High-Performance and Scalable MPI over InfiniBand
with Reduced Memory Usage: An In-Depth
Performance Analysis *

Sayantan Sur

Matthew J. Koop

Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering
The Ohio State University
{surs, koop, panda} @cse.ohio-state.edu

Abstract

InfiniBand is an emerging HPC interconnect be-
ing deployed in very large scale clusters, with even
larger InfiniBand-based clusters expected to be de-
ployed in the near future. The Message Passing In-
terface (MPI) is the programming model of choice
for scientific applications running on these large-
scale clusters. Thus, it is very critical for the
MPI implementation used to be based on a scal-
able and high-performance design. We analyze the
performance and scalability aspects of MVAPICH,
a popular open-source MPI implementation on In-
finiBand, from an application standpoint. We an-
alyze the performance and memory requirements
of the MPI library while executing several well-
known applications and benchmarks, such as NAS,
SuperLU, NAMD, and HPL on a 64-node Infini-
Band cluster. Our analysis reveals that latest de-
sign of MVAPICH requires an order of magnitude
less internal MPI memory (average per process)
and yet delivers the best possible performance.
Further, we observe that for these benchmarks and
applications evaluated, the internal memory re-
quirement of MVAPICH remains nearly constant
at around 5-10 MB as the number of processes
increase, indicating that the MVAPICH design is
highly scalable.

*This research is supported in part by Department of En-
ergy’s grant #DE-FC02-01ER25506, National Science Foun-
dation’s grants #CNS-0403342 and #CNS-0509452; grants
from Intel, Mellanox, Cisco, Sun Microsystems and Linux
Networx; Equipment donations from Intel, Mellanox, AMD,
IBM, Apple, Appro, Microway, PathScale, Silverstorm, Sun
Microsystems, Advanced Clustering and Dell.

1 Introduction

Cluster computing has become quite popular dur-
ing the past decade. The interconnect used in
these clusters is very crucial for attaining the high-
est possible performance. InfiniBand [7] is an
emerging high-performance interconnect, offering
low latency (1.5-3.0 microseconds) and high band-
width (multiple Gigabytes/second). In addition to
high-performance, InfiniBand also provides many
advanced features such as Remote Direct Mem-
ory Access (RDMA), atomic operations, multi-
cast, and QoS. As InfiniBand has gained popular-
ity, large-scale clusters, such as the 9024-processor
Sandia Thunderbird [14, 19] and NASA/Ames
Columbia [14], are using it as their primary in-
terconnect. Clusters of several tens-of-thousands
of nodes have now appeared as the most power-
ful machines in the Top 500 list [24]. Accord-
ingly, it is expected that the scale of InfiniBand
clusters to be deployed in the near future will be
even larger. MPI [13] is the de-facto standard in
writing parallel scientific applications. Hence, a
scalable and high performance MPI design is very
critical for end HPC applications, which will run
on these modern and next generation very large-
scale clusters.

MVAPICH [15] is a popular open-source high-
performance and scalable implementation of MPI
over InfiniBand. It is used by over 390 orga-
nizations spread over 30 countries. It has en-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC2006 November 2006, Tampa, Florida, USA

0-7695-2700-0/06 $20.00 (©2006 IEEE

abled several clusters, including the Sandia Thun-
derbird [19], to achieve high rankings in the Top
500 list. MVAPICH is also integrated into the
OpenlB/Gen2 [17] stack and available with the
newly introduced OpenFabrics Enterprise Distri-
bution (OFED) [16] stack. It implements the Ab-
stract Device Interface of MPICH [6] and was de-
rived from MVICH [9].

MVAPICH provides various designs to perform
message passing [12, 22]. Depending upon the
requirement of the end MPI application and
available InfiniBand hardware, different designs
may be chosen by the user. In addition, all these
designs are runtime tunable with various parame-
ters. Most of these parameters are “hints” to the
MPI library of the user’s intentions. These pa-
rameters directly affect the performance, memory
usage and other characteristics of the MPI library.
Using these parameters, the MPI library allocates
internal buffers that are used for communication.
In addition, depending on the requirements of
the application, more memory may be allocated
during its actual execution. These communication
buffers represent the majority of the memory
consumption of the MPI library. Allocating
more buffers may allow the library to offer better
communication performance. On the other hand,
lack of buffers may lead to runtime allocation
and management of required memory (which is
costly) and hence degradation of end application
performance. Thus, the following two questions
are of great significance to MPI library designers,
cluster system vendors, and the end users:

1. Does aggressively reducing communication
buffer memory lead to degradation of end ap-
plication performance?

2. How much memory can we expect the MPI
library to consume during execution of a typ-
ical application, while still providing the best
available performance?

To the best of our knowledge, there has been
no contemporary study that comprehensively an-
swers these questions. In this paper, we pro-
vide answers to the above two questions by ana-
lyzing the internal MPI operations during execu-
tion of well known MPI applications and bench-
marks such as NAS Parallel Benchmarks [2], Su-
perLU [25], NAMD [18], and HPL [4]. Our anal-
ysis reveals that for the NAS Benchmarks (Class
B), NAMD, and HPL on 64 processes, the latest
designs of MVAPICH require less than SMB of in-
ternal memory on average per process and yet de-
liver the best available performance. For SuperL.U,

the memory usage increases to 10MB for the eval-
uated data sets, but still maintains optimal perfor-
mance and a 5 times reduction in memory usage
over older MVAPICH designs.

The rest of the paper is organized as follows:
in Section 2 we provide the required background
knowledge for this paper. In Section 3 we present
our end application analysis of performance as
well as the memory requirements by the MPI li-
brary for NAS Parallel Benchmarks, SuperLU,
NAMD, and HPL. We describe the related work
in Section 4. Finally, we conclude and point out
future work in Section 5.

2 Background

In this section we provide the required background
for the work done in this paper. There are two
major topics that are relevant: a) the InfiniBand
network with its associated features, and b) de-
sign of MPI (MVAPICH in particular) protocols
and buffer management.

2.1 InfiniBand Overview

The InfiniBand Architecture [7] (IBA) defines a
switched network fabric for interconnecting com-
pute and I/O nodes. In an InfiniBand network,
hosts are connected to the fabric by Host Channel
Adapters (HCAs). A queue based model is used in
InfiniBand. A Queue Pair (QP) consists of a send
queue and a receive queue. Communication oper-
ations are described in the Work Queue Requests
(WQR), or descriptors, and submitted to the work
queue. It is a requirement that all communication
buffers be posted into receive work queues before
any message can be placed into them. In addition,
all communication buffers need to be registered
(locked in physical memory) before InfiniBand can
either send from or receive data into that memory
location. This restriction is imposed to ensure that
memory is present when HCA accesses the mem-
ory. Finally, the completion of WQRs is reported
through Completion Queues (CQ).

IBA provides several types of transport ser-
vices: Reliable Connection (RC), Unreliable Con-
nection (UC), Reliable Datagram (RD), and Unre-
liable Datagram (RD). RC and UC are connection-
oriented and require one QP to be connected to
exactly one other QP. On the other hand, RD and
UD are connection-less and one QP can be used
to communicate with many remote QPs. To the
best of our knowledge, the RD transport has not
yet been implemented by any InfiniBand vendor.

On top of these transport services, IBA pro-
vides services to upper level software; however,
all software services are not defined for all trans-
port types. Figure 1 depicts the particular soft-
ware services defined for the various transports, as
of IBA specification release 1.2. As shown in the
figure, the send/receive operations are defined for
all classes of transport. For connection-oriented
transport, a new type of software service called
Shared Receive Queue (SRQ) has been introduced.
This allows multiple QPs to be attached to one re-
ceive queue even for connection oriented transport.
Thus, any remote process that is connected by a
QP can send a message that is received in buffers
specified in the SRQ.

RDMA Write
RDMA Read

Software Send/Receive
Service Shared Receive

~

AN
Transport Reliable Unreliable Reliable Unreliable
S Connection | | Connection Datagram Datagram

Connection Oriented Connectionless

——— Implemented
— — — Not implemented

Figure 1: IBA Transport and Software Services

Apart from the basic send/receive operations,
IBA also defines Remote Direct Memory (RDMA)
operations. Using this service, applications can
directly access memory locations of remote pro-
cesses. In order to utilize RDMA, the request-
ing process is required to know the virtual address
and a memory access key of the remote process.
RDMA operations typically have lower end-to-end
latencies, since there is no receiver side software
involvement in the critical data flow path. RDMA
is supported only on reliable transports, the only
exception being RDMA Write is also supported on
UC.

In addition to these features, IBA provides a host
of other exciting features like hardware multi-cast,
QoS, atomic operations. These features are not de-
scribed here because they are not related to the re-
search direction discussed in the paper. Additional
details on these features can be obtained from IBA
specification [7].

2.2 MVAPICH Design Overview

MVAPICH [15] is a popular implementation of
MPI over InfiniBand. It uses several Infini-
Band services like Send/Receive, RDMA-Write,

RDMA-Read, and Shared Receive Queues to pro-
vide high-performance and scalability to end MPI
applications. There are two major protocols used
by MVAPICH. The first is the Eager Protocol,
which is used to transfer small messages. The
second protocol used is the Rendezvous Protocol,
which is used for large messages. In order to avoid
buffering large messages inside the MPI library,
the Rendezvous protocol negotiates the availabil-
ity of receive buffer by using control messages.
After the negotiation phase, the messages are sent
directly to receiver user memory with the use of
RDMA. These control messages used by the Ren-
dezvous protocol are small in size and are sent
over the Eager protocol. For more information on
the design alternatives of the Rendezvous protocol,
please refer to [23]. Thus, the Eager protocol can
be used for MPI application generated small mes-
sages as well as Rendezvous control messages.

The Eager protocol requires the presence of
“pre-allocated” communication buffers on both
sender and receiver sides, in order to avoid any
runtime costs and achieve low latency. The Ren-
dezvous protocol does not require any additional
buffer space other than the control messages sent
over the Eager protocol. Hence, only the Eager
protocol consumes communication memory in a
MPI process. In this paper we focus on the require-
ment and usage of MPI internal buffers; hence, we
will describe the Eager protocol in detail.

MVAPICH provides several implementations
for the Eager protocol based on different designs
and utilizing different InfiniBand features. In
addition, these eager protocols can be used and
combined to form hybrid protocols with dynamic
thresholds. There are three basic protocols: a)
based on per-connection Send/Receive model, b)
based on RDMA-Write and c) based on Shared
Receive queue. Combining two protocols at a
time, there can be a total of six protocols, out of
which we describe and evaluate three in this paper.
We leave out three combinations: Send/Receive +
Shared Receive Queue, since the use of shared re-
sources implies attaching a Queue Pair to a shared
queue instead of its per connection receive queue;
RDMA-Write only protocol, since it is inherently
unscalable due to the lack of flexibility to move
communication buffers across connections, and;
Send/Receive only protocol, since it is impossible
to recall posted buffers to a particular connection,
thus leading to inferior scalability. The remaining
three protocol combinations are described below:

(a) Adaptive RDMA with
Send/Receive Channel (with
6 processes using RDMA)

(b) Adaptive RDMA with
SRQ Channel (with 6 pro-
cesses using RDMA)

7 7
N N
1

O

(c) SRQ Channel

O O 20

Figure 2: Various Eager Protocol Designs in MVAPICH

2.2.1 Adaptive RDMA with Send/Receive

Channel

The RDMA feature of InfiniBand offers very low
latency due to the absence of receiver side soft-
ware involvement, which is desirable for small
messages. The RDMA channel [12] in MVAPICH
provides a design by which the RDMA feature
can be fully exploited to deliver low latency. The
use of RDMA requires that communication buffers
be made available for each remote process that
may send messages. In order to avoid a memory-
scalability problem when there are thousands of
remote processes, this channel has an “adaptive”
nature (hence the name Adaptive RDMA). RDMA
channels are not created until after a threshold of
messages (runtime tunable) have been exchanged
over the Send/Receive channel. At the time of
communication initialization, only a limited num-
ber (typically only two or three) of buffers are al-
located per remote process. These initial buffers
are posted on the InfiniBand Send/Receive chan-
nel. Accordingly, all processes initially communi-
cate using the InfiniBand Send/Receive channel se-
mantics. MVAPICH maintains an internal counter
of the number of messages exchanged by each pair
of processes, and if this count increases beyond
some threshold (runtime tunable), buffers are al-
located and made available to the remote process
over RDMA.

For the sake of brevity, this design will be re-
ferred to as ARDMA-SR for the rest of the pa-
per and the connection between a pair of process
that uses RDMA for Eager protocol will be called
a RDMA Connection. Figure 2(a) illustrates this
channel with the dotted lines showing the limited
number of buffers for the Send/Receive channel.
The bold lines indicate that six of the most fre-

quently communicating processes actually com-
municate over RDMA. This channel provides rea-
sonably good memory scalability along with the
low latency offered by RDMA.

2.2.2 Adaptive RDMA with SRQ Channel

The Shared Receive Queue (SRQ) is a hardware
feature provided by InfiniBand that allows upper-
level software to post receive buffers to only one
receive queue. Incoming messages from all remote
processes in the MPI application can then consume
buffers from this queue in a first-come-first-serve
(FCFES) basis. This feature allows very efficient
sharing of receive buffers across many InfiniBand
connections. Thus, reducing the memory require-
ment by an order of magnitude for MPI applica-
tions that execute on very large process counts (up
to tens of thousands).

One drawback of the SRQ is that the processes
sending messages do not have an accurate pic-
ture of the receiver buffer availability. As such,
if senders keep injecting packets into the network
that do not have any destination buffer available,
the performance of the application is degraded.
In order to alleviate this situation, we have de-
signed a novel, receiver-driven flow-control mech-
anism [22]. The receiving MPI process sets a
“low-watermark” for the SRQ. When the number
of available buffers in that queue drops below this
threshold, an interrupt is generated by the HCA,
which is caught by the MPI library. If there are
more receiver buffers allocated already, then they
are posted to the HCA to keep the SRQ full; how-
ever, if no buffers are available, new ones are al-
located and posted to the SRQ to fill it. Figure 3
depicts the triggering of a low-watermark event by
a sender and the subsequent filling of the SRQ.

During communication initialization, all pro-
cesses have full SRQs and communicate using
these buffers. When a certain number of run-
time tunable buffers have been consumed from the
SRQ, RDMA buffers are made available for that
remote process. Hence, similar to the design de-
scribed in the previous section, this design also
achieves scalable memory usage along with low
latency of RDMA. Again, for the sake of brevity,
the design will be referred to as ARDMA-SRQ for
the rest of the paper. Figure 2(b) illustrates this de-
sign. Each process provides a set of receive buffers
that are shared for every remote connection (shown
by the dotted line). As before, the bold lines indi-
cate that six frequently communicating processes
are using RDMA.

Sender Receiver

» SRQ Buffer

. Count Drops

' Below

' Low-Watermark

7

Asynchronous Event &
Buffer Posting

Figure 3: SRQ Low-Watermark Mechanism

2.2.3 SRQ Channel

This channel exclusively utilizes the SRQ feature
of InfiniBand. It employs the same receiver-driven
flow-control mechanism as described in the previ-
ous section. The only difference in this channel
from the previous one is that no RDMA buffers are
allocated, even for frequently communicating pairs
of processes. Even though RDMA channels can
achieve lower-latency message passing, they con-
sume more memory. This channel, which is exclu-
sively based on SRQ, may have slightly increased
point-to-point latency (only by around 1us), but
can provide very scalable message passing. Fig-
ure 2(c) illustrates this channel. For the rest of
the paper, this design will be simply referred to as
SRQ.

3 Experimental Evaluation

In this section, we present our analysis of the per-
formance and the memory utilization of the MPI
library (specifically MVAPICH [15]) while exe-
cuting several well-known MPI applications and
benchmarks. The Eager protocol designs evalu-
ated are the Adaptive RDMA with Send/Receive

(called ARDMA-SR), Adaptive RDMA with SRQ
(called ARDMA-SRQ), and the SRQ channel
(called SRQ). The descriptions of these channels
are in Section 2.2.

Much of the data required for our analysis are
not obtainable through any other publicly available
tools. This is mainly because we aim to analyze
information that is specific and internal to MVA-
PICH. In addition to this, our analysis requires the
size and volume information of the messages ac-
tually sent by the MPI library. Most MPI profiling
tools can provide information only about messages
that were generated by the MPI application. As
mentioned in Section 2.2, large message transfer
may in fact involve several small message trans-
fers as required by the Rendezvous protocol. The
information about these messages is lost if we sim-
ply use MPI-level profilers.

In order to obtain an accurate view of the var-
ious events occurring inside MVAPICH, we de-
sign an extremely low overhead profiling mech-
anism internal to MVAPICH. Our profiling im-
plementation records information inside internal
data structures of MVAPICH during the applica-
tion execution. All the information is then col-
lected at the root process by MPI_Reduce during
MPI_Finalize. Since the profiler need only up-
date a few memory locations during the execution,
there is almost no perceivable impact on the perfor-
mance; e.g. the 0-byte MPI message latency is un-
affected, proving our hypothesis that our profiling
introduces almost negligible overhead. Our profil-
ing mechanism records important information such
as:

1. Allocation of communication buffers
2. Message size and data volume profiles

3. Number of processes communicating over
RDMA Eager Protocol

4. Number of “low-watermark” events experi-
enced by the SRQ

In addition to our internal profiling of MVA-
PICH, we used mpiP [8], which is a lightweight,
scalable MPI profiling tool. This tool provides us
with information about which MPI calls were is-
sued by the application. Combining this informa-
tion (generated by mpiP) with our internal profil-
ing of MVAPICH, provides an in-depth look into
several aspects of the MVAPICH designs for the
Eager protocol.

Table 1 shows the results of our profiling vari-
ous applications on 64 processes. SuperLU pro-
filing results are presented separately in Table 2.

The percentage MPI time is reported by mpiP and
the rest of the parameters are given by the MVA-
PICH internal profiling. This table will be referred
to later as part of our analysis of the results of each
individual benchmark.

3.1 Experimental Platform

Our experimental platform is a 64 node dual
Opteron 2.4GHz (Processor 250) cluster. Each
node is equipped with 8GB of main memory and
PCI-Express interface. The nodes have MT25204
Mellanox HCAs with firmware version 1.0.1 and
the OpenIB/Gen2 [17] software stack. The Linux
kernel version used is 2.6.15.

3.2 NAS Benchmarks

The NAS Parallel Benchmarks [2] are a set of pro-
grams that are designed to be typical of several
MPI applications, and thus, help in evaluating the
performance of parallel machines. For the pur-
poses of our evaluation, we include all the NAS
Benchmarks except the Embarrassingly Parallel
(EP) benchmark. We excluded this benchmark
from our paper, since it has very little MPI commu-
nication and as such is of lesser significance when
analyzing the operations inside the MPI library.

Figure 4 shows the performance of the NAS
Benchmarks (Class B) using all three designs of
the Eager protocol. The number of processes is
varied from 16 to 64 for IS, FT, CG, LU, and
MG. The SP and BT benchmarks are run on 49
to 81 processes since they require the total num-
ber of processes to be a square. Each graph has
two y-axes. The left y-axis shows the communica-
tion memory used by MVAPICH while executing
that particular benchmark, whereas the right y-axis
shows the relative performance achieved by that
benchmark execution. All the performance ratios
have been normalized with respect to the best pos-
sible benchmark number obtained by the default
configuration of MVAPICH version 0.9.7. A ratio
> 1 indicates better performance than the default
configuration of MVAPICH 0.9.7, while a ratio <
1 indicates worse performance.

The results indicate that the SRQ channel is
able to provide almost the same level of perfor-
mance as the other two schemes: ARDMA-SR
and ARDMA-SRQ. While the SRQ channel pro-
vides almost the same performance, it does so with
markedly less communication memory. In fact, in
all the Figures 4(a) through 4(g), the SRQ chan-
nel consumes less than SMB of communication
buffers.

Memory utilization numbers for bench-
marks IS, FT, BT, and SP are shown in Fig-
ures 4(a), 4(b), 4(f), and 4(g), respectively.
These show an order of magnitude improvement
(around 10 times for 64 and 81 process execu-
tions) in memory usage when ARDMA-SR is
compared with ARDMA-SRQ or SRQ. However,
Table 1 shows that the average number of RDMA
connections (Section 2.2.1) is in fact not that
high. To answer this apparent contradiction, we
examine the message and volume profile graphs in
Figures 5(a) and 5(c). By looking at these graphs,
we can make out that these benchmarks do the
major part of their communications using very
large messages. As explained in Section 2.2, every
large message transfer is associated with several
smaller messages. These smaller messages are
never sent over RDMA, rather exclusively use the
Send/Receive channel. In order to transfer these
small messages, an increasing number of commu-
nication buffers are allocated for the Send/Receive
channel. Once the number of messages over the
Send/Receive channel exceeds a certain amount, a
much larger communication buffer set (64 in num-
ber) is required to be allocated per remote process
for the Send/Receive channel. This consumes the
most memory and exposes an inherent scalability
issue even while using an adaptive protocol. The
other NAS Benchmarks LU, MG, and CG show
an improvement in memory usage as well as seen
in Figures 4(d), 4(e), and 4(c). The SRQ channel
consumes around half the memory required by
ARDMA-SR. The difference in memory usage
between ARDMA-SRQ and SRQ can be explained
by the number of processes using RDMA. For
example, in the LU benchmark (for 64 processes),
there are on an average 3.92 RDMA connections.
According to default MVAPICH 0.9.7 parameters,
each RDMA connection utilizes around 500KB of
memory, so analytically, the difference in memory
usage between ARDMA-SRQ and SRQ should
be (500 * 3.92)/1024 MB = 1.9 MB. From
Figure 4(d), we can observe that the memory
usage difference is indeed around 2MB for 64
processes.

We did, however, notice some variations in the
performance results of the NAS benchmarks. The
cause of these fluctuations may be due to NUMA
issues such as process migration or due to the man-
ner in which processes are mapped onto the physi-
cal processors. These fluctuations are observed for
all the three Eager protocol designs, and as such
are not an artifact of the MVAPICH designs. In all
our benchmark executions, we used the same pro-
cess to processor mapping for all Eager protocols.
Further, no fluctuation in the memory usage was

Table 1: Profiling Results on 64 processes of NAS (Class B), NAMD (apoal) and HPL

IS MG CG FT LU BT SP | NAMD | HPL

Avg. RDMA Connections 6.14 9.0 3.09 | 098 | 3.92 | 3.89 | 1.17 53.15 6.26
Avg. Low-Watermark events 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0
Unexpected Messages (%) 2.7 10.2 13.5 11.9 | 38.1 0.3 0.7 48.2 13.6

Total Messages 1.9e5 | 3.1ed | 2.7e6 | 3.6eb5 | 5.8e6 | 1.6e6 | 4.7¢6 | 3.7e6 | 7.8ed

MPI Time (%) 47.25 | 9.16 | 33.87 | 37.85 | 14.23 | 10.17 | 11.88 | 23.54 | 24.68

Memory Usage (MB)

64
Number of Processes
ARDMA-SR ———1 ARDMA-SR Performance -+

Performance

ARDMA-SRQ ARDMA-SRQ Performance --X--

RQ —— SRQ Performance -~ %

(a) IS Class B

Memory Usage (MB)

Memory Usage (MB)

Number of Processes

ARDMA-SR ——— ARDMA-SR Performance -+
ARDMA-SRQ &=z ARDMA-SRQ Performance --%-
SR SRQ Performance -~

Q —=

(d) LU Class B

60

Memory Usage (MB)

Number of Processes

ARDMA-SR —— ARDMA-SR Performance -+
ARDMA-SRQ mz=zs3 ARDMA-SRQ Performance ----
SRQ —— SRQ Performance -~

(f) BT Class B

64

Number of Processes
ARDMA-SR ——1 ARDMA-SR Performance

RQ =

SRQ Performance -

(b) FT Class B

Performance
Memory Usage (MB)

Performance
Memory Usage (MB)

+
ARDMA-SRQ ARDMA-SRQ Performance --X--

%

Performance

Memory Usage (MB)

ARDMA-SR ——— ARDMA-SR Performance

Number of Processes

+

ARDMA-SRQ ARDMA-SRQ Performance --X--

RQ ——

SRQ Performance -

(c) CG Class B

ARDMA-SR ——J

Number of Processes

ARDMA-SR Performance
ARDMA-SRQ &=zz@ ARDMA-SRQ Performance ~><~
SRQ == SRQ Performance -

(e) MG Class B

+
=Ko

60

50 ¢

40

+

20

[Ie—— .

49

ARDMA-SR ——

64
Number of Processes

ARDMA-SR Performance

SRQ Performance -

(g) SP Class B

Figure 4: Performance of NAS Benchmarks

+
ARDMA-SRQ &==zzat ARDMA-SRQ Performance --X--
SRQ ==

e

Performance

Performance

%

Performance

120 T T T T T T 120

100

80

601

40

% Messages Below
% Messages Below

201"

120

100 MG

80 5P --

60

40

% Data Volume Below

20

. . . . | 0
64 256 1K 4K 16k 64K 256K 1M 64 256
Message Size (Bytes)

(a) Percentage messages below a certain mes-
sage size

(b) Percentage Unexpected messages below a
certain message size

1K 4K 16k 64K 256K 1M 64

Message Size (Bytes) Message Size (Bytes)

tain message size

Figure 5: Network-Level Message and Volume Profile of NAS Benchmarks

observed.

3.3 Super LU

SuperLU is a general purpose library for the so-
lution of large systems of linear equations on
high performance machines [25]. SuperLU is of-
fered in three different versions: sequential, multi-
threaded (for shared memory machines), and an
MPI version to be used on distributed memory
machines. We used the MPI version, called Su-
perLU_DIST [10] that contains a set of subroutines
to solve a sparse linear system A * X = B. Cur-
rently, the program SuperLU_DIST parallelizes the
LU factorization and triangular solution routines,
which are the most time consuming.

The communication characteristics of SuperLU
have been studied previously by Shalf, et al [20].
It has a variety of MPI calls which are predom-
inantly MPI_Isend, MPI_Irecv, MPI Wait,
MPI_Bcast, and MPI_Alltoall. There are
various data sets available for SuperLU_DIST. In
our experiments, we have used garon2.rua and
rim.rua from [3].

As seen in Figure 7(a), 94.99% of messages are
less than 2KB for the garon?2 data set and 94.33%
for the rim data set. While most messages are of
small size, Figure 7(c) shows a few large messages
that comprise most of the data volume.

Figures 6(a) and 6(b) show the performance and
memory usage observed from our internal library
profiling. As in the case of the NAS Benchmarks,
the results indicate the ability of the SRQ channel
to provide near-identical performance with signifi-
cantly lower allocation of communication buffers.
In the case of the garon?2 data set, usage remains
roughly constant between the range of 7 to 9MB.
Interestingly, with both data sets the memory us-

age for the SRQ design per process is higher for
16 processes than 32 or 64. From Table 2, we ob-
serve that using 16 processes, the average number
of “low-watermark” events (when SRQ buffers are
low) is approximately 1.5, while 32 and 64 pro-
cesses have significantly lower values.

This result suggests a communication pattern
with significant bursts of unexpected messages and
additionally that these bursts occur less frequently
with a larger number of processes. These signifi-
cant traffic bursts wake a thread to post additional
buffers to the shared received queue, increasing the
overall memory usage.

The benefits of the SRQ Eager protocol de-
sign are most prominent at a process group size
of 64. We observe from Figures 6(a) and 6(b)
that the communication buffer memory usage for
garon?2 is nearly an order of magnitude less than
the ARDMA design, yet maintains the same level
of performance. The SRQ results for the r im data
set yield similar results, with a 9 and 4 times im-
provement over the ARDMA-SR and ARDMA-
SRQ designs, respectively, with near-identical per-
formance. Most importantly, our evaluation shows
a near-constant memory usage per process, regard-
less of the process group size.

3.4 NAMD

NAMD is a fully featured, production molecular
dynamics program for high performance simula-
tion of large biomolecular systems [18]. NAMD is
based on Charm++ parallel objects, which is a ma-
chine independent parallel programming system.
Of the various data sets available with NAMD, we
use the one called apoal, which models a blood-
stream lipoprotein particle.

P -
S--B-8-5-8
256 1K 4K 16k 64K
(

(c) Percentage of Data Volume below a cer-

Table 2: Profiling Results for SuperLU

garon2 rim
Processes 16 [32 | 64 16 [32 | 64
Avg. RDMA Connections | 12.44 | 25.75 | 40.25 | 7.25 | 12.06 | 14.25
Avg. Low-Watermark events | 1.56 | 0.06 | 0.12 | 1.56 | 0.66 | 0.64
Unexpected Messages (%) 33.5 | 220 | 31.6 | 294 | 24.2 | 30.0

Total Messages 2.9e5 | 4.8e5 | 7.5eb | 3.8ed | T.4ed | 1.1e6
70 2 50 2
45 1
60
_ 15 g of 15
) L 11) 11
= 50 ° = 35 °
& wtf = g o =
g * 11 E 2 25 f * ¥ 11 E
= * 5 = 5
> 30 = = o0 | =
g e g &
g 20 | g 15
= 4 05 = 1 05
10
10 - sl
0 0 0 0
64 16
Number of Processes Number of Processes
ARDMA-SR ——— ARDMA-SR Performance -+ ARDMA-SR ——— ARDMA-SR Performance -+
ARDMA-SRQ ezzzzm ARDMA-SRQ Performance ---- ARDMA-SRQ ezzz=zzm ARDMA-SRQ Performance ----
SRQ =—= SRQ Performance ---%-- SRQ = SRQ Performance ---%--
(a) garon2 (b) rim
Figure 6: Memory Usage and Performance of SuperLU
120 T T 120 T T T T T T 120 T T T T T T
garon2 —+—
fim =%
100 100 R
: E 5
K] 5 80 ® 8 1
o o °
g 8 / E
= o 60y 2 60
1] @ >
1%} 173 !
[0} Q 5! /
s S 40 18 4 /]
® S 2 X
20 1 20 g 1
garon2 —+— garon2 —+— e
0 ‘ ‘ ‘ ‘ fim e 0 ‘ ‘ ‘ ‘ fim X 0 o SR ‘ ‘ ‘
64 256 1K 4K 16K 64K 256K 1M 64 256 1K 4K 16K 64K 256K 1M 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

(a) Percentage messages below a certain mes- (b) Percentage Unexpected messages below a (c) Percentage of Data Volume below a cer-
sage size certain message size tain message size

Figure 7: Network-Level Message and Volume Profile of SuperLU Datasets

The communication characteristics, as re-
ported by mpiP, show the calls are primar-
ily to MPI_Isend, MPI_Send, MPI_Recv, and
MPI_Barrier. Our profile of the messages sent
by the MPI library show 50% are under 128 bytes
and the remaining 50% are between 128 and 32K
bytes.

In Figure 9 we observe the same trends in per-
formance and memory usage as in previous appli-
cations. For a process group size of 16 the SRQ de-
sign uses on average 6.1MB of memory and drops
to 5.5MB and 5.2MB for the 32 and 64 process
groups. As in SuperLU, we see the ability of the
SRQ Eager protocol design to consume less mem-
ory with larger process groups due to a more bal-
anced application communication pattern between
all nodes. However, even with patterns with short
bursts of unexpected traffic, such as the 16 process
run, we observe a 50% improvement in memory
usage over both of the ARDMA designs.

70 2

60 |
50
40t

R —
30

Performance

20

Memory Usage (MB)

1 05

32 64
Number of Processes

ARDMA-SR ——— ARDMA-SR Performance -+
ARDMA-SRQ ezz=zz@ ARDMA-SRQ Performance ----
Q /= SRQ Performance ---¥--

Figure 9: Performance of NAMD (apoal)

In contrast, the communication buffer usage in
the ARDMA-SR design scales linearly with the
number of processes. Table 1 shows one of the
reasons for this scale. The number of RDMA
connections also scales linearly with the number
of processes due to a balanced communication
pattern. This pattern triggers the creation of an
RDMA channel after communicating a set num-
ber of messages, as discussed in Section 2.2.1. For
64 processes, our evaluation shows an average of
53.15 RDMA connections. The ARDMA-SRQ
design also shows a significant increase over the
SRQ design in memory usage due to RDMA chan-
nels. The difference in memory usage between the
SRQ and ARDMA-SRQ designs is 28MB, which
matches our previous model of the RDMA chan-
nel overhead: (RDMA Connections x 500KB)
= 53.15 Connections x500KB = 26.6MB.

3.5 High Performance Linpack
(HPL)

High Performance Linpack (HPL) is benchmark
based on solving systems of linear equations [4].
It is used as the primary measure for ranking a bi-
annual Top 500 list [24] of the world’s fastest su-
percomputers.

The communication pattern, as recorded by
mpiP, shows the calls are primarily to MPI _Recv,
MPI_Send, and MPI_Irecv. Figure 10 shows
the performance and communication buffer mem-
ory usage observed for 16, 32, and 64 process runs
of HPL. We once again see a relatively constant
rate of performance for all of the Eager design
schemes. The SRQ channel, however, is able to
use a constant communication buffer size of less
than SMB for all evaluated process sizes. Fig-
ure 11 shows the results of our profiling of the
messages sent by the MPI library. We observe that
while 50% of the messages are under 128 bytes,
most of these are control messages for the larger
application-level messages.

45 — 2
40

& Br 115

S 30+t 2

(0]

g 25 é

¥ 11 £

2 20t = 8

5] @

£ 15 o

(7]

s ol {05
50

16 32 64
Number of Processes

ARDMA-SR ——— ARDMA-SR Performance -+
ARDMA-SRQ ARDMA-SRQ Performance -->--
RQ = SRQ Performance -+ -

Figure 10: Performance of HPL

Referring to Table 1 we can see that for 64 pro-
cesses, on average, only 6.26 RDMA connections
are established. This result explains the approx-
imately 3.5MB difference between the ARDMA-
SRQ and SRQ designs; our model relating to
RDMA channel memory requirements from other
sections holds here as well. There is also a
marked increase in the memory usage between
the ARDMA-SRQ and ARDMA-SR designs of
nearly 35MB for 64 processes. Although Figure 11
shows that many messages sent are of medium
size, there are also a significant number of larger
messages. As discussed earlier, even large mes-
sages require smaller control messages to be sent
over the Send/Receive channel. When many of
these smaller messages are transferred, an increas-
ing number of communication buffers must be al-

120 120

apoal ——

100 - 100

80 80
60 - 60

40 | 40

% Messages Below
% Messages Below

20 ¥ 20

apoal —+—

120 T T
apoal —+—
100
80
60

40

% Data Volume Below

20

0 ,

0

64 256 1K 4K 16K 64K 256K 1M 64 256
Message Size (Bytes)

(a) Percentage messages below a certain mes-
sage size

1K 4K

(b) Percentage Unexpected messages below a
certain message size

16K 64K 256K 1M 64 256 1K 4K

Message Size (Bytes) Message Size (Bytes)

tain message size

Figure 8: Network-Level Message and Volume Profile of NAMD Datasets

located on a per connection basis in the ARDMA-
SR design, raising the memory usage of the MPI
library.

120

100

80

60

40

% Messages Below

0 L L L L L
64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

Figure 11: Message Size Distribution for HPL

3.6 Scalability Analysis

In this section, we combine some of the results ob-
tained by the evaluation of the various applications
and benchmarks in order to observe the scalability
of the SRQ channel.

We observe from Tables 1 and 2, that
only NAMD and SLU applications have Low-
Watermark events. These events are caused when
the SRQ channel is running low on available re-
ceive buffers. After each Low-Watermark event
occurs, previously unused receive buffers can be
made available to the network, or more receive
buffers may be allocated if required. This is ex-
pected, since both SLU and NAMD have a pre-
dominantly small messages which end up utilizing
communication buffers. Figure 12 shows the num-
ber of Low-Watermark events for both these appli-

cations as the number of processes increases.

1.6>(\;; TV —
| SLU.garon2 —-x-—
g TS -SLU.rim %
2 o2t -
x
© 1k
E
£ 08 »
; bk% *
T 06
s
' 04|
2
< o2}
0 e
16 o 3

Number of Processes

Figure 12: Avg. Low-Watermark Events

The results indicate an interesting trend — that
the average number of interrupts actually decreases
as the system size increases. This implies, that
given these application characteristics, as the sys-
tem size increases, it is expected that no more dy-
namically allocated communication memory is re-
quired. This trend also explains why addition of
more buffers, as in the case of ARDMA-SR and
ARDMA-SRQ does not lead to any “extra” im-
provement in application performance. This is be-
cause the amount of communication memory al-
located at startup, is almost sufficient for the en-
tire application run and the SRQ channel is able
to effectively utilize them. Thus, the SRQ channel
is expected to achieve a high degree of memory-
scalability while providing excellent performance
on even larger system sizes.

4 Related Work

Internal memory usage by the MPI library is an
important metric that is crucial to highly scalable

16K 64K 256K 1M

(c) Percentage of Data Volume below a cer-

MPI design. Several researchers have conducted
studies in this area, as described in this section.

Liu, et al performed comparison of MPI imple-
mentations over InfiniBand, Myrinet and Quadrics
in [11]. In this study they found that the total mem-
ory utilization of the earliest MPI over InfiniBand
(MVAPICH) was increasing linearly with the num-
ber of processes, due to the exclusive use of In-
finiBand reliable connections. On the other hand,
MPI implementations over Myrinet and Quadrics
had near constant memory utilization regardless of
number of process in the MPI application. The
memory utilization experiment was a simple bar-
rier operation, as opposed to the many applica-
tions used to evaluate MPI internal memory us-
age in this paper. Follow up research by Yu, et
al in [26] introduced “adaptive” connection strate-
gies to MVAPICH, which allows similar near con-
stant memory utilization for the type of bench-
marks used in [11]. In all the these research works,
there wasn’t any distinction of the memory used by
communication buffers or just memory required by
layers underneath the MPI layer (drivers, libraries,
etc.). In this paper, we evaluate the usage of com-
munication buffers, which are the dominant part of
the memory usage exhaustively with many well-
known MPI applications.

Other MPI implementations over InfiniBand,
such as Open MPI [5], also have Shared Receive
Queue based design for scalable usage of commu-
nication buffers [21]. However, the design pro-
posed showed severe degradation of application
performance (up to 12 times with the IS Class C
benchmark from the NAS suite on 128 nodes, as
seen in Table 2 of [21]) and did not include MPI
library-level profiling.

Researchers have continued their efforts to un-
derstand communication characteristics of applica-
tions. Communication patterns of SuperLU have
been studied previously by Shalf, et al [20]. Mes-
sage profiles of NAMD and other molecular dy-
namics programs were studied by Alam, et al [1].
In this paper, we extend earlier profiling efforts
by including internal MPI profiling information to
provide a clearer picture of the message character-
1stics.

The MVAPICH SRQ channel design was de-
scribed in [22]. To the best of our knowledge,
this is the first contemporary study that compre-
hensively examines the effect of MPI library mem-
ory usage on performance and the expected mem-
ory requirements of the MPI library with various
adaptive schemes.

5 Conclusions and Future
Work

As InfiniBand gains popularity and is included
in increasingly larger clusters, having a scalable
MPI library is imperative. Through our evalua-
tion of the NAS Parallel Benchmarks, SuperLU,
NAMD, and HPL, we have explored the impact of
reduction of communication memory on the per-
formance. We have shown that all of the schemes
in MVAPICH are able to attain near-identical per-
formance on a variety of applications. Our evalua-
tion showed that the latest SRQ design of MVA-
PICH is able to use a constant amount of inter-
nal memory per process with optimal performance,
regardless of the number of processes, an order
of magnitude lesser than other Eager protocol de-
signs of MVAPICH. In our experiments, only 5-
10MB of communication memory was required by
the SRQ design to attain the best recorded perfor-
mance level achievable with MVAPICH.

In the future we plan to continue evaluating the
memory usage and performance of these various
designs on larger clusters. In particular, we want
to study application characteristics more closely.
We also plan to investigate decreasing memory us-
age further by allocating an even lower initial num-
ber of communication buffers. Further, we are en-
gaged in ongoing work to propose newer flow con-
trol protocols when using Shared Receive Queues.

References

[1] Sadaf R. Alam, Jeffrey S. Vetter, Pratul K. Agarwal, and
Al Geist. Performance characterization of molecular dy-
namics techniques for biomolecular simulations. In Sym-
posium on Principles and practice of parallel program-
ming, pages 59-68, New York, NY, USA, 2006. ACM
Press.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS par-
allel benchmarks. volume 5, pages 63-73, Fall 1991.

[3] T. Davis. University of Florida Sparse Matrix Collection.
http://www.cise.ufl.edu/research/sparse/matrices.

[4] J. Dongarra. Performance of Various Computers Using
Standard Linear Equations Software. Technical Report
CS-89-85, University of Tennessee, 1989.

[5] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal
Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI imple-
mentation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97-104, Budapest, Hun-
gary, September 2004.

(6]

(10]

(11]

[15]

(17

[18

[19

(20]

(24]

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI, Mes-
sage Passing Interface Standard. Technical report, Ar-
gonne National Laboratory and Mississippi State Univer-
sity.

InfiniBand Trade Association. InfiniBand Trade Associa-
tion. http://www.infinibandta.com.

J. Vetter and C. Chambreau. mpiP: Lightweight, Scalable
MPI Profiling. http://www.lInl.gov/CASC/mpip/.

Lawrence Berkeley National Laboratory.
MVICH: MPI for Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/ index.html,
August 2001.

X. Li and J. Demmel. SuperLU DIST: A scalable
distributed-memory sparse direct solver for unsymmet-
ric linear systems. ACM Trans. Mathematical Software,
29(2):110 — 140, 2003.

J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini,
W. Yu, D. Buntinas, P. Wyckoff, and D. K. Panda. Per-
formance Comparison of MPI Implementations over In-
finiBand, Myrinet and Quadrics. In Supercomputing(SC),
2003.

J. Liu, J. Wu, and D. K. Panda. High performance
RDMA-based MPI implementation over InfiniBand. Int’l
Journal of Parallel Programming, 32(3), June 2004.

Message Passing Interface Forum. MPI-2: Extensions to
the Message-Passing Interface, Jul 1997.

NAS Project: Columbia. Columbia Super-
computer. http://www.nas.nasa.gov/About/
Projects/Columbia/columbia.html.

Network-Based Computing Laboratory. MPI
over InfiniBand Project. http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/.

Open Fabrics Alliance. Open Fabrics Enterprise Distribu-
tion. http://www.openfabrics.org/.

Open InfiniBand Alliance. Open Source InfiniBand Soft-
ware Stack. http://www.openib.org/.

J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale.
NAMD: Biomolecular Simulation on Thousands of Pro-
cessors. In Supercomputing, 2002.

Sandia National Laboratories. Thunderbird Linux
Cluster. http://www.cs.sandia.gov/platforms/ Thunder-
bird.html.

J. Shalf, S. Kamil, L. Oliker, and David Skinner. An-
alyzing UltraScale Application Communication Require-
ments for a Reconfigurable Hybrid Interconnect. In Su-
percomputing, 2005.

G. Shipman, T. Woodall, R. Graham, and A. Maccabe.
Infiniband Scalability in Open MPI. In International
Parallel and Distributed Processing Symposium (IPDPS),
2006.

S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Re-
ceive Queue Based Scalable MPI Design for InfiniBand
Clusters. In International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2006.

S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA Read
Based Rendezvous Protocol for MPI over InfiniBand: De-
sign Alternatives and Benefits. In Symposium on Prin-
ciples and Practice of Parallel Programming (PPOPP),
2006.

The Top 500 Project. The Top 500.
http://www.top500.org/.

[25] Xiaoye Sherry Li, James Demmel, John R. Gilbert. Su-

perLU. http://crd.Ibl.gov/"xiaoye/SuperLU/.

[26] W. Yu, Q. Gao, and D. K. Panda. Adaptive Connection

Management for Scalable MPI over InfiniBand. In Inter-
national Parallel and Distributed Processing Symposium
(IPDPS), 2006.

