
Beyond Block I/O: Rethinking Traditional Storage Primitives ∗

Xiangyong Ouyang†‡, David Nellans†, Robert Wipfel†, David Flynn†, Dhabaleswar K. Panda‡
† FusionIO and ‡The Ohio State University

Abstract

Over the last twenty years the interfaces for access-
ing persistent storage within a computer system have re-
mained essentially unchanged. Simply put, seek, read and
write have defined the fundamental operations that can be
performed against storage devices. These three interfaces
have endured because the devices within storage subsys-
tems have not fundamentally changed since the invention
of magnetic disks. Non-volatile (flash) memory (NVM) has
recently become a viable enterprise grade storage medium.
Initial implementations of NVM storage devices have cho-
sen to export these same disk-based seek/read/write inter-
faces because they provide compatibility for legacy appli-
cations. We propose there is a new class of higher order
storage primitives beyond simple block I/O that high per-
formance solid state storage should support.

One such primitive, atomic-write, batches multiple I/O
operations into a single logical group that will be per-
sisted as a whole or rolled back upon failure. By moving
write-atomicity down the stack into the storage device, it
is possible to significantly reduce the amount of work re-
quired at the application, filesystem, or operating system
layers to guarantee the consistency and integrity of data.
In this work we provide a proof of concept implementa-
tion of atomic-write on a modern solid state device that
leverages the underlying log-based flash translation layer
(FTL). We present an example of how database manage-
ment systems can benefit from atomic-write by modifying
the MySQL InnoDB transactional storage engine. Using
this new atomic-write primitive we are able to increase
system throughput by 33%, improve the 90th percentile
transaction response time by 20%, and reduce the volume
of data written from MySQL to the storage subsystem by
as much as 43% on industry standard benchmarks, while
maintaining ACID transaction semantics.

1 Introduction
Storage interfaces have remained largely unchanged for

the last twenty years. The abstraction of reading and writ-
ing a 512B block to persistent media has served us well

∗This work was supported in parts by NSF grants CCF-0621484, CCF-
0916302, and CCF-0937842.

but the advent of non-volatile memory (NVM) has pro-
duced a flood of new storage products which no longer
rely on spinning magnetic media to persist data. The dom-
inant NVM technology in use today, NAND Flash [19],
has performance characteristics that are dissimilar to prior
storage media. There are many benefits to NVM technolo-
gies, such as fast random reads and low static power con-
sumption. However asymmetric read/write latency and low
write-durability do not allow a simple linear mapping of a
logical block address (LBA) onto a physical block address
(PBA) if high throughput and enterprise class data integrity
are desired.

Most high capacity solid state storage (SSS) devices im-
plement a logical to physical mapping within the device
known as a flash translation layer (FTL) [15]. The design
of this FTL has direct implications on the performance and
durability of the SSS device and significant effort [10, 11,
17, 20, 21] has gone into optimizing the FTL for perfor-
mance, power, durability, or a combination of these proper-
ties. Optimization of the FTL is often a complex co-design
of hardware and software where, at the highest level, the
input to the FTL is a logical block address (LBA) and the
output is commands to the NAND-flash media on which
the data is stored. The LBA read/write interface to the FTL
is a simple way to interact with SSS devices. However,
these legacy interfaces force solid state storage to behave
merely as a very fast block device; ignoring any potential
value or optimizations that could be provided by utilizing
unique aspects of the flash translation layer’s management
of the physical device. We believe the time has come for
additional I/O interfaces to be defined that can leverage the
FTL to provide new and interesting storage semantics for
applications.

In this work we propose one such native storage in-
terface, atomic-write, that allows multiple I/O operations
to be issued as a single atomic unit with rollback sup-
port. We implement atomic-write by leveraging the log
based mapping layer within an existing FTL and show that
this new interface can provide additional functionality to
the application with no performance penalty over tradi-
tional read/write interfaces. We target database manage-
ment systems (DBMS) as a driving application in need
of atomic-write and modify MySQL’s InnoDB storage en-



Figure 1. Moving the Atomic-Write Primitive Into The Storage Stack

gine to leverage this new functionality. Using atomic-
write we are able to achieve speedups of as much as 33%
for the industry standard TPC-C and TPC-H benchmarks.
Atomic-write enables a dramatic change in MySQL’s I/O
patterns required to implement ACID transaction seman-
tics, reducing the need for write-bandwidth by as much as
43%. In addition to improving performance, reducing un-
necessary writes has the secondary effect of doubling de-
vice longevity due to wearout, eliminating a major barrier
to solid state storage adoption in the enterprise market [22].

The examples with MySQL demonstrate the potentials
of atomic-write to improve DBMS efficiency while signif-
icantly reducing its complexity. Moreover, this new prim-
itive can transparently benefit a wide spectrum of data-
intensive applications that require high data consistency
and durability. One such example is the hybrid-disk [18],
which associates a solid state device to a hard disk to cache
the most recently accessed data for fast retrieval. In such
an scenario data integrity is required as well as high per-
formance. Atomic-write will be able to unleash the full
capacity of the solid state device with data consistency war-
ranted.

Atomic-write is just one of many potential optimiza-
tions that can be made by recognizing that log based flash
translation layers can provide synergies with many hard
to solve problems at the application level. Discard, also
known as trim [8, 9], was the first storage interface pro-
posed for applications to communicate higher order I/O
intentions to SSS. The storage device could then utilize
these application provided hints to optimize allocation and
performance. Atomic-write takes a similar approach and
exposes a new storage interface in the hope that filesys-
tems, databases, and other applications will leverage this
as a building block of transactional systems. By expos-
ing the potential value of one such interface, atomic-write,
we hope to encourage the computer architecture commu-
nity to begin investigating other possible storage interface
optimizations beyond simple block I/O.

2 Motivation

The goal of computer architecture is to improve com-
plex systems for real world application benefit. Yet in many
cases a system architect is too far removed from the details
of application design that information is lost or artificial
constraints are imposed that hinder overall improvement.
We took the opportunity as storage architects to examine
mechanisms that exist to support many classes of applica-
tions, with the goal of making a general improvement. One
common application method is the transaction.

Transactional semantics provide a powerful approach
to achieving data integrity as well as concurrency con-
trol and crash recovery. The ACID (Atomicity, Consis-
tency, Isolation and Durability) properties [14] which de-
fine a strong form of transactional semantics, are highly
utilized within many applications, such as filesystems, web
services, search engines and scientific computing. Tradi-
tionally, supporting transactional semantics has been the
primary role of database management systems (DBMS),
through the interplay of logs, locks, buffers, and process
management. This is well-suited for enterprise applications
where the entire system design can be architected from start
to finish. However many applications have different stor-
age requirements that do not fit well with the DBMS in-
terface because for efficient access they must control their
own data layout and data access mechanisms.

Many studies have been carried out to embed transac-
tional support into portions of the operating system such as
the filesystem [13, 27–29, 34] or inside a specialized kernel
module [24, 26, 32]. Figure 1 shows the traditional loca-
tions of transaction managers within the storage stack. This
is a convenience feature that allows applications to take ad-
vantage of pre-existing transactional semantics without in-
curring the complexity and overhead of relying on a full
DBMS.

All these transaction managers, regardless of being a
DBMS or embedded, are built on the assumption that a



small data unit can be atomically written to persistent stor-
age. This unit of data has historically been a single sector
within one block device, a byproduct of the physical device
design. As a result, complicated protocols have been de-
signed to chain multiple datum together into useful logical
groups, provide data version control across these groups,
and allow failure recovery to a known state if the program
should crash during the read or writing of these groups.

With the advent of solid state storage, we are now
equipped with the capability to redesign this cornerstone
of a transactional system. By exploiting the inner work-
ings of the flash translation layer, we are able to extend
the conventional write semantics, which only guarantees
atomicity for writing one piece of data, to a more general
scenario: atomically write multiple non-contiguous pieces
of data into persistent storage. Moving the atomic-write
primitive out of user space libraries and operating system
implementations into the FTL as shown in Figure 1,

In this work, we target the MySQL InnoDB storage en-
gine as a key example of a widely used ACID compli-
ant transaction manager. By modifying InnoDB to utilize
the new atomic-write storage primitive, we show any ap-
plication utilizing MySQL will achieve a significant per-
formance advantage while still maintaining ACID compli-
ance. Re-architecting applications to leverage a storage
primitive is substantial work, but in this paper we argue
that the gains in performance and decreased data band-
width will be worth the effort.

The rest of the paper is organized as follows. In Sec-
tion 3 we describe how atomic-write can be implemented
efficiently within a log based FTL. Section 3.3 discusses
why atomic-write implemented within the FTL layer is
fundamentally more efficient than higher level implemen-
tations. We describe the modifications to MySQL that al-
low it to take advantage of atomic-write in Section 4. Re-
lated work and experimental methodology are presented in
Sections 5 and 6.1. Experimental results are described in
Section 6, showing the efficiency of our atomic-write im-
plementation and how atomic-write affects several indus-
try standard database benchmarks. Finally, we present our
conclusions on the value of atomic-write primitives in Sec-
tion 7.

3 FTL Implementation of Atomic-write

Many of today’s advanced solid state storage devices
employ a variation of a log structured file system [25]
when implementing their flash translation layer (FTL).
In log based designs all writes to the media are se-
quentially appended to the tail of the log and a sepa-
rate garbage collection thread is responsible for reclaim-
ing deleted/superseded sectors from the head of the log.
Log based designs work well for NAND-flash based de-
vices because the slow erase time of physical blocks is no
longer on the critical path for write operations. To imple-

ment a log based system, the FTL manages a mapping of
logical (LBA) to physical block addresses (PBA). Thus,
when a logical block is overwritten, the mapping must be
updated to point to the new physical block, and the old
block must be marked in the log as available for grooming.
The garbage collector will eventually erase the block for
re-use. Generally, this mechanism works well to provide
efficient read and write access to NAND-flash based de-
vices. However it’s not able to provide an arbitrarily sized
atomic-write guarantee for two reasons:

• A write request may contain data that spans multiple
contiguous physical blocks within the NAND-flash.
Each physical block within NAND-flash must be pro-
grammed as a separate unit, thus requiring iterative or
parallel programming, which isn’t an atomic opera-
tion.

• If multiple sectors are being iteratively written and a
system failure occurs, some blocks may be completely
written, one block may be partially written, and others
will be un-written. The failure recovery process must
be able to identify both fully written blocks which
should not have been committed, as well as partially
written blocks. Incorrect identification of these blocks
will result in them being marked as valid within the
log, and the superseded data will be erased making
future recovery impossible.

In order to overcome these limitations we extend the
implementation of a log based FTL to support tracking
of committed and uncommitted blocks and the necessary
crash recovery semantics that utilize this tracking informa-
tion.

3.1 Event Log Tracking of Atomic-Writes

Figure 2 provides an example of the tracking methodol-
ogy we use within the log to identify physical blocks that
are part of an atomic-write; we augment the PBA associa-
tion with a single bit per block to track if any given block
is part of an atomic-write operation. Because traditional
single block writes are always atomic, this flag is set to “1”
for any normal write operation. When the first sector of an
atomic-write begins this flag is set to “0”, any subsequent
physical blocks written as part of the atomic-write opera-
tion are also marked as “0”, until the final block is handled
which will again be marked with the flag set to “1”. As a
result, the bit tracking fields in the log for an atomic-write
form a sequence that’s very easy to identify. For exam-
ple, if an atomic-write consists of 3 sectors, then the flag
sequence is “001”, as shown in Figure 2.

For this implementation it is a requirement that all
blocks belonging to an atomic-write are in contiguous lo-
cations within the event log. As a result, data blocks
from other write requests are not allowed to interleave with
atomic-writes. The benefit of this requirement is that any



Figure 2. Implementing Atomic Write Within a Log Based FTL

atomic transaction can be easily identified as incomplete if
it is not ended by a physical block tagged as “1”. We rec-
ognize that serializing atomic-writes in the data stream is
undesirable, however in practice we have found that there
is very little downside to this design choice since appli-
cations using atomic-write semantics recognize that large
transactions are costly, and thus try to minimize transaction
size. Armed with a method of identifying atomic-writes,
we must still guarantee that superseded data is not garbage
collected from the log before blocks within an atomic-write
have been fully committed, and that upon crash recovery
the uncommitted atomic-write blocks are removed from the
log.

3.2 Delayed Garbage Collection and
Crash Recovery

Simply modifying the tracking within the log is not
enough to allow rollback to the previous version of data
should a write-failure occur. As illustrated in Figure 2,
the LBA to PBA mapping table must also be aware of
atomic-write semantics since this mapping defines what
data is valid, discarded, and superseded, making it avail-
able for garbage collection. To prevent valid data from be-
ing garbage collected before an atomic-write is fully com-
mitted, we simply delay updating this range encoded map-
ping table until the physical data has been committed to the
log. By delaying the mapping table update, previous ver-
sions of data will never be erased by the garbage collector
until a fully committed atomic-write group is on physical
media. In the event of a crash recovery in which the phys-
ical blocks were written to disk but the mapping table was
not updated, the mapping table can be completely recreated
from the log.

During crash-recovery, the log is examined starting at
its tail. If the first block contains a “1” then we can safely
conclude the storage device was not left in an inconsistent
state. If a failure happens in the middle of an atomic-write,
we know the log will contain several blocks marked “0”
with no “1” preceding it (on the tail). Thus, if the last block

written to the log has a “0” flag, we have encountered an
incomplete atomic-write. We must then scan backwards,
finding all blocks with flag “0” until we encounter the first
block with the flag set to “1” which marks the last previous
successful completion of either a normal write, or previ-
ous atomic-write. All blocks marked with “0” flag must be
discarded from the log. Once the tail of the log has been
cleaned of any failed atomic-write, a full scan of the log
beginning at the head allows us to rebuild the most recent
valid data.

Combining the log bitmask, delayed mapping table up-
date/invalidate, and log tail examination upon crash recov-
ery allows us to fully implement atomic-write semantics
within our log based FTL.

3.3 Placement Within The Storage Stack
The concepts we use to implement atomic-write in Sec-

tions 3.1 and 3.2 have been explored in many other con-
texts [25, 27, 34]. There are also alternative ways one might
implement atomic-write within the storage stack. For in-
stance, ZFS [7] provides a strong guarantee that a write to
the filesystem is always atomic by using a copy-on-write
model. Other filesystems, such as ext2/3/4 allow files to
be opened in append-only mode. Append-only allows the
filesystem to guarantee that data in the file will never be
overwritten or truncated. These files also grow indefinitely,
requiring application control to open the file in a different
mode (RW) to eliminate old copies of data which will no
longer be referenced. An application could then implement
its own tracking of data, much like our log based imple-
mentation, to track the most recent copy of data structures
written within the file.

The common thread among these high level implemen-
tations of atomic-write is that they fundamentally rely on
creating multiple copies of on-disk storage, so that previous
versions are not over-written. We identify the key insight
in this work: Log based Flash Translation Layers already
maintain multiple copies of data within the storage device,
thus there is no need to duplicate this effort to implement



Figure 3. MySQL Disk Accesses to Guarantee Data Integrity

atomic-write at higher levels in the storage stack. As we
will show in Section 6, by moving atomicity semantics into
the log based FTL the amount of data being written to disk
decreases substantially and as a result can substantially im-
prove performance for applications relying on transactional
semantics.

4 Database Optimization with Atomic-Write
As discussed in Section 2, database management sys-

tems are one class of applications that typically require
strong I/O atomicity guarantees. The atomic guarantee
on high level logical pages are implemented by systematic
control of logs, buffers, and locks on the underlying stor-
age. In this section, we demonstrate how the popular Inn-
oDB [2] database engine for MySQL [4] can leverage the
atomic-write primitive to achieve a performance improve-
ment and simplified implementation, without modifying its
ACID compliance.

4.1 InnoDB Transaction Logging
Most database implementations use the notion of a

transaction log to track changes made to a data page, and
InnoDB is no different. InnoDB also utilizes an optimiza-
tion known as physiological logging [14] to reduce the cost
of writing a new event to the transaction log. Physiologi-
cal logging records only the deltas to a data page in its log
record, not the full data page, with the goal of minimizing
transaction log writes which are inherently a synchronous
operation on the critical path for database writes and up-
dates. Utilizing physiological writes enables high through-
put to the transaction log. However, because the transac-
tional log doesn’t contain a full copy of the data, InnoDB
must make a complete copy of the data page before apply-
ing the delta. This is required so that there is always a fully
valid copy of the previous data page on disk to be able to re-
cover from should a failure occur during the write/update.

The transactional log cannot grow indefinitely and
wraps around frequently due to space constraints. Before
the tail of the transactional log can be overwritten, the data
pages in the tablespace corresponding to those log records
must be brought up to date, otherwise the changes per-
formed by the operations represented in those log records

will be lost. This is done by applying the dirty page deltas
to the tablespace file. If a system failure were to hap-
pen during a delta application that leaves only a partially-
written page in the tablespace, InnoDB would be unable to
recover the original data page resulting in lost data.

4.2 InnoDB Double-write

To overcome the partial-write consistency issues when
updating the tablespace, InnoDB utilizes a two phase page
update technique known as double-write. Figure 3 illus-
trates the two phases required by double-write to guarantee
page consistency.

• In Phase I, InnoDB copies discrete dirty pages from its
in memory buffer pool into an additional dedicated in
memory buffer area called double-write buffer. This
contiguous group of memory pages is then written
sequentially and synchronously to a dedicated area
within the tablespace file, called the double-write
area. If write buffering is being used, a fsync, or flush,
is called to force the data through all buffering onto
persistent media.

• In Phase II, InnoDB re-writes these same individ-
ual dirty data pages to their final locations in the ta-
blespace using synchronous random writes since these
pages can be scattered throughout the the table space
file. If write buffering is being used a fsync is again
called to force the data through all buffering onto per-
sistent media.

With this two-phase double-write strategy, InnoDB can
guarantee a complete base data page (to which the transac-
tion deltas can be applied) always exists in persistent stor-
age even in the face of a system failure. Should a failure
happen that leaves any tablespace data in an inconsistent
state, InnoDB will check double-write area, the tablespace
area and the transaction log. If a page in the double-write
area (Phase I) is found to be partially written, it’s simply
discarded since the most recent correct copy still exists
in the tablespace. If a page in tablespace is inconsistent,
which implies a failure in Phase II, it is recovered using the
copy of page in double-write area. Once recovered, any



transaction log event can be replayed starting in the appro-
priate Phase (I or II) that had last completed successfully.

4.3 Double-write Implications on Storage

Double-write is an effective solution to solving the
partial-page write issue but it has significant implications
on solid state storage.

• Firstly, double-write imposes an additional write
phase (Phase I) that is serialized with the in-place up-
date of tablespace data in Phase II. When working
with conventional mechanical disks, Phase I, dom-
inated by sequential-write, is much more efficient
compared to random-writes in Phase II. Thus the
100% write overhead only results in a small perfor-
mance degradation. However, advanced solid state
storage can achieve random-write performance very
close to the performance of sequential-write, shown
in Tables 3 and 2. Therefore the overhead of this ad-
ditional write phase is now much more costly in the
era of solid state storage.

• Secondly, double-write is named appropriately be-
cause it literally writes every data page twice to stable
storage. One of the major functions of a FTL layer is
to allow re-mapping of LBA to PBA addresses so that
wear-leveling can occur transparently to the applica-
tion. By performing two writes for every singular data
page that is intended to persist on media in one loca-
tion, the double-write approach effectively halves the
useful life of a NAND-flash device which is subject to
wear-out effects.

4.4 Replacing Double-write with Atomic-
write

InnoDB relies on double-write to protect itself from
partial-write of a page (which is made up of multiple phys-
ical device blocks). We propose that InnoDB can be mod-
ified to replace its complex double-write strategy with the
atomic-write primitive described in Section 3.

Figure 3 shows the natural fit of an atomic-write prim-
itive into MySQL. Rather than performing Phase I of the
double-write procedure, pages within the tablespace can be
overwritten directly using the atomic-write primitive which
guarantees that, this compound update will succeed or fails
in entirety. If this atomic-write commits, the transaction
delta can simply be removed from the transaction log. If it
fails, no explicit recovery is required by InnoDB because
the storage subsystem will recover the original pages in
place and it will appear to InnoDB that no write to the
tablespace ever occurred. By implementing atomic-write
within the storage subsystem, we remove the possibility
that partial page writes can occur.

While the InnoDB recovery process is greatly simpli-
fied, there is a substantial performance benefit as well.

Atomic-write has replaced a series of serialized sequen-
tial and random writes, with a single operation containing
half the data payload compared to the original implemen-
tation. This reduces the backing store bandwidth required
by MySQL by half and doubles the effective wear-out life
of the solid state storage device.

It’s worth noting that atomic-write achieves the afore-
mentioned improvements, namely faster write-completion
in critical path and reduced write-wearing of the solid state
devices, with a strong guarantee for data integrity. This de-
sirable feature can transparently benefit a large number of
data-intensive applications that have data integrity require-
ments.

5 Related Work

Flash translation layers have received significant study
because the LBA to PBA mapping layer is on the criti-
cal path for both read and write operations. There have
been several efforts to compare the efficiency of block
mapping versus page mapping FTL designs [10, 11, 17,
20]. Lim et al. [21] specifically try to improve the perfor-
mance of a block mapping system to that of a page map-
ping scheme without requisite memory overhead. Shim
et al. [31] attempt to partition the on-board DRAM cache
between mapping and data buffering to optimize perfor-
mance. Seppanen et al. [30] focus on how to optimize the
operating system to maximize performance of solid state
devices. Our work differs from these in that we are provid-
ing a new primitive and additional functionality, not just
optimizing performance within the existing paradigm.

Choi et al. [12] and Josephson et al. [16] have both in-
vestigated how filesystems might be able to integrate more
closely with log based flash translation layers. While clos-
est to our work, both of these require integrating with func-
tionality within the FTL that is not exported for general
use. The atomic-write primitive proposed in this work
could be leveraged by both studies to help decouple them-
selves from the FTL. Filesystems such as ZFS [7] and
EXT3cow [23] implement a copy-on-write technique to
preserve data atomicity which is functionally similar to
InnoDB’s double-write methodology.

Seltzer et al. [27–29] describe how to support atomicity
and transactions within a log structured filesystem. Vijayan
et al. [33] studied how to export a transactional interface via
a cyclic commit protocol to ensure transactional semantics
on top of exisiting SSD devices. All these studies assume
that the basic atomic primitive provided by the lowest level
of storage is a single fixed 512B or 4KB block. We differ
from these works by showing that it is fundamentally more
efficient to support multiple block atomicity within the FTL
than build atomicity guarantees at higher levels within the
storage stack.



6 Experimental Results
6.1 Methodology

The baseline for all results in this paper utilizes an un-
modified FusionIO 320GB MLC NAND-flash based de-
vice and the most recent production driver available. For
this work we implement atomic-write within a research
branch of the recently shipped version 2.1 of the FusionIO
driver/firmware [1]. We have extended the InnoDB stor-
age engine for MySQL to leverage atomic-write support as
described in section 4. All tests are performed on a real
machine for which the specification is shown in Table 1,
none of our results are simulated.

In Section 6.2 to measure the bandwidth and la-
tency achieved by our atomic-write primitive, we imple-
ment a hand tuned microbenchmark designed to minimize
control path overhead and unnecessary memory copies.
These benchmarks expose the implementation efficiency
of atomic-write compared to other I/O methods currently
available. After showing atomic-write to be the highest per-
forming I/O method available, in Section 6.3 we evaluate
the performance benefits of atomic-write on real database
applications, using MySQL 5.1.49 with the InnoDB stor-
age engine. A detailed description of each test can be found
in-line with the results.

Table 1. Experimental Machine Configuration

Processor Xeon X3210 @ 2.13GHz
DRAM 8GB DDR2 677MHz 4x2GB DIMMs

Boot Device 250GB SATA-II 3.0Gb/s
DB Storage Device FusionIO ioDrive 320GB PCIe 1.0 4x lanes
Operating System Ubuntu 9.10 - Linux Kernel 2.6.33

6.2 I/O Microbenchmarks

6.2.1 Write Latency

Latency is the round trip time required for an I/O opera-
tion to be durably recorded to storage. Minimizing latency
is important because many applications perform serialized
storage operations on small datum to guarantee transac-
tional consistency (such as MySQL).

To evaluate the control overhead required by various
I/O methods available in Linux, we test the total time re-
quired to perform a compound write which consists of
64x512B blocks to storage (averaged over 100 iterations).
For atomic-write (A-Write) we encapsulate all blocks in a
single atomic-write request, issue the request to FTL, then
wait for its completion. Since atomic-write does not buffer
data there is no need to perform a post write buffer flush.

For synchronous I/O, we serialize the block writes by
issuing a fsync following each write. For asynchronous
I/O, we utilize the Linux native asynchronous I/O library,
libaio, to submit all blocks via one I/O request, wait for the
operation to complete, and then do a fsync() to flush data

to the media if buffering was enabled. Latency is measured
from the beginning of the first I/O issued until the comple-
tion of all writes, including the fsync if used.

Three different write patterns are tested:

• Random - Blocks are randomly scattered within a 1
GB range and aligned to 512B boundaries.

• Strided - Blocks start at position N and are separated
by fixed 64KB increments.

• Sequential - Blocks are positioned sequentially from
position N .

Table 2. Write Latency in Microseconds
I/O Type

Pattern Buffering Sync. Async. A-Write
Random Buffered 4,042 1,112

directIO 3,542 851 671
Strided Buffered 4,006 1,146

directIO 3,447 857 669
Sequential Buffered 3,955 330

directIO 3,402 898 685

Table 2 shows the average latency to complete these
writes using different I/O mechanisms. Asynchronous di-
rectIO is the fastest traditional storage method because it
avoids an unnecessary copy from user space into the op-
erating system page cache before flushing the data back
to disk upon fsync. Atomic-write is able to slightly out-
perform directIO because it natively takes multiple write
ranges and avoid the overhead of performing multiple sys-
tem calls. Sequential buffered+async I/O appears to be an
outlier to the general trends - this is because libaio is ca-
pable of detecting and merging multiple contiguous IOPs
when using buffered I/O, consolidating the I/O into a sin-
gle, more efficient, IOP at lower levels in the storage stack.
Such an optimization is not possible when using directIO.
Atomic-write could make a similar optimization but is be-
yond the scope of this work.

6.2.2 Write Bandwidth
Bandwidth is the maximum sustained data rate that a stor-
age device can achieve by pipelining commands and max-
imizing the amount of data transferred per control opera-
tion. Maximizing bandwidth can be important for applica-
tions which have enough latency tolerance to buffer data
intended for storage at the application level before writing
it to disk. To test achievable bandwidth we utilize the same
methodology as in section 6.2.1, however we increase the
individual block size from 512B to 16KB to maximize the
ratio of data transferred per control word and do not require
fsyncs after each write, only a single fsync at the comple-
tion of buffered I/O.



In Table 3, much like Table 2, we find that async di-
rectIO is able to achieve the highest throughput for tradi-
tional storage methods. Again, this is due to being able
to pipeline I/O operations and not performing an extrane-
ous copy into the page cache before flushing the data to
media. Atomic-write appears to slightly outperform direc-
tIO in all cases, but the difference is simply in implemen-
tation, atomic-write should have no fundamental perfor-
mance advantage over asynchronous directIO. It is worth
noting that MySQL does not natively use async directIO.
Instead, it chooses to use synchronous directIO but imple-
ment its own I/O offload thread which approximates the
behavior of asynchronous I/O while providing better con-
trol over I/O re-ordering for ACID compliance.

Table 3. Write Bandwidth in MB/s
I/O Type

Pattern Buffering Synch. Async. A-Write
Random Buffered 302 301

directIO 212 505 513
Strided Buffered 306 300

directIO 217 503 513
Sequential Buffered 308 304

directIO 213 507 514

6.3 Database Workloads

The microbenchmark results in Section 6.2 show that
atomic-write can be implemented within a log based FTL
and provide performance that meets or exceeds that of
the legacy I/O interfaces. To test the real world impact
that atomic-write can have on application performance,
we evaluate two industry standard transaction processing
workloads DBT-2 [5] and DBT-3 [3] which are fair use im-
plementations of TPC-C and TPC-H respectively, and Sys-
Bench [6], which is another transaction-processing bench-
mark. The performance metrics we evaluate are: Transac-
tion Throughput which is the number of transactions com-
pleted per unit time; Data Written which is amount of data
written to storage during workload execution; and Latency
which is the average time required for a single transaction
to complete.

For this work we configure MySQL to run on a non-
shared machine seen in Table 1. InnoDB’s buffer pool is
set at 4GB and both its transactional log and tablespace
files co-exist on the FusionIO device. MySQL’s binary log
is stored to a separate hard disk drive and is not on the
critical path for performance. DBT-2 is configured to use
500 warehouses with a resulting database size of 47GB in-
cluding indices. DBT-3 is configured with scale factor of
3 resulting in a total database size of 8.5 GB with indices.
SysBench uses a table of size 11GB with 20 million tuples
in it. The driver for each workload was run on a separate
machine connected by 1Gbps Ethernet to avoid polluting

the database host system. Each benchmark was run for a
minimum of 10 minutes and warmed up once before col-
lecting statistics.

Performance is measured for three distinct test cases:

• MySQL - The unmodified InnoDB engine with
double-write enabled. This mode provides full ACID
compliance, but shows the performance penalty in-
curred on a SSS device by having to perform twice
the number of writes. This mode is used as the base-
line in all results.

• Double-Write Disabled - InnoDB with Phase I of the
double-write simply disabled. This is an unsafe mode
that may suffer from the “partial-write” problem, but
highlights the potential gains of eliminating Phase I of
InnoDB’s ACID compliant implementation

• Atomic-Write - InnoDB optimized to use atomic-
write as described in Section 4. Using atomic-write
provides the same level of ACID compliance as the
baseline InnoDB implementation.

6.3.1 Transaction Throughput
Figure 4 shows the transaction throughput of our three
test cases normalized to the baseline InnoDB implemen-
tation. Simply disabling phase I of the InnoDB double-
write implementation results in a maximum throughput
improvement of 9%. Atomic-write is able to outperform
the baseline InnoDB implementation by as much as 23%.
Both Atomic-write and double-write-disabled write the
same amount of data to storage, but InnoDB offloads ta-
blespace writing to an I/O thread which in turn performs
synchronous writes. As seen in Table 3, our atomic-write
implementation is able to sustain 142% more bandwidth
than the native synchronous directIO methodology used by
MySQL. As a result, utilizing atomic-write can further im-
prove throughput over simply disabling double-write.

DBT2 DBT3 SysBench
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

MySQL Double­Write 
Disabled

Atomic­Write

Figure 4. Normalized Throughput

The throughput improvement achievable by using
atomic-write within InnoDB is fundamentally limited by



the amount of time spent waiting on write I/O within the
workload. There are two factors that affect this wait time:
the percentage of read vs. write operations that the work-
load natively requests - and the amount of memory in use
by the database. We defer the sensitivity study of varying
the memory to database size ratio and read to write ratio to
Section 6.4.

6.3.2 Amount of Data Written to Storage
InnoDB writes both its transaction log and tablespace data
to stable storage. Using atomic-write, we are able to op-
timize the tablespace data storage process reducing the to-
tal writes by one half, but the amount of data written to
the transaction log is unaffected by either disabling double-
write or leveraging atomic-write. Figure 5 shows the rela-
tive amount of data written to the underlying storage during
workload execution. Disabling double-write from MySQL
reduces the total data written to the backing store by up
to 46%, while atomic-write reduces total data written by
up to 43%. Because atomic-write can process more trans-
actions and generate more write requests during the fixed
time execution of the benchmarks, it has slightly higher
write-bandwidth. On a per transaction basis, double-write-
disabled and atomic-write require the same amount of total
I/O.

DBT2 DBT3 SysBench
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

MySQL Double­Write 
Disabled

Atomic­Write

Figure 5. Data Written to Storage (Lower is
Better)

In our experimental configuration, each database work-
load was run in isolation on a single high throughput
(>500MB/s) solid state storage device. In enterprise in-
stallations the storage subsystem is often shared between
one or many applications in a NAS or SAN environment.
In these situations, storage subsystem bandwidth is often
the single largest bottleneck in database performance; by
reducing the write rate to a database by 43%, we also help
extend the value of shared storage and network infrastruc-
ture. A by-product of reducing the number of writes to
storage is that for solid state devices, the useable life of the
device is almost doubled. Device wearout has been a major

barrier to enterprise adoption, so this significant improve-
ment should not be overlooked.

6.3.3 Transaction Latency
Another important metric in many database driven appli-
cations is the average response time per query or transac-
tion. Transaction latency is dominated more by the syn-
chronous write to the transaction log, but write bandwidth
also plays an important role. In a memory constraint envi-
ronment, the database has to frequently flush out dirty data
pages to make room for newly accessed pages. This ef-
fectively serializes transaction processing with table space
writes when they are occurring. Full database checkpoint-
ing, which is convenient for crash recovery, effectively
blocks all transactions until the tablespace write has fin-
ished. Thus, by reducing the amount of data that must be
written to storage in both these cases, atomic-write helps
decrease both the variation and average latency of trans-
actions. For DBT2 and SysBench, we show the 90th per-
centile latency in Figure 6. For DBT3 we show the aver-
age latency of the queries performed during the execution.
Atomic-write is able to reduce 90th percentile latency of
DBT2 and SysBench by 20% and 24% respectively. The
average latency in DBT3 is reduced by 9%. Many im-
provements in database throughput often come at the ex-
pense of transaction latency. For many interactive database
workloads, such as Web 2.0 sites, maintaining a worst case
latency is extremely important for usability of the system.
Improving both throughput and transaction latency makes
atomic-write an ideal database optimization for these types
of systems.

DBT2 DBT3 SysBench
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

MySQL Double­Write 
Disabled

Atomic­Write

Figure 6. Transaction Latency (Lower is Bet-
ter)

6.4 Sensitivity Studies

6.4.1 Memory to Database Size

The atomic-write implementation saves 50% of all writes
to the tablespace. This does not vary significantly across



the ratio of memory:database sizes seen in Figure 7, be-
cause all dirty data must be eventually written back to
durable storage. At large ratios of memory buffer to ab-
solute database size, the performance of writing to the
tablespace is not on the critical path for database oper-
ations. As a result, the application throughput advan-
tage seen when using the atomic-write optimization will
vary with the ratio of memory buffer to database size.
While in-memory (100% of the database fitting in mem-
ory) databases provide optimal performance they are ex-
tremely cost ineffective, and most database administrators
try to minimize the amount of resources required to achieve
acceptable performance. By improving the performance of
the I/O subsystem, atomic-write is able to improve perfor-
mance at any given ratio of memory:database size. Fig-
ure 7 compares its performance against the baseline Inn-
oDB with double-write enabled across a wide range of
memory:database sizes. The performance gains range from
7% with abundant memory(1:1) to 33% with scarce mem-
ory(1:1000) while reducing the volume of data written to
disk in all cases by approximately 40%.

1:1 1:2 1:4 1:10 1:25
1:100

1:500
1:1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

NOTPM 
(Higher is 
Better)

Data Written 
(Lower is bet­
ter)

Ratio of Buf Size:Database Size

Figure 7. DBT2: Normalized Atomic-Write
Performance at Varied Buffer:Database Size

6.4.2 Write/Update Percentage

Another factor that changes the absolute performance
achievable with atomic-write is the percentage of read
versus write operations a workload performs. A read-
only workload produces no dirty data to be flushed to
the tablespace, hence it’s insensitive to the atomic-write
optimization within InnoDB. A write-intensive workload
however flushes large volumes of data to storage and is
thus heavily dependent on the storage subsystem write-
bandwidth. We examine this effect by varying the ratio
of update to read operations within each transaction in
the SysBench workload. Figure 8 shows both the amount
of data written to disk and throughput improvement of
atomic-write over the baseline InnoDB implementation
when varying the amount of updates in the transaction

from 0-100%. With read-only workload(0% updates), only
transactional log is written which is unaffected by atomic-
write, hence both atomic-write and double-write perform
identically. As the workload becomes more write-biased,
atomic-write can achieve better improvement in transaction
throughput, up to 33%. When ratio of updates to reads per
transaction increases, atomic-write enables MySQL to pro-
cess more transactions per unit time. As a result, more data
is physically written to storage including both transaction
log and tablespace data, as seen in Figure 8, but per query
the 50% savings over double-write to tablespace data re-
mains constant.

0% 10% 33% 50% 67% 90% 100%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

TPS (Higher 
is Better)

Data­
written(Lower 
is Better)

Ratio of Updates in Workload

Figure 8. SysBench: Normalized Atomic-
Write Performance at Varied Updates:Reads

7 Conclusions and Future Work

In modern computer designs, the storage system is ac-
cessed via two verbs - read and write. For the past twenty
years these interfaces have been sufficient because the
underlying storage technology has remained largely un-
changed. With the introduction of non-volatile memory,
the performance and reliability characteristics of storage is
changing dramatically. A new class of high performance
solid state storage has emerged that implicitly utilize a log-
ical to physical block mapping layer within the device. We
propose that this flash translation layer be explicitly rec-
ognized so that storage abstractions beyond read and write
can be implemented at the most efficient tier possible in the
storage hierarchy.

In this work we have implemented one new storage
verb, atomic-write, within a log-structured FTL that al-
lows multiple I/O operations to commit or rollback as a
group. We have shown that the FTL is a natural place-
ment for atomic-write semantics because they can utilize
the already existing FTL block tracking mechanisms for
commit, rollback, and recovery. We identify ACID com-
pliant transactions as a common application paradigm that
can benefit from a high efficiency atomic-write implemen-
tation. We demonstrate how the MySQL InnoDB storage



engine can be modified to take advantage of the atomic-
write primitive while maintaining ACID compliance. Our
InnoDB optimizations results in a 43% reduction in data
written to storage, 20% reduction in transaction latency,
and a 33% throughput improvement on industry standard
database benchmarks.

In future work, we intend to examine how atomic-
write can be extended to support multiple outstanding write
groups, implementing full transactional semantics. We
hope to identify other storage primitives beyond block I/O
that have synergies within the FTL and can reduce applica-
tion complexity, improve performance, and increase stor-
age reliability.

References

[1] FusionIO ioMemory VSL Driver. http://www.
fusionio.com/load/media-docsPress/
tm1mj/press_release_optimus_prime.pdf.

[2] InnoDB Storage Engine. http://innodb.com.
[3] MySQL Branch of DBT3. https://launchpad.

net/dbt.
[4] MySQL Database Server. http://dev.mysql.com/.
[5] OSDL: Database Test Suite. http://osdldbt.

sourceforge.net/.
[6] SysBench. http://sysbench.sourceforge.net.
[7] ZFS. http://www.sun.com/software/

solaris/ds/zfs.jsp.
[8] FusionIO - U.S. Patent Application Pub. No.

2008/0140909. 2008.
[9] FusionIO - U.S. Patent Application Pub. No.

2008/0140910. 2008.
[10] S. N. A Kawaguchi and H. Motoda. A Space-efficient Flash

Translation Layer for CompactFlash Systems. IEEE Trans-
actions on Consumer Electronics, May 2002.

[11] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A De-
sign for High-Performance Flash Disks. Operating Systems
Review, April 2007.

[12] H. J. Choi, S. ho Lim, and K. H. Park. JFTL: a Flash Trans-
lation Layer Based on a Journal Remapping for Flash Mem-
ory. In ACM Transactions on Storage, 2009.

[13] E. Gal and S. Toledo. A Transactional Flash File System
for Microcontrollers. In ATEC ’05: Proceedings of the an-
nual conference on USENIX Annual Technical Conference,
pages 7–7, 2005.

[14] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1992.

[15] Intel Corporation. Understanding the Flash Translation
Layer (FTL) specification. In http://developer.
intel.com/.

[16] W. Josephson, L. Bongo, D. Flynn, and K. Li. DFS: A File
System for Virtualized Flash Storage. In Proceedings of
USENIX: FAST, 2010.

[17] J. Kang, H. Jo, J. Kim, and J. Lee. A Superblock-based
Flash Translation Layer for NAND Flash Memory. In Pro-
ceedings of EMSOFT, 2006.

[18] Kgil, Taeho and Roberts, David and Mudge, Trevor. Im-
proving NAND Flash Based Disk Caches. In Proceedings
of ISCA ’08, 2008.

[19] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho.
A Space Efficient Flash Translation Layer for Compact-
Flash Systems. IEEE Transactions on Consumer Electron-
ics, 48:366–375, 2002.

[20] S. Lee, D. Park, T. Chung, S. Park, and H. Song. A
Log Buffer-based Flash Translation Layer using Fully-
associative Sector Translation. ACM Transactions on Em-
bedded computer Systems, 6(3), 2007.

[21] S. Lim, S. Lee, and B. Moon. FASTER FTL for Enterprise-
Class flash Memory SSDs. International Workshop on Stor-
age Network Architecture and Parallel I/Os, 2010.

[22] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron. Migrating Server Storage to SSDs: Analysis
of Tradeoffs. 4th ACM European Conference on Computer
Systems, 2009.

[23] Z. Peterson and R. Burns. Ext3cow: A Time-Shifting File
System for Regulatory Compliance. ACM Transactions on
Storage, 2, 2005.

[24] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and
E. Witchel. Operating Systems Transactions. In SOSP ’09:
Proceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles, pages 161–176, 2009.

[25] M. Rosenblum and J. Ousterhout. The Design and Imple-
mentation of a Log-Structured File System. ACM Transac-
tions on Computer Systems, 10, 1992.

[26] R. Sears and E. Brewer. Stasis: Flexible Transactional Stor-
age. In OSDI ’06: Proceedings of the 7th symposium on
Operating Systems Design and Implementation, pages 29–
44, Berkeley, CA, USA, 2006. USENIX Association.

[27] M. Seltzer and M. Stonebraker. Transaction Support in
Read Optimized and Write Optimized File Systems. In Pro-
ceedings of the sixteenth international conference on Very
Large Databases, pages 174–185, 1990.

[28] M. I. Seltzer. File System Performance and Transaction
Support. Technical report, UC Berkeley, 1993.

[29] M. I. Seltzer. Transaction Support in a Log-Structured File
System. In Proceedings of the Ninth International Confer-
ence on Data Engineering, pages 503–510, 1993.

[30] E. Seppanen, M. O’Keef, and D. Lilja. High Performance
solid State Storage Under Linux. Symposium on Massive
Storage Systems and Technologies, 2010.

[31] H. Shim, B. Seo, J. Kim, and S. Maeng. An Adaptive
Partitioning Scheme for DRAM-based Cache in Sold State
Drives. Symposium on Massive Storage Systems and Tech-
nologies, 2010.

[32] R. P. Spillane, S. Gaikwad, M. Chinni, E. Zadok,
and C. P. Wright. Enabling Transactional File Access
via Lightweight Kernel Extensions. In Proceedings of
USENIX: FAST, pages 29–42, 2009.

[33] Vijayan Prabhakaran, Thomas L. Rodeheffer and Lidong,
Zhou. Transactional Flash. In Proceedings of the 8th
USENIX conference on Operating systems design and im-
plementation, OSDI’08, 2008.

[34] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Ex-
tending ACID Semantics to the File System. ACM Trans-
actions on Storage, 3(2):4, 2007.


