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ABSTRACT

Simultaneous advances in processor and network technologies have made clusters
of workstations attractive vehicles for high-performance computing. However, cur-
rent generation clusters without any QoS support are not capable of supporting next-
generation applications such as visualization applications in a shared manner. Such
applications are interactive in nature and therefore require guarantees on response
time which cannot be satisfied in the presence of contention from other applications
using the cluster simultaneously. Existing cluster interconnects do not possess any
mechanism for guaranteeing application performance demands. In addition, there
is currently no scheme by which we can determine the amount of system resources
required to satisfy demands given in terms of application parameters. In this thesis,
a QoS-aware middleware layer that is capable of supporting multiple simultaneous
user requests with specific user-level constraints is developed. The proposed layer
uses application profiled data taken apriori to establish a concrete relationship be-
tween the user-level requirements and the system resources required to satisfy the
user demands. Therefore the framework helps to execute a requested job with an ef-
ficient allocation of system resources while exploiting the resource-adaptive property
of next-generation applications. The framework is supported at the system-level by
a NIC-based rate control scheme that provides proportional bandwidth allocation for
applications executing in a shared manner on such clusters. The complete middleware
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is demonstrated on a Myrinet cluster for polygon rendering and ray-tracing applica-
tions which form the core of many interactive visualization applications. From the
performance evaluation, we are able to demonstrate that the use of the QoS frame-
work helps to execute interactive and resource-adaptive applications in a predictable
manner, while keeping the allocation of system resources efficient so that the cluster
can be used in a shared manner by many such applications. We are able to show that
the use of the middleware layer helps applications to obtain execution times within 7%
of expected execution times. Without the support of the middleware layer, increases
of as much as 117% over the expected execution times were observed for applications

executing on the shared cluster.
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CHAPTER 1

INTRODUCTION

Clusters of workstations have emerged as powerful computing tools as a result
of recent advances in high-speed networking technology and increasing processor
speeds[1]. Such clusters are becoming increasingly popular for providing cost-effective
and affordable computing environments for the computational needs of a wide-range
of applications[2]. Traditionally applications targeted for clusters have primarily in-
cluded compute-intensive jobs such as scientific and engineering simulations. How-
ever, with the growth of modern networking and the Web technologies, a new gener-
ation of applications is being targeted for clusters. These applications include data
mining, imaging, virtual reality, multimedia servers, distributed visualization, and
tele-medicine[3]. Such a system where a cluster is used in a shared manner by next-

generation applications is known as a cluster-based server.

1.1 Cluster-based Servers

A cluster-based server needs to have the ability to provide service to a large
number of clients, and at the same time guarantee requested performance for each
of the clients. Consider the following example of a visualization application shown
in Figure 1.1. For such an application, a client typically needs to access data from a
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local file system or from a remote large scale repository, perform computation on this
data on a local cluster so that the data can be rendered, and finally transmit the data
from all the compute nodes to a front-end node, where the image can be viewed by the
client. The actual computation needed for visualization is performed on the nodes of
a cluster in parallel. Then this data has to be transmitted to the front-end node of the
cluster, where it can be directly viewed by a local client or transmitted over a LAN
or a WAN to be viewed by a remote client. This process involves communication
both between the nodes of a cluster, and between the cluster and a remote client
over the links of a WAN, and therefore QoS guarantees are required for both the
WAN links as well as the internal links of the cluster[4]. In an actual scenario of a
cluster-based server, many such client requests may be executing simultaneously on
a shared cluster, and each of these requests will require some kind of guarantees for

their execution.

N/W

Parallel Application

Figure 1.1: Client applications accessing a cluster-based server

The next section takes a closer look at new classes of applications targeted for
clusters and their primary differences from traditional applications.
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1.2 Next-generation Applications and their Properties

Traditional scientific computing and engineering applications are usually submit-
ted to clusters as batch jobs, where response time is not a critical issue, and different
applications can share nodes of a cluster with no significant difference in performance.
However, this does not hold true for next-generation applications where response time
plays a critical part in performance. These applications are different from scientific
and engineering applications in that they possess two important properties of inter-

activity and resource adaptivity .
1.2.1 Interactivity

Next-generation applications are interactive in nature, and therefore the client
needs a time limit on the response time within which the execution has to terminate.
The execution of such applications is often iterative in nature, where the client gives
the request for a certain step in execution, and based on the result that he had
obtained, makes the decision about the next step in execution. Due to this property of
interactivity, such applications require predictable execution time, where the client can
be given guarantees that the execution will terminate within a certain time-limit, the
value of which is usually specified by the client himself. Existing resource management
schemes in shared clusters have no way of giving assurances about execution times
to client applications, especially in the presence of other applications simultaneously
using the cluster. Therefore such applications require a middleware layer that would
be able to make guarantees regarding response time and other application parameters
and keep these guarantees even in the presence of contention from other parallel

applications.



1.2.2 Resource Adaptivity

Another property that these applications usually possess is that of resource adap-
tivity . Resource adaptivity refers to the ability of such applications to modify their
application parameters based on the amount of available resources. For example,
consider the same visualization example that was given earlier in this section. The
client can choose to view an image at different resolutions and different sizes and at
different frame rates, depending on the amount of system resources currently avail-
able to him. Resource-adaptivity helps the client to establish a trade-off between
these metrics so that the client can choose parameters like image size, image quality
and response time that would ensure the best possible execution with the available
system resources.

Thus, supporting current and next-generation applications on shared clusters
while preventing the inevitable decrease in performance caused by such an approach

poses several challenging research problems.

1.3 The Problem

Currently clusters that are used in a shared manner by such applications have
no mechanisms of guaranteeing performance demands in the face of network con-
tention from other applications. The challenge therefore, is to design a suitable QoS-
aware middleware layer for clusters that can support the execution of interactive and
resource-adaptive applications in a shared mode together with other such applica-

tions. The requirements for such a middleware layer are enumerated as follows:

1. The framework must be able to make a translation from given application pa-
rameters to system resources. For efficient resource allocation, there is a need to
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determine exactly what amount of system resources is necessary for satisfying

specific application demands.

2. The resource-adaptive property of applications can be used to determine the set
of application parameters most suited to the available system resources, when

conditions for parameters are not stated by the application.

3. Once a translation has been made, there must be a system-level mechanism
that can provide co-ordinated access to system resources such as processing
power and network bandwidth. The resource allocation scheme must provide a
method by which applications can reserve system resources and guarantee that

the resources reserved by an application are for its exclusive use only.

4. The framework must be able to admit as many client requests to a shared cluster
as possible while taking into account their QoS constraints, and be able to

execute the jobs while delivering the QoS requests of the admitted applications.

1.4 Our Approach

Figure 1.2 shows the structure of the proposed QoS-aware middleware layer. The
main components of the middleware are the request handler, the QoS translator, the
resource allocator, and the profiler.

The profiler maintains profiled data of an application which characterizes appli-
cation execution time with respect to different application parameters and system
parameters such as number of assigned nodes and network bandwidth reserved be-
tween these nodes. The QoS translator makes use of the profiled data to make the

best possible match between application-given parameters and system resources and



QOS-AWARE CLIENT APPLICATION
RESOURCE ADAPTIVIT]
MIDDLEWARE / ; i

REQUEST HANDLER

EXPLOITING RESOURCE|

ADAPTIVITY \ :
PROFILER
RESOURCE QOs /

ALLOCATOR TRANSLATOR

COMMUNICATION SUBSYSTEM

H/W INTERCONNECT (MYRINET)

Figure 1.2: High-level overview of the proposed middleware layer

translates the given application parameters into system resource requirements. The
decisions regarding actual allocation and de-allocation of the translated resource re-
quirements are made by the resource allocator, based on the amount of resources
available in the system.

The system level support for the middleware layer is handled by a NIC-based
rate control scheme that was developed as part of an earlier project. This scheme
provides proportional bandwidth allocation to application flows and guarantees that
applications have exclusive use of the network resources that they have reserved.
Therefore by the use of the QoS-aware middleware layer together with the rate control
scheme, a unique framework has been defined that promises to support interactive

and resource-adaptive applications on a shared cluster without loss of performance.



It has been determined through performance evaluation that the use of the frame-
work has provided application execution times that are not more that 7% higher than
the expected response times, while in the absence of the middleware layer, we obtain
execution times that are as much as 117% higher than expected execution times.

The rest of the thesis is organized in the following manner. Chapter 2 provides a
brief summary of the rate control scheme that provides support for the middleware
layer at the system level. Chapter 3 shows a detailed look at the structure and function
of the various components of the middleware layer. Chapter 4 gives experimental
results that validate both the rate control scheme and the middleware layer and
demonstrate the advantages of using such a mechanism. Chapter 5 concludes the

thesis and also gives a look into directions of possible future research.



CHAPTER 2

SYSTEM-LEVEL SUPPORT FOR THE MIDDLEWARE
LAYER

The support for the QoS-aware middleware layer at the system level is provided by
a NIC-based rate control mechanism that provides proportional bandwidth allocation
to requesting applications. The rate-control mechanism was implemented[12, 15] by
another member of the research group on Myrinet/GM[5, 16]. For completeness, we
provide a brief overview of this concept, its implementation in the GM layer, and its
extension to MPI[9] in Sections 2.1 and 2.2. Next we provide the enhancements that

were added to the rate-control mechanism in the GM layer.

2.1 NIC-based Rate Control

A message stream between applications is denoted by the term communication
flow. Every communication flow has a well-defined source and a well-defined sink.
The end-points of the flow are logical and there may be several communication end-
points on the same physical network node. The flows are then multiplexed over the
physical link. An application is required to make QoS reservations for each of the
communication flows originating from it. Communication flows are regulated by con-

trolling the rate at which data is transferred into the network interface and sent into



the network. Such a rate-control scheme can be implemented at the host, but a NIC-
based scheme is preferred since it allows a finer granularity of control, because the NIC
deals with frames whereas the host will deal with messages. Since the QoS mechanism
is implemented by the firmware on the NIC, which is loaded by the operating system,
it can be trusted, and no other policing mechanism is required. Thus, this solution
is particularly attractive in that it requires no additional hardware components, or
changes in commodity components.

An example of the rate-control mechanism is shown in Figure 2.1. Every NIC
connecting to the network has the QoS features uploaded on it. Applications that are
executing at the hosts can reserve certain amounts of network resources in terms of
network bandwidth, and be guaranteed that the reserved bandwidth is available only
to them. This scenario is similar to the case in which every executing application
has its own independent virtual network that is unaffected by interference due to the

communication flows of other processes on the cluster.

Flow of application 1

NETWORK

I /
SWITCH | » SWITCH

¥/

Flow of application 2

Rate—control agent

Figure 2.1: Applications sharing the network are guaranteed a certain pre-specified
share of the network resources



As shown in Figure 2.1, though the flows of application 1 running on Hosts A and
B, and application 2 running on Hosts C and D share links between the switches, there
will not be any interference between them if a certain amount of bandwidth is reserved
by each communication flow (not exceeding the total capacity of the link), and the
rate of injection of each flow into the network is controlled. The bandwidth value
given by the application is mapped to a parameter known as the Inter-Dispatch Time
(IDT) and passed to the rate-control agent at the NIC. The IDT value associated
with every flow can be defined as the minimum interval that can elapse between the
consecutive injections of the packets from that flow into the network interface.

At any given time, let f; to f, be n communication flows sourced at a particular
node. Let their corresponding IDT values be I DT; to IDT,,. The actual rate control
algorithm uses another set of parameters called Next Dispatch Time (NDT) which
specifies the absolute time before which a packet from a given flow should not be
dispatched. The NDT value of a flow is initialized to the current time when a message
send is posted for that flow. Let the NDT values of the communication flows be N DT}
to NDT,.

Let t be the time and j be the communication flow.
The rate control algorithm works like this:
NDT; = min (NDT; to NDT,)
If NDT; <=t
Dispatch packet from flow j
Update NDT; to NDT; + 1DT;
Thus for every flow we have to maintain IDT and NDT information at the NIC

and these values will be used in deciding the next packet to be transferred into the
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network. Assume that we can send out packets at most once every T time units.
This T then corresponds to the peak achievable bandwidth B,,,.. Table 3.1 shows
a working example of the rate control algorithm in the presence of two flows from
sources A and B, each requesting IDT values of 2 and 3 respectively. At time t =
0, the NDT values of both A and B are equal to the current time and both can be
sent. We assume, without loss of generality that A is selected as the next flow to
be serviced. Once a packet from flow, is dispatched, its NDT value is incremented
by IDT4, = 2. At time t = 1, flowp has the smallest NDT value, and the value of
NDTp is also less than the current value of t. Thus at time t = 1, flowp is serviced
and NDTg is updated to NDTg + IDTg. Again at time t = 2, A is ready to be
serviced again. The algorithm proceeds in similar steps. It should be noted that at
time t = 5, the NDT values of both A and B are greater than the current time, and

no packet is dispatched.

t 011123415
NDT(A) 0(2(2(4|4]|6
NDT(B) 0/013[3[6]|6

Flow serviced | A | B| A |B| A | -

Table 2.1: Working Example of the Rate-Control Algorithm
2.1.1 Implementation Details

The rate control mechanism[12, 15] was implemented in the GM messaging layer[16]
over Myrinet networks[5]. The Myrinet NIC is controlled by firmware called the
Myrinet Control Program (MCP). The MCP counsists of four state machines: SDMA,
SEND, RDMA and RECV, that take care of message sends and receives. Message

sends and receives therefore do not involve the operating system, but take place by
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direct interaction between the client and the MCP through DMA of data. Additional
QoS information for a flow was added to the MCP so that the NIC maintains the IDT
values for various flows. IDTs are specified in terms of clock ticks of the Real Time
Clock (RTC) available on the LANai processor on the Myrinet NIC. The modified
SDMA state machine maintains information about the validity of the flow and its
NDT and IDT values. If a send has been posted for a flow, then the flow is declared
to be valid. Whenever a send token is inserted as the first sendable token for a flow,
the flow is validated and its NDT value is updated to the larger of RTC and the
existing NDT value. Packet scheduling in the NIC is now based on NDT values. To
search for the next packet to be sent, the SDMA state machine finds the flow with
the minimum NDT among all valid flows. If the RTC is larger than the NDT value
for this flow then the flow is serviced using its first sendable token and its NDT is
incremented by its IDT value. This procedure is followed every time a packet has to

be sent.

2.1.2 Enhancements to the Rate-Control Agent

Every time the SDMA state machine has to send a packet, it has to first search
through the array of flows, and find the one with the smallest NDT value. Therefore
the search for the smallest NDT lies on the critical path of sends, and would introduce
delay before every send, consequently reducing the maximum rate at which packets
can be sent out. In order to avoid this, the search for the next sendable packet can be
done before the actual send takes place so that when the SDMA state machine comes
to the point where it has to select the next sendable flow, the information is already

available so that access can be made instantly. The index of the flow that has the least
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NDT value and has a packet to be sent is maintained in a least. NDT variable. The
search is actually done after a packet is selected for sending and its DMA is started,
so that the search occurs parallel with the DMA. If a new flow is created and a packet
is added for the new flow between the time the search is done and the next packet is
to be sent, the value of the least_NDT variable is updated to reflect the addition of
the new flow, if the newly validated flow has a lower NDT value. This ensures that
the least_ NDT variable always has the correct value. This enhancement increases the
maximum rate at which packets can be sent out by removing all unnecessary delays

from the critical sending path of the SDMA state machine.

2.2 Programming Model Support

So far we have described the incorporation of the QoS framework at the GM level
for providing rate control. But GM is only a low-level communication layer for the
network. For ease of programming and portability, support has to be added at the
application level. A familiar programming model, the Message Passing Interface, was

modified, since it is in widespread use and freely available.
2.2.1 The Message Passing Interface

MPI[9] is a message-passing library that offers a range of point-to-point and col-
lective interprocess communication functions to a set of single threaded processors
executing in parallel. All communication is performed within the definition of a com-
municator. A communicator is a group of processes that are communicating with each
other, in which each process has a unique id between 0 and N-1, N being the number
of processes in the communicator. MPICH is a freely available, portable implemen-
tation of MPI. The mechanism for achieving portability is a specification called the

13



Abstract Device Interface(ADI). All MPI functions are defined in terms of a set of
basic MPI communication primitives, which are implemented in the ADI layer. This
layer uses message-passing functions native to the underlying system. MPICH-GM
is therefore an implementation for Myrinet clusters that uses GM as the underlying
message-passing system[17]. As Figure 2.2 shows, the ADI layer in MPICH-GM uses
GM primitives to implement MPI primitive functions in terms of which more complex

MPI operations are defined.

MPI
ADI

Figure 2.2: The Message Passing Interface

2.2.2 Support for QoS at the MPI Layer

To use the QoS features that GM provides in a standard-compliant fashion, we
used the Attribute mechanism provided by the MPI layer. MPI provides functions to
set and get the values of attributes for a communicator[10]. An attribute is identified
by an integer, a keyval, and its value may be of any arbitrary type (void * in C).

14



When used with special keyval values that signify that the value is related to QoS
parameters, the set attribute function call in MPI is mapped to the GM function for
requesting bandwidth allocation or deallocation. Process ids are converted into ap-
propriate GM node and port identifiers. Also, since the MPI layer incurs additional
overhead, bandwidths achieved at the MPI level are lower than raw GM bandwidths.
The get attribute call can be used to determine if a request made using the set at-
tribute function call is accepted or denied. The bandwidth value requested can also
be changed dynamically during the execution of the application by using the same
attribute function calls.

Chapter 3 describes how the basic rate-control mechanism is used with a QoS-
aware middleware layer to provide guarantees for user-level parameters to client ap-

plications.
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CHAPTER 3

QOS-AWARE MIDDLEWARE LAYER

Interactive applications such as visualization demonstrate the property of resource
adaptivity, in that they can be run with different parameter values based on the
amount of resources that are available. For example, a visualization application
can be executed with different image sizes. This property of resource adaptivity is
useful when executing such applications on a shared cluster as the application can
be executed with the parameters that match most closely with available processors
and network resources. Applications that possess the property of resource adaptivity
can be allocated resources that are optimal for execution with certain parameter
values. The optimal resource allocation strategy requires stored profiled data related
to known execution runs of the application. The stored data gives the relationship

between system and user-level parameters.

3.1 Overview of the Middleware

Figure 3.1 shows the structure of the proposed QoS-aware middleware layer. The
main components of the middleware are the request handler, the QoS translator, the

resource allocator, and the profiler.
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Figure 3.1: High-level overview of the proposed middleware layer

The profiler maintains the profiled data of an application taken apriori. This
data characterizes application execution time with respect to different application
parameters and system parameters such as number of assigned nodes and network
bandwidth reserved between these nodes. Due to the resource adaptivity shown by
the application, it can be executed with different application parameters, with varying
system requirements, and the profiled data captures the behavior of the application
with different application parameters and varying system resource allocations. For
the visualization example that we chose before, one can take profiled data for different

image sizes and image qualities with different values of system parameters assigned.
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The request handler is the component of the middleware that interacts with client
applications. This is a thin high-level layer whose functionality is to read incom-
ing application requests and extract application parameter values from them.This
information is then passed along to the Quality of Service (QoS) translator.

The main component of the middleware is the QoS translator which takes user-
specific parameters and maps them into corresponding system resource values. The
demands given by an application are in terms of application-specific parameters, for
example, image size, image quality, and response time for visualization applications.
For the purpose of translating these values into system resource numbers, the QoS
translator uses the profiled data stored about the application. From this data, the
QoS translator can determine the amount of system resources required to satisfy
application parameters. Though the QoS translator may determine than a certain
request can be satisfied by a certain set of systems resources (processors and network
bandwidth), it may be the case that the required amount of resources may not be
available for use.

Therefore, it is the job of the resource allocator to determine whether the system
resource requirements of a request can be satisfied. The resource allocator analyzes
requests for allocation from the QoS translator and determines whether they can be
granted, based on existing reservations and available resources. The resource allocator
also keeps track of current reservations in the system, allocations and de-allocations.
This process of determining a set of system resources that can be allocated is iterative
and can go back and forth between the QoS translator and the resource allocator. For
example the QoS translator may determine that there are several possible allocations

of system resources that satisfy the given application parameters. However, it may
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be the case that not all these possibilities can be satisfied by the amount of available
resources in the system. Thus, it may take several tries between the QoS translator
and the resource allocator before a request can be satisfied.

Once the resource allocator determines that a certain set of resources can be
provided for the application, it informs the request handler, which in turn passes the
result back to the waiting application.

The system level support for the middleware layer is handled by the NIC-based
rate control scheme that was explained in Chapter 2.

We explain the different components of our middleware with running examples of

two visualization applications: Ray-tracing[14] and Polygon Rendering.

3.2 Profiling Client Applications

The QoS Translator needs previous performance data on an application to deter-
mine the set of system resources required to satisfy user-given application parameters.
For this reason, we need to store profiled data on an application. This profiled data
stores the execution times obtained for the application for different user parameters,
and for different system parameters, and therefore can be used to match application
parameters against system parameters and vice versa. The profiling information for
the polygon rendering application maintains the execution pattern of the application
given 2 different image sizes, and a range of bandwidth assignments from the mini-
mum bandwidth required by the application for execution to the maximum possible
bandwidth that can be supported by the network on different numbers of nodes.
The profiled information for the ray-tracing application can be similar but for an

added parameter of the interleaving factor, which determines the quality of the final
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Figure 3.2: Profiling information maintained for the ray-tracing applications with
bandwidths denoted as reserved per flow

image. The smaller the value of the interleaving factor, the better the image qual-
ity. Such profiling helps us to convert application parameters into system resource
requirements. For example, it provides a means of determining the number of pro-
cessors and the amount of network bandwidth required between these processors for
rendering an image size of 512x512 under 2 seconds. In case of applications where no
hard conditions are given, the profiled data can also determine the set of application
parameters that best fit the available system resources.

Figures 3.2 and 3.3 shows the profiling information obtained on a 4 to 16 node

cluster and stored for the ray-tracing and rendering applications, respectively.
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Polygon rendering application
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Figure 3.3: Profiling information maintained for the ray-tracing and polygon render-
ing applications with bandwidths denoted as reserved per flow

3.2.1 Ray-Tracing Applications

In Figure 3.2 there are 12 graphs, for image sizes of 512, and 1024, for interleaving
factors of 0 and 2, and take on 4, 8 and 16 nodes. The x-axis measures the bandwidth
assigned per flow, and the y-axis measures the time taken for execution, for a set of
parameter values. When an application is executed on 4 nodes, and each of the nodes
has communication flows to two of the other nodes, as is the case for the example
applications that we have chosen, there will be 2 outgoing and 2 incoming flows on
the single link from a node, making 4 flows in all. The bandwidth measured on a link

is given by the total amount of bandwidth taken by all the communication flows on
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that link. Therefore, for such a situation, when the bandwidth assigned per flow is
8 MBps, the actual bandwidth per link for 4 nodes is 8 x 4 = 32 MBps. In the case
of 8 nodes, there are 3 outgoing and 3 incoming flows, and the link from a node to a

switch is occupied totally by 6 flows.
3.2.2 Polygon Rendering Applications

Figure 3.3 shows the profiling information obtained and maintained for the poly-
gon rendering application.

The graph has 9 curves, for executing the rendering applications with image sizes
of 256, 512, and 1024, on 4, 8 and 16 nodes. The x-axis again measures the bandwidth
assigned per flow, and the y-axis measures the time taken for execution, for a set of
parameter values.

These graphs clearly show the resource-adaptive property of such applications, by
which the application can execute with different user parameters and each combina-
tion of these parameters require a different amount of system resources to achieve
a certain response time. For example, for the ray-tracing applications, to achieve a
response time of atmost 2 seconds for an image size of 512x512 with an interleaving
factor of 0 requires atleast 2 MBps per flow on 4 nodes, and 1 MBps on 8 and 16
nodes. To achieve the same response time for an image size of 1024x1024 with the
same interleaving factor, the application requires atleast 15 MBps per flow on 16
nodes, and the response time cannot be satisfied for the given application parameters
on 4 and 8 nodes. Therefore, if the application gives hard conditions for the response
time as 2 seconds or less, and for the interleaving factor as 0, and there is less than 15

MBps available on some of the 16 nodes of the cluster, using the above information,
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the scheduler can deduce that the only option is to execute the application with an
image size of 512x512 on 4, 8 or 16 nodes. Without the use of this scheduler, an
application in the above conditions might execute with the larger image sizes, and
suffer as a consequence, even though image size is apparently not a hard condition
for the application. In a similar way, the profiler can maintain information for other
applications that can be run on the cluster.

3.3 Exploiting Resource Adaptivity using the Quality of Ser-
vice(QoS) Translator

The QoS Translator is involved in the conversion of application specific parameters
into system resource requirements. The working of the QoS Translator is illustrated in
the following section by iterating through the steps taken for a sample client request.

Consider the following example of a user request for the ray-tracing application.
Let us assume that a client request imposes a performance bound on the execution
time for the ray-tracing application and requires a frame rate of 1 frame per second.
Therefore, the time to render a frame has to be less than 1 second. The assump-
tion that an application can specify such a bound is valid because such visualization
applications usually require a certain number of frames to be processed per second.

Figure 3.4 has the same data as the profiled data for ray-tracing applications
shown earlier, but shows only the pertinent graph curves, namely the lines that lie
below the application given limit of one second.

The shaded area shows the range specified by the application. In this case, since

the application has not specified any lower time limit, it is implicitly assumed to be

0.
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Figure 3.4: Graph-lines that match the application condition of execution time of 1
second or less

The scheduler can assign 4, 8 or 16 nodes to the application, with different band-
width allocations. Because the time constraint specified by the application is less
than 1 second, and since all graphs with points below 1 second have image size of
512x512, the image size that can be allocated to the application has to be 512. At this
point, the translator checks to see whether the application has given any requirement
for the image size or not. If the application has not specified the image size, or if
the image size that it has given is equal to 512, then the translator goes ahead with
trying to narrow down the set of points from which possible system allocations can
be done. If the application has specified an image size and it is bigger than 512, then

the translator deduces that this request cannot be satisfied, and returns the result
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to the scheduler, which can then inform the application that its request cannot be
satisfied.

For the current example, let us assume that the application has not specified any
particular image size, and the selected set of graph curves remains valid. Also, let us

assume that the client application desires an interleaving factor of 0.
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Figure 3.5: Graph-lines that match also the second condition of interleaving factor of
0

Figure 3.5 shows the new set of points that satisfy the given criteria so far, namely
that the rendering time for a frame must be less that 1 second, and the interleaving
factor must be 0.

Another interesting point can be deduced from the graphs. In order to provide

the application with the best possible performance, the first and naive solution may
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be to assign the maximum bandwidth possible to the application for its given con-
straints. On a closer look at the graphs, it can be seen that after a certain point
reservation of more bandwidth does not really improve the execution time of the
application. Therefore for every graph, we can define a knee-point value that gives
the bandwidth sufficient to guarantee good application performance for the given pa-
rameters. Formally, this knee-point value can be defined as the bandwidth value for
which the overall execution time is greater than the execution time for the maximum
bandwidth allocation by a percentage value under 5 percent. The profiler stores this
knee-point value for all the graphs, and in appropriate situations, will send the band-

width corresponding to the knee-point to the resource allocator for consideration.
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Figure 3.6: Knee-points of graph-lines that match all given application conditions
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For the above example, Figure 3.6 shows the two graphs with the knee-point of
each graph marked.

For each of the curves that satisfy all the given conditions of the application, the
translator also keeps track of the knee-point.

The final set of points that satisfy the given conditions is the set of points on
each graph line from the smallest bandwidth value that is necessary to satisfy the
given time limit until the knee-point values. The smallest bandwidth values for the 2
graphs are 4 and 5 MBps respectively, and the knee-point value for both the graphs
is 40 MBps.

Once the translator has obtained the smallest set of points that can be used
to satisfy the application request, it tries to find out if the corresponding system
resources can be allocated by conferring with the resource allocator.

For ensuring that under light load conditions, applications are able to use all
the available bandwidth, the translator sends bandwidth requests to the allocator
in increasing order, that is, the bandwidth corresponding to the least time value
is sent first, and then for the next higher time value and so on. This process of
trying to find a suitable allocation for an application is iterative in nature, and works
as follows. The translator sends each possible alternative to the resource allocator
which determines whether the system resource requirements of that alternative can be
satisfied. If the allocator finds an alternative that can be satisfied, it sends the result
back to the request handler, with the information necessary for allocation, such as the
number of nodes, the nodes involved in the allocation, and the amount of bandwidth

reserved between these nodes. The request handler then sends this information to
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the application which can then send the request to the rate-control agent at the NIC
to inform it of the new allocation made.

The translation works similarly for the polygon rendering applications, the only
difference being the nature of the profiled data. For the polygon rendering applica-
tions, the only application parameter is the image size. Therefore the QoS translator
narrows down the set of graphs to be considered using the time limit and image size,
if given by the application, and asks the resource allocator for possible allocations
using this set of points.

The next section describes the working of the resource allocator.

3.4 Resource Allocator

So far we have examined the way by which the application constraints are used
to select the type and number of resources that are allocated to it, in the event
that the application demand can be satisfied. However, the selection of resources
to be allocated also depends on the number of processors available and the network
resources available on the links of the cluster. The resource allocator has to use
both the application-given criteria and the table of available resources to select the
minimum set of resources that can satisfy the application’s demands. The resource
allocator maintains information about current reservations in the system, and the
bandwidth available on the links between every pair of nodes. It also maintains a list of
indices that denote the links with the highest available bandwidth so that allocations
are spread evenly across all nodes in the system. As allocations and deallocations
are made, this list is also updated. The translator sends the alternatives to the

resource allocator in order of best case to worst. Therefore the framework always
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tries to allocate resources for a user request so that its performance is maximized.
Currently our scheme incorporates a greedy mechanism of allocating resources, where
the resource allocator allocates to the demanding application all the resources that
are currently available. But this greedy mechanism is augmented by careful use of the
knee-point value that was described in the previous section. Instead of allocating all
the bandwidth on a link to a requesting application, the resource allocator need only
allocate the bandwidth corresponding to the knee-point, so that the application is able
to obtain close to peak performance. Thus resources are being utilized efficiently, so

that we can accommodate more user requests in the system.
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Figure 3.7: Knee-points of 40 MBps give maximum bandwidth allocations for the
graph-lines
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Figure 3.7 shows the incorporation of the knee-point values into the equation, so
that the maximum bandwidth that can be assigned to the requesting application is
limited to improve resource utilization in the system. For both the graph lines shown,
the knee-point is at 40 MBps.

The working of the resource allocator will now be illustrated by expanding upon
the example that we were considering in the previous section. We had marked out the
knee-point values denoting the bandwidth that is sufficient to satisty the performance
demands of the application. When the resource allocator is processing this request

there can be three scenarios:
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Figure 3.8: Limitations on available network bandwidth posed by existing reservations
in the system
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1. Even the smallest bandwidth of the shaded region cannot be satisfied. The
cluster is currently being used to its fullest capacity and the new application
cannot be admitted at this time. The resource allocator notifies the request
handler about its decision, and the request handler in turn conveys the result
to the application that it cannot be admitted. The application can either try
again immediately with a lower performance bound, or can try again with the

same request after some time.

2. The maximum bandwidth for atleast one of the set of points in the shaded region
can be allocated under the current load in the system. In order to maximize
the performance of the application, the resource allocator tries to allocate the
bandwidth that would give the lowest time first, then the next lowest time and
so on. In actuality, the search is done by a set of parallel threads, one for each
graph line. Each thread tries to find the highest bandwidth allocation possible
for that graph line, by comparing the bandwidth required for a point with
the bandwidth available. Once all the threads have completed their searching,
the master thread compares the alternatives selected by each of the thread,
and selects the alternative that would provide the application with the least
response time. In the above example, there will be two searching threads. Let
us assume without loss of generality, that there is no other application currently
executing. Therefore, it is possible to allocate the knee-point bandwidth values
for both the graph lines, and the two threads return the knee-point values. On
comparing the expected response times for both the points, it is evident that
the allocation of 40 MBps on 16 nodes would give the best possible time for an

image size of 512x512 and an interleaving factor of 0. Therefore the resource
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allocator chooses to allocate 40 MBps per flow on 16 nodes for the requesting

application.

. Due to existing reservations, it is not possible to allocate the knee-point value of
any of the graph lines. If this is the case, each search thread returns the largest
bandwidth value which can be allocated taking into account existing allocations
and resources available. Figure 3.8 shows the scenario for the example that we
had considered. The maximum bandwidth available is only 30 MBps per flow
for 8 nodes, and 20 MBps per flow for 16 nodes. Therefore each of the search
threads returns the points marked in the graph. The resource allocator selects
the point that provides the best performance, and allocates 20 MBps per flow,

on 16 nodes, as shown in Figure 3.9.

In any case, once a decision has been made regarding resource allocation, it is

the duty of the resource allocator to change its data structures to reflect this new

allocation. The resource allocator also keeps track of the links that have the highest

bandwidth so that allocations can be made evenly across all nodes, and not concen-

trated on a set of nodes. It modifies this data also to reflect the new allocation made.

Finally it also notifies the main request handler of its final decision.

The next section gives the formal algorithm describing the working of the QoS

translator and the resource allocator, and the interaction between them.

3.5 Formal Algorithm

We now provide a formal algorithm that describes the combined working of the

QoS translator and the resource allocator. Before going to into the details of the

32



size=512/ nodes= 8/ IF=0 —o—
size=512/ nodes=16/IF=0 ——

15 .

Timein seconds
|_\
!
I

05 L —05000000000005000000a0000088000000% \aa00A $505000005603a8050000008AE5E raagEEoos , .......... po s R R A =l

0 10 20 30 40 50 60 70
Bandwidth reserved per flow

Figure 3.9: Final point returned by the resource allocator giving the application the
least possible response time

algorithm let us first formalize the descriptions of the profiled data and application

parameters that we had described.
3.5.1 Formal Definition of Parameters

The input to the QoS-aware middleware is a set of application parameters. The
application usually specifies some kind of time bound, which can be denoted by { 1,
to }, where t; refers to the lower time bound, and ¢, refers to the upper time bound.
In addition to this, the application can also specify a set of parameters specific to a
particular application. Let these parameters be denoted by { z1, zo ... x, }. For
example, for the ray-tracing application, n is equal to 2, as the application can spec-

ify the image size and interleaving factor that it requires. For the polygon rendering
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application, n is equal to 1, and the application can specify only the image size that
it needs.

The profiled data consists of a set of points, arranged into graph-curves for clarity.
Let the graph-curves be denoted by G, G5 ... G§. Each graph-curve contains a set of
attribute values unique to that graph-curve, which can be used to identify it. These
attributes are as follows:

Gi.attr = { z1, x5 ... z,, N, K}

{ x1, 22 ... x, } are the application parameters described,

N = number of nodes, and K = Knee-point bandwidth of this graph-curve.

Each graph-curve consists of a set of points:

Gi.points ={ P, P, ... P }

P, = { BW, t } tuple, BW = Bandwidth, and t = execution time.

Input to the QoS-aware middleware: X € Power Set{ ¢, t9, x1, T2 ... T, }

Output from the middleware: SUCCESS or FAILURE depending on whether the
request can be satisfied.

Input to the QoS translator: X ¢ Power Set{ t1, ta, 1, T3 ... Tp }

Output from the QoS translator: Y; = { BW, N, t }, BW = bandwidth, N = number
of nodes, and t = execution time.

The point Y; has final system resource allocation information to be sent to the Re-
source Allocator.

Input to the Resource Allocator: ¥; = { BW, N, t }, BW = bandwidth, N = number

of nodes, and t = execution time.
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3.5.2 Algorithms for the Middleware Layer

Schedule describes the overall working of the middleware layer.

Schedule(X)

1. Y = QoS_Translate(X)

2. if Not_equal(Y.BW, -1)

3. Resource_Allocate(Y)
4. Return SUCCESS

D. Return FAILURE

®oS_Translate describes the overall working of the translator.

QoS_Translate(X)

1. fori=1tok

2. if match(G;.attr, X)

3. Start_Thread(Search_Thread, X, G;, 1)
4. else

d. Y;. BW = -1

6. end if

7. end for

8. Thread _Wait/()

9. y = Get_Smallest_Y/()

10. Return y
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Search_Thread(X, G;, index_of_thread)

1. forj=1tol

2. if match_time(G;.P;.t, X.t1, X.t2)

3. if allocate_possible(G;.P;.BW, G;.N)
4. Yindez-of thread-BW = G;.P;.BW
5. Yindez_of thread-N = G;.N

6. Yindewof thread-t = Gi.Pj.t

7. exit

8. end if

9. end if

10. end for

11. Yindex_of thread-BW = -1

3.5.3 Explanation of the Pseudo-Code

Schedule describes the working of the middleware layer. The following is a step-
by-step explanation of the pseudo-code.
1. Give the application parameters to QoS_Translate and obtain the output
2. If the Bandwidth component is not equal to -1, it means that the application
request can be satisfied by available system parameters
3. Then send the Y value to the Resource Allocator for allocation
4. Return SUCCESS to the requesting application

5. Else Return FAILURE
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QoS_Translate is the overall function that searches through the profiled data and
finds matches to application given parameters which can also be satisfied by available
system resources. The following is a step-by-step explanation of the pseudo-code.

1. For each graph-line in the profiled data

2. If there is a match between the properties of the graph-line and the given input
parameters

3. Assign a parallel search thread to search through the points of the graph-line

4. Else if no match exists

5. Indicate that the corresponding Y; value is invalid by setting its Bandwidth com-
ponent to -1

6. End of If statement

7. End of For statement

8. Wait until all the parallel search threads started have terminated

9. Search through the Y; values to get the values with the smallest response time

10. Return the Y; value with the smallest response time

Search_Thread describes the working of the parallel search threads responsible for
finding the set of valid points for each graph. Each thread confers with the resource
allocator to determine the point that has the maximum bandwidth allocation on a
graph-curve, and consequently the least response time, and at the same time can
be satisfied by available system resources. If there is a point on the graph whose
system requirements can be satisfied, the thread returns the information pertinent to

that point. Else, a null record is returned to show that there are no points on that
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graph-curve that can be satisfied by existing system resources. The following is a
step-by-step explanation of the pseudo-code.

1. For each point on the graph-line GG; from the knee-point to the point with smallest
bandwidth assigned

2. If the execution time corresponding to the current point G;.P; lies between the
bounds given by the application

3. If the Resource Allocator can allocate the bandwidth corresponding to G;.P; on
the number of nodes corresponding to GG;.N with the current available resources

4. Set the Bandwidth component of the Y; value corresponding to the passed index
to the bandwidth corresponding to G;.P;

5. Set the Number of Nodes component of the Y; value corresponding to the passed
index to the number of nodes corresponding to G

6. Set the Execution Time component of the Y; value corresponding to the passed
index to the execution time corresponding to G;.P;

7. Exit the Search_Thread function as the best point for that graph-line has been
determined

8. End of inner If statement

9. End of outer If statement

10. End of For statement

11. Indicate that the Y; value corresponding to the passed index is invalid by setting

its Bandwidth component to -1

Each entry in the Y list corresponds to the point of largest bandwidth on ev-

ery graph-curve that satisfies both the application-given constraints and the system
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resource limitations. There may be entries that are empty, either because the corre-
sponding graph-curve does not match given application parameters or because none
of the bandwidth values for that graph-curve can be satisfied by available system
resources.

The Y; returned by QoS_Translate is sent to the resource allocator so that this
reservation can be entered into the system. The resource allocator subtracts Y;.BW
from the links leading to the nodes involved in the reservation. It then returns
information necessary for reservation such as bandwidth value, number and names of
nodes and ports to the request handler which in turn passes this information to the
application so that the application can make the reservation call to the rate-control
agents at the NIC. If no such Y] exists, that is, the request cannot be satisfied, then the
resource allocator simply returns the control back to the request handler informing
it of its final decision and the request handler conveys this information back to the
waiting application.

Chapter 4 describes the performance evaluation of the proposed middleware layer.
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CHAPTER 4

PERFORMANCE EVALUATION

In order to present the advantages of our framework in a clear manner, the per-
formance results are divided into two main sections. We first present the basic results
that validate the effectiveness of the system-level support for the QoS-aware middle-
ware layer, namely the rate-control mechanism, in guaranteeing predictable execution
time of the application even in the presence of network contention. Then we present
detailed, application-level evaluation of the QoS-aware middleware layer that shows

the benefits gained by using such a framework.

4.1 Experimental Setup for the Rate-Control Mechanism
The following three kinds of experiments were carried out.

1. Applications were run with varying bandwidth reservations to show the impact

of rate control on their execution time.

2. Applications were run in the presence of background bandwidth-hungry flows
to show the effectiveness of the QoS framework in reserving network resources

and delivering predicted execution time.
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3. Multiple applications were executed simultaneously on the same set of nodes, on
different sets of processors, but sharing the same underlying network. Since each
application reserves a certain percentage of network bandwidth, the network
gets essentially partitioned into disjoint virtual networks, where each virtual
network is available for the exclusive use of the application that has reserved
it. This test also highlights the predictable execution time for an application in

the presence of background applications.
4.1.1 Experimental Testbed

The implementation was evaluated on a cluster of workstations with eight 700
Mhz Quad Pentium IIT processors, running Red Hat Linux kernel version 2.4.7-10
smp. These machines were connected by an 8-port Myrinet switch and LANai 7.2
NICs with 66 MHz processors. The communication layer running on the Myrinet
cards was GM 1.5.1, and the MPI version was MPICH 1.2.1.7. To determine the
maximum bandwidth that can be supported by the network, MPI bandwidth and
latency tests were performed on the testbed. It was determined that the maximum

bi-directional bandwidth that can be supported per link is 210 MBps.
4.1.2 Overview of Applications

The tests were performed using the NAS Benchmark Suite[18], and two visualiza-
tion applications. The NAS Benchmarks used were: Integer Sort (IS), Block tridiag-
onal solver (BT), LU solver (LU), Conjugate Gradient (CG), Multigrid (MG), and
Pentadiagonal solver (SP). All the NAS benchmarks with the exception of MG were
executed with size class A and some of the benchmarks were executed with number of

iterations and size differing from the class A default. The visualization applications
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tested were an iso-surface extraction application and a ray-tracing application[14]

that can be executed with different sizes of input data.

4.2 Experimental Results for the Rate-Control Mechanism

4.2.1 Impact of Rate Control on Application Execution Time

The applications were run with different bandwidth reservations. Uniform allo-
cations were made to every communication flows in the application. The tests were
performed for four and eight nodes. The results are shown in Figure 4.1 for the NAS
benchmarks and the visualization applications for four nodes, and in Figure 4.2 for
eight nodes. Since reservations were made for all possible communication links, each
application on N nodes will have N-1 outgoing flows, and N-1 incoming flows, making
the total number of flows on the link from a node to the switch as 2N-2. By this
calculation, on four nodes, the maximum reservation that can be made per flow is
210/6 = 35 MBps, and for eight nodes, it is 210/14 = 15 MBps. The results show that
as the allocated bandwidth for each flow is increased, the execution time decreases.
Since these are not simple bandwidth or latency tests, but complex applications with
various computation to communication ratios and different communication patterns,
the rate at which the execution time decreases varies according to the application.
These tests also show the resource-adaptive nature of the application, in that the
application can be run with any assigned QoS value. It also shows the predictive
property that the QoS mechanism provides i.e., a reservation of a certain amount of
network resources for an application provides a guarantee that the application will
complete within a certain amount of time. By detailed study of the graph curves, one

can also determine the exact minimum bandwidth required for each application for
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a certain data size. For example, 15 MBps is sufficient for the iso-surface extraction
application on 4 nodes. This indicates that an application need not reserve all avail-
able network bandwidth and the remaining available bandwidth can be shared with
other applications.
4.2.2 Guaranteeing QoS in the Presence of Background Flows
The same applications were tested on four nodes again, but now in the presence of
2 and 3 background flows that consists of a sender running continuously and pumping
out data to a receiver. The experimental setup is shown in Figure 4.3. The first test
consists of 2 background flows, whereas the second test consists of 3 background flows.
Since these are parallel applications that interact frequently, it is sufficient that we
run the background flows on one of the nodes on which the application is executing so
as to put the maximum load on the NIC at that node. In the communication system
without QoS features, these flows are treated equal to the communication flows of the
application and will therefore cause more interference. Whereas in the network layer
with QoS features, these background flows, not having made any reservations will be
treated as best-effort traffic, and will take second priority to the premium traffic.
The results are shown in Figures 4.4(a) and 4.4(b) for four nodes. Figure 4.4(a)
shows the results obtained for the NAS benchmarks in the presence of three back-
ground flows. Figure 4.4(b) shows the results obtained for the ray-tracing application
in the presence of 2 and 3 background flows. From the graphs, it is clear that the
QoS framework guarantees a predictable response time for the application even in

the presence of heavy-duty flows running on the same nodes. Since the nodes in the
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Figure 4.1: Impact of rate-control on execution time of applications on 4 nodes
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Figure 4.2: Impact of rate-control on execution time of applications on 8 nodes
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Figure 4.3: Performance evaluation framework in the presence of background flows

testbed are quad SMPs, we can reasonably suppose that the flows are assigned to dif-
ferent processors from those on which the application is running, and the interference
due to the flows is solely at the network level.
4.2.3 Executing Multiple Jobs Simultaneously with Individ-
ual QoS Requirements

In this evaluation, we ran 2 applications simultaneously with different QoS values.
Since each application has allocated bandwidth, it has exclusive use of the portion of
network resources assigned to it, and behaves as if it is running on an exclusive virtual
network with resources equal to the value of bandwidth allocated to that application.
This mechanism thus paves the way for efficient and reliable use of clusters wherein
network resources can be partitioned for client applications with no interference be-
tween users. The performance evaluation framework for this experiment is shown in
Figure 4.5. The results of these tests are shown in Figures 4.6(a) and 4.6(b) for 2
parallel applications on four and eight nodes, and in Figures 4.7(a) and 4.7(b) for 3

parallel applications on four and eight nodes.
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Application 1

.ﬂAppIication 2

Figure 4.5: Performance evaluation framework for executing multiple applications
simultaneously with individual QoS requirements

The x-axis plots the value of assigned bandwidth to the application pairs and
triples in MBps. The y-axis plots the total execution time of the applications in
seconds. It can be seen that even in the presence of a background application, the
execution times of the application do not change, and are the same as in the exper-
iment where only a single application is run. For example, from Figure 4.6(a), the
execution times for the bandwidth pair (5,8) is (0.1404, 0.09175). From the graph
for Integer Sort (IS) in Figure 4.1, we can see that the execution time is 0.1404 when
the bandwidth reserved is 5 MBps, and it is 0.0925 when the bandwidth reserved is 8
MBps. Thus the presence of another application does not affect the performance of

an application as long as it has reserved a fraction of the network bandwidth.

4.3 Experimental Setup for the QoS-aware Middleware Layer

In order to provide user requests that would be most similar to a real-world ex-
ample, requests were sent to the middleware at random intervals. Also, in the real

world, when a user is rendering an image, it is possible that he would try to look at
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Figure 4.6: Performance evaluation of 2 parallel applications executing on 4 and 8
nodes with individual QoS requirements
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the image from different directions, magnify a part of the image, or rotate the image.
Each of the above actions will results in a further rendering action, as the image to be
viewed will be completely different from the image being viewed. Therefore, in order
to simulate this scenario, we modeled every user request as a collection of rendering

requests, each of which can be for a different image size and quality.

le
1b 1c 1f

la 1d 19

Yy vvvy Yvy | |

_— =

Random interval Random interval SUBTASK REQUEST TASK REQUEST
between subtask requests between task requests
Maximumvaluesetto  Maximum vaue set to
10 seconds 10, 20, and 50 seconds

TIME AXIS

Figure 4.8: Experimental format showing the definition of task and subtask requests

Therefore, the experimental setup consists of a set of tasks arriving at random
intervals, where each task is actually a further collection of subtasks with different
application level parameters and different random time intervals between them. A
subtask is a request for a single rendering application with specific application pa-
rameters. The experimental format is shown in Figure 4.8. For such an experimental

setup, we have changed the following parameters:
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1. The maximum time interval between successive high-level requests. This time
interval was assigned values of 10, 20 and 50 seconds. The actual time interval

between requests was varied randomly between 0 and the maximum number.

2. The actual random intervals between input requests that were part of the same

high-level request was varied by using different random seed values.

3. The ratio of arrival image sizes and interleaving factors. For the ray-tracing
application, first the input requests had interleaving factors of 0 and 2 in a
50:50 ratio, while the image sizes of 512 and 1024 were varied in ratios of 50:50,
30:70, and 70:30. Then the image sizes of 512 and 1024 were kept at a steady

50:50 ratio, while the ratios of the interleaving factors were varied as before.

4. For the polygon rendering application, only the image sizes were varied in dif-

ferent ratios.
4.3.1 Experimental Testbed

The experimental testbed consisted of a cluster of workstations with sixteen 1GHz
Dual Pentium III processors, running Red Hat Linux kernel version 2.4.7-10 smp.
These machines were connected by 8-port Myrinet switches and LANai 9.2 NICs
with 132 MHz processors. The communication layer running on the Myrinet cards

was GM 1.5.1, and the MPI version was MPICH 1.2.1.7.
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Figure 4.9: Experimental results for polygon rendering applications with maximum
inter-arrival time of 10 seconds
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Figure 4.10: Experimental results for polygon rendering applications with maximum
inter-arrival time of 20 seconds
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4.4 Experimental Results for the QoS-aware Middleware Layer

4.4.1 Experimental Results for the Polygon Rendering Ap-
plications

Figures 4.9 and 4.10 show the results obtained for the polygon rendering applica-
tions when the maximum inter-arrival time between requests is 10 and 20 seconds.
User requests were for image sizes of 256, 512 or 1024, with desired response times.
The distribution of image sizes was random across requests, with the number of re-
quests for each image size approximately equal. The translator uses the profiled data
for rendering applications to match a user request with corresponding system resource
requirements, and the required resources are checked by the resource allocator to see
if they are available. The x-axis shows the number of incoming requests. The y-axis
shows the execution time for the application in seconds. The light-colored bars on the
graph shows the execution times with the QoS middleware running on the system,
and the shaded bars shows the execution times when no such middleware is present.
It can be seen that there are requests which execute when there is no middleware,
but are not allowed to execute in the presence of the QoS framework. These requests
cannot be satisfied due to low availability of system resources, and correspondingly, it
can be seen that if these requests are allowed to execute, the execution times obtained
are much higher than expected, and therefore the user requirements are not satisfied

in such situations.
4.4.2 Experimental Results for the Ray-Tracing Applications

Figures 4.11 to 4.14 show the experimental results obtained for ray-tracing appli-

cations. The graphs are obtained not only by varying the maximum arrival interval
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Figure 4.12: Results for ray-tracing applications with image sizes 512:1024 = 30:70
and interleaving factors 0:2 = 50:50
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Figure 4.13: Results for ray-tracing applications with image sizes 512:1024 = 70:30
and interleaving factors 0:2 = 50:50
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time, but by also changing the ratio of user requests for image sizes of 512 and 1024,
and for interleaving factors of 0 and 2. Figure 4.11(a) shows the experimental results
for ray-tracing applications when the ratio of image sizes of 512 to 1024 is 50:50, the
ratio of interleaving factors of 0 to 2 is 50:50, and the maximum inter-arrival time is
10 seconds. Similarly, the ratios have been assigned as shown for the other graphs.
The maximum interval arrival time has also been changed from 10 to 20 to 50 sec-
onds, and results taken. The actual parameters are shown with each graph. As with
the rendering application, it can be seen with the QoS-aware middleware layer, some
client requests cannot be admitted due to lack of resource availability, but as a result,

performance of existing applications improve due to the lack of contention.
4.4.3 Performance Metrics

To compare performance of applications when using the QoS-aware middleware
layer with their performance when there is no such layer present, we define and use

the following metrics.

1. We compare the execution times of applications obtained in the presence of the
middleware layer with the execution times obtained when there is no such layer
present. The comparison is done only for those jobs that have been admitted
by the middleware layer. The percentage differences are computed using the
following equation.

Percentage difference = ( Thogos - Tyos )/Tyos
where T7,; = Execution time in the presence of the middleware layer, and 75,5405

= Execution time in the absence of the middleware layer.
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We show that significant performance increases can be obtained using the mid-

dleware layer.

2. We also compare the execution times obtained with and without the middle-
ware layer with the ezrpected execution times of the application. Again, the
comparison is done only for the admitted jobs. The percentage differences are
computed using the following equation.

Percentage difference = ( Tuctuat - Trequestea )/ Trequested

where Tiema = Actual Execution time, and Tequestea = Requested response
time of the application.

We are able to show that applications can obtain very close to their expected

execution times only with the support of the middleware layer.

3. Finally we also show the admission rates for the middleware layer, that is,
the percentage of incoming requests that are admitted. The admission rate is
calculated as follows.

Admission rate = Nygmisted/ Niotal

where Nggmittea 18 the number of jobs admitted by the middleware layer, and
Niotar 1s the total number of requests submitted to the framework.

We are able to show that close to 100% admission rates are possible at light

loads, and reasonable admission rates at very heavy loads.

The performance improvements gained for the ray-tracing applications are shown
in Table 4.1. The performance improvements for the polygon rendering applications
are shown in Table 4.2. From the above tables, it can be seen that upto 80% im-

provement can be obtained for the polygon rendering applications and upto 64%
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Max Interval | Ratio of 512:1024 | Ratio of 0:2 | Maximum % | Average %
in sec image sizes int. factor | Improvement | Improvement
10 50:50 50:50 34.45 9.29
20 50:50 50:50 45.27 7.48
50 50:50 50:50 43.23 3.05
10 30:70 50:50 43.68 13.68
20 30:70 50:50 52.57 7.57
50 30:70 50:50 4.43 0.39
10 70:30 50:50 31.30 10.92
20 70:30 50:50 20.51 5.72
50 70:30 50:50 3.57 0.49
10 50:50 30:70 64.86 17.53
20 50:50 30:70 17.23 3.75
50 50:50 30:70 6.66 0.559
10 50:50 70:30 39.76 15.49
20 50:50 70:30 49.94 11.04
50 50:50 70:30 6.86 0.725

Table 4.1: Performance Improvements for the Ray-Tracing Applications

improvement can be obtained for the ray-tracing applications. The performance
benefits gained are more for rendering applications because the communication to
computation ratio is higher for these applications. It should be noted that whatever
the communication to computation ratio, as long as communication plays a role in an
application, which is the norm for all parallel applications, our framework will result
in definite and significant performance advantages.

The second metric that we defined is the percentage increase between the expected
time of execution given by a user request, and the actual execution time attained by
the application. Figure 4.15 compares these percentage values for the QoS and non-

QoS frameworks for maximum inter-arrival times of 10, 20, and 50 seconds, for the
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Max Interval in | Maximum % | Average %
sec (Seed value) | Improvement | Improvement

10 (SEED #1) 80.99 43.06
20 (SEED #1) 35.11 11.80
10 (SEED #2) 74.67 37.25
20 (SEED #2) 44.52 13.48

Table 4.2: Performance Improvements for the Polygon Rendering Applications

ray-tracing applications, and Figure 4.16 does the same for the polygon rendering
applications.
From the graphs, it can be seen that the difference in the percentage increase values
is most marked for the polygon rendering applications, again due to the fact that
there is a high communication to computation ratio in these applications. For the
polygon rendering applications, the difference in percentage increase of the actual
execution time over the expected response time between the QoS and the non-QoS
frameworks is as high as 117% for a maximum inter-arrival time of 10 seconds. As
the inter-arrival times get larger, the contention and load in the system decreases,
and so does the differences between the expected and actual times. It should also be
noted that for the ray-tracing applications, though the communication contributes
a very small percentage of the total execution time, there is a marked advantage in
using the middleware layer due to the contention from other clients. This shows that
whatever the communication to computation ratio of an application, our framework
does provide a significant benefit.

Finally we determine the admission ratios of our framework under different load

conditions for both the test applications. Figure 4.17 shows the resultant data for the
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Figure 4.15: Percentage differences between expected and actual time for the ray-
tracing applications

ray-tracing and rendering applications. The graph shows that as the inter-arrival time
increases, the admission rate also increases due to the lighter load on the system. At
very heavy loads, the admission rate falls below 40% for the ray-tracing application,
and below 60% for the polygon rendering applications. But this lowered admission
rate is validated by the lesser percentage increase values observed in the previous
graphs, showing that, by keeping the admission rate small, the system is able to
guarantee the applications execution time that is close to the requested response
time. As the load on the system becomes lighter, the system is able to guarantee

the applications the requested response time, while admitting more jobs, due to less
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Figure 4.16: Percentage differences between expected and actual time for the polygon
rendering applications

contention in the system. At lightest loads, the admission rate reaches almost 100%
for the polygon rendering applications.

The results shown here demonstrate that the use of our proposed scheduler mech-
anism guarantees to deliver close to the requested response time of client applications
even in the presence of contention from other applications. In the absence of a sched-
uler mechanism, it can be seen that the resulting high load and contention in the
system can lead to very high differences between the applications’ requested execu-
tion time and the actual time the applications complete execution, especially for the
polygon rendering client applications. Since the above applications have the prop-

erty of interactivity, this increase in response time at high loads is very undesirable,
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and the advantages posed by the QoS-aware middleware in such a scenario become

significant.

Percentage of Input requests accepted by the scheduler

100 -
Ray-tracing

Polygon Rendering ——1
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Figure 4.17: Admission rates at different arrival times for the test applications

Chapter 5 concludes this thesis, and also provides some insight into possible future

research directions based on this work.

66



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we presented a QoS framework for supporting applications with re-
source adaptivity and predictable execution performance. The QoS-aware middleware
layer exploits the resource-adaptive property of applications to determine the exact
resource requirements needed to satisfy application demands. In order to provide the
best match between application parameters given, and system resources needed to
satisfy these demands, we realized that the use of profiled data taken apriori about
the application was the best option. The developed middleware layer uses the pro-
filed data of applications to choose the best set of resources to satisfy an application’s
demands. Resource allocation is done in an efficient manner such that only the min-
imum set of system resources (processors and network bandwidth) needed for the
application to achieve its proposed performance goals are allocated. The framework
is supported at the network level by a NIC-based rate control scheme that provides
proportional bandwidth allocation to communication flows. The combined use of
this rate control scheme and the middleware guarantees to first determine the exact
resource requirements of applications and then to satisfy these QoS reservations for
network and CPU resources. Therefore, the proposed framework promises to support
next generation interactive applications (visualization, data mining, virtual reality,
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etc.) on a shared cluster. By using the proposed middleware, we were able to demon-
strate that applications can obtain execution times within 7% of expected response
times while in the absence of such a framework, they may encounter an increase of
117% over the expected response times.

Currently the framework only uses a proportional bandwidth allocation mecha-
nism for reservation of network resources. We are exploring the integration of CPU
and disk scheduling mechanisms with the middleware layer. The scheduling algo-
rithm used by the resource allocator component of the middleware currently uses a
greedy scheme in that it allocates a maximum set of resources to satisfy the needs of
the applications. The effect of using different types of scheduling algorithms can be
explored. It will be interesting to consider application classes with different priorities
and re-evaluate the scheduling algorithms in this context. Currently the framework
is implemented by a centralized scheme, where all requests are sent to a single central
manager which then handles the requests and sends the replies back. Another pos-
sible future research direction can be the design of a distributed framework and the
advantages and disadvantages of such a scheme can be compared versus the central-
ized scheme currently in practice. Currently the scheme is implemented and tested
on Myrinet networks. Another direction of future research can be the implementation
of the scheme on other high-performance networks, such as Gigabit Ethernet[6], and

Infiniband[11].
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