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ABSTRACT

Current cluster-based data-centers are configured as multiple tiers, each with spe-
cific functionalities and containing multiple nodes. Requests to the data-center have
different resource requirements and are satisfied by different tiers of the data-center.
Due to the unpredictability of the pattern of such requests, over-provisioning of nodes
in these data-center tiers is an accepted approach to provide Quality of Service (QoS)
guarantees. However, this approach is not cost-effective since it incurs a poten-
tial wastage of resources. Current high performance networks such as InfiniBand,
Myrinet, Quadrics, etc., not only provide high performance in terms of latency and
bandwidth, but also a number of advanced features such as one-sided communication
operations including remote memory operations (RDMA) and network based atomic
operations. In this thesis we study the current approaches to configure the data-
center and capabilities of these approaches to satisfying QoS guarantees. We present
a novel architecture to enable dynamic reconfiguration of nodes in a cluster-based
multi-tier data-center which enables them to adapt their functionality based on the
system load and the QoS guarantees provided by the data-center; this avoids the need
for over-provisioning of nodes.

In the case of a data-center hosting multiple websites, it is important to provide

differentiated service to these websites depending on their individual investments.

i



In such scenarios, reconfigurability improves the performance and QoS guarantees
of higher priority websites with lesser number of nodes. Also when the number of
high-priority requests is low, the idle nodes can be re-allocated to serve lower priority
requests and hence improve the over-all throughput achieved by the data-center. In
a rigidly configured data-center lower priority requests suffer even though the nodes
allocated to the high-priority requests may be idle.

Dynamic reconfigurability in this scheme is achieved with the help of the one-sided
communication operations offered by InfiniBand without requiring any modifications
to the existing data-center applications. We evaluate this scheme with different pat-
terns of static and dynamic content requests using (i) Single file traces, (ii) Zipf based
traces and (iii) Real life world cup trace. Our experimental results show that the dy-
namic reconfigurability scheme can be used to provide better QoS guarantees (up to
25% better), meet the same guarantees with lesser resources (up to 20% lesser nodes),

or even both in some cases.
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CHAPTER 1

INTRODUCTION

The Internet technology has grown at a very fast pace and gained enormous pop-
ularity. Not only does it serve as one of the primary modes of communication, but
also is an effective means of file-sharing and resource-sharing. Today, the Internet
has become a primary tool in small and large business transactions. These businesses
need to reach out and attract customers through the electronic medium. This has
led to the evolution of data-centers or server farms that host web services for these
businesses.

The explosive growth of the E-commerce sector has placed higher demands on the
performance of data-centers. High availability, scalability and capability to provide
QoS guarantees are essential requirements imposed on next generation data-centers.
There is a need to decouple resource requirements of requests in the data-center
leading to the deployment of multi-tier data-centers.

Online businesses today offer personalized services, in order to increase probability
of a financial transaction. Differentiation of service is also a critical component of
online business. For instance, some businesses like Amazon and Hallmark, give higher
priority to frequent customers. A data-center hosting such services needs to cater to
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this requirement of providing differentiated service that may be based on the request,
the client making the request, or the business that needs to service the request.

On the other hand, the high-performance community has seen a rapid growth
in commodity clusters which is a cost-effective alternative to super-computers. The
growth of network-based computing has been made possible by the evolution of high-
performance networks, which offer low latency and high bandwidth. Data-centers are
now taking advantage of this approach and leaning toward such high-performance
clusters for their deployment. These networks rely on user-level networking and one-
sided communications for their performance. In our design, we exploit these advanced
features in cluster-based data-centers to provide better QoS guarantees and differen-
tiated service.

In this chapter we provide a brief overview of the networking interconnects, pro-
tocols and messaging middleware. We also introduce Data-Centers over InfiniBand

and present an overview of Multi-Tier Data-Center Architecture.

1.1 Commodity Clusters and Networks

In the past few decades, the high performance computing community has seen a
shift from mainframe and host-centric computing to a parallel and network-centric
computing approach. Network interconnects that offer very low latency and high
bandwidth have continuously emerged to complement the increasing computational
power of commodity PCs. This trend has enabled the deployment of high-end produc-

tion scientific computing environments, built using clusters of commodity PCs and



high speed interconnects. The high performance-to-price ratio of these commodity-
off-the-shelf (COTS) clusters has been the most important factor that has accelerated

this trend.
1.1.1 Interconnect Technologies And Protocols

Some of the leading products in the network interconnects market include Myrinet [13],
Ethernet [20, 1, 23, 19], Quadrics [38, 37, 39, 4, 34] and InfiniBand [6, 2.

Some of these interconnects provide very low latencies (even less than 10 us) and
very high bandwidth (of the order of 10 Gbps). These interconnects provide memory-
protected user-level access to the network interface, thereby allowing data transfer
operations to be performed without kernel intervention. Thus the interconnect no
longer is the bottleneck in the critical path of the communication. Some of the inter-
connects like InfiniBand provide hardware-based support for Quality of Service (QoS)
and for multicast operations. Layers above the hardware can then take advantage of
these advanced features provided at the hardware level to get improved performance
and use novel approaches to solving existing problems. Being built from commod-
ity hardware, Network of Workstations (NOWs) are becoming a cost-effective and
viable alternatives to mainstream supercomputers for a broad range of applications
and environments. Out of the current Top 500 Supercomputers, 149 systems are
clusters [22]. InfiniBand Architecture (IBA) [6, 2] has been recently standardized by
the industry to design next generation high-end clusters.

During the last few years, the research and industry communities have been
proposing and implementing user-level communication systems to address some of
the problems associated with the traditional networking protocols for cluster-based
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systems. The advent of high-performance interconnects further propelled the efforts
to develop user-level protocols to take advantage of some of the advanced features
offered by them. User-level protocols such as U-Net [46], BIP [35, 36], FM [33],
GM [18], EMP [44, 45] Virtual Interface Architecture (VIA) [15, 3, 11, 17, 10] were
some of the first to be proposed and deployed.

In the following chapters we show how high-performance interconnects like IBA
together with a native implementation of user-level protocols can be used effectively

in the design and implementation of next generation data-centers.
1.1.2 IBA: Overview

IBA is envisioned as the default interconnect for several environments in the near
future. IBA relies on two key features, namely User-level Networking and One-Sided
Communication Operations. User-level Networking allows applications to directly and
safely access the network interface without going through the operating system. This
mainly reduces the system processing overhead by decreasing the number of copies
associated with a message transfer, thereby removing the kernel from the critical
message passing path. This is achieved by providing the consumer applications direct
and protected access to the HCA.

One-sided communication allows the network interface to transfer data between
local and remote memory buffers directly and safely without any host processor in-
tervention by using DMA engines. It also provides features for performing network
based atomic operations on the remote memory regions which can be leveraged in

providing efficient support for multiple environments [29, 47].



1.2 Multi-Tier Data-Center Architecture

The increasing adoption of Internet as the primary means of electronic interaction
and communication has made highly scalable, highly available and high performance
web servers a critical requirement for companies to reach, attract, and keep customers.
Over the past few years, several researchers have been looking at the feasibility and
the potential of using clusters in the data-center environment to form cluster-based
multi-tier data-centers [7, 30].

Figure 1.1 represents a typical cluster-based multi-tier data-center. The front tiers
consist of front-end servers such as proxy servers that provide web, messaging and
various other services to clients. The middle tiers usually comprise of application
servers that handle transaction processing and implement the data-center business
logic. The back-end tiers consist of database servers that hold a persistent state
of the databases and other data repositories. As mentioned in [42], a fourth tier
emerges in today’s data-center environments: a communication service tier between
the network and the front-end server farm for providing edge services such as load

balancing, security, caching, and others.
1.2.1 QoS Guarantees in Data-Centers

With ever-increasing online businesses and services and the growing popularity
of personalized Internet services in the recent past, differentiation in the service pro-
vided to the end users is becoming critical in such data-center environments. Such
differentiation becomes essential in several scenarios. For example, a data-center may

try to provide some kind of guarantees in the response time perceived by frequent



Mid-tier Back-end

Front-end Applications Applications
Applications

Edge
Services

~

Internet

Enterprise
Network

Figure 1.1: A Typical Multi-Tier Data-Center (Courtesy CSP Architecture de-
sign [42])

customers. So, requests from such customers need to be given a higher priority as
compared to those coming from a new customer. Similarly, if a data-center is hosting
web-sites for multiple companies, it may want to give a higher priority to all requests
pertaining to company #1 (a high paying customer) as compared to company #2
(a low paying customer). Further, a data-center may try to give better performance
to all financial transactions such as web requests involving purchasing goods from an
online market as compared to web requests involving normal site browsing. These sce-
narios emphasize the need to have a provision for the data-centers to provide Quality

of Service (QoS) guarantees to users.



1.3 Problem Statement

There have been several studies on the relative frequencies of accesses between
documents. However, there has not been much study on the actual arrival pat-
terns of “similar” requests with respect to the resources they demand. Traditional
data-centers base the configuration of their systems on assumptions on resource re-
quirement for the client requests. For example, a data-center which expects requests
for static documents might require more nodes in the proxy tier due to the ability of
such documents to be cached. On the other hand, for a data-center which expects
dynamic requests requiring some kind of computation to be performed, more nodes
in the application tier would be beneficial to the compute intensive nature of these
requests. However, interesting documents such as a recent flash news or dynamic
web-pages become available and unavailable. This results in bursty traffic for cer-
tain kinds of documents at some times and for some other kinds of documents at
a different time. Such scenarios make it difficult to determine and predict request
patterns. In this scenario, a burst of one kind of data requests would result in one tier
in the data-center environment being over-loaded leaving the nodes in the other tiers
idle. Such dynamism in the incoming requests is especially of concern in data-centers
which host multiple web-sites or services.

Over-provisioning of nodes in the data-center tiers is an accepted and popular
approach to provide Quality of Service (QoS) guarantees due to the unpredictability
of resource requirements for an incoming requests. In this approach, nodes are allo-
cated to the multiple tiers in the data-center environment based on the worst case

requirements to satisfy guaranteed QoS. This essentially means that each tier in the
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data-center is provisioned with as many nodes as required by that tier alone to satisfy
the QoS guarantees. Though this approach avoids the problem of the nodes in one
tier being overloaded during bursty traffic, it is not cost-effective due to the poten-
tial wastage of resources incurred in the scheme. Also, with this increased resources
the data-center can now intuitively provide much higher throughput than it actu-
ally guarantees. However, it cannot exploit its resources in terms of QoS guarantees
due to the unpredictability of incoming request patterns which makes the complete

utilization of the data-center nodes rather indeterminate.

1.4 Owur Approach

In this thesis we present a novel architecture to provide dynamic reconfigurability
of nodes in the data-center which enables them to adapt their functionality based on
the system load and QoS guarantees provided by the data-center. Dynamic recon-
figurability in this scheme is achieved with the help of the one-sided communication
operations (both remote memory access and network based atomic) offered by Infini-

Band without requiring any modifications to the existing data-center applications.
1.4.1 Introduction to Dynamic Reconfigurability

As mentioned in section 1.3 over-provisioning is a popular solution but suffers from
the disadvantages of under-utilization and high costs. On the other hand, dynamic
reconfigurability utilizes the existing resources to satisfy guaranteed resources by re-
configuring the data-center to adapt to the current request requirements. Currently,
without reconfigurability we can only make QoS guarantees based on the maximum

achievable throughput of a single tier considering the worst case when all requests to



the data-center requires to be served by that tier. When the requests are directed to
different tiers, keeping all nodes in the data-center busy, we can achieve much higher
throughput than that determined by the worst-case guarantee. Hence, the basic idea
is to improve utilization of resources in the data-center even during bursts of requests
with similar resource requirements. In this scenario a reconfigurable data-center re-
allocates some of its resources into the over-loaded tiers, thus improving the overall
performance and achievable throughput in the data-center.

This design reduces the cost of a data-center setup by doing away with over-
provisioning and allows for improved QoS guarantees provided by the data-center by

sustaining performance through all patterns of incoming requests.
1.4.2 Dynamic Reconfigurability for Multiple Websites

A common application of data-centers is to host multiple websites. Depending on
the investment made by a client, the data-center is required to provide differentiated
service to it. In order to keep the QoS guarantees made to the high priority clients,
the rigid data-center may allocate a large fraction of its resources to them. However,
this results in under-utilization where in the lower priority clients may suffer even
though resources allocated to the high-priority clients may be idle.

We apply reconfigurability to this scenario and show that it benefits low-priority
clients while keeping QoS guarantees to the high-priority clients with relatively lesser
number of nodes as compared to the rigid case.

The rest of this thesis is organized as follows. Chapter 2 provides a brief back-

ground in two aspects, (i) the tiered architecture of the data-center environment



and details about the functionalities of each tier and (i) the InfiniBand architec-
ture. Chapter 2 also describes previous work related to this thesis. In Chapter 3,
we describe the design and implementation details of the dynamic reconfigurability
approach. In Chapter 4, we discuss more details into the issues related in providing
Soft QoS guarantees to websites and the existing approaches used in this domain. We
describe our reconfigurability scheme and present the basic performance comparison
with respect to the rigid data-center and over-provisioning in Chapter 5. In Chapter 6
we present the performance of the scheme extended to multiple websites. Chapter 7

presents our concluding remarks and possible extensions to this work.
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CHAPTER 2

BACKGROUND AND MOTIVATION

In this chapter, we provide a brief background in two aspects: (i) the tiered
architecture of the data-center environment and details about the functionalities of
each tier and (ii) the InfiniBand architecture. In section 2.3, we provide a brief

overview of previous research in this direction and the motivation behind this work.

2.1 Data-Center Tiered Architecture

Figure 2.1 shows the architecture of a typical multi-tier data-center. The clients
interact with the data-center from the Wide Area Network or the Internet. The data-
center itself is composed of tiers which logically partition its resources based on their
functionality.

A typical data-center architecture consists of multiple tightly interacting layers
known as tiers. Each tier can contain multiple physical nodes. Requests from clients
are load-balanced on to the nodes in the proxy tier. This tier mainly does caching
of content generated by the other back-end tiers. The other functionalities of this
tier include embedding inputs from various application servers into a single HTML

document (for framed documents for example), balancing the requests sent to the
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Figure 2.1: Data-Center Tiered Architecture

back-end based on certain pre-defined algorithms such as the load on the different
nodes and other such services.

The second tier consists of two kinds of servers. First, those which host static
content such as documents, images, music files and others which do not change with
time. These servers are typically referred to as web-servers. Second, those which
compute results based on the query itself and return the computed data in the form
of a static document to the users. These servers, referred to as application servers,
usually handle compute intensive queries which involve transaction processing and
implement the data-center business logic.

The last tier consists of database servers. These servers hold a persistent state
of the databases and other data repositories. These servers could either be compute
intensive or I/O intensive based on the query format. For simple queries, such as
search queries, etc., these servers tend to be more I/O intensive requiring a number

of fields in the database to be fetched into memory for the search to be performed.
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For more complex queries, such as those which involve joins or sorting of tables, these
servers tend to be more compute intensive.

Other than these three tiers, various data-center models specify multiple other
tiers which either play a supporting role to these tiers or provide new functionalities
to the data-center. For example, the CSP architecture [42] specifies an additional
edge service tier which handles security, caching, SAN enclosure of packets for TCP
termination and several others. In this thesis, we only deal with the traditional 3-tier
data-center architecture.

Since the kind of requests coming into the data-center is not known apriori, the
nodes present in the cluster are distributed to the various tiers based on a certain
expected workload. Thus, as discussed earlier, in a data-center which expects more
requests for static documents would have more nodes in the proxy tier, while a data-
center which expects dynamic requests involving computing results for each request

would have more nodes in the application tier and so on.

2.2 InfiniBand Architecture

The InfiniBand Architecture (IBA) is an industry standard that defines a System
Area Network (SAN) to design clusters offering low latency and high bandwidth.
In a typical IBA cluster, switched serial links connect the processing nodes and the
I/O nodes. The compute nodes are connected to the IBA fabric by means of Host
Channel Adapters (HCA), which may simply be referred to as Channel Adapters
(CA). IBA defines a semantic interface called as Verbs for the consumer applications
to communicate with the HCAs. VAPI is one such interface developed by Mellanox

Technologies.
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IBA mainly aims at reducing the system processing overhead by decreasing the
number of copies associated with a message transfer and removing the kernel from the
critical message passing path. This is achieved by providing the consumer applications
direct and protected access to the HCA. The specification for Verbs includes a queue-
based interface, known as a Queue Pair (QP), to issue requests to the HCA. Figure 2.2

illustrates the InfiniBand Architecture model.

Consumer Transactions,

Operations,etc
[ Consumer J“'""""“"_‘ """"" »( Consumer ]
(IBA Operations)
Channel _ | CQE —||CeE
Adapter j— p—
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Figure 2.2: InfiniBand Architecture (Courtesy InfiniBand Specifications)

2.2.1 IBA Communication

Each Queue Pair is a communication endpoint. A Queue Pair (QP) consists of
the send queue and the receive queue. Two QPs on different nodes can be connected

to each other to form a logical bi-directional communication channel. An application
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can have multiple QPs, for every connection. Communication requests are initiated
by posting Work Queue Requests (WQRs) to these queues. Each WQR is associated
with one or more pre-registered buffers which may be used either as the source buffer
from which data is transferred out (send WQR) or as the destination buffer into
which incoming data is received (receive WQR). The application can either choose
the request to be a Signaled (SG) request or an Un-Signaled request (USG). When
the HCA completes the processing of a signaled request, it places an entry called as
the Completion Queue Entry (CQE) in the Completion Queue (CQ). The consumer
application can poll on the CQ associated with the work request to check for com-
pletion. There is also the feature of triggering event handlers whenever a completion
occurs. For Un-signaled request, no kind of completion event is returned to the user.
However, depending on the implementation, the driver cleans up the the Work Queue
Request from the appropriate Queue Pair on completion.

IBA supports two types of communication semantics: Channel Semantics (Send-

Receive communication model) and memory semantics (RDMA communication model).
2.2.2 RDMA Communication Model

In channel semantics, every send request has a corresponding receive request at
the remote end. Thus there is one-to-one correspondence between every send and
receive operation. Failure to post a receive descriptor on the remote node results in
the message being dropped and if the connection is reliable, it might even result in
the breaking of the connection.

In memory semantics, Remote Direct Memory Access (RDMA) operations are
used. These operations are transparent at the remote end since they do not require
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a receive descriptor to be posted. In this semantics, the send request itself contains
both the virtual address for the local transmit buffer as well as that for the receive
buffer on the remote end.

Most entries in the WQR are common for both the Send-Receive model as well
as the RDMA model, except an additional remote buffer virtual address which has
to be specified for RDMA operations.

There are two kinds of RDMA operations: RDMA Write and RDMA Read. In
an RDMA write operation, the initiator directly writes data into the remote node’s
user buffer. Similarly, in an RDMA Read operation, the initiator reads data from the
remote node’s user buffer.

RDMA operations have two notable advantages for us to design and implement
strong cache coherence. First, it is one-sided communication, that is completely trans-
parent to the peer side. Therefore, the initiator can initiate RDMA operations at its
own will. Eliminating involvement of the peer side can overcome the communication
performance degradation due to CPU workload of the peer side. This also avoids any
interrupt of the peer side processing. Second, RDMA operations provide a “shared-
memory illusion”. This eases status sharing in caching. In the following chapter, we

describe the design details.
2.2.3 Atomic Operations Over IBA

In addition to RDMA, the reliable communication classes also optionally provide

support for atomic operations directly against the memory at the end node. Atomic
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operations are posted as descriptors at the sender side as in any other type of com-
munication. However, the operation is completely handled by the NIC and involves
very little host intervention and resource consumption.

The atomic operations supported are Fetch-and-Add and Compare-and-Swap,
both on 64-bit data. The Fetch and Add operation performs an atomic addition
at the remote end. The Compare and Swap is used to compare two 64-bit values and
swap the remote value with the data provided if the comparison succeeds.

Atomics are effectively a variation of RDMA: a combined write and read RDMA,
carrying the data involved as immediate data. Two different levels of atomicity are
optionally supported: atomic with respect to other operations on a target CA; and
atomic with respect to all memory operation of the target host and all CAs on that

host.

2.3 Motivation

There has been some previous research which focus on dynamism in the data-
center environment by HP labs and IBM Research [27, 31]. These are notable in
the sense that they were the first to show the capabilities of a dynamic allocation of
system resources in the data-center environment. However, these solutions focused
on lower level architectural requirements mainly for storage related issues and are not
aware of the guarantees or requirements of the application. Further, these rely on
specific hardware to provide these solutions and are hard to look at as commodity
component based solutions. In our approach, we try to propose a solution that is
not geared toward any specific hardware and try to give a generic solution at the

application level without requiring any changes to existing applications.
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Our study of a rigidly configured data-center clearly shows wastage of resources
when load is not equally distributed within the tiers. This unequal distribution load is
one of the main causes of missing guarantees QoS and is overcome by over-provisioning
the tiers with respect to the worst case pattern of requests. As seen in Chapter 1,
this is not a cost-effective solution. In this thesis, we address the issue of providing
soft QoS guarantees using distributed intelligence within the data-center that can
automatically adapt the multi-tier configuration to pattern of requests. We try to
satisfy QoS guarantees given by the data-center by making maximum utilization of
the resources available within the data-center.

There has been previous research in QoS guarantees. Senapathi, Gulati, et. al.,
have looked at providing differentiated service in terms of network bandwidth for
scientific computing environments [41, 40, 21|. Bhatti et. al., have worked on ar-
chitectures for supporting end-to-end response time guarantees [12]. Most of the
research focus has been on improving QoS guarantees using novel methods of caching
and load-balancing [28, 14, 32]. The focus has also been on providing guarantees
for real time applications [16]. We believe that these approaches can be used in a
complementary manner with our reconfigurability technique to provide better QoS
guarantees.

Distributed intelligence for automated re-allocation of resources in the nodes of a
cluster-based data-center can be accomplished by using inter-cluster communication
to emulate a shared state with load information. Since we focus on data-centers over
InfiniBand, we can take advantage of the low latency of the underlying interconnect

and use either user-level sockets or the native Verbs interface for communication.
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Shah, Kim, Balaji, et. al., have done significant research in User Level High Perfor-
mance Sockets implementations [43, 24, 25, 8, 9, 7]. In one of our previous works [7],
we had evaluated the capabilities of such a pseudo-sockets layer over InfiniBand in
the data-center environment.

However, in our work in [30], we designed and architecture for providing coherency
for dynamic data in a multi-tier data-center, and evaluated its performance both over
sockets and over the native Verbs API provided by InfiniBand. It was apparent that
the two-sided nature of sockets API makes the overhead of design-specific helper mod-
ules quite huge due to the high load conditions common in data-center environments.
The helper modules basically were used to improve performance without changes to
the existing application and require inter-tier communication to collect various state
information.

Due to this, we focused on the one-sided nature of InfiniBand for this design.
Further, the existing data-center framework (Apache, PHP, etc.,) is still based on the

sockets API and can benefit from such high-performance sockets implementations.
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CHAPTER 3

DESIGN AND IMPLEMENTATION

In this section, we describe the basic design issues in the dynamic reconfigurability
scheme and some details about the implementation of this scheme using the native

Verbs layer over InfiniBand (VAPI).

3.1 Reconfigurability Support

Requests to a data-center may vary in terms of resources such as the amount of
computation (dynamic requests) or in terms of the memory (static requests serviced
from cache) they demand. The basic idea of reconfigurability is to utilize the idle
nodes of the system to share the dynamically varying resource requirements (memory
or CPU) of requests in the data-center. Dynamic reconfigurability requires some
extent of functional equivalence between the nodes of the data-center. We provide
this equivalence by enabling software homogeneity such that each node is capable
of belonging to any tier of a multi-tier data-center. Depending on the resource that
is currently in demand (e.g., due to a burst of a certain kind of requests), nodes

reconfigure themselves to support these requests.
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3.2 Design Challenges

Designing such dynamic adaptability and reconfigurability in the system involves

various design issues and challenges. Some of the major ones are listed below:

Support for Existing Applications

Providing a System Wide Shared State

Concurrency Control to avoid Live-locks and Starvation

Equating CPU and I/O loads for different tiers

Avoiding server thrashing through history aware reconfiguration

Tuning the reconfigurability module sensitivity

We present some of these challenges in the following few subsections.
3.2.1 Support for Existing Applications

A number of applications have been developed to allow a highly efficient and
concurrent file access to the various web requests. These applications have been
developed over a span of several years and modifying them to allow additional features
such as dynamic reconfigurability support is cumbersome and impractical. In light of
this, we try to design our algorithms in such a way that there are no changes required
to the existing applications.

The basic idea in our design is to achieve reconfigurability by using ezternal

helper modules which work along with the traditional data-center applications such
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as Apache, but in a transparent manner. All issues related to load verification, main-
taining a logical global view, reconfigurability, etc., are handled by these modules and
are obscured from the data-center servers, i.e., using these modules, dynamic recon-
figurability is achieved with absolutely no changes to the data-center applications.
These modules work independently on the nodes and determine the best con-
figuration for the data-center at any point in time. Based on this decision, they
automatically start or stop the various servers on the physical nodes and modify the
appropriate run-time configuration files used by the data-center servers to reflect this
decision. The data-center servers on the other hand, just continue with their request
processing based on the run-time configuration files, unaware of the modifications the

modules have made.
3.2.2 System Wide Shared State

As discussed in Section 3.2.1, the external helper modules present in the system,
handle various issues related to reconfigurability. However, the decision each module
needs to make is pertinent to the global state of the system and can not be made
based on the view of a single node. So, these modules need to communicate with each
other to share such information regarding the system load, current configuration of
the system, etc. Further, these communications tend to be asynchronous in nature.
For example, the nodes in the front tiers are not aware about when the nodes in the
back-end tiers require their state information, etc.

An interesting point to note in this communication pattern is the amount of
replication in the information exchanged between the nodes. For example, let us
consider a case where the information is being shared between the proxy tier and the
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application tier in the data-center. Here, each proxy provides its state information to
each one of the nodes in the application tier every time they need it, i.e., the same
information needs to be communicated with every node in the application tier.
Based on these communication patterns, intuitively a global shared state (as pre-
sented in Figure 3.1) seems to be the ideal environment for efficient distribution of
data amongst all the nodes. In the architecture described by this figure, the nodes in
the proxy tier can write their relevant information into the shared state and the nodes
in the application tier can asynchronously read this information without disturbing
the nodes in the proxy tier. This architecture essentially depicts a producer-consumer

scenario for non-consumable resources.

Proxy
Server

Proxy
Server

Write Shared State

Write
Current System
Configuration

Proxy

Server | \Write Read | Server

Figure 3.1: Shared State Architecture
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One approach for implementing such a shared state, is by distributing the data
across the physical memories of various nodes and allowing the nodes in the data-
center to read or write into these memory locations. While an implementation of such
a logical shared state is possible using the traditional TCP/IP based sockets interface
(with the modules explicitly reading and communicating the data upon request from
other nodes), such an implementation would lose out on all the benefits a shared state
could provide. In particular: (i) All communication needs to be explicitly performed
by the nodes in the proxy tier by sending (replicated) information to each of the
nodes in the application tier and (ii) Asynchronous requests from the nodes need to
be handled by either using a signal based mechanism (using the SIGIO signal handler)
or by having a separate thread block for incoming requests, both of which require the
proxy node host intervention.

Further, as we had observed in our previous work [30], due to various factors such
as the skew and the load on the remote nodes, which are very common in the data-
center environment, even a simple two sided communication operation might lead to
a significant degradation in the performance.

On the other hand, InfiniBand provides several advanced features such as one-
sided communication operations, including RDMA operations. In our implemen-
tation, each node in the proxy tier writes information related to itself on its local
memory. The nodes in the application tier can directly read this information using
an RDMA read operation without disturbing the proxy node at all. This implemen-
tation of a logical shared state retains the efficiencies of the initially proposed shared

state architecture, i.e., the nodes in the application tier can read data asynchronously
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from the shared state and the nodes in the proxy tier do not explicitly need to send
the data to each of the nodes in the application tier.

The reconfigurability modules occasionally check the state of the system in the
logical shared state and update their information based on this. However, the fre-
quency in which each module checks the state is not the same. Modules on the proxy
tiers need to check the information for every request so that they can send it to the
appropriate back-end server on a cache miss. However, the modules on the applica-
tion tier only need to read the shared state occasionally to check the system load and
decide if a reconfiguration is required. Based on this, we decided to go ahead with
a shared state with non-uniform access for the different nodes, i.e., the shared data
is closer to the nodes in the proxy tier (in their local physical memory) compared to

the nodes in the application tier.
3.2.3 Shared State with Concurrency Control

The logical shared state presented in Section 3.2.2 provides a simplistic view of
the shared state architecture where one set of nodes write information pertinent to
them to distinct variables in the shared state while a different set of nodes read
these variables. Once a module reads this information and makes a decision about
the best configuration for the data-center, it can modify the system configuration
information in the shared state. At this point, one basic issue with the simple shared
state architecture needs to be revisited.

As described earlier, the simple shared state architecture described in Section 3.2.2
forms a producer-consumer scenario for non-consumable resources, i.e., the nodes in
the front tiers only write data to the shared state and the nodes in the back-end tiers
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only read data from the shared state. However, since the modules on the application
tier are the ones which are reading the shared state information and making the
decision about the best configuration for the data-center, they will need to modify
the system configuration information in the shared state. Also, for this modified
system configuration to be reflected at the nodes in the front tier, the corresponding
modules will also need to read information from the shared state. This means that

all the nodes in the data-center will need to concurrently read and write from the
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shared state.
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Figure 3.2: Illustration of Concurrency Control Requirement

As shown in figure 3.2 multiple servers can simultaneously try to reconfigure the
data-center under loaded conditions. This shared-state should be modifiable but
only by one node while all other nodes are concurrently notified of this change to
avoid thrashing. In order to solve this problem, it is imperative to sequentialize any

26



change in configuration and keep all modules aware of these changes as they occur.
Otherwise a stable configuration may never be reached even after the requirements
of the current system load are met. In order to achieve the required concurrency
between the multiple accesses of the data by the nodes we make use of the network
based remote atomic operations provided by InfiniBand. As illustrated by 3.2 only
one node successfully converts the state of the front-end node, that gets added to the

application tier.
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Figure 3.3: Concurrency Control

In our implementation of the shared state with concurrency control, a node makes

an atomic compare-and-swap operation on the status of the remote node, when a
27



configuration change is required. If the node’s view of the system configuration is
accurate, the atomic operation is successful and the swap operation is performed.
However, if the node’s view of the system configuration is not accurate, the atomic
operation fails and returns the current system configuration to the node trying to
perform the operation. Also, the node succeeding in making the change is responsible
to communicate the reconfiguration information to the other modules in the system,
so that they are aware of the current configuration of the system. Figure 3.3 illustrates

the approach used to achieve concurrency control in this architecture.
3.2.4 I/0 and CPU Load Equivalence

Though load is a factor greatly affecting the current configuration of the data-
center, the perceived load in different tiers is different. While the load at the front
end is mostly due to the number of requests serviced from the apache cache (file
system I/0), the load at the back-end servers is mainly perceived as CPU utilization
due to the computational demands of the incoming requests. Hence it is important to
determine the load conditions at the node depending on the tier in which it currently
belongs to. Other factors such as number of active and passive connections also
determine the load on the system.

At the application tier, we use the load on the CPU as well as the fraction of
the total number of incoming requests currently being serviced at the back-end to
determine the load at the back-end application tier. The fraction of requests that

were serviced from cache determines the front-end tier load.
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3.2.5 History Aware Reconfiguration

Due to the irregular nature of incoming requests, a small burst of similar requests
might potentially trigger a re-configuration in the data-center tiers. Because of this,
small bursts of similar requests can cause nodes in the data-center tiers to be moved
between the various tiers to satisfy the instantaneous load, resulting in thrashing in
the data-center configuration.

To avoid such thrashing, in our scheme, we allow a history aware reconfiguration
of the nodes, i.e., the nodes in one tier are re-allocated to a different tier only if
the load in the remote tier stays high for a pre-defined period of time T. This ap-
proach has its own trade-offs. A small value for T could result in thrashing in the
data-center environment. On the other hand, a large value of 7' could make the
approach less responsive to bursty traffic providing a similar performance as that of
the non-reconfigurable or rigid system. The optimal value of 7" depends on the kind
of workload and request pattern. While we recognize the importance of the value
of T, in this paper, we do not concentrate on the effect of its variation and fix it to a

pre-defined value for all the experiments.
3.2.6 Module Sensitivity

As mentioned earlier, the modules on the nodes in the application tier occasionally
read the system information from the shared state in order to decide the best config-
uration at that instant of time. The time interval between two consecutive checks is
a system parameter S referring to the sensitivity of the reconfigurability modules. A

small value of S allows a high degree of sensitivity, i.e., the system is better responsive
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to a variation in the workload characteristics. However, it would increase the over-
head on the system due to the frequent monitoring of the state. On the other hand, a
large value of S allows a low degree of sensitivity, i.e., the system is less responsive to
variation in the workload characteristics. At the same time, it would also result in a
lower overhead on the system to monitor the state. We have performed experiments

to study this variation and the results for the same are presented in Sections 5 and 6.
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CHAPTER 4

SOFT QUALITY OF SERVICE GUARANTEES

In this section, we discuss the current trend in the data-center environments to
provide some kind of differentiated services to different requests. We also discuss the
currently used over-provisioning approach for providing such differentiated service and
describe the use of the reconfigurability approach to facilitate similar QoS guarantees
using a smaller number of nodes. Finally, we describe the potential impacts of the

reconfigurability approach for data-centers which host multiple web-sites.

4.1 Quality of Service Considerations

As mentioned earlier, with the increasing online businesses and services and the
growing popularity of personalized Internet services, differentiation of service provided
to the end users is becoming critical in the data-center environment. There are
multiple kinds of QoS guarantees that have been studied in the literature.

The first kind of distinction in the various kinds of QoS guarantees is between
response-time guarantees and throughput guarantees. In response time guarantees
(or end-to-end QQ0S), a guarantee on the response time perceived by the end user is

provided, i.e., the end users are the final customers for the QoS provider. On the
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other hand, for throughput guarantees, assuming a sufficiently high incoming rate of
requests, a certain throughput (transactions per second) of servicing for these requests
would be guaranteed. In this case, the web-site owner is the end customer for the
QoS provider.

Throughput based QoS guarantees become extremely relevant for several web-
hosting services and ISPs which have multiple different websites hosted on the same

data-center nodes. This thesis focuses on this kind of QoS guarantees.

4.2 Over-Provisioning approach to provide QoS

Currently, the most common approach used to provide throughput guarantees in
the data-center environment is by using over-provisioning of nodes. In this approach,
nodes are allocated to the multiple tiers in the data-center environment based on the
worst case requirements of the QoS guarantees. For example, suppose the data-center
providing a throughput guarantee of N transactions per second, is expecting either
static or dynamic content. Say, in the case where there are only static requests,
suppose the data-center needs P1 nodes in the proxy tier and A7 nodes in the ap-
plication tier. Similarly in the case where there are only dynamic requests, suppose
the data-center needs P2 nodes in the proxy tier and A2 nodes in the application
tier. With over-provisioning, max(P1, P2) nodes are provided in the proxy tier and
max(A1, A2) nodes are provided in the application tier. It can be seen that this
approach can easily deliver the requested throughput.

However, during a burst of static content, most of the nodes in the application tier
remain idle since the requests are cached in the proxy tier. Similarly, during a burst of

the dynamic content, most of the nodes in the proxy tier remain idle since the requests
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can not be cached and need to be forwarded to the application tier. This essentially
points to the fact that, though this approach is effective in terms of performance, it

is not cost-effective due to the wastage of resources it could potentially incur.

4.3 Reconfigurability approach to provide QoS

In this paper, we propose the reconfigurability approach to efficiently support
throughput based QoS guarantees. As described in Section 3, reconfigurability allows
dynamically shifting nodes from one tier in the data-center to another tier based on
the system load as well as the QoS guarantees provided by the data-center. Consid-
ering the same example as the one in Section 4.2, in this case we would only need
max(P1, P2, A1, A2) + 1 nodes to provide nearly the same QoS guarantees as the
over-provisioning case!. In this approach, when there’s a burst of static or dynamic
requests, the scheme automatically shifts nodes from the lesser utilized tiers to the
more utilized tiers. This would create a more balanced load amongst the various
nodes in the data-center improving the overall performance provided. It is to be
noted that the reconfigurability approach is the most useful when the traffic is very
bursty, which is quite common in typical data-center environments. When the traffic
is not very bursty, even a rigid configuration of nodes would utilize all the nodes in
the data-center. In this case, the reconfigurability scheme would perform comparably
with the normal rigid configuration based scheme.

Tdeally, the reconfigurability scheme should only use max(P1, P2, A1, A2) number of nodes.
However, the current implementation of the reconfigurability modules do not support sharing the
same physical node for multiple servers. This puts a restriction to have at least one node in each
tier, requiring max(P1, P2, A1, A2) + 1 nodes in the above mentioned example.
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4.4 Reconfigurability in Multi-Website scenarios

As mentioned earlier, throughput based QoS guarantees become extremely rele-
vant for several web-hosting services and ISPs which have multiple different websites
hosted on the same data-center nodes. In this case, the data-center might want to
provide a higher priority to all requests pertaining to website #1 (a high paying cus-
tomer) as compared to website #2 (a low paying customer). In this scenario, the
over-provisioning based scheme would give more number of nodes to the high priority
website and a lesser number of nodes to the low priority website. In this case, having a
burst of requests for the lower priority requests would overload the nodes allocated to
the low priority requests while the nodes allocated to the high priority requests would
remain idle. However, the reconfigurability based scheme can dynamically reassign

nodes for the low priority requests, improving their performance as well.
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CHAPTER 5

PERFORMANCE EVALUATION:
MICRO-BENCHMARKS AND RECONFIGURABILITY
FOR SINGLE WEBSITE

In this chapter, we present the ideal case performance achievable by the native
Verbs API (VAPI) over InfiniBand in the form of micro-benchmark results. In Sec-
tion 5.3, we present the improvement in the basic performance achievable through
dynamic reconfigurability for a single website. We also demonstrate the enhanced
ability to provide soft Quality of Service guarantees using dynamic reconfiguration in
Section 5.4.

In our technical report [26], we presented experimental results with clusters over
Myrinet, which used Cluster 0 and Cluster 1 descibed below. Myrinet was used as
interconnect and is described below as Interconnect 0:

Cluster 0: A cluster system consisting of 16 nodes which include 64-bit 66 MHz
PCI interfaces. Each node has four Intel Pentium-IIT 700 MHz processors with 1 MB
L2 cache and a 400 MHz front side bus and 1 GB of main memory. We used the

RedHat 7.1 Linux distribution with the kernel.org SMP kernel version 2.4.18.

35



Interconnect 0: Myrinet network with 133 MHz LANai 9.1 processors, con-
nected through a Myrinet 2000 network. The GM version used is 1.6.3. This inter-
connect connects all nodes in both Clusterl and Cluster2.

For all experiments described in this thesis, we used 2 clusters whose descriptions
are as follows:

Cluster 1: A cluster system consisting of 8 nodes built around SuperMicro
SUPER X5DL8-GG motherboards and GC chipsets which include 64-bit 133 MHz
PCI-X interfaces. Each node has two Intel Xeon 3.0 GHz processors with a 512 kB
L2 cache and a 533 MHz front side bus and 1 GB of main memory. We used the
RedHat 9.0 Linux distribution with the kernel.org SMP kernel version 2.4.22smp.

Cluster2: A cluster system consisting of 8 nodes built around SuperMicro SU-
PER P4DL6 motherboards and GC chipsets which include 64-bit 133 MHz PCI-X
interfaces. Each node has two Intel Xeon 2.4 GHz processors with a 512 kB L2 cache
and a 400 MHz front side bus and 512 MB of main memory. We used the RedHat 9.0
Linux distribution with the kernel.org SMP kernel version 2.4.22smp.

All nodes in Clusterl and Cluster2 are interconnected with InfiniBand:

Interconnect 1: InfiniBand network with Mellanox InfiniHost MT23108 Du-
alPort 4x HCA adapter through an InfiniScale MT43132 twenty-four 4x Port com-
pletely non-blocking InfiniBand Switch. The Mellanox InfiniHost HCA SDK version
is thca-x86-3.0.1-build-003. The adapter firmware version is fw-23108-rel-3.00_0001-
rc4-build-001. We used the IPolIB version 2.0.5_10 for communication over InfiniBand.

For all the experiments, we used Cluster 1 to represent the data-center environ-

ment and Cluster 2 to represent the clients. We used Apache-2.0.48 for the data-center
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related experiments. The experiments used 6 client nodes with 12 threads for each
client with traces containing nearly 20 million requests distributed among the client
threads.

Interconnect 1 was used to perform the Remote DMA operations and NIC-based
atomic operations. The implementation of the design was carried out using the
VERBS interface API over Interconnect 1. Interconnect 1 was used as the inter-
node networks, for communication within the data-center and for communication
between the external clients and the data-center.

The use of high-speed interconnects for external clients serves as a means to gen-

erate high traffic and load on the data-center nodes.

5.1 Evaluation Methodology

We evaluate our design using some synthetic and real traces. The client program
used, emulates Web-Bench. Each client makes a request and waits for the response
before making the next request. Throughput (TPS) is measured as the total number
of requests serviced for a particular client per second, in the presence of requests
from other clients in the data-center. Apache-2.0.48 was configured as proxy for the
front-end tier and configured as web server for the back-end.

In our synthetic traces, we define a burst as a burst of requests for the same
document or transaction to the proxy or web server respectively. Hence a burst size
of 64K (65536) is referred to as a high burst size and corresponds to a trace with
alternating bursts of 64K static followed by 64K dynamic requests. Similarly a burst
size of 512 is referred to as low burst size and corresponds to a trace with alternating

burst of 512 static followed by 512 dynamic requests.
37



In practice such bursts are seen in traces like the world cup trace [5] which we
include in our evaluation. The world cup trace consists of 70% dynamic requests

which is bursty since static requests appear scattered in the trace.

5.2 InfiniBand: Performance at Verbs Level

In this section, we present the ideal case performance achievable by the Verbs API
(VAPI) over InfiniBand using micro-benchmark tests.

As mentioned earlier, InfiniBand provides two mechanisms for completion noti-
fication. The first approach requires the host application to continuously poll on
the completion queue and check for the completion of the message transmission or
reception. The second approach allows the host application to request a interrupt
based notification from the network adapter. The notification based approach incurs
the additional cost of an interrupt. The polling based approach does not incur this
additional cost, but results in a high CPU utilization due to the continuous polling of
the completion queue. In this section, we present results for both the polling based
approach as well as the notification based approach for Cluster 1.

VAPI provides multiple communication models for transferring data namely: (a)
send-receive, (b) RDMA write, (¢) RDMA write with immediate data and (d) RDMA
read.

Figure 5.1a shows the one-way latency achieved by the VAPI RDMA write and
RDMA read communication models for various message sizes. RDMA write achieves
a latency of around 5.5us for 4 byte messages compared to the 10.5us achieved by
RDMA read in the polling based approach. For the notification based approach,

RDMA write continues to achieve a latency of around 5.5us while that of the RDMA
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Figure 5.1: Micro-Benchmarks for RDMA write and read: (a) Latency (b) Bandwidth

read approach goes to 30us. This indifference in the latency for the RDMA write
communication model towards the completion approach is attributed to the way the
micro-benchmark test was written. RDMA write is receiver transparent. So, the only
way the receiver can know about the arrival of an incoming message is by polling
on the last byte of the message. This results in the notification based approach for
RDMA write to be equivalent to the polling based approach, resulting in a high
utilization of the CPU and a latency similar to that of the polling based approach.
Figure 5.1b shows the uni-directional bandwidth achieved by the two models.
Again, we see that for both the communication models, the polling based approach
and the notification based approach perform comparably. Further, the CPU for both
the approaches is around 20% for small messages and negligible for large messages.
Figure 5.2a shows the uni-directional latency achieved using the Send-Receive
and the RDMA write with immediate data schemes for various message sizes. While
RDMA write with immediate achieves upto 7.9us, the Send-Receive scheme achieves

upto 6.7us for 4 byte messages. However, RDMA with immediate data shows a
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Figure 5.2: Micro-Benchmarks for Send/Recv and RDMA with Immediate: (a) La-
tency (b) Bandwidth

maximum CPU utilization of 13% and Send-Receive shows a maximum of 30% CPU
utilization.

Figure 5.2b shows the uni-directional bandwidth performance using these two
schemes. Both Send-Receive and RDMA with immediate data achieve high band-

widths comparable to the Remote DMA schemes, with lower CPU utilizations.

5.3 Basic Performance of Dynamic Reconfigurability

In this section, we present the basic performance benefits achieved by the recon-
figurability based scheme as compared to a standard data-center which does not have

any such support.

5.3.1 Best Rigid Configurations

In this section, we study the performance of the rigid configuration scheme for
different data-center configurations. In the subsequent sections, we choose the best

static configuration possible for a given workload based on these results.
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Figure 5.5: Best Rigid Configurations: 5-Node Data-Center

Figure 5.3 shows the performance of the rigid configuration based scheme for dif-
ferent workloads and data-center configurations for a seven-node Data-Center. This
is the data-center size that has been considered for all future experiments. As dis-
cussed earlier, static content is capable of being cached and would benefit from a large
number of nodes being present in the proxy tier. On the other hand, dynamic con-
tent require large amounts of back-end computation and would benefit from a large
number of nodes being present in the application tier. This can be seen in Figure 5.3
where a trace with only static requests (100% static) would perform the best for 6
nodes in the proxy tier and 1 node in the application tier. On the other hand, a
trace with only dynamic requests (0% static) would perform the best for 1 node in
the proxy tier and 6 nodes in the application tier. Configurations for intermediate

workloads such as 50% static and 50% dynamic content depend on the amount of
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computation required for the requests. In our trace, a combination of 2 nodes in the

proxy tier and 5 nodes in the application tier performed the best.
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Figure 5.6: Best Rigid Configurations for Different Average Request Sizes: (a) 4KB
(b) 2KB

We have also evaluated the performance of traces in three different dimensions:
(a) The number of nodes present in the data-center, (b) the average file sizes of the
requested data and (c) the percentage of dynamic and static content present in the
trace. Figures 5.4 and 5.5 show the best configuration for various patterns of requests
for data-centers consisting of 6 Nodes and 5 Nodes respectively, for various mix of
static and dynamic requests. Figures 5.6a and 5.6b show the best configuration for

various percentages of static content when the average request size in the data-center

is 4KB and 2KB.
5.3.2 Performance for bursty traffic

In this section, we present the performance of the dynamic reconfigurability scheme
as compared to the rigid configuration scheme in several scenarios varying the bursti-

ness of the traffic.
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Figure 5.7 shows the snap-shot performance of a data-center that is configured
for 50% static and 50% dynamic mixed requests during periods incurring one type of
request. Based on the results from Section 5.3.1, we chose the best configuration for
the rigid scheme for this workload with 6 nodes in the application tier and 1 node
in the proxy tier. In this scenario, when there’s a burst of dynamic requests, all 6 of
the nodes are fully utilized (in the application tier) keeping 1 node in the proxy tier
relatively idle. This is coincidentially the best configuration for this request pattern.
On the other hand, when there’s a burst of static requests, only 1 of the nodes is fully
utilized (in the proxy tier) while the 6 nodes in the application tier are idle. However,
the reconfigurability based scheme is dynamically able to reconfigure itself to give the
best performance during each burst of traffic.

This shows that reconfigurability can take advantage of idle nodes during such
bursts to give better throughput by improving utilization. On the whole, reconfig-
urability achieves an improvement of about 20% during a burst of dynamic content
and up to 150% during a burst of static content. It is to be noted that the actual
amount of benefit achieved varies depending on the amount of computation performed
by the requests.

Figure 5.8 shows the overall performance of the data-center for different traces
with bursts of similar files (the burst length is depicted on the x-axis of the graph),
for different compute requirements. We can see that for small burst lengths, both the
rigid based approach and the reconfigurability based approach perform equally for
small compute requirements. This is because, when the burst length is very small,

even a rigid scheme can make sure that all the nodes are utilized as requests do not
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Figure 5.9: Throughput at Various Snapshots for Different Burst Sizes: (a) 65536 (b)
512

contend for a single type of resource. However, when the burst length gets larger,
the rigid scheme drops in performance while the reconfigurability scheme continues to
give a high performance. For a burst length of 64K requests, we see an improvement
of around 80% for the reconfigurability scheme. We can see from this result that as
the compute requirement increases an adaptable data-center can outperform a rigid
one for bursts of similar requests.

Figures 5.9a and 5.9b show the throughput given by the system at different snap-
shots for high and low burst lengths respectively. For high burst lengths, the dy-
namic reconfigurability scheme provides a much higher performance as compared to
the rigid scheme. Again, for low burst lengths, both the schemes give comparable
performances.

Performance of a Zipf trace: Figure 5.10 shows the performance of the recon-
figurability scheme for traces following a Zipf pattern. We see that the performance

of the scheme is similar to that of the single file based trace.
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Performance with real life trace: Figure 5.11 shows the performance of recon-
figurability with a real life world cup trace, consisting two-thirds of dynamic requests
in bursts, with well spread out static file requests. This performance was evalu-
ated for different assumed requirements of computation for these dynamic requests.
When the rigid data-center was configured to accept an equal mix of both type of
requests(rigid-1), it coincides with the best configuration for such a trace. Hence the
rigid data-center was able to perform as well as a reconfigurable data-center.

However in the case of rigid-2, when the data-center was rigidly configured ran-
domly giving one-third of the servers to the application server tier and two-thirds to
the proxy tier, we are able to see upto three times improvement with an adaptable
data-center. Such a configuration expecting more static requests is quite practical
when documents in demand become available at a website for a brief period of time,
like sample question papers before a test. We clearly see that in scenarios like world
cup traces, such extensive bursts of requests requiring a single type of resource, namely
computation can take advantage of the adaptability to provide performance to the
end clients.

Impact of sensitivity on the reconfigurability module: Figure 5.12 shows
the impact of sensitivity of the module to reconfigure over the throughput achievable
for different types of request patterns. As mentioned earlier, a small value for the
sensitivity factor makes the system more respondent to a change in the workload
pattern (more sensitive), but adds more overhead. On the other hand, a large value
for the sensitivity factor makes the system less respondent to a change in the workload

pattern (less sensitive), but adds a lesser overhead.
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As shown in the figure, for traces with small burst lengths, we see a drop in
performance when the sensitivity factor is high (1.8 sec). This is because, when the
burst length is low, reconfigurability is only beneficial if it is able to respond to the
small bursts quickly. A high sensitivity factor reduces its capability to do so. On the
other hand, for traces with high burst lengths, we see a drop in performance when
the sensitivity factor is low (0.2 sec). This is because, when the burst length is high,
additional probes of the system state are only adding a high overhead for the system

without any benefit.

Reconfigurability: Sensitivity to Request Patterns
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Figure 5.12: Impact of Sensitivity on the reconfigurability module
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5.4 Soft Quality of Service Support With Reconfigurability

As mentioned in chapter 4, reconfigurability can improve the QoS guarantees given
by the data-center. It is also a cost-effective method of guaranteeing Soft QoS than
over-provisioning.

Figures 5.13a and 5.13b show the percentage of times the two schemes (rigid and
reconfigurability) keep the QoS guarantees promised for traces with high (burst length
= 64K) and low (burst length = 512) burst lengths respectively. For the trace with
low burstiness, we can see that both the schemes are able to meet the promised QoS
nearly 100% of the times. For large burst lengths (64K), when the QoS guarantee
provided is low, the rigid scheme is still able to meet the QoS requirement nearly 100%
of the times. However, in this case, when the QoS guarantee provided is increased,
we can see that the QoS meeting capability of the rigid scheme drops drastically
to about 5%. On the other hand, with the reconfigurability scheme, we can keep
QoS guarantees close to 100% of the times irrespective of the burstiness of incoming

request patterns even for high QoS requirements.
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5.4.1 Over-Provisioning To Meet QoS Guarantees

Figure 5.14 shows the performance of the rigid scheme for different kinds of work-
loads and data-center configurations. As we can see in the figure, the peak throughput
guarantee we can provide is bounded by the performance achieved for dynamic con-
tent. This is because dynamic content need to be processed at the back-end before
returning the data to the user unlike static content which can be cached at the proxy
tier. Based on this, we picked a QoS guarantee of 11,000 TPS, which the over-
provisioning based scheme can provide using 3 nodes in the application tier and 2
nodes in the proxy tier (note that we don’t need 3 nodes in the proxy tier since the
same QoS for static content can be achieved with just two nodes in the proxy tier).

Figure 5.15a shows the performance of the reconfigurability scheme compared

to the over-provisioning based scheme. We see that when the burst length is low,
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reconfigurability is able to meet the QoS guarantee only about 75% of the times
while the over-provisioning based scheme meets it almost 100% of the times. However,
when the burst length becomes larger, both schemes meet the QoS guarantees nearly
always. This again points to the efficient utilization of all the nodes in the system by
the reconfigurability based scheme.

Figure 5.15b shows the normalized performance of the reconfigurability scheme
(normalized with respect to the number of nodes used) compared to the over-provisioning
based scheme. We can see that both schemes are able to meet the QoS requirements

nearly 100% of the times.
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MULTI-WEBSITE HOSTING SERVERS

In this chapter, we present a scenario where the data-center hosts multiple web-
sites. Though the scheme is generic and can allow any number of different websites,
for ease of understanding, we have only considered two websites where one of them

is a high priority website for which a QoS guarantee is given. The second website is

a low priority
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Figure 6.1: Architecture for Multiple Websites
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Figure 6.1 shows the architecture for a data-center hosting multiple websites. Each
website is allocated a cluster of nodes. Within each cluster, the issues of concurrency
control remain. In addition, the higher priority website also keeps the state informa-
tion of the lower priority website. Resources flow into and out of the lower priority
cluster depending on the high priority request load in the data-center.

For a data-center hosting more number of websites at different priority levels, this
design can be extended so that the nodes at priority 2+ 1 can pull nodes from priority
1. This introduces a multi-stage reconfigurability where the shared state only includes
nodes from two consecutive priority levels.

For the rigid approach, we allow over-provisioning for the high priority requests
by providing 5 nodes (3 nodes in the application tier and 2 nodes in the proxy tier)
- similar to the configuration in Section 5.4 for over-provisioning. The remaining
nodes (2 nodes) are provided to the low priority requests (1 node in the application
tier and 1 node in the proxy tier). However, it is to be noted that the concept of
over-provisioning is not strictly the best-case in this scenario because of the presence
of multiple websites, i.e., the reconfigurability scheme can always shift nodes from
the low priority website to the high priority website to allow a higher performance.
Due to this, the reconfigurable data-center can achieve equivalent performance with
a lesser total number of nodes than the rigid data-center.

Figure 6.2a shows the QoS meeting capabilities for the rigid scheme (with over-
provisioning) as well as the reconfigurability scheme. We also show a comparison
of this rigid scheme with a reconfigurable data-center of 14% lesser nodes (Reconf-

Reduced). On guaranteeing the same QoS as the single website case (8,000 TPS)
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or lower, we observe that both the schemes are able to meet the guarantee 100%
of the times. On the other hand, when we increase the guaranteed throughput to
11,000 TPS, for low burst lengths (512), the rigid scheme is still able to meet the QoS
requirements 100% of the times. This is the best guarantee that can be kept with 5
nodes in the data-center. We can, however satisfy the same guarantee with 14% less
nodes.

If the QoS guarantee is increased to 14000, the best guarantee given by a datacen-
ter expecting request patterns with alternating resource requirements, on an increased
burst length of 65536, the rigid scheme is only able to meet the QoS guarantee around
46% of the times. The reconfigurability scheme with reduced resources performs
equally as the rigid scheme in this scenario. The reconfigurability based scheme, with
the same resources, meets the QoS guarantee 100% of the times in all cases. This is
because as seen in Figure 6.2b, with the existing resources the data-center is capable
of guaranteeing upto 14000 but is unable to do so when its resources are not prop-
erly utilized and hence is forced to guarantee much less throughput since such bursty
patterns with single resource requirement is very practical in present day Internet
services.

When the QoS guarantee was further increased to 16000, the rigid model was only
able to keep it around 35% of the times whereas the reconfigurable model could keep
it close to 100% of the times. This shows that with reconfigurability, we can guarantee
upto 40% more QoS than the best guarantee given by the rigid data-center.

Figure 6.2b shows the QoS meeting capabilities of all three schemes for less bursty

request patterns. We see that the data-center with reconfigurability with 14% lesser
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nodes is able to satisfy QoS upto 90% of the times. The rigid data-center is now
able to perform equally with the reconfigurable data-center and thus clearly bringing
out the actual potential of the available resources. However, all these resources are
not always exploited as request patterns are not always as favourable. For example
when a news flash is posted, there may be millions of requests for it in a short period
of time and only the proxy tiers catering to these requests. This scenario pertains
to the burst size of 65536 when the rigid data-center is unable to satisfy such high
guarantees due to resource crunch in the front-end tiers.

Figure 6.3a shows the QoS meeting capability of the over-provisioning scheme and
the reconfigurability scheme for the high priority requests with varying burst lengths.

Figure 6.3b shows the performance of the low priority requests. Since only a
minimal number of nodes are allocated for the low priority requests, during a burst of
low priority requests, the rigid scheme would provide a very low throughput. However,
the reconfigurability scheme can reassign nodes to service the low priority requests,
thus achieving a significantly higher throughput, especially for large burst lengths.

Based on these results we can observe that the reconfigurability scheme can: (i)
achieve a much higher performance for low priority requests in a multi-website sce-
nario and (ii) give better QoS guarantees than even the over-provisioning scheme,
which was traditionally considered the best-case scenario with respect to QoS guar-
antee meeting capabilities.

Figure 6.4 shows the snapshot performance for the data-center with a trace having
bursts of high priority and low priority requests alternatively. For this experiment, we

used a trace of one million requests with alternating bursts of high and low priority
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requests. For low burst sizes, as we have seen earlier, the rigid scheme performs equally
as the reconfigurable scheme due to improved utilization. However, for this case we
use high burst sizes. We can see that the reconfigurability scheme performs better
than the rigid scheme in nearly every case. The reconfigurable scheme completely
services one million requests in about 100 seconds whereas the rigid scheme takes
twice as much time with very low performance to the low priority bursts in the later

parts of the trace.
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CHAPTER 7

CONCLUDING REMARKS AND FUTURE WORK

Current data-centers are configured as multiple tiers with each tier having a num-
ber of physical nodes. Each tier has specific functionalities and services which they
provide to the users. With ever-increasing online businesses and the growing popular-
ity of personalized Internet services, differentiation in the service provided to the end
users in the form of Quality of Service (QoS) guarantees is becoming critical. Over-
provisioning of nodes in the data-center tiers is an accepted and widely used approach
to provide Quality of Service (QoS) guarantees due to the unpredictable nature of
incoming requests. However, this approach is not cost-effective due to the wastage of
resources it could potentially incur. On the other hand, current high performance net-
works such as InfiniBand, Myrinet, Quadrics, etc., not only provide high performance
in terms of latency and bandwidth, but also a number of advanced features such as
one-sided communication operations including remote memory operations (RDMA)
and network based atomic operations.

This thesis presented a novel architecture to provide dynamic reconfigurability of
nodes in the data-center which enables them to adapt their functionality based on the
system load and QoS guarantees provided by the data-center; this avoids the need for
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over-provisioning of nodes. Dynamic reconfigurability in this scheme is achieved with
the help of the one-sided communication operations offered by InfiniBand without
requiring any modifications to the existing data-center applications. We evaluated
this scheme with different patterns of static and dynamic content requests using three
kinds of traces: (i) Single file traces, (ii) Zipf based traces and (iii) a real life world-
cup trace. Our experimental results show that the dynamic reconfigurability scheme
can be used to provide better QoS guarantees (up to 25% better), meet the same
guarantees with lesser resources (up to 20% lesser nodes), or even both in some cases.

This work can be extended to further support on multi-stage reconfigurations. In
the scheme presented, the least loaded node reconfigures itself to belong to the high-
est loaded tier in an attempt to share the load. However, due to the heterogeneity
(hardware components available) in the cluster, this might not be the optimal solu-
tion. On the other hand, a multi-level reconfiguration, where a sequence of changes
in the different tiers allowing the most appropriate node be reconfigured to the high
load tier, could be more beneficial.

The idea of reconfigurability can also be applied in other applications like load-
balancing. The proxy tier can use the one-sided communication features to forward
requests to the least loaded nodes. Instead of QoS, load-balancing can be the criteria
for reconfiguration. It can also be applied in the area of fault tolerance where nodes

in the data-center can reconfigure on system failures.
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