD multicast packet to arrive. In the following subsection

we discuss how the reliability is provided for these multicast messages.
5.4.1 Reliability for the UD messages

As mentioned earlier, the buffers for the reduce operation are always used in an
alternate fashion. That is, when the odd buffers are being used, the even buffers
contain the data of the previous reduce operation. This property is useful because
there might be a need to retransmit the results of the previous operation.

When all the processes send out their reduce messages up the tree, they start a
timer to wait for the reply from root. If the results do not arrive within the time-
out period, they send a NAK message containing the allreduce_id to root. The NAK
message contains the “solicit” flag set, and hence an event-handler is invoked at the
root. This event handler checks for the allreduce_id and does a retransmission from

the appropriate buffers.

5.5 Experimental Evaluation

In this section we discuss the various results obtained for the different implemen-
tations of the Allreduce operation.
The time taken for the operations was based on the average time taken across all

the process for 1000 iterations of MPI_Allreduce. For our results we have used the
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MPIINTEGER datatype and the reduction being performed is MPI_SUM. The size
of the MPI_INTEGER datatype is 4 bytes.
We have conducted our evaluations on the two clusters mentioned in Section 4.4.
In the following subsections we refer to the existing MPICH implementation of
the Allreduce operation using the gather and broadcast scheme as MPI-GB. In order
to perform a fair comparison with the pair-wise exchange implementation, we imple-
mented the PE algorithm using MPI point-to-point calls and this is referred to as

MPI-PE.
5.5.1 Performance of Allreduce using RPE

In this section we just present the results for the Allreduce implementation based
on the PE algorithm. We show the time taken to perform the Allreduce operation
MPI_SUM on 1 to 1024 integers. We also increase the number of processes that are
performing the Allreduce. Up to 512 integers, the implementation uses the “small
message” mode of operation and for the 1024 integers case it uses the “notification”
mode of operation. Figure 5.9 presents the results measured on Cluster 1. The time
to perform an Allreduce on 1 integer between 2 nodes is just about 6.4us, which adds
about 0.5us overhead to the base RDMA latency value. We see that time taken for
the 1024 integers (4096 bytes) case is considerably high and this is because we are
making use of two RDMA writes to indicate completion for messages of size 2K-4K

bytes. Figure 5.10 presents the results measured on Cluster 2.
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Figure 5.9: Performance of RPE on Cluster 1 for varying message sizes as the number
of nodes increases
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Figure 5.10: Performance of RPE on Cluster 2 for varying message sizes as the number
of nodes increases
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Figure 5.11: Performance of RGM on Cluster 1 for varying message sizes as the
number of nodes increases

5.5.2 Performance of RGM

We now present the results of the performance of the RGM implementation on the
two clusters. The fan-in value for the tree being constructed in the reduce phase is 7,
since we saw that this gives the least latency in Section 4.4.2. Figure 5.11 shows the
performance of the RGM implementation on cluster 1. We consider data sizes of up
to 256 integers only because the maximum amount of data is limited by the maximum
UD message size, which is about 2K bytes. We see that the latency increases very
gradually as we increase the number of nodes. This is because the multicast phase of
the Allreduce takes a constant time across all number of nodes, and the only increase

is caused by the reduction phase.
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5.5.3 Comparison of RPE with MPI-PE

We now compare the performance of the proposed RPE implementation based on
the RDMA writes with implementation of the pair-wise exchange algorithm using the
MPI point-to-point messaging calls. We consider the 8 node case for data size of 256
integers. We see that by making use of the faster low-level protocols, there is a lot of
benefit gained. Figure 5.12 shows that the RPE scheme performs better for all cases.

We get up to a 1.19 factor of improvement by using the RPE implementation.
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Figure 5.12: Comparison of 256-integer Allreduce performance of MPI-PE and RPE
on Cluster 1

5.5.4 Comparison of RGM with MPI-GB

In this section we compare the performance of the two gather and broadcast based
schemes, that is, RGM and the existing MPI-GB. Figure 5.13 clearly shows the benefit
gained by using the RDMA and multicast operations for implementing the Allreduce.
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The scalability of this scheme is seen from the fact that the latency for RGM increases
at a much slower rate than that for MPI-GB. The factor of improvement is as high

as 2.01 for the & node case.
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Figure 5.13: Comparison of 256-integer Allreduce performance of MPI-GB and RGM
on Cluster 1

Figure 5.14 shows the comparison of RGM and MPI-GB on the 16 node cluster
for a 64 integer Allreduce operation. We have chosen this data size since for larger
data size we were seeing some instability on this cluster. We see that even in this

case the RGM implementation gives a very good improvement of up to 2.06 times.
5.5.5 Comparison of all the Allreduce implementations

Now we consolidate the comparison of two MPI point-to-point based implementa-
tions with the two proposed implementations. As seen in Figure 5.15(a), the RDMA

based schemes always perform better. The MPI-PE performs better than MPI-GB
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Figure 5.14: Comparison of 64-integer Allreduce performance of MPI-GB and RGM
on Cluster 2

because the results are calculated in a distributed manner and there is no extra broad-
cast phase required. However, the pair-wise exchange algorithms cannot be used in
heterogeneous clusters as mentioned earlier. We see that for small number of nodes,
RGM does worse than RPE and this is because the base UD multicast latency is
high and can be amortized only as the number of nodes increases. As the cluster size
increases, we notice that the RGM algorithm does the best. Figure 5.15(b) shows
the factor of improvement gained by these RDMA based implementations over the
standard MPICH implementation, MPI-GB. We see that RGM gives a factor of im-
provement, of about 2.01 and RPE gives a factor of improvement up to 1.86.

We also compare the performances of the implementations on Cluster 2. Fig-
ure 5.15(c) shows the absolute values of the latencies while Figure 5.15(d) gives the

factors of improvement. We consider the data size to be 64 integers (256 bytes). RPE
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(b) Factor of improvement of the RPE and RGM implementations over
MPI-GB (Cluster 1)
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improves the performance by up to 2.14 times, while RGM improves the performance
2.06 times.

Thus we see that the proof of concept implementations of the Allreduce operation
using the efficient primitives provided by IBA perform considerably better than the

existing implementations.
5.6 Summary

In this chapter, we introduced the algorithms that can be used to implement the
Allreduce operation and described their implementation using the features of IBA.
We evaluated the proposed implementations with the existing Allreduce operation
and achieved a factor of improvement of up to 2.01 using RGM and 1.86 using RPE
on the 8 node cluster. For the 16 node cluster we see improvements of up to 2.14

using RPE and 2.06 using RGM.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we proposed some novel schemes of implementing the collec-
tive communication operations specified by the MPI standard. We made an attempt
to leverage the fast and scalable primitives offered by the IBA software and hardware
to improve the performance of the collective operations.

We have pursued the idea that collective operations can be made more efficient
if designed and implemented using lower-level primitives at the ADI layer, instead of
using the MPI point-to-point calls above the ADI. The idea stems from the need to
have tighter control on the buffer management and to avoid unnecessary data copies
in the algorithms.

The design issues that are to be handled during the development of the collective
communications library, and the pros and cons of each of the design alternatives has
been discussed. The various buffer management, buffer reuse and data validity issues
were analyzed and the best options were chosen in the implementations. For the
multicast operations, we also incorporated the reliability scheme and ensured that
the reliability component does not degrade the performance of the critical path in the

no packet drop scenarios.
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We designed and implemented the Barrier and Allreduce collective operations as
a proof of concept. With the barrier, we see a factor of improvement of 1.29 for
a 16-node cluster and up to 1.71 for non-powers of two group size barriers. With
the allreduce, we are achieving up to 2.06 factor of improvement over the existing

implementations for the 16-node cluster.

6.1 Future Work

This thesis concentrated on the barrier and the allreduce operations. We are
also working on extending these ideas to implement other collective operations like
broadcast and all-to-all. There are also other features of IBA, like the RDMA read,
atomic operations, etc., that can potentially provide performance improvements for
collective operations. There is scope to develop new algorithms using these primitives
for the collective operations.

The global allocation and management of buffers for processes belonging to differ-
ent communicators is another issue that needs to be investigated, since this can have
an impact on the scalability of the library. The allreduce algorithms we tested only
with 4K block sizes, but this scheme can be easily extended to handle larger data
sizes.

The results presented in this thesis are in the form of latencies for each of the
collective operations. We are planning to run some parallel benchmarks to evaluate

the performance benefits that are achievable at the application level too.
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