Reducing Diff Overhead in Software DSM Systems using RDMA Operations in
InfiniBand *

Ranjit Noronha and Dhabaleswar K. Panda

Dept. of Computer Science and Engineering
The Ohio State University
Columbus, OH 43210
{nor onha, panda} @i s. ohi o- state. edu

Abstract

Software DSM systems do not perform well because of
the combined effects of increase in communication, slow
networks and the large overhead associated with processing
the coherence protocol. Modern interconnects like Myrinet,
Quadrics and InfiniBand offer reliable, low latency (around
5.0 us point-to-point), and high-bandwidth (upto 10.0 Gbps
in 4X InfiniBand). These networks also support efficient
memory- based communication primitives like RDMA-Read
and RDMA-Write. These supports can be leveraged to ef-
fectively reduce overhead in a software DSM system. In
this paper, we explore techniques for reducing the diff over-
head. These techniques are employed in a protocol called
PIPE, which uses RDMA-Write. Application level evalua-
tion shows a maximum improvement of upto 35% in parallel
speedup.
Keywords: DSM Systems, Cache coherency protocol, In-
finiBand, System Area Networks

1 Introduction

In recent years, clusters have been widely deployed for
providing low-cost high performance computing for a wide-
range of applications. There is a range of high-end network-
ing technologies available to connect the machines within a
cluster. Technologies like Myrinet [9], Quadrics [4] and In-
finiBand [2] offer point-to-point latency of the order of 5.0
ps for small messages and very high unidirectional band-
width of the order of 10 Gigabits per second (with Infini-
Band 4X) for large messages. In addition to the basic com-
munication primitives, these networks offer a variety of ser-
vices and operations. For example, Myrinet and Quadrics
have a programmable network interface card. InfiniBand
and Myrinet support hardware-based remote atomic opera-

*This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429 and #CCR-0311542.

tions [10]. All these networks also support Remote Direct
Memory Access (RDMA) operations. RDMA allows a pro-
cess to read or write a location in the memory space of an-
other process over the network. RDMA does not require
receiver intervention for posting descriptors, an important
consideration while designing scalable software systems.

Though considerable research has focused on the de-
velopment of Software Distributed Shared Memory Sys-
tems [24, 14, 8], implementations of SDSM systems such
as TreadMarks [15, 6] and HLRC [13, 23] have not been
found to be scalable. These SDSM systems are communi-
cation intensive, and depend critically on performance of
networking technologies like Fast Ethernet, Giganet [11]
and the earlier generation of Myrinet [9]. Heavy-weight
protocols like TCP could not keep up with the commu-
nication rate of SDSM’s [21]. Modern networks are fast
out-pacing the capacity of processors to keep them filled
to capacity. These modern networks might not only im-
pact the performance of SDSM systems but allow one to
explore new previously inconceivable protocols for SDSM.
Communication

in SDSM can Node 1 Node 2
largely be

characterized gend | e

by the client- equest Request
server request- Handler
response model Receive Send
shown in Fig- Response Responsg

ure 1. One of
the protocol
activities is
diffing, which
is creating and sending modifications to pages back to the
page manager. At the page manager, the modifications are
applied to the original page. After this is complete, an
acknowledgment is sent back to the sender. This activity
constitutes considerable overhead, specially if there is fair

Figure 1. DSM client server communi-
cation model.

amount of sharing within the application.

Modern day interconnects allow users to read and write
data elements from the user space of another process us-
ing RDMA operations. RDMA may be used in software
DSM systems for communication. Diffing is an important
software DSM protocol activity, constituting considerable
overhead. The general mechanism for a diff, consists of
comparing a modified page to its clean copy called a twin.
Then a run-length encoding of the differences is created.
This encoding is then sent to the server or home node using
RDMA Write. The server or home node then applies these
diffs to the page. We have proposed a scheme, which par-
tially packs and partially pipelines diffs. This helps improve
the network utilization and reduce some of the congestion
in the network.

The rest of this paper is organized as follows. Section 2
describes the implementation of HLRC and its main fea-
tures along with an overview of the networking interconnect
InfiniBand. Section 3 presents design possibilities of HLRC
with InfiniBand mechanisms. Section 4 explores the design
issues and alternatives used while implementing pipelined
diffing using RDMA operations. Section 5 evaluates the
design using various applications. Section 7 presents con-
clusions and future directions.

2 Background Information

In this section we discuss the basic concepts behind the
SDSM package HLRC with an emphasis on its communica-
tion model primitives. We also take a look at the InfiniBand
standard with a focus on the main communication opera-
tions provided by this interconnection technology.

2.1 Overview of HLRC

Since the development of the first sequentially consis-
tency SDSM system IVY [16], there has been a large
body of research into the issues with SDSM. Unfortunately,
SDSM has not been found to be scalable, largely because of
the effects of protocol and communication overhead. The
lazy release consistency model was the next advance post-
poned coherence activities to synchronization points, reduc-
ing the amount of communication. The home based lazy
release consistency protocol (HLRC) [13] improved upon
LRC by assigning pages to homes, with a home node being
updated with modifications at every synchronization point.

HLRC reduced not only the communication associated
with non-home based protocols, but also the memory foot-
print. In HLRC every page and lock is assigned a home
node. At every synchronization point, the diffs for a partic-
ular page are sent to the home node and the memory for the
diffs are released. A home node can be assigned in a variety
of ways; the default behavior is that the default home of the
page assigns it to the node that first requests that page.

An implementation of HLRC [23] over the Virtual In-
terface Architecture (VIA) [5] (HLRC-VIA) was carried on
GigaNet [1]. The implementation of HLRC-VIA was multi-
threaded. The application thread would compute while an
associated signal handler would take care of coherence ac-
tivity on a page fault or miss. A separate thread would listen
for incoming requests from other remote processes such as
page fetches and lock requests. HLRC-VIA makes use of
the RDMA constructs provided by VIA. Request messages
or messages for services are sent via RDMA Write with im-
mediate data. This generates an asynchronous request at
the receiver which then processes and responds to this re-
quest by either forwarding this request to some other nodes
or itself satisfying the request through several RDMA Write
operations. The requester meanwhile polls a particular lo-
cation in memory (to which the remote server writes using
RDMA Write) to see whether the request has completed.
In this paper we use a version of HLRC-VIA modified to
work over the InfiniBand fabric. The next section briefly
discusses the InfiniBand architecture.

2.2 Overview of InfiniBand

The InfiniBand standard is a framework for a System
Area Network for connecting processing and 1/0 nodes.
It defines various communication and management func-
tions that are necessary to operate the interconnection fab-
ric. InfiniBand uses a switched, channel-based intercon-
nection fabric, which allows for higher bandwidth, more
reliability and better QoS support. Interface to the fabric
is through a Host Channel Adapter (HCA) on the process-
ing node. Semantics of various operations are defined via
InfiniBand Verbs. The Mellanox implementation of the In-
finiBand Verbs API called VAPI [3] supports the basic send-
receive model and the RDMA operations read and write.
There is also support for atomic operations and multicast.
More details on InfiniBand can be obtained from [2].

3 HLRC Design Possibilities with InfiniBand
Mechanisms

Let us now examine the potential for integrating network
based support into HLRC. HLRC duplicates activities either
already provided or which could be done with less overhead
by network level services in InfiniBand. Figure 2 shows
some of the matches between InfiniBand level primitives
and HLRC protocol activities. More specifically the fol-
lowing should be possible :

1. Asynchronous handling could be eliminated through
the combination of atomic operations and RDMA
Read support. Page fetching operations could poten-
tially benefit from this type of support.

2. Diff propagation in HLRC uses RDMA Write with
immediate data which requires activation of the asyn-
chronous handler. Diff processing can be potentially
eliminated by performing RDMA Read operations. In
this design, whenever a particular portion of a page is
needed, it can be fetched from the current owner by is-
suing an RDMA Read operation. The owner does not
have to be interrupted to perform this operation.

3. Diffs propagate via RDMA Write. Diffs for several
pages may be packed together into a single message
and sent to the manager node. Another technique is
to break the diff computation into several small mes-
sages and send them separately. Potentially, computa-
tion and communication overlap can be achieved.

4. Write notice and Barrier notification propagate via
RDMA Write. Since these go to all other nodes, hard-
ware based multicast could provide an efficient basis
for this operation. This could potentially reduce sig-
nificantly the amount of traffic needed for synchroniza-
tion in an SDSM system.

5. Locking could be achieved through the use of remote
atomic operations. This could potentially benefit ap-
plications which frequently use locks; as the need to
frequently process lock requests at the manager node
and the last owner is eliminated.

6. Asynchronous request messages could potentially
propagate via higher priority service levels achieving
better response time.

In this paper we focus on the 3rd option; diff packing and
pipelining. Options 1 and 2 are explored in [22] and the
protocol ORIG is derived from this work. Since other fea-
tures (such as reliable multicast and service levels) are not
yet completely operational in current generation InfiniBand
hardware, we plan on investigating other enhancements in
the future.

4 Design of PIPE

In this section we discuss the design of our proposed pro-
tocol termed as PIPE. We start out by examining the existing
protocol termed ORIG as defined in [22]. Following that, in
Section 4.3 is a description of the design of PIPE. Finally,
various design trade-offs for PIPE are considered in Section
4.4.

4.1 Base protocol

The base protocol we are using is the home based lazy
release consistency protocol. In this protocol, every page
and lock is assigned a home. All requests for accesses to a
page or a lock go to the home node. Similarly all updates for

‘ Diffs ‘ m ‘ Locks ‘ ‘Barrier H Pagefetch‘ Q?{C@r
\ \

T T
[HLRC

Tt l.
‘Senc_ HRDI\/A ‘ﬁ‘Multicasi‘Atom_ Service
Receive |Read Operations|Levels

Network Features

(g}

InfiniBand

Network Substrate

Figure 2. The SDSM primitives which could benefit from
network support

apage and a lock go to the home node. Updates or diffs for a
page propagate to the home node at synchronization points
such as a lock release or a barrier. In the next few sections,
we discuss the existing protocol ORIG and the pipelined
version PIPE. To understand the protocols, we define the
following structures:

e Let maodified(X,n) refer to the n’th position in page X
(which has been modified since last reading a copy of
the page).

e Let clean(X,n) refer to the n’th position in the twin of
X where twin refers to a clean copy of page X.

o Let buffer(t,n) refer to the n’th position in communica-
tion buffer t.

e Let Available(t) indicate the status of the communica-
tion buffer t. The value TRUE either means that it has
never been used, or that it has been ACKed by the re-
ceiver

o et MaximumBuffers be the maximum number of com-
munication buffers available for diffing.

e Let CurrentBuffer be the current buffer which should
be used for communication. Assume it is initially zero.

e Let RWRITE(source,dest,t,s,len) denote an RDMA
Write descriptor initiated at node source bound for
node dest, using buffer t, starting at location s and of
length len.

e Let TS(P) denote the timestamp of page P.

We now examine diffing in ORIG.

4.2 Diffing in ORIG

Now we go through the protocol steps when computing
and applying diffs. As shown in Figure 3, node NO arrives
at a synchronization point such as a barrier or a lock. At
this point, node NO must propagate all updates it has made
to all pages to the home node N1. Assume node NO has
modified pages X and Y. It computes a diff for a partic-
ular page say X. This diff is a run-length encoded string
of the differences between the original page and the modi-
fied page. It sends these differences to the home node N1
through RDMA Write along with a message containing the
timestamp for that page. If there are sufficient buffers re-
maining, it computes the diff for page Y and sends it to N1
along with the timestamp. The home node applies these
diffs and sends an ACK back for each diff received, which
indicates that the buffers may reused.

We now examine the protocol activity in more detail.
We use the notation defined in Section 4.1 above. Let us

Node NO Node N1
Synchronization point
Compute ==
Apply diffs
ACK
Compute o
Apply diffs
ek

Figure 3. The original ORIG protocol (for an example sce-
nario)

further assume that modified(X,i..j) differ from clean(X,i..j)
and that modified(Y,l..m) differ from clean(Y,l..m). In this
case, ORIG performs the following actions :

1. Set Page = X.
2. Wait until Available(CurrentBuffer) is TRUE.

3. Copy modified(Page,i..j) into
buffer(CurrentBuffer,0..(j-i-1)) and append TS(Page).

4. Create and issue RWRITE(0,1,CurrentBuffer,0,(j-i) +
length(TS)).

5. Increment CurrentBuffer modulo MaximumBuffers.
6. Set Page = (next page to be diffed)

7. Start with item 2.

At node N1, on receiving a corresponding DIFF mes-
sage from NO, ORIG updates the timestamps and applies
the diffs for the given page and sends an ACK back. This
sets the flag Available for the corresponding buffer on NO to
TRUE. In other words, the buffer may be reused.

We will now see how ORIG can be enhanced.

NodeO Node 1 (Home)
Synchronization point
Compute L
Diffs
Diff(X,Y) + control message (timestamp)
Apply diff

ACK

Compute _|

Diffs
1
1

Figure 4. The proposed protocol PIPE (for the example
scenario)

4.3 PIPE protocol

In this section, we discuss our proposed protocol PIPE.
Figure 4 shows a sample protocol activity. PIPE first packs
a numbers of diffs together and then uses RDMA Write to
propagate the diffs to the destination node. Again consider
the original diff creation and application activity shown in
Figure 3. In this case, PIPE on node NO will pack diffs for
pages X and Y into a single buffer along with their times-
tamps (assuming the buffer is large enough) and send it to
node N1.

Consider the protocol steps in detail. Assume the same
terminology as in Section 4.1. Additionally, define the pa-
rameter DiffBufferLength(t) which is in essence the length
of communication buffer t. PIPE executes the following al-
gorithm:

1. Set Page = X.

2. Wait until Available(CurrentBuffer) is TRUE.

3. Setdlength=0

4. Set Temp = (dlength + current diff size + length(TS))

5. if Temp < DiffBufferLength(CurrentBuffer)
(a) Copy modified(Page,i..j) into
buffer(CurrentBuffer,dlength..dlength+(j-i-1)).
(b) Append TS(Page).
(c) Add current diff size and length(TS) to dlength.

(d) If there are modified pages remaining, set Page
to next modified page and continue with step 4.

6. Create and issue
RWRITE(0,1,CurrentBuffer,0,dlength).

7. Increment CurrentBuffer modulo MaximumBuffers.
8. Set Page = next modified page.
9. If there are no more pages remaining, exit.

10. Continue with item 2.

At node N1 as the respective diffs and timestamps come
in PACK unpacks them and applies them to the respective
pages.

4.4 Tradeoffs in PIPE design

In this section we discuss some of the tradeoffs while
designing PIPE. In particular we will examine the impact
of pipeline depth, and packed diff size discussed in the next
two sections.

4.4.1 Pipeline Depth

As discussed in Section 4.3, PIPE computes several diffs,
marshals them into a single message, sends it and then pro-
ceeds to compute the next set of diffs. However at some
point, it might run out of buffers in which to place the diffs,
especially if there are many large size diffs. At this point,
it needs to wait for an ACK from the receiver, indicating
which buffers have been freed up. The number of packed
diffs PIPE can send before waiting for an ACK is called the
pipeline depth.

The pipeline depth is limited by the number and size of
receive buffers that can be pinned down. Receive buffers
large enough to hold the largest size packed diff must be
posted corresponding to each stage of the pipeline. A longer
pipeline might be useful when the destination is heavily
loaded and cannot process the incoming diffs fast enough.
A shorter pipeline is desirable when the network is con-
gested and the sender is quickly constrained by the shorter
pipeline.

4.4.2 Packed Diff Size

The size of each packed diff potentially affects perfor-
mance. It is a tradeoff between effective network bandwidth
utilization and overlap between diff creation time and prop-
agation time. The larger the packed diff, the longer it takes
for the updates to become available. However large mes-
sages allow for better utilization of network bandwidth. The
size of the packed diff should be large enough so that the
time required to compute it dominates the time to post the
corresponding send. On the other hand, the packed diff size
should not be too small, otherwise send descriptor posting
time will dominate and network bandwidth will be poorly
utilized.

5 Performance Evaluation

This section evaluates the performance of PIPE with re-
spect to ORIG. Evaluation is in terms of overall execution
time, and diff creation time, and is discussed in the follow-
ing sections. First we describe the hardware setup in 5.1.
In section 5.2 application level evaluation is presented. Fol-
lowing that effect of the pipelining depth is discussed. Fi-
nally, some of the remaining bottlenecks are discussed.

5.1 Experimental Test Bed

The experiments were run on a 16 node cluster con-
nected through an InfiniScale MTS-2400 24 4x Port In-
finiBand Switch. The HCAs are Mellanox InfiniHost
MT23108 DualPort 4X HCA’s. Eight out of the 16 ma-
chines are SuperMicro SUPER P4DL6’s, each with dual
Pentium Xeon 2.4 GHz processors, 512 MB of main mem-
ory and a 133 MHz PCI-X bus. The other 8-nodes are Su-
perMicro X5DL8-GG’s, each with dual Pentium Xeon 3.0
GHz processors, 1 GB of main memory and a 133 MHz
PCI-X bus. The kernel is a SMP version of Linux 2.4.22.

5.2 Application level evaluation

In this section, we evaluate our design using three
applications; Barnes-HUT (Barnes), Non-contiguous LU
decomposition (LU), Non-contiguous Ocean simulation
(Ocean) from the SPLASH-2 benchmark suite [26] and
Integer sort (IS) from the TreadMarks [15] SDSM pack-
age. The application sizes used are shown in Table 1. All

| Application | Parameter | Size |
Barnes Bodies 32678
IS num of keys 224
LU Matrix Dimension 1024
Ocean Grid Size | 258 x 258

Table 1. Application sizes

other parameters were kept the same as originally described
in [26]. In the next section, we will discuss some of the im-
portant application characteristics. Following that, the per-
formance numbers for Barnes, IS, LU and Ocean are dis-
cussed.

5.2.1 Application Characteristics

In this section, we discuss some of the application charac-
teristics relevant to our design. The first application Barnes,
is an N-Body simulation using the hierarchical Barnes-Hut
method. It contains two main arrays, one containing the
bodies in the simulation and the other the cells. Sharing
patterns are irregular and true. As shown in Table 2, a fairly

| Application | Barnes | IS | LU | Ocean |
Average Diff Traffic (MegaBytes) 1.83 29.55 10.9 9.16
Average Number of Diffs 6060 7680 | 15114 | 14327.56
Average Diff Size (bytes) 317 4034 | 756.21 670.38
Average Number of Intervals 13 17 129 937
Average Number of Diffs Per Interval | 466.15 | 451.764 | 117.16 15.29
Table 2. Per node application characteristics for a 16 node run
large amount of diff traffic is exchanged at barriers, which 5000 3000
are the synchronization points. g 4000 g
IS implements Bucket Sort. There is a global array con- 2 2000 g 2o
taining the buckets, and a local array which the local node % 000 e
uses to sort its data. After each iteration, each node places E £ 20
its data in the global array and copies the data relevant to it e
into its local array. As shown in Table 2, a large numbers oRe _ Pee ° ore PIPE
of diffs are exchanged at intervals. Also each diff has an
average size of 4K. 7000 5000
The LU program factors a dense matrix into the product 7 zzzz g 400
of a lower triangular and an upper triangular matrix. The § 4000 § 3000
factorization uses blocking to exploit temporal locality on £ 3000 £ 2000
individual submatrix elements. LU sends a large numbers g 2000 E oo
of diffs. The total diff traffic is of the order of 11 MB. 1000
The Ocean program simulates large-scale ocean move- *7 ore Lo e *7 ore o E

ments based on eddy and boundary currents. Ocean also
sends a large number of diffs with diff traffic of the order
of 9MB. Ocean also has the highest number of intervals be-
cause of its use of locks.

5.2.2 Effect on Execution time

In this section, we discuss the performance results for the
applications Barnes, IS, LU and Ocean.

Figure 5 shows the execution time for different applica-
tions at 16 nodes. PIPE has lower overall execution time
than ORIG for all applications. For Barnes, when using
PIPE the execution time reduced by 8%. For IS, the exe-
cution time reduced by a factor of 8.7% when using PIPE.
In the case of LU, there was a reduction in execution time of
35% when ORIG was replaced by PIPE. Finally, for Ocean,
when using PIPE, the execution time reduced by 29%.

5.2.3 Pipeline Depth

Experimentation with diff pipeline depth showed that in-
creasing the depth beyond two stages did not significantly
improve performance. This can mainly be attributed to op-
timal pipelining being achieved at two stages. Here both
the sender and receiver are busy creating and applying diffs
respectively and there is no wait time for diff buffers at the
sender.

Figure 5. Overall execution time for the applications when
using ORIG and PIPE

5.2.4 Remaining Bottlenecks

In this section, we discuss some of the remaining bottle-
necks in the DSM system. As can be seen from Figure 6,
the applications spend a considerable amount of time wait-
ing at barriers. This can mainly attributed to the sequential
phases in the application, leading to a load imbalance.

6 Related Work

Ever since the proposal for the first SDSM system
IVY [16] there has been considerable research conducted
into the SDSM systems. However SDSM was not found
to be scalable. The benefits of implementing HLRC over
low level protocol like VIA was examined in [23]. This
implementation sends diffs in an eager fashion as soon as
it was computed. TreadMarks implements the homeless
lazy release consistency protocol [15]. Updates are sent in
the form of diffs and are packed. However, the diff size is
limited by the MTU (32K) of the communication substrate
UDP. Treadmarks is implemented directly over a low level
communication protocols like VIA and GM over Myrinet,

50 ‘ ; ‘
_40r]
(O]
[@)]
8
c
g 30r]
[}
2
(]
£ 20 1
.(g’

10+]

0
Barnes IS LU Ocean

Figure 6. Application wait time at a barrier, shown as a
percentage of overall execution time.

and was shown to substantially reduces wait times and im-
proves scalability in [7, 21]. However, the limit of 32K
on the packed diff size is still imposed. A study of the ef-
fect of replacing diff packing with an RDMA Write based
protocol is studied in [22]. Using a technique called net-
work based Remote Write in the Cashmere SDSM system
was studied in [24]. Network interface support was used
to perform virtual memory mapped communication in addi-
tion to DMA based communication along with protected,
low-latency user-level message passing in the SHRIMP
project [19]. A proposal for using active-memory support
for SDSM systems to achieve software DSM with hardware
DSM performance is discussed in [12]. Reducing the effect
of false sharing is discussed in [20]. Investigations into us-
ing switching technology to improve performance in SDSM
systems is discussed in [17, 18]. Using kernel-level access
to InfiniBand primitives to improve sequentially consistent
SDSM performance is discussed in [25].

7 Conclusions and Future Work

In this paper, the effect of reducing the overhead of diff
propagation was studied. Diff were partially packed to-
gether and then sent over the network. This helped improve
the overlap of communication and computation and make
more effective use of network bandwidth. These were in-
tegrated into a protocol called PIPE. Experimental evalua-
tion using applications showed an improvement in parallel
speedup upto 35 %.

Significant improvements can still be made. It might be
possible for the home node to directly read the diffs from
other nodes and then integrate them on request. This might

help reduce overhead. Further rewriting the application to
parallelize sequential phases could produce significant im-
provement in parallel speedups.

References

[1] Giganet. www.giganet.com.

[2] Infiniband Trade Association. www.infi nibandta.org.

[3] Mellanox Technologies. www.mellanox.com.

[4] Quadrics Ltd. www.quadrics.com.

[5] Virtual Interface Acrchitecture
http://www.viarch.org.

[6] C. Amza, A. Cox, et al. Treadmarks: Shared Memory
Computing on networks of workstations. |EEE Compuiter,
29(2):18-28, feb 1996.

[7] M. Banikazemi, J. Liu, . K. Panda, and P. Sadayappan. Im-
plementing TreadMarks over VIA on Myrinet and Gigabit
Ethernet: Challenges Design Experience and Performance
Evaluation. Int'l Conference on Parallel Processing, sep
2001.

[8] J.Bjoerndalen, O. J. Anshus, B. Vinter, and T. Larsen. Com-
paring the performance of the pastset distributed memory
system using TCP/IP and M-VIA. The Second International
Workshop on Software Distributed Shared Memory, 1995.

[9] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-
Second Local Area Network. |EEE Micro, pages 29-35,
Feb 1995.

[10] D. Buntinas, D. K. Panda, and W. Gropp. NIC-Based
Atomic Operations on Myrinet/GM. SAN-1 Workshop, held
in conjuction with High Performance Computer Architecture
(HPCA), 2002.

[11] H. Frazier and H. Johnson. Gigabit Ethernet: From 100 to
1000 Mbps.

[12] M. Heinrich and E. Speight. Providing Hardware DSM Per-
formance at Software DSM Cost. Technical Report No. CSL-
TR-2000-1008, Cornell University, Ithaca, NY, November
2000.

[13] L. Iftode. Home Based Shared Virtual Memory. PhD Thesis,
Technical Report TR-583-98, Princeton University, 1998.

[14] A. ltzkovitz, A. Schuster, and Y. Talmor. Harnessing the
power of fast low-latency networks for software dsms. The
First Workshop in Software Distributed Shared Memory,
1999.

[15] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. In Proceedings of the
1994 Winter Usenix Conference, Jan. 1994,

[16] K. Li. IVY: A Shared Virtual Memory System for Parallel
Computing. In Proceedings of the International Conference
on Parallel Processing, pages 94-101, Los Alamitos, CA,
1988.

[17] O. Lysne. Deadlock avoidance for switches based on worm-
hole networks. Proc. of the 1999 International Conference
on Parallel Processing, 1999.

[18] M. Thottethodi, A. Lebeck, and S. Mukherjee. BLAM:
A High-Performance Routing Algorithm for Virtual Cut-
Through Networks. International Parallel and Distributed
Symposium, April 2003.

Specification.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M.A. Blumrich, C. Dubnicki, E.W. Felten, Kai Li, M.R.
Mesarina. Two Virutal Memory Mapped Network Interface
Designs. Proc. of the Hot Interconnects Symp., 1994.

L. Monnerat and R. Bianchini. Efficiently Adapting to Shar-
ing Patterns in Software DSMs. High-Performance Com-
puter Architecture (HPCA), Feburary 1997.

R. Noronha and D. K. Panda. Implementing TreadMarks
over GM on Myrinet: Challenges, Design Experience and
Performance Evaluation. Workshop on Communication Ar-
chitecture for Clusters (CAC'03), held in conjuction with
IPDPS’03, April 2003.

R. Noronha and D.K. Panda. Designing High Performance
DSM Systems using InfiniBand Features. Workshop on Dis-
tributed Shared Memory on Clusters (DSM'’ 04), held in con-
juction with CCGRID ' 04, April 2004.

M. Rangarajan and L. Iftode. Software Distributed Shared
Memory over Virtual Interface Architectur: Implementation
and Performance. Proc. of the Annual Linux Showcase, Ex-
treme Linux Workshop, Atlanta, October 2000.

R. Stets, S. Dwarkadas, L. Kontothanassis, U. Rencu-
zogullari, and M. L. Scott. The Effect of Network Total Or-
der, Broadcast, and Remote-Write Capability on Network-
Based Shared Memory Computing. In International Sympo-
sium on High-Performance Computer Architecture, 2000.

T. Birk, L. Liss and A. Schuster. Efficient Exploitation of
Kernel Access to InfiniBand: a Software DSM Example.
Hot Interconnects, August 2003.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In International Symposium on
Computer Architecture, pages 24-36, 1995.

