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ABSTRACT

Most high performance scientific applications require efficient support for collec-
tive communication. Point-to-point communication in current generation clusters
are based on Send/Recv communication model. Collective communication opera-
tions built on top of such point-to-point message-passing operations might achieve
suboptimal performance. VIA and the emerging InfiniBand support remote DMA
operations. Such operations not only allow data to be moved between the nodes
with low overhead, they also allow to create and provide a logical shared memory
address space across the nodes. This feature demonstrates potential for designing
high performance and scalable collective operations.

In this thesis, we discuss the various design issues and alternatives that may be
the basis of a RDMA supported collective communication library. We discuss issues
related to buffer management, data identification and validity at the receiver end.
As a proof of concept, we have designed, analyzed and implemented three collective
communication operations namely 1. Barrier, 2. Broadcast and 3. AllReduce. For
the RDMA AllReduce, we introduce special algorithms called as the Degree-k tree
based AllReduce algorithms which when combined with the RDMA mechanism give
improved performance as compared to the message passing algorithms based on the

point-to-point communication model.
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This new RDMA implementation of the collective operations give good perfor-
mance. This new RDMA implementation is found to give a benefit of up to 30% for
a 16-node barrier operation. We get a benefit of 14.4% for the RDMA Broadcast
operation of data size 4608 bytes for a 16 node cluster. With RDMA AllReduce, we
get a benefit of 38.13% for 16 nodes and 4 byte message and a performance benefit

of 9.32% for larger messages of 4K.
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CHAPTER 1

INTRODUCTION

High Speed interconnection networks and exponentially increasing microprocessor
performance have made Networks of Workstations (NOWSs) an increasingly appeal-
ing alternative to mainstream supercomputing for a variety of computational needs
of computation intensive applications. Commonly known as Cluster Computing sys-
tems, these collections of commodity based components offer a high performance to
price ratio to the end user, attributing to it’s immense success.

The communication stack in such a system is made up of several layers. Figure 1.1

describes the communication stack. At the lowest layer, lie the hardware interconnects

Applications

Programming Models

Communication Protocols

Hardware | nterconnect

Figure 1.1: The Communication stack



and the communication protocols. On top of these communication protocols are
programming models which provide ease of programming and portability to users.
At the highest level are the application programs.

This chapter starts with a brief overview of the various communication protocols
and programming models supported. The later part of the chapter talks about the
different collective operations and follows it up with several optimization techniques

possible for these operations on modern networks and protocols.

1.1 Current Technology

Together with the increasing success of Cluster Computing systems, there has
been a parallel progress in the field of high speed interconnects, leading to the de-
velopment of interconnects like GigaNet cLAN [14], Myrinet[3], Gigabit Ethernet [9]
and Quadrics [24]. With the advent of high speed interconnects, the bottleneck in
the communication has shifted from the interconnection network to the messaging
software overheads at the sending and the receiving side.

Traditional kernel based protocols such as TCP/IP and UDP/IP were not able to
utilize the performance offered by these high speed interconnects due to the multiple
copies and kernel context switches in the critical message passing path. Thus the
communication latency was high. This led the researchers to come up with alterna-
tives to increase the communication performance delivered by the NOWs in the form
of low-latency and high bandwidth user-level protocols such as FM[23] and GM [7]
for Myrinet, U-Net [29] for ATM and Fast Ethernet [17] and others.

An attempt to shift the protocol processing to the user level resulted in the de-

velopment of user-level protocols. In the user-level protocols, the user is given direct



protected access to the network without the intervention of the operating system.
Hence, critical operations such as message sending and receiving bypass the operat-
ing system and reach the network directly. Bypassing the operating system eliminates
multiple copies and kernel context switches, thereby decreasing the message latency.
Protocols like EMP [25] [26] promise further increase in performance by offloading
the critical protocol processing to intelligent NICs. In the past few years, several
industries have taken the initiative to standardize some of these protocols, the re-
sult of which are the Virtual Interface Architecture (VIA) [13] and the InfiniBand
Architecture (IBA) [1].

Due to the diversity in the API and functionality of these user-level protocols,
researchers have been developing high performance programming models which of-
fer ease and portability to the end users without compensating on the achievable
performance to a great extent.

Based of the type of architecture involved, various programming models can be
supported. The programming models can be chosen on the basis of whether the
high performance system is a single node with many SMPs or a cluster of nodes with
completely shared or distributed memories. The three most widely used programming

models are:
1.1.1 Shared Memory Programming Model

The Shared Memory Programming model has a completely shared address space.
Sending and receiving of data is done by local reading and writing to shared space.

Such a model has to deal with various data coherency and consistency issues. Access



to data takes place through a shared communication channel, which may limit the

scalability of the system.
1.1.2 Message Passing Programming Model

Communication in Message Passing Programming model is done solely on the
basis of sending and receiving messages. The address space is generally completely
distributed and the control of parallelism lies in the hands of the developer. Message
Passing is widely portable and this programming model is standardized by the vendor

community in the form of the Message Passing Interface (MPI) standard.
1.1.3 Distributed Shared Memory Programming model

The Distributed Shared Memory (DSM) model was introduced to exploit the
advantages of having a shared memory system on a distributed memory system. It
is able of deal with both distributed and shared memory architectures. This model
provides an illusion of shared memory, generally through an interface, with the actual
memory being distributed on different machines. Access to shared memory is done
by mapping the shared locations to the physical locations and coherency is achieved
by various synchronization primitives. A DSM can be with coherency or without
coherency, depending upon the implementation. The DSM model can be implemented
in various ways. Some implementations use the get and put model, wherein a process
can directly read and write the data to a remote node, after specifying the remote
data address at the local node. Global arrays [22], a portable DSM library uses such

a mechanism.



1.2 Collective Communication Operations

High Performance Parallel Programs running on a cluster of nodes require a lot
of communication between them in addition to the computation being carried out.

Point-to-Point operations involve the participation of two nodes, where one node
is the sender and the other node is the receiver. Frequently, in parallel computing,
there arises a need to communicate with a group of nodes at the same time. Such
a communication involving a group of processes at the same time, is termed as a
Collective communication operation.

The common examples of collective operations are (i) Barrier, which is a synchro-
nization operation between all nodes, (ii) Broadcast, wherein the same data can be
sent to all nodes, (iii) Reduce, where data from different nodes can be collected to
perform a particular operation.

Standard collective operation algorithms simplify the higher level application pro-
gramming for clusters while implementing efficient communication methods. They
promote the portability of applications across different architectures and reflect con-
ceptual grouping of processes. Collective communication operations are extensively
used in scientific applications where interleaving of stages of local computations with
stages of global communication is possible.

Most of the collective operations which follow a standard pattern have been sup-

ported by Message Passing Interface (MPI), the Message Passing Standard [18].

1.3 Problem Statement

Past works in the collective communication area have primarily focused on de-

velopment of optimized and scalable algorithms on top of point-to-point operations



[28]. These point-to-point operations are typically supported by the send and re-
ceive model of communication. The send and receive point-to-point communication
requires explicit intervention at both the sender and the receiver side. Modern user-
level protocols such as VIA and IBA offer a variety of models for data transfer.
Together with the traditional send and receive model, they also support the Remote
Direct Memory Access (RDMA) model giving the end user an option to chose between
them. The concept of Remote DMA is used for direct transfer of data between user
spaces without any intervention from the receiving host. In other words, the RDMA
operation is transparent to the receiver. This concept is very similar to the get and
put model provided by the ARMCI [21].

Remote memory capability through RDMA operations allows the programmer to
define a set of buffers across the nodes of a cluster which can be used as a logical
shared address space to exchange data efficiently. This raises the following open
question:

Can remote memory operations be used to support efficient communication steps
for a collective communication operation?

As a part of this research, we explore the novel idea of supporting the collective
communication operations using the Remote DMA capability offered by VIA. We put
forward the issues and the challenges related to this and provide a proof of concept

asserting the effectiveness of such a collective communication library.



1.4 Owur Approach

In this thesis, we discuss the various design issues and alternatives that may be
the basis of a RDMA supported collective communication library. We discuss is-
sues related to buffer management, data identification and validity at the receiver
end, address exchange mechanisms etc. As a proof of concept, we have designed,
analyzed and implemented three collective communication operations. We have de-
signed a RDMA Barrier, which is a synchronization operation. Since it involves no
data transfer, the concepts and the design alternatives are simpler and provide a
good understanding of the issues in RDMA Collective operations. We also discuss
the Broadcast collective operation which is a data distribution operation which will
serve as an example for the understanding of data intensive collective operations.
In the end, we implement the All Reduce collective operation, a global reduction
mechanism. We discuss the design alternatives for all these three operations. For
the RDMA AllReduce, we introduce special algorithms called as the Degree-k tree
based AllReduce algorithms, which when combined with the RDMA mechanism give
improved performance as compared to the message passing algorithms based on the
point-to-point communication model. We also provide an analytical model for de-
ciding the optimal RDMA All Reduce algorithm for a given configuration and data
size.

This new RDMA implementation is found to give a benefit of up to 30% for a 16-
node barrier operation. We get a benefit of 14.4% for the RDMA Broadcast operation
of data size 4608 for a 16 node cluster. With RDMA AllReduce, we get a benefit

of 38.13% for 16 nodes and 4 byte message and a performance benefit of 9.32% for



larger messages of 4K. We use the MVICH-1.0 [11], the VIA implementation of the
MPI Standard as the basis of comparison for our results.

The remaining part of the thesis is organized as follows. Chapter 2 provides
an overview of the Virtual Interface Architecture (VIA) and the Message Passing
Interface (MPI). In chapter 3, we discuss the motivation and the basic concepts
behind the work. Chapter 4, 5 and 6 deal with the Barrier, Broadcast and the All-
Reduce operations, respectively. We conclude the thesis and discuss possible future

work in Chapter 7.



CHAPTER 2

RELATED BACKGROUND

In this chapter, a brief overview of Virtual Interface Architecture [13], a widely
used user level protocol is provided. This is followed by an overview of Message

Passing Interface and MVICH, a popular implementation of the MPI.

2.1 Virtual Interface Architecture

The Virtual Interface Architecture (VIA) has been standardized as a low latency
and high bandwidth user-level protocol for System Area Networks(SANs). A System
Area Network interconnects various nodes of a distributed computer system.

The VIA architecture mainly aims at reducing the system processing overhead
by decreasing the number of copies associated with a message transfer and removing
the kernel from the critical path of the message. This is achieved by providing every
consumer process a protected and directly accessible interface to the network named
as a Virtual Interface(VI). Figure 2.1 illustrates the Virtual Interface Architecture
model.

Each VI is a communication endpoint. Two VIs on different nodes can be con-
nected to each other to form a logical bi-directional communication channel. An

application can have multiple VIs. Each VI has a Work queue consisting of send
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Figure 2.1: VI Architectural Model

and a receive Queue. A doorbell is also associated with each VI. Applications post
requests to these queues in the form of VIA descriptors. The posting of the request is
followed by ringing of the doorbell associated with the VI to inform the VI provider
about the new request. Each VI can be associated with a completion queue (CQ).
A completion queue can be associated with many VIs. Notification of the completed
request on a VI can optionally be directed to the completion queue associated with
it. Hence, an application can poll a single CQ instead of multiple work queues to
check for completion of a request.

A VIA descriptor is a data structure which contains all the information needed
by the VIA provider to process the request. Each VIA descriptor contains a Control
Segment (CS), zero or more Data Segments (DS) and possibly an Address Segment

(AS). When a request is completed, the Status field on the CS is marked complete.

10



Applications can check the completion of their requests by verifying this field. On
completion, these descriptors can be removed from the queues and reused for further
requests.

The Data segment of the descriptor contains a user buffer virtual address. The
descriptor gives necessary information including the data buffer address and length.
VIA requires that the memory buffers used in the data transfer be registered. This
allows the VI provider to pin down the virtual memory pages in physical memory
and avoid their swapping, thus allowing the network interface to directly access them
without the intervention of the operating system. For each contiguous region of mem-
ory registered, the application (VI consumer) gets an opaque handle. The registered
memory can be referenced by the virtual address and the associated memory handle.

The VIA specifies two types of data transfer facilities: the traditional send and
receive messaging model and the Remote Direct Memory Access (RDMA) model.

In the send and receive model, each send descriptor on the local node has to
be matched with a receive descriptor on the remote node. Thus there is a one-to-
one correspondence between every send and receive operation. Failure to post a
receive descriptor on the remote node results in the message being dropped and if
the connection is a reliable connection, it might even result in the breaking of the
connection.

In the RDMA model, the initiator specifies both the virtual address of the local
user buffer and that of the remote user buffer. In this model, a descriptor does not
have to be posted on the receiver side corresponding to every message. The exception
to this case is when the RDMA Write is used in conjunction with immediate data, a

receive descriptor is consumed at the receiver end.
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The VIA specification does not provide different primitives for Send and RDMA.
It is the VIA descriptor that distinguishes between the Send and RDMA. The Send
descriptor contains the CS and DS. In case of RDMA, the VI Send descriptor also
contains the AS. In the AS, the user specifies the address of the buffer at the destina-
tion node and the memory handle associated with that registered destination buffer
address.

There are two types of RDMA operations: RDMA Write and RDMA Read. In
the RDMA Write operation, the initiator specifies both the virtual address of the
locally registered source user buffer and that of the remote destination user buffer.
In the RDMA Read operation, the initiator specifies the source of the data transfer
at the remote and the destination of the data transfer within a locally registered
contiguous memory location. In both cases, the initiator should know the remote
address and should have the memory handle for that address beforehand. Also, VIA
does not support scatter of data, hence the destination buffer in the case of RDMA
Write and RDMA Read has to be contiguously registered buffer. The RDMA Write
is a required feature of the VIA specification whereas the RDMA Read operation is
optional. Hence, the work done in this thesis exploits only the RDMA Write feature
of the VIA.

Since the introduction of VIA, many software and hardware implementations of
VIA have become available. The Berkeley VIA [6], Firm VIA [2], M-VIA [15], Server
Net VIA [27], GigaNet VIA [14] are among these implementations. In this thesis, we

use GigaNet VIA, a hardware implementation of VIA for experimental evaluation.
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2.2 Message Passing Interface

Message Passing Interface [18] is the most popular and widely used standard
library specification for developing message passing high performance applications.
It provides portability and ease of use for the parallel programs written using the
distributed memory programming model.

The MPI standard specifies a rich set of functions for point-to-point communica-
tion and collective communication, all scoped to a user specified group of processes.

MPI provides abstractions for processes at two levels. First, processes are named
according to the rank of the group in which the communication is being performed.
Second, virtual topologies allow graph or Cartesian naming of processes that help
relate the application semantics to the message passing semantics in a convenient
and efficient way.

A key concept in MPI is that of a communicator, which provides a safe message-
passing context for the multiple layers of software within an application that may need
to perform message passing. For example, messages from a support library will not
interfere with the other messages in the application, provided the support library uses
a separate communicator. Communicators, which house group and communication
context (scope) information, provide an important measure of safety that is necessary
and useful for building up library-oriented parallel code.

Within a communicator, point-to-point and collective operations are also indepen-
dent. An application can post several non blocking receive operations and then call

a barrier collective operation. Messages used to complete the barrier operation will
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be processed independently from the posted receive operations. Most implementa-
tions of MPI simply use an additional hidden collective communicator to distinguish
between peer communication and collective communication.

MPI version 1.0 and 1.1 [19] define all point-to-point operations as two sided
operation where every send has a corresponding receive. However the future MPI
version 2.0 [20] promises one-sided operations like Remote Memory Read and Remote
Memory Write which shall allow the sender to specify the source and destination
buffers.

The MPI Standard as mentioned provides a variety of collective communication
operations. All collective operations are built upon the point-to-point communication
operations. Since point-to-point communication operations are two sided, hence cur-
rently all collective operations are built on the the send and receive Message passing

primitives.
2.2.1 MVICH - A MPI Implementation

MPICH [10], which combines portability and efficient code sharing with high per-
formance is one of the most popular implementation of the Message Passing Interface
1.0 standard.

The MPICH implementation is a layered implementation as shown in 2.2. One of
the lower layers is called as the Abstract device interface (ADI) contains the device
or underlying protocol dependent code. All the MPI functions are implemented in
terms of the macros and functions that make up the ADI and are hence portable.
MPICH, thus contains many implementations of the ADI. The Channel interface is

the lowest level portable implementation of the ADI. MPICH can be ported to any
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Figure 2.2: Upper Layers of MPICH [10]

new platform simply by implementing the device dependent functions at the channel
interface level.

MVICH][11], is one such variation of MPICH where the ADI is modified to provide
support on VIA platforms.

The layered structure of MPICH shows that the MPI collective operations are
built on top of the MPI point-to-point operations. Hence a collective communi-
cation operation like MPI Broadcast() will call other MPI point-to-point primitives
like MPI Send() and MPI Recv() to send and receive messages. MPI Send() will
internally call the VIA specific primitives like VipPostSend() and VipSendDone()
or VipSendWait() to send the data onto the network. The VIA primitives will be
available only in and below the ADI layer of the MPICH hierarchy.

In this thesis, we modify the mvich-1.0 implementation of MPICH over VIA to

support collective communication with RDMA.
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2.3 Summary

In this chapter, we provided a brief overview of the Virtual Interface Architecture,
the Message Passing Interface and its implementation. Chapter 3 will provide the
basic concepts and the motivation behind the RDMA based collective communication

library.
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CHAPTER 3

RDMA BASED COLLECTIVE COMMUNICATION
LIBRARY - CONCEPTS AND DESIGN ISSUES

VIA and the emerging InfiniBand architecture support remote DMA operations,
which allow the data to be moved between the user space of the communicating nodes
with low overhead. This concept can be used to create and provide a logical shared
memory address space across the nodes. Many efficient collective communication
algorithms have been developed that are based on the message passing paradigm.
But the idea of providing a logical shared memory address space using the concept
of RDMA on a distributed collection of nodes which has no shared memory has not
been explored in the past.

This chapter talks about the basic motivation for this work. It also discusses the
design issues involved in trying to provide an RDMA based Collective communication

library.
3.1 Basic Concept

In a shared memory system, collective algorithms are simple and easy to imple-

ment. For example, let us consider the Barrier collective operation. A Barrier is a
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Figure 3.1: lllustration of a simple barrier scheme using one shared memory location

synchronization operation. It essentially establishes a logical point, which all nodes
must attain before they can continue with their computation or communication.

In a shared memory system, a barrier operation can be done very easily. A specific
memory location can be reserved for the barrier operation and initialized to ‘0’. When
processes reach the barrier, they simply increment the value at the location (in an
atomic manner) and then wait for the value to be updated by all the other processes.
This concept is illustrated in Figure 3.1 with four processes (P0, P1, P2 and P3) and
a single memory location initialized to ‘0’. Since all the processes know the number of
other processes involved in the barrier (in this case a total of 4 processes are involved),
when the value at the memory location reaches the value ‘4’, each process knows that
the Barrier has been attained and it can then proceed.

Another approach is to have a section of memory (with multiple locations) be
reserved for the barrier and initialized to ‘0’. Every process writes a ‘1’ to a specified
location in this memory region when it reaches the barrier. Next, the process reads
from other memory locations to see if other nodes have reached the barrier. This

concept is illustrated in Figure 3.2 with four processes (PO, P1, P2 and P3) and
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Figure 3.2: lllustration of a simple barrier scheme using multiple shared memory locations

four memory locations. The figure shows the memory location corresponding to each
process. In this figure, PO, P2, and P3 have already set the byte in their respective
locations when they encounter the barrier and are waiting for P1 to set the value in
its location. As soon as P1 sets the value in its location, all processes return from the
barrier.

Efficient execution of the above shared memory-based barriers require several is-
sues related to cache coherency to be addressed. If the shared memory is cache
coherent, the barrier implementation turns out to be considerably simpler and faster.
The processes obtain the data by a simple local read operation without additional
complexities. However to reduce false sharing, the memory locations associated with
the processes need to be mapped to different cache lines to eliminate false sharing [8].

In a cluster with distributed memory organization, when an operation like barrier
takes place, the nodes typically send and receive explicit messages. Barrier algo-
rithms (pair-wise exchange with recursive doubling or gather-followed-by-broadcast

[16]) with multiple phases (steps) are used to implement the barrier. Each of the
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communication step typically uses a send and receive primitive to communicate. Re-
ceiving a message from a node is typically an expensive operation. For example,
an MPI over VIA implementation has to take care of unexpected receive messages.
When messages come in, the relevant descriptor has to be searched for. If there is no
descriptor posted, data is sent to an intermediate buffer. When the actual descriptor
gets posted, the data has to be copied from the temporary buffer to the user buffer.

In addition, the layering structure of the libraries like MVICH adds considerable
overhead on the message latency, making each of the communication step slower and
the entire barrier operation slower.

The method of RDMA communication offers a new mechanism for transferring
data, by directly writing into the memory of a remote processor/node. Consider a set
of buffers being allocated at each remote processor/node and their addresses being
exchanged at the start of the program. The collection of these buffers (together with
their addresses) provide a logical shared memory region (without coherency) for all
processors. Now, the processors can exploit the advantages associated with shared
memory-based algorithms to implement the barrier.

We extend the same explanation as that of the barrier to all the other collective
operations. We thus exploit the logical shared memory capability provided by RDMA
operations to support efficient collective operations. In this thesis, we limit the proof
of concept to the (i) Barrier, (ii) Broadcast, (iii) All Reduce collective operations.

3.2 Design Issues for an RDMA Collective Communication
Library

The idea behind using RDMA for collective communication is to utilize the concept

of shared memory. The RDMA mechanism and memory registration constraints open
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up several major issues for designing a RDMA based collective communication library.
One issue is how and when to register the buffers and communicate the addresses of
the buffers to all the nodes. Another issue is how to identify valid data at the receiver
and how do we safely reuse the buffers.

In this section, we discuss these design issues and present some solutions. In the
subsequent chapters we will discuss the design choices for the particular collective

communication operation and its implementation.
3.2.1 Registration of buffers and Address Exchange

It is a requirement in VIA that data to be sent and received should use registered
buffers. A flexible buffer management scheme is required for this purpose in the
context of collective operations. In our scheme, we register the buffers statically

before the operation or dynamically during the operation.

Static Buffer Registration

We statically register a contiguous region in memory for each communicator for
various types of collective operations. This region is generally registered when the
communicator is being created. This contiguous region is split into fixed size buffers.
Since the memory allocated is contiguous, only the starting address of the memory
(the address of the first buffer) needs to be communicated to all the nodes. The
length of the buffer space is the same for all the nodes in the same communicator
for the same operation. There will be certain constraints on the order of using these
buffers, which shall be discussed in the incoming sections. In this scheme, the address

is communicated only once and the buffers are reused as and when needed.
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Dynamic Buffer Registration

In the dynamic registration scheme, we allow the use of non-contiguous buffers.
This will make it mandatory to communicate the addresses of all the buffers to all the
nodes for every collective operation instance. Dynamic registration need not be done
at the start of the program or when the communicator is created. It is done as a part
of the operation itself after the requisite user buffers have been declared. However,
in this approach the buffer addresses need to be communicated whenever the buffers
are created dynamically. Hence, if we register the buffer in the collective operation,
we will have additional overhead of address communication with the destination set

in the collective operation before sending the actual data to the destination set.

3.2.2 Data Validity at the Receiver end

RDMA write is receiver transparent. It does not require that the receiver post a
descriptor or perform any action in anticipation of the incoming data. The receiver
process receives no indication that any new data has been written. When the desti-
nation needs the data it goes to the memory location and fetches the data from there
by performing a local read operation. Thus, we need a mechanism for indicating to
the receiver that the data in the memory is valid data.

There are various ways in which this can be done. One method is to let the
receiver NIC interrupt the receiver once it receives an RDMA message. But this is a
very expensive operation and thus detrimental to high performance.

Another approach is to use the immediate field in the RDMA descriptor and set
the field when the last RDMA write operation has taken place. However, this requires

consumption of a descriptor at the receive end. This also requires that the receiver
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be aware of the data coming and post a receive descriptor in advance. This approach
disturbs the illusion of shared memory and is not feasible.

Another approach is to write a special value, known to the receiver at a special
location in the receiver’s memory for each buffer in the pool. The value will be
written after the sender has finished writing to the destination memory. This special
value will indicate the data validity at the destination end. RDMA write supports
the reading of data from non-contiguous locations but does not support scattering of
data in a single RDMA write operation. Thus in a single operation, writing the data
to the destination buffer and writing the special value to a separate buffer location at
the destination end is not possible. To perform the transferring of the data, we will
need to perform two RDMA writes, the first for sending the data to destination buffer
and the second for updating the special byte which indicates the validity of data at
the destination end. But performing two RDMA writes is very expensive. Also, the
order in which the destination NIC will write the data in the destination memory
is not fixed. The destination NIC, on receiving both RDMA writes may decide to
write the special byte first, thus defeating the entire purpose of using special byte for
indicating data validity at the receiver end.

Another approach would be to attach the special byte to the end of the data. Thus
the sender sends the data and an extra byte with a special value to the destination.
The destination knows when and how much data is arriving and thus it checks the

byte at the end of data and determines the validity of data.
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3.2.3 Safely reusing the buffers

In the static buffer allocation scheme, buffers are allocated during the initialization
time. No new buffers are allocated in the course of the program. These finite number
of buffers need to be reused. In the RDMA scheme, the sender has no indication
as to when the receiver has read the data written. Before the buffer can be reused,
the sender needs some confirmation from the receiver that the buffer can be reused.
The buffers are contiguous in nature and are used contiguously. Thus for the same
communicator and the type of collective operation, the receiver knows when exactly
the buffer is going to be reused by a sender. The receiver can then explicitly RDMA
write a notification to the sender and the sender can proceed with the writing of data
after it has received the notification.

In the dynamic buffer allocation scheme, the problem of reusing buffer does not
arise as the buffers are allocated separately for each collective communication opera-
tion.

In this chapter, we discussed the motivation and the design choices for a RDMA
collective communication library. The next chapters explore the RDMA implemen-

tations of the Barrier, Broadcast and AllReduce operations.

3.3 Summary

In this chapter we gave the basic motivation for this work. We also discussed the
various issues and alternatives related to buffer allocation and management, schemes
for data indication at the receiver end and address exchange mechanisms. Chapter 4

introduces the RDMA Barrier, a synchronization collective communication operation.
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We will discuss the algorithm used, the design challenges faced and the performance

results that were obtained.
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CHAPTER 4

THE RDMA BARRIER

In this chapter, we focus on the Barrier, one of the most frequently used collective
communication operations. Barrier, as stated earlier is a synchronization operation.
Barrier enables a process to stall till all the other processes reach the same point in
the program, thereby enabling synchronization.

All popular MPI implementations including MVICH, an MPI implementation on
VIA, currently use MPI point-to-point communication primitives like MPI Send()
and MPI Recv() as the underlying method of implementing the Barrier operation.

In this chapter, we start with the RDMA Barrier algorithm, followed by the design
choices and implementation details. We end the chapter by focusing on some of the

results obtained.

4.1 The RDMA Barrier Algorithm

The algorithm we use is pairwise exchange with recursive doubling [4][5]. This
algorithm was chosen for its simplicity and efficiency. This algorithm is also currently
used in the mvich-1.0 distribution with the send and receive communication model.
It also helps us to give a fair comparison between the efficiency of the Barrier using

send and receive primitives and our new implementation of Barrier with RDMA.
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When the RDMA barrier is called, the pairwise exchange method follows. During
each barrier invocation by a process involving the same communicator, each process
keeps a static count of the barrier number it is participating in that communicator.
The Pairwise Exchange Algorithm is a recursive algorithm. The nodes pair up and
each node does a RDMA write to the other process’s buffer using the destination
buffer address and the memory handle. The sender writes the barrier number which
it is involved in for that communicator. Since the receiver is also in the same barrier
for that communicator, it also knows the barrier number and it can read the barrier
number from its local location. Thus, the nodes in the pair do a RDMA write to
each others memory and read the data that the other node has written from its own
local memory. The nodes form a group. In the next step two groups pair up and
a node from one group does a RDMA write and checking for written data with one
node from the other group. These groups are then merged together. This process
of pairing up, writing data to each others buffers and then merging is repeated until
only one group is left. The barrier is then finished.

Overall, in this approach each node performs logpN RDMA writes, where N is
the number of nodes in power of two. Figure 4.1 demonstrates the steps in an 8 node
barrier.

For non-power of two nodes, we divide the set of nodes N into two sets S and S’
where S is the maximum power of two less than N and S’ is the set of nodes in N
but not in S. Initially, every node in S’ does a RDMA write to another node in S.
Then the nodes in S perform a pairwise exchange barrier. Once the nodes in S reach

a barrier, they RDMA write to the corresponding nodes in S’. This concludes the
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Figure 4.1: Steps in an 8 node barrier

barrier for the N nodes. The number of steps it takes to reach the barrier is loga N + 2

steps.

4.2 Design Solutions and Implementation Details

The implementation of the RDMA Barrier was based on the following design

solutions. We indicate the nodes that take part in the barrier by the term ‘barrier

group’.
4.2.1 Buffer Registration

We register a buffer with every process. Every byte in the buffer is reserved for a
different node in the barrier group. Nodes are differentiated on the basis of their id

in their barrier group. Each node has a different ¢d in the barrier group.
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The first byte is reserved for the node with id 0, the second byte for the node with
id 1 and so on. Figure 4.2 shows RDMA Barrier in a 4 node cluster having processes
PO, P1, P2, P3 each on a different node. Each node has reserved a four byte buffer,

with one byte reserved for every node in that barrier group.

4.2.2 Buffers and Address exchange

For a node to write data in some other process’s memory, the node needs to know
the destination address and have the right memory handle. Thus, the addresses of
the buffers need to be communicated from one node to all the other nodes. Since the
buffers are contiguously allocated and have the same handle, only the starting address
needs to be communicated to the other nodes. The RDMA Barrier implementation
does address exchange when the barrier group is created by using explicit send and
receive primitives. Communicating the address needs to be done once, only when you

create the communicator.
4.2.3 Buffer Initialization

Since barrier is essentially a synchronization operation and the data passed is not
relevant, we initialize all the buffer bytes reserved for barrier operation to a negative
constant. It shall be shown in the next sub-section that we never indicate a barrier
operation by a negative number and hence the initial value of negative constant
suffices. Figure 4.2 shows the first barrier operation of a program. The buffer bytes

are initialized to the negative constant -1.
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Figure 4.2: RDMA Barrier between 4 nodes

4.2.4 Data identification at the Receiver end

When the receiver needs the data, it goes to the corresponding memory location
and reads the data from there. The algorithm writes the barrier number to the
destination buffer. The receiver knows the barrier number that will be written. Hence
it checks the location for the desired data. However the implementation does not check
for the desired value, but instead it checks to see if the value written in its location
by the other node is greater than or equal to the barrier number. This is to take care
of consecutive barriers.

In a barrier between a pair of nodes, one of the participating nodes might be
slower than the other. Consider two processes and P4 and P which are in the 5
barrier, with the barrier number as i. P4 writes the barrier number ¢ in Pg buffer and

starts polling for Pg to write the same number in its buffer. Meanwhile Pg, which
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is the slower node, writes the barrier number ¢ in P4 buffer. P4, which was waiting

1% barrier and writes the

for this value, reads it and immediately enters the next 7 +
barrier number ¢ + 1 to Pg barrier buffer. If Pg is a slow node, it may happen that
P, writes the new i + 1 value before Pg has read the i value. So, the nodes will need
to poll for the value ¢ or 7 + 1 to be written in their buffers.

The barrier number will always have an upper limit depending on the data type
that is used. We wrap around the barrier number once it reaches that upper limit.
Hence, if barrier number is a 4 byte datatype, the upper limit will be 127. We wrap
around the barrier number to the value 1. Hence in the 127" barrier, polling is done
for the values 127 or 1 to be written to the barrier buffer.

Thus, as shown in Figure 4.2 if the nodes in the cluster are in the first barrier,

process PO will poll for a value of 1 or 2 to be written in its buffer by the various

processes.
4.2.5 Safely reusing the buffers

In the barrier, no data is being communicated. The nodes RDMA write the barrier
number to the destination location. The barrier number, a static value in the barrier
algorithm is incremented by 1 for all consecutive barriers in the same communicator.
Hence, the value of the special byte (which is the barrier number) written is different
for consecutive barriers, thus allowing the nodes to reuse the same buffers without

any extra notification from the receiver to the sender’s side.
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4.3 Modifications to Mvich-1.0

The MPI-1.0 standard does not provide any primitives based on the RDMA model.
It provides MPI_Send() and MPI_Recv() for sending messages and receiving mes-
sages. The MPI-2.0 standard does provide primitives for one-sided communication
operations like MPI_Put() and MPI _Get() but there are currently no available imple-
mentations of this relatively new standard.

Mvich-1.0 is an implementation of the MPI-1.0 standard for VIA platforms. Re-
ferring to Figure 2.2 in chapter 2, we notice that the VIA specific code is contained
in the ADI layer. VIA as we discussed in the previous chapter does provide RDMA
write support. To enable Mvich to support RDMA collective communication oper-
ations, we modify the code in the ADI layer. We add explicit support for RDMA
write in the ADI layer.

The RDMA Barrier algorithm is written above the ADI level and contains only
MPI primitives and is independent of the underlying communication protocol. Hence,
we need a MPI primitive like MPI_Put(), which the Barrier function can call to
perform a RDMA write. Such a primitive will call the required VIA functions in the
ADI layer and the VIA functions will do the RDMA operation.

We avoid adding a new MPI primitive to the Mvich-1.0 implementation, because
such a MPI primitive will not be a part of the current MPI-1.0 standard. Hence,
to provide RDMA write support, we override the MPI Send() primitive itself as and
when needed. We cannot add any new constant parameters to MPI_Send() and hence
this modification is done by setting a global variable before calling MPI_Send(). This
global variable visible below the ADI layer allows the ADI to choose between Message

send and RDMA write. The global variable is by default set to FALSE, which indicates
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a message send to the ADI layer. We set this primitive to TRUE when we wish to
perform a RDMA write.

Figure 4.3 shows the RDMA barrier pseudo code for power of 2 cluster size.
Lines 1 and 2 use MPI primitives to obtain the rank of the current process and
the size of the communicator. Lines 3-6 increment the barrier_number, a static byte
and wrap it around to 1, when it reaches the upper limit. The barrier_number is
present in a registered memory location. Line 9 finds the destination rank for the
process to communicate with. In Line 10, we call set_rdma(), a function which sets
the global variable to TRUE. Line 11 calls MPI _Send(). At the VIA level, since the
global variable is TRUE, the barrier_number will be remotely written to the correct
destination buffer. Since the remote addresses are exchanged in the initialization
phase, at the VIA level the correct remote buffer is chosen based on the destination
rank and the collective operation type. Lines 12-15 show the process polling for the

barrier number to be written by the destination process.

4.4 Performance Results

In this section, we discuss the results that have been obtained for RDMA Barrier
and compare it with the results for the MPI Barrier for a cluster of nodes.

We evaluated our implementation on the following clusters.

Cluster 1: A cluster of 8 nodes, each with a 66MHz PCI bus, 7T00MHz Pentium
ITI machines, 1GB of Main memory and Linux version 2.2.17. The machines are

connected using a GigaNet 5300 switch.
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1 MPIR_Comm_rank ( comm, &rank );

2 MPIR_Comm_size ( comm, &size)

3 if (barrier_number == 127)

4 barrier_number = 1;

5 dse

6 barrier_number = barrier_number + 1 ;

7 if(size>1){

8 for (d=1; d<size; d<<=1){

9 destinaton = (rank " d);
10 set_rdma(l);
11 MPI_Send(barrier_buffer, 1, MPI_CHAR, destination, 1, comm->self)
12 if (barrier_number < 127)
13 while (barrier_buffer[destination] < barrier_number) dummy=1;
14 else
15 while ( ( barrier_buffer[destination] = 127 ) && ( barrier_buffer[destination] '=1) ) dummy = 1;
16 }
17}

Figure 4.3: RDMA Barrier pseudo code for power of 2 nodes

Cluster 2: A cluster of 16 nodes, each with a 33MHz PCI bus, 1000MHz Pentium
ITI machines, 512MB of Main memory and Linux version 2.2.17. The machines are
connected using a GigaNet 5300 switch.

To obtain the barrier latency, we ran 10000 iterations of MPI_Barrier() and took
the average of the barrier latencies at each node. The MVICH version used is mvich-
1.0.

We ran the original MPI Barrier without modification, the results of which are
labeled under Message Passing. The RDMA Barrier is labeled under RDMA.

Figures 4.4(a) and 4.4(b) show the barrier latencies for power of 2 nodes for Cluster
1 and Cluster 2 respectively.

For Cluster 1, the RDMA Barrier for 8 nodes completes in 31.88us as compared to

the Message Passing Barrier, which completes in 45.14us. For every message sent, we
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Figure 4.4: Barrier Latency for Power of two nodes

save 4us in one-way latency. The RDMA Barrier outperforms the Message Passing
Barrier for all power of 2 cases. This leads to a 29.37% performance improvement on
the 8 nodes.

Similar results are obtained in Cluster 2 where we see that RDMA Barrier for
8 nodes completes in 29us as compared to 40.5us of the Message Passing Barrier.
The results for 16 nodes in Cluster 2 show that RDMA Barrier completes in 39.4us
as compared to Message Passing Barrier which takes 56.3us. This leads to 28.4%
improvement on the 8 nodes and 30% for 16 nodes and is thus scalable.

Figures 4.5(a) and 4.5(b) show the barrier latency for all nodes in Cluster 1 and
Cluster 2. The barrier latency for non-power of 2 nodes is greater than the power
of 2 nodes because they execute larger number of steps. The timings for non power
of two nodes also demonstrate an improvement in performance of RDMA Barrier as

compared to Message Passing Barrier.
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Figure 4.5: Barrier Latency for All nodes

4.5 Summary

In this chapter, we presented a new approach for implementing efficient barrier
which exploits remote memory operations across nodes. The RDMA barrier gives a
performance benefit of 30% for a 16 node cluster as compared to the message passing
barrier. In the next chapters, we shall see the design and algorithm details regarding

the RDMA Broadcast and the RDMA All-Reduce collective operations.
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CHAPTER 5

IMPLEMENTATION OF THE RDMA BROADCAST

Most parallel applications frequently need to communicate the same piece of data
to all nodes. Given a vector of data owned by one node in the group (the root), the
broadcast operation duplicates the data on all the other nodes in the communicator.
This is demonstrated in Figure 5.1, where given 4 processes PO, P1, P2 and P3,

Process PO sends the data to the remaining 3 processes P1, P2 and P3.

Data Daa
PO PO
P1 P1
P2
Before Broadcast After Broadcast

Figure 5.1: Broadcast Operation in 4 processor group
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5.1 Introduction

In a distributed programming model with no shared memory, broadcast is gen-
erally done with the help of message passing. The root sends the data while the
other nodes receive it. Depending upon the topology and speed of the system, the
sending mechanism can be implemented in different ways. Consider ¢s as the sending
time i.e. time taken by the sender to send the message to the network and let ¢r
be the cumulative time taken by the receiver to receive the message. Thus, tr is
the time to send the message, to traverse the network and reach the destination user
buffer. Depending upon the values of ts and ¢r, we can implement several broadcast
algorithms.

For a cluster where the interconnect has very high network latency, (tr-ts) can
be high and we can implement broadcast as a one-level flat tree, where the root

sequentially sends the data to all the other nodes in the cluster. This is shown in

Figure 5.2

& @ ® ®

Figure 5.2: Broadcast using Flat Tree Algorithm
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For a cluster with very less network latency, we can implement broadcast as a

binomial operation. This binomial scheme is demonstrated in Figure 5.3

Figure 5.3: Broadcast using Binomial Algorithm

The flat tree and the binomial tree form two extreme cases for broadcast im-
plementation. In between these two scheme, can lie the different k-nomial or k-ary
implementations of the broadcast operation.

In this chapter, we start with an overview of the RDMA Broadcast algorithm.
We follow it up with the design solutions and end it with a discussion of the results

obtained.

5.2 Algorithm Overview and Design Solutions

Most high performance clusters are connected using fast interconnects. The cur-

rent MVICH broadcast operation uses the binomial broadcast mechanism which is
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implemented using MPI Send() and MPI_Recuv(). Hence, we choose the bi-nomial al-
gorithm for RDMA Broadcast. This enables us to obtain a fair comparison between
the RDMA Broadcast and the Message Passing Broadcast.

In the binomial broadcast algorithm, sending of data is divided into steps. Sending
the data is done by RDMA writing into specific buffers at the receiver’s end. Consider
a cluster of 4 nodes PO, P1, P2, P3 where node PO is the root with rank id 0. Nodes
P1, P2, P3 have ranks ids 1, 2, 3 respectively. In Figure 5.3, in the first step, root
PO sends the the data to the node at size/2 away i.e to node 2. In the second step,
root PO sends the data to node 1. At the same time, node 2 becomes the root of a
new subtree and forwards the data to node 3. The process of forming new subtrees
continues till the data reaches all the nodes.

For power of 2 nodes, log N steps are needed for performing the binomial broadcast,
where IV is the number of nodes.

For now-power of 2 nodes, the steps taken are logN’ where N’ is the immediate
higher power of 2 than N, where NV is the total of nodes.

The data structures and the working of the algorithm is discussed in the following
subsections. The RDMA write feature is implemented at the MPI level by modifying

MPI _Send() to perform RDMA write at the ADI level.
5.2.1 Registration of buffers and Address Exchange

The RDMA Broadcast works in the following two modes. These modes are chosen
to obtain the best performance for all data sizes. For smaller messages typically less

than 5K, the memory copy time is less and hence we use a static buffer management
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scheme. For messages greater than 5K when the memory copy time is high we use

the dynamic registration scheme.

Message Size < 5K

For messages less than 5K, we follow the static buffer registration scheme. We
allocate a contiguous section of memory and register it during the initialization time.
We divide the contiguous memory into blocks of fixed size denoted by block_size. The
address is communicated once during the address exchange phase at the initialization
time. Thus, every node has the first block address as well as the memory handle for
the remote broadcast blocks at each node for every communicator.

In addition to the main broadcast blocks, we also reserve a buffer called notification
buffer which is used to indicate the safe reusing of the broadcast buffers. Every node
registers its notify buffer. The size of the notify buffer in bytes is equal to the number
of nodes in the communicator involved in the broadcast operation. The address of
the notify buffers is also exchanged in the address exchange phase at the initialization
time.

Figure 5.4 shows the 4 processes PO, P1, P2 and P3 and their buffers. This
instance shows the broadcast buffer divided into 4 blocks of block_size. The blocks
are numbered from 0 onwards. Hence, the first block will be called as block no. 0,
the second block as block no. 1 etc. Figure 5.4 also shows a 4 byte notify buffer

registered for every process.

Message Size > 5K

For messages greater than 5K, we adopt the rendezvous approach, a dynamic

scheme similar to the one implemented by MPICH/MVICH implementation of MPI.
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into 4 blocks
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Notify buffers

Figure 5.4: Buffer Allocation in RDMA Broadcast

In the rendezvous approach, the sender sends a request to the receiver asking it to
register its receive user buffer and send back the address of the registered buffer. After
the receiver sends back the address, the sender can directly RDMA write to the receive
user buffer. The exchange of first 2 messages happens by using the MPI_Send() and
MPI_Recv() primitives as shown in Figure 5.5.

This eliminates the need for having pre-registered broadcast buffers. In the static
scheme, as we shall later show, the data needs to be copied from the broadcast buffers
to the specified user buffers. In the dynamic scheme, we avoid the copying but we
need an extra round trip for exchanging addresses.

However, for large messages, typically greater than 5K, copying in static scheme
becomes more expensive compared to the round trip overhead in rendezvous scheme.

Hence we use the rendezvous scheme for higher message sizes.
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Request Message
Register User Buffer

Insert Addressin Reply message

RDMA Broadcast Data
to Receiver User Buffer

Process0 Process 1

Figure 5.5: Rendezvous in RDMA Broadcast

Since the rendezvous scheme is currently implemented by mvich-1.0 implementa-
tion, hence we will not discuss it further. Further analysis and discussions is con-
stricted to the static broadcast scheme only, which is used for sending messages less

than 5K bytes.
5.2.2 Buffer Initialization

The broadcast and the notify buffers are initialized to -1 during the initialization
time. In later sections, we will show that we do not indicate the data validity at the

receiver end by a negative constant.

5.2.3 Data Validity at the Receiver end

Consider Figure 5.6 with 4 processes PO, P1, P2, P3, where process PO is the root
and the broadcast instance shown is between the processes PO and P2.

For every communicator, we have a static counter called broadcast counter which
is incremented by 1 for every broadcast operation, by every process within that com-

municator. Consider the first broadcast of data size block_size/2 bytes. The broadcast
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counter for the first broadcast is set to 1. The sender appends the broadcast counter
byte at the end of the data to be written. The root PO can RDMA write the data of
size block_size/2 + 1, which includes the appended byte to block no. 0 of process P2.
Since for a communicator, every node is involved in the collective operation, hence
every node can keep track of the number of blocks used for that particular collective

operation.

N

First
Bcast 1 1
2 2
Second
Bcast
2 2

= ®

Figure 5.6: Sending Instance in Two consecutive broadcasts

The data is written bottom up, as shown in Figure 5.6, so that the sent broadcast

counter is always written in the last byte of the block.
Since the receiver shares the communicator with the sender, hence the broadcast

counter at the sender and receiver will have the same value. Thus, the receiver can
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poll for the broadcast counter on the last byte of the received block and check for the
validity of the data.

If the data to be sent is greater than the block_size, the data is split up into
blocks of size block_size - 1, the broadcast_byte is appended to each block and the
data is then written to the remote node. Figure 5.6 also shows the second broadcast
of 2 * block_size bytes. Root PO writes the first and second blocks of block_size - 1,
with broadcast counter of 2 appended, to block no. 1 and block no. 2 (of Process
P2 )respectively. The additional 2 bytes are written in block no. 3, again with the
broadcast counter of 2 attached for data validity. Writing large messages by breaking
them into blocks at the lowest level also enables pipelining of messages.

Once the data is read by the receiver, the receiver if needed can forward the data
to the other nodes directly from the received buffer.

In our scheme, a node forwards the message only after it receives all the blocks of
that message. A message is split into blocks below the ADI level.

Another approach would be to forward each block as we receive it. However, since
the algorithm is written above the ADI level, hence to forward each block as we receive
it would require us to call MPI_Send() (modified for RDMA write) multiple times,
the overhead of which will increase the latency for the operation. Another approach
would be to implement the broadcast algorithm at the ADI level, but which will result
in a loss in portability.

After sending the data to the other nodes, the receiver will need to reset the last
polling byte of the received blocks to -1, so that they can be safely reused at a later

stage.
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5.3 Buffer reusing

The memory allocated in the static scheme is constant and limited. Hence, when
all the blocks have been used, we need to reuse the blocks safely. The sender cannot
directly write to the used block because the receiver does not return any indication of
whether the data written in the previous broadcast in the same block has been read
or not. Hence, explicit notification is needed from the receiver.

When the receiver realizes that data to be written is in the first block of the
broadcast buffer, it writes a special value in the senders notification buffer as shown
in Figure 5.7. Before writing, all the last bytes of all blocks have to be set to -1. This
is because we might encounter a situation where a broadcast counter with value 20
was written in an earlier broadcast. As the static broadcast count is incremented and
wrapped around when its limit is reached, hence during a later broadcast, we may
end up writing the same broadcast value, in which case the receiver might end up
reading the old broadcast data.

Writing data from bottom-up requires us to reset only the last byte of each block.
If data was written starting from the top of the block, the polling byte would have
been at an arbitrary location depending on the size of data being sent and hence
all the bytes of all blocks would have to be reinitialized which may be an expensive

operation.

5.4 Performance Results

In this section, we discuss the results that have been obtained for RDMA Broad-

cast and compare it with the results for the MPI Broadcast for a cluster of nodes.
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Figure 5.7: Notification by Process 2 to Process 1 before reusing first block
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We evaluated out implementation on a cluster of 8 nodes, each with a 66 MHz PCI
bus, 7T00MHz Pentium IIT machines, 1GB of Main memory and Linux version 2.2.17.

The machines are connected using a GigaNet 5300 switch.

5.4.1 Broadcast Benchmark

To obtain the broadcast latency, we ran 5000 iterations of MPI_Bcast() by using

the algorithm given in Figure 5.8.

Synchronization Barrier

For 5000 iterations
Start Timer at Root
MPI1_Broadcast
If (Node_Id ==ROOT)
MPI_Recv(Message From Last Leaf)

If (Node_Id == LAST LEAF)
Delay(T1)
MPI_Send(4 byte ack to ROOT)

Stop Timer

Time = (Stop — Start ) — (1way Latency of 4byte ack) — T1

Figure 5.8: The Broadcast Benchmark Algorithm

The benchmark algorithm does a broadcast to all the nodes. It however waits for
an 4 byte acknowledgment from the last node. The last node is the one to whom the
data reaches in the maximum number of steps and takes the longest time. The last
node is made to incur a delay of time T1 (typically 20us in the experiments) before
it sends back the acknowledgment. This is because we don’t want the incoming

acknowledgment to interfere with the sends that the root may still be doing. The
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broadcast latency is the 1-way latency of the 4 byte acknowledgment and time T1
subtracted from the cumulative latency.

The broadcast buffers are divided into constant size blocks given by block_size. A
large message has to be broken down into blocks of size block_size - 1 and is thus
scattered over many contiguous blocks at the remote end. The total number of blocks
a large message is broken into depends upon the block_size. For example, if the block
size is 3073 bytes, a 2048 bytes message can be sent as 1 block. This will require 1
RDMA write operation. However, since data has to be copied to a registered buffer
at the root before sending, hence if the block_size is large, the copying cost will be
higher. If the node is an intermediate node, it can forward the data to the other nodes
first and then copy the data to its user buffer, thus overlapping the copying with the
sends. If the node is a last node, the data will be copied immediately on receiving,
hence for a large message the copying cost will be higher. This is demonstrated in

Figure 5.9 for data size of 2K bytes.

Copying 2K Copying 2K
_at Roc_)t PO Trasmit time of the 2K data at Node P1
in registered buffer to user buffer
< > < >e—>

Figure 5.9: Timing Diagram for a 1 block send

However, if the block size is of 1025 bytes, a 2048 bytes message will be sent as 2
blocks of 1024 (with an additional broadcast counter byte in each block) bytes. Each
block will require a different RDMA write operation. The advantage of this approach

is that data can be copied in smaller chunks and overlapped with the send operation
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as shown in Figure 5.10. If the node is the last node to receive data, the copying
to the user buffer can also be overlapped. If it is an intermediate node, then we
can perform the sends to the other nodes first and then copy the data to the user
buffer. Notice however that the consecutive sends get sequentialized at the switch.
Hence, if the block_size is too small, then for a large message we will have many sends
to deal with. On a reliable connection of GigaNet cLAN, each of these sends will
be acknowledged. Thus, processing the sends might offset the benefit obtained by

overlapping the copies.

Copying 1K Copying 1K

at Root PO at Node P1

in registered buffer I'I'rasmit timefor 1K | to user buffer
< >e >e >

I
:
-—— - >e >
I
I
I
I

Figure 5.10: Timing Diagram for a 2 block send

We need to find an optimal block_size where the cost of processing multiple sends
does not kill the benefit achieved by overlapping memory copies.

The message passing system sends data in blocks of 1024 bytes. In order to
ensure fair comparison, we also tested the RDMA Broadcast with different block _sizes
starting with 1025 (1 extra byte for the counter) bytes.

In Figure 5.11, we give a comparison of RDMA Broadcast with block_sizes of 1025,

2049, 3073 and 4097 bytes and the message passing Broadcast for small messages of
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size 4 bytes to 1024 bytes for a 16 node cluster. Small messages from 4 bytes to 1024
bytes show the same timings because all the messages use 1 block to write to the

remote node as the least block_size is 1025 bytes.

120 T T T T T T T
RDMA 4Block ——
100 | RDMA 3Block ——
RDMA 2Block ———
m RDMA 1Block ——=— :
@ 80 Message Passing
E)
=~ 60
(&]
o
"('_U' 40 — % B B ol i
-
20 1
0 I I I I I I

4 8 16 32 64 128 256 512 1024
Bytes

Figure 5.11: Comparison of RDMA Broadcast for varying block_size messages between
4-1024 bytes and Message Passing Broadcast

The difference can be seen in Figure 5.12. We see that to transmit 4096 bytes
with block_size of 1025 bytes, we need 4 blocks. For higher block_sizes, the number
of sends decreases and so do the timings. We obtain the best result for a block_size
of 3073 bytes. In fact, a block_size of 3073 bytes gives the most optimal result for all
message sizes from 1025 to 5000 bytes. RDMA Broadcast for all the given block_sizes

gives better performance as compared to the message passing Broadcast.
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Figure 5.12: Comparison of RDMA Broadcast for varying block_size messages between
1025-4608 bytes and Message Passing Broadcast

Figure 5.13 and Figure 5.14 shows the comparison between a RDMA Broadcast
with block_size of 3073 bytes and the Message passing Broadcast for 16 nodes.
For small messages of 4 bytes, we see a benefit of around 19.7%. For larger

messages we see a benefit of around 14.4% for 4608 bytes.
5.5 Summary

In this chapter, we discussed the design issues and alternatives related to the
RDMA Broadcast. We implemented RDMA Broadcast using the Binomial algorithm.
Large messages were split into smaller blocks to bring about maximum overlapping

and pipelining. We tested different block_sizes for RDMA Broadcast starting from
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Figure 5.13: Comparison of RDMA Broadcast with block_size of 3073 bytes and Message
Passing Broadcast in 16 node cluster for message size 4-1024 bytes
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Figure 5.14: Comparison of RDMA Broadcast with block_size of 3073 bytes and Message
Passing Broadcast in 16 node cluster for message size 1536-4608 bytes
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1025 bytes. RDMA Broadcast for all block_sizes gives better performance than mes-
sage passing Broadcast. However the best results are obtained for block_size of 3073
bytes. The RDMA Broadcast of block_size of 3073 bytes gives us a 14.4% improvement
for 4608 bytes and 19.7% improvement for 4 bytes on a 16 node cluster as compared
to the Message Passing Broadcast.

The next chapter will talk about the RDMA AllReduce collective operation.
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CHAPTER 6

THE RDMA ALLREDUCE COLLECTIVE OPERATION

The AllReduce collective operation is a global reduction operation, which takes
place across all the members in the communicator. The AllReduce operation is a
variation of another global operation called Reduce. The Reduce operation combines
values from different processes based on the reduction operation and the result is
stored at the node labeled as the root. In the AllReduce operation, the result is not
stored at a single node but communicated back to all the nodes in the group.

Most traditional methods implement AllReduce as a combination of the following
two operations :

(i) Reduce Operation where the result is stored at the root

(ii) The Broadcast operation, which sends the computed data present at the root
to all nodes in the communicator.

For the RDMA implementation of AllReduce, we concentrate on the implemen-
tation of the RDMA Reduce part. The RDMA Broadcast part has been discussed in
the previous chapter.

This chapter starts with an introduction of the AllReduce operation. In the later
sections, we explore different RDMA-based AllReduce algorithms. We, however, ex-
plain the buffer management issues and the design choices from the point of view of
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the binomial AllReduce algorithm. The latter part of the chapter discusses an ana-
lytical scheme for choosing the best RDMA AllReduce algorithm based on the data
size and the number of nodes involved. We conclude the chapter with a discussion of

the results obtained.

6.1 Introduction to the AllIReduce Operation

The AllReduce combines values, based on the type of a reduction operation, from
all the processes and distributes the result back to all the processes. The reduction
operation can be a user-defined operation or a predefined operation. MPI provides
around 12 common pre-defined reduction operations which include finding the sum-
mation, maximum, minimum, product and performing bitwise operation on the data
distributed across the set of nodes.

The AllReduce collective operation has the following definition in the MPI Stan-
dard. This definition gives us a clearer picture of the elements involved in the All
Reduction operation.

MPI_AllReduce(Send buffer, Receive buffer, Count, Datatype, Reduction opera-
tion, Communicator)

Sendbuffer contains the data of type Datatype on which the operation specified by
Reduction operation will be performed. Count indicates the total number of elements
in the Sendbuffer. Receivebuffer is the buffer which contains the computed results.

All the processes use the same count, data type, reduction operation and commu-
nicator. The MPI standard says that the Reduction operation whether predefined or

user defined is always assumed to be associative. Also, all the predefined operations
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are commutative. However, the users are allowed to define operations that are asso-
ciative but not commutative. The MPI standard allows Reduce implementations to
change the order of evaluation in order to take advantage of the commutativity and
associativity properties of the operation. However, changing the order of evaluation
may change the result of reduction for operations like floating point addition, which
are not strictly associative and commutative.

The AllReduce operation is demonstrated in Figure 6.1 where we see 4 processes
PO, P1, P2 and P3. The operation defined is MPI_SUM and each process contains
the elements 1, 2 in its send buffer. After the AllReduce operation, the result (which
is the sum of the individual elements) i.e, (4, 8) is present is the receive buffers of

each process.

Send Buffer Receive Buffer Send Buffer Receive Buffer
po | 1|2 po | 1|2 4 | 8
prL | 1| 2 Pt | 1|2 4 | 8
1 | 2 P2 |1 | 2 4 | 8
1 | 2 PR |1 | 2 4 | 8
Before All Reduce After All Reduce

Figure 6.1: AllReduce Operation between 4 processes
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6.2 The RDMA All Reduce Algorithms

The RDMA AllReduce is implemented as a combination of RDMA Reduce fol-
lowed by a RDMA Broadcast operation. The node with rank 0 is chosen as the root
for both the RDMA Reduce and RDMA Broadcast operation.

There are various ways in which the Reduce part of the AllReduce operation
can be implemented. In this thesis, we introduce a Degree-k tree based scheme for
implementing this Reduce part.

Definition: An Degree-k tree-based AllReduce defines a tree where any node can
receive messages from at most k£ nodes in any step of the Reduce operation. The
variable k is a (power of 2) - 1 value. For a cluster of size N, where N is a power
of 2 value, we can use all those Degree-k tree-based AllReduce schemes, where k is
(power of 2) - 1 and k < N.

Computing Clusters generally have a power of 2 size. Hence, we explore and
constrain the Degree-k tree-based RDMA AllReduce scheme to a cluster having power
of 2 nodes. Hence, in the remaining part of the chapter, the cluster size is implicitly
assumed to be a power of 2, when it is mentioned in relation to the Degree-k tree-based
RDMA AllReduce scheme.

To understand the Degree-k tree-based AllReduce concept, let us consider a 4
node cluster. An AllReduce operation on such a cluster can be implemented using
Degree-1 or Degree-3 tree-based RDMA AllReduce scheme. Figure 6.2 shows the tree
for 4 processes PO, P1, P2, and P3 having rank ids 0, 1, 2 and 3 respectively. The
square brackets indicate the step number for that node. In a Degree-1 tree-based
RDMA AllReduce scheme, every node will receive data from at-most 1 node in each

step. Hence, in the first step Process P1 and Process P3 send data to Process PO
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and Process P2 respectively. PO will perform the required computation with the data
acquired from P1 and store the result. Similarly, P2 will perform the computation
with the data received from P3 and store the result. In the second step, Process
P2 forwards its computed result to Process P0. Process PO will then perform the
computation with its own result of the previous step and the newly received result
from P2 to get the final result. This final result will then be broadcasted to all the
other nodes involved in the AllReduce operation. The Degree-1 tree-based RDMA
AllReduce scheme is similar to the binomial algorithm, which is used in the mvich-1.0

implementation for message passing.

[1] / [2]

(1

Figure 6.2: Degree-1 tree-based RDMA AllReduce between 4 processes

Consider a Degree-3 tree-based RDMA AllReduce scheme on the same cluster.
In the Degree-3 tree-based RDMA AllReduce scheme, a node can receive data from
at-most 3 nodes in a step. Hence, as seen in Figure 6.3, processes P1, P2 and P3,
having ranks 1, 2 and 3 respectively send the data to process PO, which has rank 0.
PO will first perform the reduction operation on its own data and on the data sent by

the node having rank 1. The second operation is performed by PO, on this new result
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and the data sent by Process P2, having rank 2. The last operation is done on the
most recently computed result by PO and the data sent by Process P3, with rank 3.
Thus, PO will choose the order of evaluating the data based on the ascending order

of the ranks of the sending nodes.

(1 [ N\ [

Figure 6.3: Degree-3 tree-based RDMA AllReduce between 4 processes

A Degree-3 tree-based RDMA AllReduce for a 32 node cluster will have the tree
as described in Figure 6.4. The square brackets indicate the step number for that
node.

Thus, as stated by the definition, a 8 node cluster can implement Reduce using
a Degree-1, Degree-3 or Degree-7 tree-based RDMA AllReduce scheme and a 16
node cluster can use a Degree-1, Degree-3, Degree-7 or Degree-15 tree-based RDMA
AllReduce scheme.

There is a trade-off involved between the number of steps in the Degree-k tree-
based RDMA AllReduce collective operation and the overhead incurred by the node
in performing the reduction operation. For example, in a Degree-1 tree-based RDMA
AllReduce scheme in a 4 node cluster, there are 2 steps involved and in each step,
a receiver node receives only 1 message and hence performs only 1 operation. In a

Degree-3 tree-based RDMA AllReduce scheme in a 4 node cluster, the number of
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Figure 6.4: Demonstration of steps in a Degree-3 tree-based RDMA AllReduce in a 16
node cluster

steps is 1 but 3 nodes are sending the data and hence we have to do 3 operations in
that step. So, depending upon the number of nodes, the number of steps and the
number of operations involved, we can choose different Degree-k tree-based RDMA

AllReduce algorithms.

6.3 Design solutions for RDMA All Reduce operation

In this section, we discuss the design solutions for Degree-k tree-based RDMA
AllReduce algorithms. The design solution for all the Degree-k tree-based RDMA
AllReduce algorithm are the same. However, we will explain the design solution
from the point of view of a Degree-1 tree-based RDMA AllReduce algorithm, which

happens to be the same as the binomial algorithm.

61



We implement the RDMA AllReduce operation by using the Degree-1 tree-based
scheme for Reduction as described in Figure 6.2. Processes PO, P1, P2 and P3 in this
figure will serve as an example for the discussion of design issues. The processes PO,
P1, P2, P3 have ranks 0, 1, 2, 3 respectively relative to the root. Assume that every
process contains 2 elements of value 2 in its send buffer and a summation AllReduce

operation is to be performed.
6.3.1 Registration of buffers and Address Exchange

The RDMA Reduce algorithm works in 2 modes, depending on the size of the
data to be transferred. These modes are similar to the RDMA Broadcast modes
discussed in the previous chapter. We choose the static registration scheme for data
size lesser than 5K because memory copy for smaller bytes is not very expensive. For
data size larger than 5K, memory copy becomes expensive and so we use the dynamic

registration scheme.

Static Registration Scheme

For messages less than 5K bytes, we allocate a contiguous section of memory
and register it during the initialization time. The memory region is broken down in
block_size of (5K + 1) bytes, because 5K is the maximum size of data that can be
transferred in the static mode. Also, the total memory region reserved need not be
greater than block_size * N, where N is the number of processes in the communicator.
This is because, in the (N-1)-RDMA AllReduce algorithm case, a maximum of N —1
processes can write to a receiver node. For sending the data in the static scheme, the
sender RDMA writes the data to the receiver’s AllReduce buffers. Figure 6.5 shows

the 4 processes, each having 4 contiguous blocks of memory reserved and registered
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for the AllReduce operation. The address of the Reduce buffer space is exchanged in

the address exchange phase.

Blocks of
Size (5K+1)

AllReduce buffers,
divided into 4 blocks

@ @ Processs

Figure 6.5: Buffer management in All Reduce in a 4 node cluster

Dynamic Registration Scheme

For messages greater than 5K, we follow the rendezvous scheme as described in
the Broadcast chapter. A request and a reply message containing the receiver user
buffer address are exchanged before the operation. Then, the sender can RDMA
write the data to the receiver’s user buffer directly. As mentioned earlier, there is an
overhead of an extra round trip time involved in such a type of data transfer. This
is the same mechanism that is implemented by mvich-1.0 for messages greater than
5K and because we do no other optimization to it, hence the remainder of the thesis

will be discussed from the point of view of the static scheme only.
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6.3.2 Buffer Initialization

The AllReduce buffers are initialized to -1 at the start of the program. However,

re-initialization is not required for the AllReduce collective operation.
6.3.3 Data Validity at the Receiver end

Sending of the data in AllReduce is similar to that in broadcast operation. Con-
sider the node P1 sending data to node PO and node P3 sending data to node P2.

The node P1, with rank 1, RDMA writes the data to block no. 1 of the receiver’s
AllReduce buffer. A node always writes the data to the block having the same number
as its rank. As mentioned earlier, the AllReduce buffers are split into a maximum of
N blocks, each of 5K + 1 size. Hence, any node with any rank can write to any other
node’s AllReduce buffer at a location indicated by its rank. This indicates to the
receiver the sender identification for the data and also enables an ordered evaluation
of the data.

Node P1 sends the entire data in 1 single RDMA write to the node PO. Appended
to the data is an allreduce_counter byte. For a communicator, every process in that
communicator has a static allreduce_counter, which is incremented for consecutive
AllReduce operations involving the same communicator. Since all nodes are aware
of the allreduce_counter value, it serves as means for received data indication at the
receiver end. The data is written to the receiver AllReduce buffer in a bottom up
manner, so that the allreduce_counter is always written in the last byte of the block.
The receiver node knows the allreduce_counter value and hence can poll for the data
to arrive. On getting the data, the receiver can perform the required operation. The

result is stored in the same location as that of the latest received data. Figure 6.6
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shows node P1 with rank I and node P3, with rank 3, writing the data to node P0’s
block no. 1 and to node P2’s block no. 3 respectively. Assuming this is the first

AllReduce, hence allreduce_counter byte is set to 1.

2
Source 2
Dataat PO

Data Recvd 2
from P1 5

Source 2
Data at 2
P2

Data 2
Recvd frol 2
P3 1

Figure 6.6: Step 1 of Degree-1 tree-based RDMA AllReduce

Figure 6.7 shows node PO and node P2 performing the operation and writing the
intermediate results in blocks no. 1 and block no. 3, respectively.

Data is not broken down into smaller blocks and sent because the entire data is
needed to perform the computation. If data were sent in blocks, then there would be
an additional overhead of assembling and packing the data together before performing
the required computation. The overhead of copying and packing data is larger than
the overhead of sending the entire data in a single RDMA write operation.

In the second step of the Degree-1 tree-based RDMA AllReduce, node P2 with

rank 2 will RDMA write its computed result to the AllReduce block. no 2 of node PO
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Figure 6.7: Reduce Computation at P1 and P2

NN

=

with the allreduce_counter of 1 attached at the end of the data as shown in Figure
6.8.

Figure 6.9 shows node P0O performing the operation on the newly received data
from node P2 and its own computed result obtained in the previous step. The result
of this operation is stored in block no. 2 at PO0.

The result is copied by the root, i.e., node PO to its receive buffer after it is done
with its final computation. The result is broadcasted from this receive buffer to all

the nodes.
6.3.4 Buffer reusing

The blocks can be safely reused by the nodes without any additional messages
being sent. In an AllReduce, the Reduce operation is followed by a broadcast. Con-
sider two consecutive AllReduce operations. In the first operation, the nodes write

the data to the specified destinations. The second AllReduce operation starts only
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Figure 6.8: Step 2 of Degree-1 tree-based RDMA AllReduce
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Figure 6.9: Final Reduce Computation at P0
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after all the nodes have received the broadcasted results of the first operation. Hence,
the nodes can RDMA write the data to the same locations, as the data previously

written has been used for successful computation.

6.4 Selecting the right algorithm using an Analytical Model

For a given set of power of 2 nodes, we have different algorithms available. In this
section, we present an analytical model for Degree-k tree-based RDMA AllReduce,
which enables us to choose the right value of the variable £ on the basis of some
known parameters. We use this generalized model to give an estimate of the degree &
that would be suitable for an All Reduction operation for a certain number of nodes
and a given message size in bytes.

We base the analytical model on the following parameters :
1. Message Size (given in bytes)

2. Total Time taken for performing the Reduction operation for the total count

elements (given as T_operation)
3. The data transmit time (given as T transmit = T_transmit_per_bytes * bytes)
4. DMA Startup time (given as T_startup)

5. Memory Copy Rate (given as T_copy_rate. The total copy time is given as

T_copy)

6. NIC Processing time after the descriptor is posted and data needs to be sent

(given as T_nic)
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We assume that T'_nic is less than T_startup. Also, for large messages, T_operation
is much lesser as compared to T_transmit but the same is not true for very small

messages having a smaller count.
6.4.1 Events in an AllIReduce Message Transfer

A message transfer at the sender side consists of the following events and overhead.
An MPI call is made to do the RDMA write. Hence, there is the overhead due to
the MPI library. We term this overhead as the T_mpi. The data has to be copied to
a registered buffer. Hence, there is a copying cost involved. Some amount of time is
spent in posting the send descriptor. This time is termed as T_descriptor. The data
is then DMAed to the NIC. There is a DMA Startup overhead associated with each
message or frame that is DMAed. The data is then processed by the NIC and sent on
the wire. Thus, at the sender side we have the copying cost, the MPI overhead, the
time for posting a send descriptor, the DMA Startup time and the NIC processing
time

The data is then transmitted to the destination. If many nodes are sending data
to the same destination, the data gets sequentialized at the switch connected to the
destination node.

At the receiver end, the destination NIC receives the data and processes it. It
finds the destination address and the data is DMAed to that address. The host
on receiving the data, performs the reduction operation. Thus at the receiver side,
for every message, we have the NIC processing cost, the DMA startup cost and the

operation cost.
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After performing the required operation with all the received data and obtaining
the result, the data has to be copied to the user specified buffer. This result can then
be broadcasted to all the other nodes.

The analytical model has various cases based on the values of the above parame-
ters. In the following subsections we present the analytical equations with the time
diagrams for all these cases. For all the examples, we consider a Degree-3 tree-based
RDMA AllReduce scheme in a 4 node cluster having processes PO, P1, P2 and P3
with ranks 0, 1, 2, 8 respectively. Hence, the AllReduce operation takes place as
shown in Figure 6.3. It involves one step with P1, P2, P3 sending to PO and all the

operations take place at PO.
6.4.2 Handling Large Messages

Messages where T _transmit > ( T_nic + T_startup), i.e., messages that have trans-
mit time more than the sum of the NIC level processing and DMA startup time are
categorized as large messages.

For large messages, the transmit time is very high. In the Degree-k tree-based
RDMA AllReduce case, the receiver operates on the data on the basis of the rank of
the node sending the data. Hence, if P1, P2 and P3 are sending the data, the receiver
polls for the data from the node with rank 1, namely P1 to arrive first and first
operates on this data. Since, many nodes are sending data to the same destination,
the messages from these nodes get sequentialized at the switch. Since, any message
from any node can arrive first at the destination NIC, there is a fair probability of not
getting the required message when needed. Hence, the analytical model for RDMA

AllReduce gives the best and the worst time estimates.
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The best time estimate assumes that the required data is the first to arrive, the
DMA Startup and the NIC processing can be overlapped with each other.

The worst time estimate assumes that the required data is the last to arrive. It
also assumes that the NIC processing and the DMA Startup can’t be overlapped due
to sharing to the system bus.

To understand this concept, consider a Degree-3 tree-based RDMA AllReduce
scheme in a 4 node cluster, where P1, P2 and P3 write to P0. Figure 6.10 shows the
time line chart for the events that happen at the sender side. Since P1, P2 and P3
send data at the same time, the copying of data, MPI overhead, posting of descriptor,
DMA startup and NIC Processing for the various processes gets overlapped at the
sender side. During this period, the Process P0 is polling for data from Process P1,
which has the rank 1, to arrive. Thus, the sender side cost can be termed by the
parameter T_sender.

Thus, T.sender = (T_copy_rate * bytes) + T-mpi + T_descriptor + T_nic +
T_startup.

Figure 6.11 shows the best case scenario at the receiver end. The message from
P1 arrives first to the switch. When this message reaches node PO, it does the NIC
level processing, DM Aing and starts the reduction operation. The transmission of the
second message happens in parallel with the NIC processing, DM Aing and operation
of the first message. By the time the destination NIC receives the next message, it
has already finished processing the first one. By the time the host process receives
the second message, it has finished the operation on the first one. For large messages,
the T_operation parameter is very small as compared to the T_transmit parameter.

This is the perfect scenario where the time taken at the receiver is ( T_transmit *
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Figure 6.10: Sending side events

No. of Sending nodes) + T-nic + T_startup + T-operation. There is also a copying
cost involved after the operation is done. Hence the total time for the entire Reduce
operation is :
T_sender + (T_transmit * No. of Sending nodes) + T-nic + T_startup +
T_operation + (T_copy_rate * bytes).
The worst case is depicted in Figure 6.12 where the message from P1 reaches last.
PO can start performing the operations only after receiving data from P1. Hence, the
time at the receiver end is given as: (T_transmit * No. of Sending nodes) + T_nic +
T startup + (T_operation * No. of Sending nodes).
Thus, the total time for the entire Reduce operation is :
T _sender + (T_transmit * No. of Sending nodes) + T-nic + T_startup +

(T-operation * No. of Sending nodes) + (T-copy_rate * bytes).
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Figure 6.11: Best case receiver scenario for large messages
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Figure 6.12: Worst case receiver scenario for large messages
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6.4.3 Handling Small Messages

Messages whose transmit time is less than or equal to the sum of the destina-
tion NIC processing and DMA startup time are categorized as small messages, i.e.,
T_transmit <(T_-nic + T_startup).

As the length is less, the number of operations to be done is also less. The events
at the sender side remain the same as shown in Figure 6.10. The events at the receiver
are shown in Figures 6.13 and 6.14. At the receiver side, the messages from various
nodes destined for one node are still sequentialized, however since the amount of data
to be transmitted is less, hence the transmit time is very less. When the transmit time
is less, the operation time T_operation for such messages is also very less. In many
cases, the NIC processing and the DMA startup cost will be the major contributors
of the overhead.

The evaluation of the best cases for small messages are divided into two sections.
We consider that case first where T_transmit <= T_startup and this best case is shown
in Figure 6.13. Here we assume that the NIC processing can be done in parallel with
the DMA Startup and that the required data is always obtained first. Hence, the
message from P1 is the first to reach PO. When P0’s NIC is processing the message,
DMAing it and performing the operation, the message from P2 can be transmitted
and processed. The time taken at the receiver end is given by T_transmit + T_nic +
(T_startup * No. of Sending nodes) + T_operation.

The total time for All Reduce for the best case scenario is :

T sender + T transmit + T.-nic + (T_startup * No. of Sending nodes) +

T_operation + (T-copy_rate * bytes).
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Figure 6.13: Best case receiver scenario for small messages where T _transmit <=
T _startup

The second case is when T transmit > T_startup, as shown in Figure 6.15. The
message from node P1 reaches node PO first. The transmit time and the nic processing
of the second message is overlapped with the first one. However, as T transmit
> T_startup, hence the T _startup time for the second message is delayed till the
T_startup has been completed. The duration of this delay is given as the T_transmit
- T_startup time.

Hence, the best estimate of the receiver time is given by T_transmit + T_nic +
(T_startup * No. of Sending nodes) + ((T-transmit - T_startup) * (No. of Sending
nodes - 1)) + T_operation.

The total time for All Reduce for the best case scenario for T_transmit > T_startup

1S :
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T _sender + T-transmit + T-nic + (T_-startup * No.

of Sending nodes) +

((T-transmit - T_startup) * (No. of Sending nodes - 1)) + T_operation + (T-copy_rate

* bytes).
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Figure 6.14. Worst case receiver scenario for small messages
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If the NIC processing and the DMA Startup can’t be overlapped, then we have a

worse case scenario as shown in Figure 6.14. Here, we also assume that the required

data is the last to arrive. Hence the data sent by Process P3 reaches first and is

processed by the NIC and DM Aed. Meanwhile, the message from node P2 arrives but

it can’t be processed because the NIC is busy processing and DM Aing the first message

received from node P3. So the NIC processing and DM Aing are sequentialized for each

message with no overlap happening. When the data from node P1 arrives, the first

operation is done. Thus the worst case scenario at the receiver end is :
+ (T-nic + T_startup + T_operation) * No. of Sending Nodes.

The total time for the worst case scenario for small messages is :

T_transmat
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Figure 6.15: Best case receiver scenario for small messages where T_transmit > T_startup

T_sender + T_transmit + (T_nic + T_startup + T_operation) * No. of Sending
Nodes + (T_copy_rate * bytes).

The pseudo code for getting the values analytically for the various Degree-k tree-
based RDMA AllReduce algorithms is shown in Figure 6.16.

The variable k£ stands for Degree-k tree-based RDMA AllReduce value,i.e., the
maximum number of nodes from whom a node can receive data in one step. The
function calculates the best and the worst time estimates based on the various pa-
rameters provided. The first while loop iterates for the total number of complete
steps, where complete steps are defined as steps where k£ nodes send to other nodes
in an Degree-k tree-based RDMA AllReduce algorithm.

The second part of the code is called when the number of nodes sending data to
a node is lesser than k. This function works for power of 2 clusters, i.e. when the

variable Nodes is a power of 2 and we are testing for a Degree-k tree-based RDMA
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Quotient = Nodes/(k+1);
T_transmit = bytes * T_transmit _per_byte;
Best_time = Worst_time = 0;

while (Quotient = 0) {
Sender_side = T_mpi + T_descriptor + T_startup + T_nic
If (T_transmit> ( T_startup + T_nic) ) then
Receiver_side = ( T_transmit * Nodes ) + T_startup + T_nic + T_operation
Best_time += Sender_side + Receiver_side ;
Worst_time += Sender_side + Receiver_side + T_operation* (k —1)
else If (T_transmit < (T_startup + T_nic) ) then
If (T _transmit< T_startup ) then
Receiver_side = T_transmit + T_nic + (T_startup * k) + T_operation
else
Receiver_side = T_transmit + T_nic + (T_startup * k) + (T_transmit — T_startup) * (k—1) + T_operation
Best_time += Sender_side + Receiver_side
Worst_time += Sender_side + Receiver_side + (T_nic + T_operation ) * (k — 1)
Endif
Endif
Dividend = Quotient ;
Quotient = Dividend/(k+1);
Remainder = Dividend % (k+1)
End- while

If (Remainder != 1) then
Sender_side = T_mpi + T_descriptor + T_startup + T_nic
If ( T_transmit > ( T_startup + T_nic) ) then
Receiver_side = ( T_transmit * ( Remainder — 1) )+ T_startup + T_nic + T_operation
Best_time += Sender_side + Receiver_side
Worst_time += Sender_side + Receiver_side + T_operation * ( Remainder — 2)
else if (T_transmit < ( T_startup + T_nic ) ) then
If (T_transmit < T_startup ) then
Receiver_side = T_transmit + T_nic + (T_startup * (Remainder —1)) + T_operation

else
Receiver_side = T_transmit + T_nic + (T_startup * (Remainder -1)) +
+ (( T_transmit — T_startup) * (Remainder -2 ) ) + T_operation

Best_time += Sender_side + Receiver_side ;
Worst_time += Sender_side + Receiver_side + ( T_nic + T_operation) * (Remainder — 2)

Endif

Endif
Endif

Worst Time += ( bytes * T_copy_rate ) * 2
Best_Time +=(bytes* T_copy_rate ) * 2

Figure 6.16: Pseudo code for Optimal All Reduce Algorithm
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AllReduce where the value of k is a power of two - 1 and k < Nodes. It gives us the
best and the worst estimates between which the actual values might lie.

On comparing the analytical values with the practical ones observed, we conclude
that the results obtained have a maximum error rate of 8% from the best value and

the worst value. We show some of the results in the performance section.

6.5 Performance Results

In this section, we discuss various results related to RDMA AllReduce. We start
with a comparison between the current binomial message passing algorithm in mvich-
1.0 and the Degree-1 tree-based RDMA AllReduce scheme. We than compare various
Degree-k tree-based RDMA AllReduce algorithms for different cluster sizes and mes-
sage sizes and different values of k. We also give a comparison between the current
binomial message passing algorithm and an assorted combination of Degree-k tree-
based RDMA AllReduce algorithm for different cluster sizes and different number of
bytes. We also compare various Degree-k tree-based RDMA AllReduce with similar
Degree-k tree-based message passing AllReduce algorithms.

For all our timings, we use a cluster of 16 nodes, each with a 33MHz PCI bus,
1000MHz Pentium III machines, 512MB of Main memory and Linux version 2.2.17.
The machines are connected using a GigaNet 5300 switch.

The timings were obtained by running 5000 iterations of AllReduce and taking
the average of the iterations over all nodes. The operation used is MPI_SUM, the
datatype MPI_INT of size 4 bytes and the count of the elements was varied from 1

(4 bytes) to 1024 ( 4096 bytes)
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6.5.1 Binomial message passing vs Degree-1 tree-based RDMA
AllReduce Scheme

The mvich-1.0 implementation of the MPI standard uses the binomial algorithm to
implement the Reduce part of the AllReduce operation in message passing. The bino-
mial algorithm happens to be the same as the Degree-1 tree-based RDMA AllReduce
scheme. Both algorithms take log(N) steps for the Reduce operation for a cluster of
size N. In each step only one node sends the data to any one destination. The results
of the comparison are shown in Figure 6.17. The results are taken for a cluster of
16 nodes. As seen in the Figure, the Degree-1 tree-based RDMA AllReduce scheme
shows around 20.73% benefit for smaller messages of 4 bytes and around 9.32% for

larger messages.
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Figure 6.17: Comparison between Current message passing AllReduce and Degree-1 tree-
based RDMA AllReduce scheme
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6.5.2 Degree-k tree-based RDMA AllReduce Algorithms -
Actual Performance

We have various Degree-k tree-based RDMA AllReduce algorithm for a cluster of
power of 2 size.

For a 16 nodes cluster, we implemented Degree-1, Degree-3, Degree-7 and Degree-
15 tree-based RDMA AllReduce schemes. Some of these algorithms perform better
than others for different message sizes. For example, in Figure 6.18, we see the
timings for 16 nodes with byte size ranging from 4 (1 count element in AllReduce) to
512 (128 count element in AllReduce). The timings are taken for MPI_AllReduce()
operation which has the Degree-k tree-based RDMA AllReduce Algorithm followed
by the RDMA Broadcast algorithm.

In Figure 6.19, we see the timings for 16 nodes with byte size ranging from 512
(128 integer element in AllReduce) to 4096 (1024 integer element in AllReduce). From
both the graphs, we see that Degree-3 tree-based RDMA AllReduce performs better
than the other algorithms for message size up-to 1024 bytes.

In the latter graph, we observe that Degree-1 tree-based RDMA AllReduce starts
winning over the other algorithms for larger messages (above 1K to 5K). This is be-
cause in the Degree-3 tree-based RDMA AllReduce case, 3 nodes write to 1 node and
3 operations are done at the receiving node. As the data size increases, the number
of operations increase and computation becomes very expensive and hence Degree-
1 tree-based RDMA AllReduce fares better because in Degree-1 tree-based RDMA
AllReduce, the operations are distributed to a greater section of the nodes. Degree-15

tree-based AllReduce shows poor performance especially for larger messages because
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of the cost of doing all the operations at a single node and because all nodes are

sending messages to a single node, thereby causing contention at the switch.
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Figure 6.18: Degree-k tree-based RDMA AllReduce Performance comparison for a 16
node cluster for message size (4 to 512 bytes)

For an 8 node cluster, we have Degree-1, Degree-3 and Degree-7 tree-based RDMA
AllReduce schemes. In Figure 6.20, we see that Degree-7 tree-based RDMA AllReduce
performs the best for smaller messages till 256 bytes, but as the message size increases
above 512 bytes, Degree-3 tree-based RDMA AllReduce starts performing better. But
as shown in Figure 6.21 for larger messages beyond 1024 bytes, the Degree-1 tree-based
RDMA AllReduce scheme proves to be the best. The Degree-7 tree-based RDMA
AllReduce does not give this good performance in a 16 node cluster for smaller bytes

because we need an extra step in a 16 node cluster which adds to the latency of the

AllReduce operation.
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Figure 6.19: Degree-k tree-based RDMA AllReduce Performance comparison for a 16
node cluster for message size (1024 to 4096 bytes)
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Figure 6.20: Degree-k tree-based RDMA AllReduce Performance comparison for a 8 node
cluster for message size (4 to 512 bytes)
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Figure 6.21: Degree-k tree-based RDMA AllReduce Performance comparison for a 8 node
cluster for message size (1024 to 4096 bytes)

6.5.3 The Degree-k tree-based RDMA AllReduce Analytical
model

In this section, we present the results of the Analytical model presented in Figure
6.16 in previous subsection. We show the best and the worst estimated timings for
a 16 node cluster for messages from 4 bytes to 4096 bytes. We also compare these
timings with the actual ones obtained.

The results for Degree-1, Degree-3, Degree-7 and Degree-15 are presented in this

section. The following values have been given to the aforementioned parameters which

are a part of the analytical model
1. T_transmit_per_bytes = 0.010 us
2. T_startup = 2us

3. T_copy_rate = 0.027us
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4. T nic = 1.52us
5. T_descriptor = 0.6us
6. T_-mpt = 1.3us

T _transmit and T_operation are calculated depending on the total number of bytes

and count of the operation.
Figure 6.22 and 6.23 show the worst and best analytical timings and the actual

practical timings for Degree-15 tree-based RDMA AllReduce for 16nodes with smaller

and higher data size.
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Figure 6.22: Degree-15 tree-based RDMA AllReduce Analytical and Practical comparison
for smaller bytes(4-256 bytes) bytes

We see that for all data size the actual values lie between the best and the worst
case estimated value. The greatest error rate is around 7.8% for 512 bytes. All other

error rates, if any, lie below 2%.
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Figure 6.23: Degree-15 tree-based RDMA AllReduce Analytical and Practical comparison
for smaller bytes(512-4096 ) bytes
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Figure 6.24: Degree-7 tree-based RDMA AllReduce Analytical and Practical comparison
for smaller bytes(4-256 bytes) bytes
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Figure 6.25: Degree-7 tree-based RDMA AllReduce Analytical and Practical comparison
for smaller bytes(512-4096 ) bytes

Figures 6.24 and 6.25 show the timings for the same configuration but now with a
Degree-7 tree-based RDMA AllReduce. We see a slight deviation of the actual values
from the best and the worst cases, for small data size. However, the error rate of
deviation from estimation is still below 3%.

Figures 6.26, 6.27, 6.28 and 6.29 show the timings for Degree-3 tree-based RDMA
AllReduce small and higher values of bytes and Degree-1 tree-based RDMA AllReduce
small and higher values of bytes.

The maximum error rate for Degree-3 tree-based RDMA AllReduce is about 4.3%
for 4 bytes and around 6.21% for Degree-1 tree-based RDMA AllReduce again for 4
bytes.

The analytical results are thus found to give a rough estimate about the optimal

algorithm. Thus for 16 nodes, for small data size like 4 bytes, the analytical model
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Figure 6.26: Degree-3 tree-based RDMA AllReduce Analytical and Practical comparison
for smaller bytes(4-256bytes) bytes
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Figure 6.27: Degree-3 tree-based RDMA AllReduce Analytical and Practical comparison
for smaller bytes(512-4096 ) bytes
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Figure 6.28: Degree-1 tree-based RDMA AllReduce Analytical and Practical comparison
for smaller bytes(4-256 bytes) bytes
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Figure 6.29: Degree-1 tree-based RDMA AllReduce Analytical and Practical comparison
for smaller bytes(512-4096 ) bytes
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gives Degree-4 tree-based RDMA AllReduce scheme as the optimal algorithm which
we verified practically. For larger messages, the analytical model clearly shows Degree-
1 tree-based RDMA AllReduce to be the most optimal one

On the basis of the results obtained, we can give a rough estimate on the optimal
algorithms that can be chosen for various configuration and data sizes.

We summarize the results in Figure 6.30. For a cluster of 4 nodes, the Degree-3
tree-based RDMA AllReduce algorithm performs well for smaller messages till 1024
bytes. The Degree-3 tree-based RDMA AllReduce gives good performance for smaller
messages in the 16 node and also in the 8 node cluster. But, in the 8 node cluster,
we see that we obtain a slightly improved performance if we use Degree-7 tree-based
RDMA AllReduce for very small messages. For larger messages above 1024 bytes,

the Degree-1 tree-based RDMA AllReduce always gives the best performance.

Degree — 3 Degree — 3 Degree - 1
16 Nodes | 3
8Nodes | Degree -7 Degree - 3 Degree - 1
4 Nodes Degree — 3 Degree — 3 Degree - 1

4 - 256 bytes Between 256 and 1024bytes beyong 1024 bytes

Figure 6.30: Choosing the Optimal algorithm for varying configuration
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Thus we can generalize by saying that a Degree-3 tree-based RDMA AllReduce
algorithm should give good performance for smaller data size (from 4 to 1024 bytes)
and a Degree-1 tree-based RDMA AllReduce scheme can be used for larger data sizes
while implementing the Reduce part of the AllReduce collective operation.

6.5.4 Degree-k tree-based message passing AllReduce Algo-
rithms

In one of the previous sections we showed a comparison of the various Degree-k
tree-based RDMA AllReduce Algorithms for a 16 node and an 8 node cluster. In
this section, we show a comparison of the various Degree-k tree-based message pass-
ing AllReduce algorithms. The Degree-k algorithms basically remain the same, but
instead of RDMA write, we now communicate through send and receive primitives.
Thus in a Degree-3 tree-based message passing AllReduce scheme, three nodes send
the data to a single node using send primitives and one node receives the data from
all the three by using separate receive primitives.

Figure 6.31 and Figure 6.32 shows the comparison for Degree-1, Degree-3, Degree-7
and Degree-15 tree-based message passing AllReduce algorithms for data size ranging
from 4-512 bytes and 512-4096 bytes respectively for a 16 node cluster. We see that
degree-3 tree-based scheme performs the best from 4 to 512 bytes. Beyond 512 bytes
the degree-1 scheme performs most optimally.

The current MVICH library uses Degree-1 tree-based scheme (Binomial algorithm)
for message passing for implementing broadcast. Hence, the Degree-3 tree-based mes-
sage passing scheme shows better performance than the current MVICH implemen-

tation.
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Figure 6.31: Comparison between various Degree-k tree-based message passing AllReduce
schemes in a 16 node cluster (4-512 bytes)
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Figure 6.32: Comparison between various Degree-k tree-based message passing AllReduce
schemes in a 16 node cluster (512-4096 bytes)
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Figure 6.33: Comparison between various Degree-k tree-based message passing AllReduce
schemes in a 8 node cluster (4-512 bytes)
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Figure 6.34: Comparison between various Degree-k tree-based message passing AllReduce
schemes in a 8 node cluster (512-4096 bytes)
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Figure 6.33 and Figure 6.34 shows the comparison for Degree-1, Degree-3 and
Degree-7 tree-based message passing AllReduce algorithms for data size ranging from
4-512 bytes and 512-4096 bytes respectively for a 8 node cluster. We see that for a
8 node cluster, the Degree-7 performs most optimally from 4-128 bytes. For a data
size between 128 and 512 bytes, Degree-3 performs the best and for larger data sizes
beyond 512 bytes, Degree-1 performs most optimally.

6.5.5 Optimal Degree-k tree-based RDMA AllReduce vs Op-
timal Degree-k tree-based message passing AllReduce

The previous section showed a comparison of the various Degree-k tree-based
message passing AllReduce schemes. In this section, we compare the most optimal
Degree-k tree-based message passing AllReduce with the most optimal Degree-k tree-
based RDMA AllReduce.

Figure 6.35 shows the comparison of the most optimal Degree-k tree-based RDMA
AllReduce with the most optimal Degree-k message passing AllReduce for a 16 node
cluster.

For 16 node cluster with RDMA AllReduce, Degree-3 tree-based RDMA AllRe-
duce performs the best for data size till 1K and Degree-1 tree-based RDMA AllReduce
gives the best performance for data size above 1K.

However, for 16 nodes with message passing AllReduce, Degree-3 tree-based mes-
sage passing AllReduce scheme gives good performance till 512 bytes. Beyond 512
bytes, Degree-1 tree-based message passing AllReduce gives good performance.

We see in Figure 6.35 that the Degree-k tree-based RDMA AllReduce scheme
performs better than the Degree-k tree-based message passing AllReduce scheme for

16 nodes. We see a 23.8% benefit for smaller messages of 4 bytes, when we use
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Figure 6.35: Comparison between optimal Degree-k tree-based RDMA and optimal
Degree-k tree-based message passing AllReduce schemes in a 16 node cluster

the RDMA scheme. For larger data size, we see that Degree-1 tree-based RDMA
AllReduce gives a 9% improvement over the Degree-1 tree-based message passing
AllReduce. This benefit obtained in RDMA AllReduce is entirely due to the RDMA
mechanism.

For 8 nodes, in RDMA AllReduce, we saw from the previous sections that Degree-
7 performs the best for small data size from 4-128 bytes, between 128-1024 bytes
Degree-3 performs the best and beyond 1K its Degree-1 RDMA AllReduce which
performs the best. For Degree-k message passing AllReduce, we saw in the previous
section that the trend almost remains the same except that Degree-1 message passing
AllReduce performs most optimally beyond 512 bytes.

The comparison for the most optimal Degree-k RDMA AllReduce and Degree-k

RDMA message passing AllReduce is seen in Figure 6.36. We see that the RDMA
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AllReduce always performs better than the message passing AllReduce. We see a
27.5% benefit for 4 bytes and 9.13% benefit for 4096 bytes. This benefit is again at-
tributed to the RDMA mechanism because of which we can eliminate the unnecessary

memory copies.
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Figure 6.36: Comparison between optimal Degree-k tree-based RDMA and optimal
Degree-k tree-based message passing AllReduce schemes in a 8 node cluster

6.5.6 Optimal Degree-k tree-based RDMA AllReduce vs Bi-
nomial message passing AllReduce

The comparison of our best Degree-k tree-based RDMA AllReduce algorithms
with the message passing binomial algorithm is shown in Figure 6.37. We see that for
a 16 node cluster, we obtain a 38.13% benefit for 4 byte messages, when we use the
Degree-3 tree-based RDMA AllReduce. For larger messages of 4K, we get a 9.32%

improvement on using the optimal Degree-1 tree-based RDMA AllReduce scheme.
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Figure 6.37: Comparison between binomial message passing and the most optimal Degree-
k tree-based RDMA AllReduce schemes for a 16 node cluster

The same trend is shown for the 8 node cluster in Figure 6.38. We obtain 38.06%
for smaller 4 byte messages on using Degree-7 tree-based RDMA AllReduce and 9.1%

for datasize of 4096.
The benefits obtained are due to an optimal algorithm implemented with an effi-

cient RDMA mechanism.
6.6 Summary

In this chapter, we introduced a scheme called Degree-k tree-based AllReduce for
an efficient RDMA AllReduce implementation. We evaluated the best RDMA AllRe-
duce implementations against the current binomial message algorithms and got per-
formance benefit of 38.13% for 4 byte message for a 16 node cluster and around 9.32%

benefit for a 4K bytes for 16 node cluster. To ensure fairness, we implemented the
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Figure 6.38: Comparison between binomial message passing and the most optimal Degree-
k tree-based RDMA AllReduce schemes for a 8 node cluster

Degree-k tree-based RDMA All Reduce algorithms using message passing. The op-
timal Degree-k tree-based message passing AllReduce schemes were compared to the
most optimal Degree-k tree-based RDMA AllReduce algorithms. We saw a perfor-
mance benefit of 23.8% for smaller datasize of about 4 bytes and around 9% for data
size of 4096 bytes for 16 nodes. This proves that the benefits obtained in our RDMA
AllReduce scheme are not only because of the new algorithms but also because of the
RDMA scheme. We also developed and presented an analytical model to obtain the
AllReduce latencies for various Degree-k tree-based RDMA AllReduce algorithms,
so that to enable the developer to choose the most optimal algorithm for its cluster

configuration.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we introduced a novel method to implement the collective communi-
cation operations. We used the Remote Memory Write concept, to give an illusion of
shared address space to implement an RDMA based collective communication library
on VIA based clusters.

We discussed the design issues that would be the basis of such an implementa-
tion. We discussed the buffer management issues which included buffer registration,
initialization and safe reusing. We discussed techniques for the receiver node to verify
data validity for data intensive operations. Collective communication operations fall
in 3 categories namely synchronization, data distribution and global reduction. We
have implemented the Barrier, Broadcast, AllReduce each belonging to one of the
aforementioned categories.

First, we provided a RDMA barrier as an alternative to the message passing
barrier. We explained the design issues and buffer management details that would
be a part of RDMA implementation. The barrier represented the simplest of all the
collective operations because it did not involve any data transfer. The RDMA barrier,
implemented using pair-wise exchange with recursive doubling gave a 30% benefit on
a 16 node cluster as compared to the current message passing barrier.
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Next, we implemented RDMA Broadcast, a data distribution operation. Here,
we explored the various mechanisms that can be used to validate the receiver data
at the destination node. We explored issues related to buffer registration, buffer
address exchange and buffer reuse, all of which will play an important part in any
RDMA implementation of a data intensive collective operation. The RDMA binomial
broadcast gave a 14.4% benefit for 16 nodes for 4608 bytes as compared to the binomial
message passing broadcast algorithm

Lastly, we implemented the AllReduce operation. We introduced a new concept
of degree-k tree based AllReduce algorithms which when combined with the RDMA
mechanism give improved performance as compared to the message passing algorithms
based on the point-to-point communication model. We also presented an analytical
model that gave an estimation of the most optimal degree-k tree based AllReduce
algorithm that can be used for a given cluster and data size. The results obtained
by the analytical model had an error rate below 8% and the results estimated by
it matched the practical ones obtained. A comparison of the most optimal degree-k
tree-based RDMA AllReduce with the message passing binomial AllReduce gave us
a benefit of about 38.13% benefit for a small data size of 4 bytes and about 9.32% for
data size of 4K bytes for a 16 node cluster. We also compared the most optimal degree-
k tree-based RDMA AllReduce with the most optimal degree-k tree-based message
passing AllReduce to emphasize on the contribution of the the RDMA mechanism in
the above results.

We have presented the basic issues in designing a RDMA based collective commu-
nication library and demonstrated its effectiveness with prototype implementations

for frequently used collective communication operations. However, before such a
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library can be practically implemented, in-depth analysis of the global buffer man-
agement for all collective operations needs to be done. Efficient algorithms dealing
with user-defined communicators used in conjunction with these collective operations
need to be explored. We have worked with the RDMA write feature of VIA, however
various protocols provide the RDMA read feature which can be exploited to support
collective operations even better. Our Degree-3 tree-based message passing scheme
shows better performance for smaller bytes than the current MVICH binomial mes-
sage passing broadcast algorithm. Thus, an analysis can to be made in order to check
the feasibility and advantages of having such dual algorithms for different data sizes
for the message passing broadcast operation in the MVICH implementation.

All the RDMA based algorithms in this thesis are written at a portable MPI level.
MPI-1.0 standard provided no primitives for Get and Put operations. However, MPI-
2.0 does provide these primitives and it will be interesting to explore how RDMA
collective operations can exploit these primitives and their implementations.

The work done in this thesis discussed the RDMA collective operations on a cluster
of uniprocessor nodes. However, work has been done in collaboration with The Pacific
Northwest National Laboratories to extend this concept to a cluster of SMP nodes.
Combining the RDMA write scheme with a scheme to exploit shared memory in an
SMP, we have developed a fast barrier algorithm for a cluster of SMP nodes [12]. The
results obtained by the fast barrier are encouraging and more work is being done in
the direction of extending the concepts to other collective operations

Lastly, we have worked with only three collective operation. An effort has to be
made to provide RDMA support for all the other collective operations, as defined by

the MPI Standard.
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