
High Performance Distributed Lock Management Services using Network-based
Remote Atomic Operations∗

S. Narravula A. Mamidala A. Vishnu K. Vaidyanathan D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

{narravul, mamidala, vishnu, vaidyana, panda}@cse.ohio-state.edu

Abstract

Recently there has been a massive increase in computing
requirements for parallel applications. These parallel
applications and supporting cluster services often need to
share system-wide resources. The coordination of these
applications is typically managed by a distributed lock
manager. The performance of the lock manager is extremely
critical for application performance. Researchers
have shown that the use of two sided communication
protocols, like TCP/IP (used by current generation lock
managers), can have significant impact on the scalability
of distributed lock managers. In addition, existing one-
sided communication based locking designs support locking
in exclusive access mode only and can pose significant
scalability limitations on applications that need both shared
and exclusive access modes like cooperative/file-system
caching. Hence the utility of these existing designs in high
performance scenarios can be limited. In this paper, we
present a novel protocol, for distributed locking services,
utilizing the advanced network-level one-sided atomic
operations provided by InfiniBand. Our approach augments
existing approaches by eliminating the need for two sided
communication protocols in the critical locking path.
Further, we also demonstrate that our approach provides
significantly higher performance in scenarios needing
both shared and exclusive mode access to resources.
Our experimental results show 39% improvement in
basic locking latencies over traditional send/receive based
implementations. Further, we also observe a significant
(upto 317% for 16 nodes) improvement over existing RDMA
based distributed queuing schemes for shared mode locking
scenarios.

∗This research is supported in part by DOE grants #DE-FC02-
06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-0403342 and
#CNS-0509452; grants from Intel, Mellanox, Cisco systems,Linux
Networx and Sun Microsystems; and equipment donations fromIntel,
Mellanox, AMD, Apple, Appro, Dell, Microway, PathScale, IBM,
SilverStorm and Sun Microsystems.

1 Introduction

Massive increase in computing requirements have
necessitated the use of parallel applications in several
fields. Applications in scientific computing, data-
mining, web-hosting data-centers, etc. and services like
load balancing, cooperative caching, cluster file-systems,
etc. supporting the applications often involve multiple
parallel coordinating processes accomplishing the required
computational tasks. Cluster based architectures are
becoming increasingly popular for the deployment of these
parallel applications due to their high performance-to-cost
ratios. In such architectures, the applications’ processes
are often distributed across different nodes and efficient
coordination of these processes is extremely critical for
achieving high performance.

Effective cooperation among the multiple processes
distributed across the nodes is needed in a typical data-
center environment where common pools of data and
resources like files, memory, CPU, etc. are shared
across multiple processes. This requirement is even more
pronounced for clusters spanning several thousands of
nodes. Highly efficient distributed locking services are
imperative for such clustered environments.

While traditional locking approaches provide basic
mechanisms for this cooperation, high performance, load
resiliency and good distribution of lock management
workload are key issues that need immediate addressing.
Existing approaches [7, 1, 6, 11] handle these requirements
either by distributing the per-lock workload (i.e. one server
manages all operations for a predefined set of locks) and/or
by distributing each individual lock’s workload (i.e. a group
of servers share the workload by distributing the queue
management for the locks). While the former is popularly
used to distribute load, it is limited to a high granularity
of workload distribution. Further, some locks can have
significantly higher workload as compared to others and
thereby possibly causing an unbalanced overall load.

The second approach of distributed queue management
has been proposed by researchers for load-sharing fairness
and better distribution of workload. In such approaches,

1



employing two-sided communication protocols in data-
center environments is inefficient as shown by our earlier
studies [13]. Devulapalli. et. al. [7], have proposed
a distributed queue based locking protocol which avoids
two-sided communication operations in the locking critical
path. This approach only supports locking of resources in
exclusive access mode. However, supporting all popular
resource access patterns needs two modes of locking: (i)
Exclusive mode locking and (ii) Shared mode locking. Lack
of efficient support for shared mode locking precludes the
use of these locking services in common high performance
data-center scenarios like multiple concurrent readers for a
file (in file system caching), or multiple concurrent readers
for a data-base table, etc. Hence the distributed lock
management needs to be designed taking into account all
of these issues.

On the other hand, the emergence of modern generation
interconnects have significantly changed the design scope
for the cluster based services with the introduction of
a range of novel network based features. InfiniBand
Architecture (IBA) [3], based on open standards, defines a
network that provides high performance (High bandwidth
and low latencies). IBA also provides Remote Direct
Memory Access (RDMA) which allows processes to
access the memory of a process on a remote node
without interrupting the remote node’s processor. In
addition, IBA also defines two network level atomic
primitives, fetchand add and compareand swap, that
allow atomic operations on a 64-bit field on the remote
node’s memory. Leveraging these novel network features,
locking operations can be designed with very low latencies
and with minimal CPU overhead on the target node.

In this paper, we propose and design a comprehensive
high performance distributed locking service for data-center
applications and services in clustered environments over
InfiniBand. In particular, our contributions in designing a
distributed lock manager are:

1. Providing efficient locking services by using network-
based RDMA Atomic operations in the critical path for
locking operations

2. Providing efficient support for locking services in both
shared and exclusive access modes

3. Designing locking services that have CPU load
resilient latencies

4. Designing locking services that try to fairly distribute
the workload only among processes involved in
locking operations

Our experimental results show 39% improvement in
basic locking latencies over traditional send/receive based
implementations. Further, we also observe a significant
(upto 317% for 16 nodes) improvement over existing
RDMA based distributed queuing schemes for shared mode
locking scenarios.

Section 2 briefly describes InfiniBand Architecture and
cluster based data-centers. Our proposed design is detailed

in Section 3. We present our experimental results in Section
4. Related work in the field is summarized in Section 5.
Finally, Section 6 presents the conclusions and future work.

2 Background

In this section, we briefly describe the required
background in InfiniBand and Advisory Locking services.

2.1 InfiniBand

InfiniBand Architecture (IBA) [3] is an industry
standard that defines a System Area Network (SAN) to
design clusters offering low latency and high bandwidth.
A typical IBA cluster consists of switched serial
links for interconnecting both the processing nodes
and the I/O nodes. IBA supports two types of
communication semantics: Channel Semantics (Send-
Receive communication model) and Memory Semantics
(RDMA communication model). Remote Direct Memory
Access (RDMA) [9] operations allow processes to access
the memory of a remote node process without the remote
node CPU intervention. These operations are transparent at
the remote end since they do not involve the remote CPU’s
in the communication.
RDMA Atomic Operations: InfiniBand provides
two network level remote atomic operations, namely,
fetchand add and compareand swap. The network
interface card (NIC) on the remote node guarantees the
atomicity of these operations. These operations act on
64-bit values. In atomicFetchand add operation, the
issuing process specifies the value that needs to be added
and the remote address of the 64-bit location to which
this value is to be added. After the operation, the new
value present at this remote address is the original value
plus the supplied value. Further, the original value is
returned to the issuing process. On the other hand in
an atomicCompareand swapoperation, the value at the
remote location is atomically compared with the ’compare
value’ specified by the issuing process. If both the values
are equal, the original remote value is swapped with the new
value which is also provided by the issuing process. If these
values are not the same, swapping does not take place. In
both the cases, the original value is returned to the issuing
process.

2.2 Advisory Locking Services

Concurrent applications need advisory locking services
[6, 11, 10] to coordinate the access to shared resources.
The lock manager often deals with only the abstract
representations of the resources. The actual resources
are usually disjoint from the manager. Each resource
is uniquely mapped to akey. All locking services are
performed using thekeys. A given lock is usually in one
of several possible states: (i) UNLOCKED, (ii) SHARED
LOCK and (iii) EXCLUSIVE LOCK. There are several
existing approaches providing these locking services. In the



following subsections, we describe two relevant distributed
lock management (DLM) approaches.

2.2.1 Send/Receive-based Server
The basic communication model used in this design is
based on the OpenFabrics-Gen2 [8] two-sidedsend-receive
primitives. For all locking operations, the local node sends
the requests to the remote node responsible for the key.
Based on the availability, the remote node responds. If
the lock is unavailable, the remote server node queues the
request and responds when possible. The basic advantage of
this approach is that an inherent ordering of message is done
for each request. And the number of messages required for
each lock/unlock operation is fixed. Hence, the approach is
free of live-locks and starvation.

2.2.2 Distributed Queue-based Locking
This approach has been proposed by researchers [7], as
an attempt to use one-sided communication for distributed
locking. In this approach, RDMA Compare-and-Swap is
used to create a distributed queue. Each lock has a global
64-bit value representing the tail of the current queue. A
new process requiring the lock performs an atomic RDMA
CS operation on this 64-bit value assuming it is currently
free (i.e. value = 0). If the RDMA CS succeeds then the lock
is granted, otherwise the RDMA CS is repeated replacing
the current 64-bit value with the new value representing the
requesting node’s rank. This rank forms the new tail of the
distributed queue. It is to be noted that this approach does
not support locking in true shared mode. Shared locks can
only be granted in exclusive modes and hence are serialized.

3 The Proposed Design

In this section, we describe the various design aspects of
our RDMA based complete DLM locking services. Section
3.1 describes the common implementation framework for
our system. Section 3.2 describes the design details of our
locking designs.

3.1 Basic Framework

The DLM works in a client-server model to provide
locking services. In our design we have the DLM server
daemons running on all the nodes in the cluster. These
daemons coordinate over InfiniBand using OpenFabrics
Gen2 interface [8] to provide the required functionality.
Figure 1 shows the basic setup on each node. The
applications (i.e. clients) contact their local daemons
using IPC message queues to make lock/unlock requests.
These requests are processed by the local daemons and
the response is sent back to the application appropriately.
Since typical data-center applications have multiple (often
transient) threads and processes running on each node, this
approach of having one DLM server daemon on each node
provides optimal sharing of DLM resources while providing

good performance. These DLM processes are assigned rank
ids (starting from one) based on their order of joining the
DLM group.

Cluster Node

IPC
Modules
To Other 

Application
Threads

External
Module

for
Locking
Services

Gen2

Figure 1. External Module-based Service

The DLM maintains the information on each lock with
an associated key. These keys and related lock information
is partitioned among the participating nodes; i.e. each
key has ahomenodethat represents the default location of
the locking state information for that lock (and the keys
themselves are randomly distributed among all the nodes).

In order to support these operations, we have three
threads in each of our design: (i) Inter-node communication
thread, (ii) IPC thread and (ii) Heartbeat thread. The inter-
node communication thread blocks on gen2-level receive
calls. The IPC thread performs the majority of the
work. It receives IPC messages from application processes
(lock/unlock requests) and it also receives messages from
the other threads as needed. The heartbeat thread is
responsible for maintaining the work queues on each node.
This thread can also be extended to facilitate deadlock
detection and recovery. This issue is orthogonal to our
current scope and is not dealt in the current paper.

In our design we use one-sided RDMA atomics in
the critical locking path. Further, we distribute the
locking workload among the nodes involved in the locking
operations. Hence our design maintains basic fairness
among the cluster nodes.

3.2 Network-based Combined Shared/Exclusive
Distributed Lock Design (N-CoSED)

In this section, we describe the various aspects of
our high performance design for providing shared and
exclusive locking using network based atomic operations.
In particular, we provide the details of the various protocols
and data-structures we use in order to accomplish this. This
section is organized as the following. First, we explain the
organization of the data-structures used in protocols. We
then explain the N-CoShED protocol proposed in this paper.
Global Shared Data-Structures: The primary data
element used in our proposed DLM design is a 64-bit
value. The required attributes of this value is that it should
be globally visible and accessible (i.e. RDMA Atomics
are enabled on this memory field) by all the participating
processes. Each 64-bit value used for lock management
is divided equally into two regions: Exclusive region and
Shared region, each making up 32-bits. These fields are
initalized to zero at the start and the details of the the usage
are described in the following subsections.



X 0

X 0

0 0

1 0

1 0

X 0

3 0

3 0

1 0

0 0

1 0

Node 3Node 1

0 0

1 0

Request

Exclusive Lock

Exclusive Lock

Node 2(Home Node)

Granted if (X == 0)

Cmp Val:

Swap Val:

Cmp Val:

Swap Val:

Ret Val:

Ret Val:

Lock Request

Lock Grant

Lock Grant

Unlock

Swap Val:

Cmp Val:

Ret Val:

0 0

0 0
0 1

0 1

0 1

0 1

0 2

Node 3Node 1

Request

Node 2(Home Node)

Ret Val:

Add Val:Shared Lock

Shared Lock

Granted 

Request

Shared Lock

Shared Lock

Granted 

Add Val:

Ret Val:

Lock Release

Lock Release

UnLock

UnLock

Figure 3. Locking protocols: (a) Exclusive only (b) Shared O nly

1

Exclusive 
Lock REQ

Exclusive 
Lock REQ

3

Exclusive 
Lock REQ

Shared
Lock

Requests

Shared
Lock

Requests

6

Node_3

Node_2

Node_1

Queue
Tail

2

4

5

Home Node

Figure 2. An Example Scenario of N-CoSED

We now explain the combined distributed locking
protocol for shared and exclusive locks. To simplify
understanding, we break this protocol into four broad
cases:(i) Only Exclusive locks are issued, (ii) Only Shared
locks are issued, (iii) Exclusive locks are issued following
Shared locks and (iv) Shared locks are issued following
Exclusive locks.

Figure 2 shows a sample snapshot of the state of the
ditributed queue for locks in our design. The circled
numbers label the lock request arrows to show the order in
which the queue locks are granted. The three nodes shown
have exclusive lock requests and each of them have a few
shared lock requests queued that will be granted after they
are done with the exclusive lock.

3.2.1 Exclusive Locking Protocol

In this section we outline the locking and unlocking
procedures when only exclusive locks are issued. As
explained above a 64-bit value (on the home node) is used
for each lock in the protocol. For exclusive locking, only
the first 32 bits of the 64-bit value are used. The following
steps detail the exclusive lock/unlock operation. Figure 3(a)

shows an example of this case.
Locking Protocol: Step 1. To acquire the lock the
requesting client process issues an atomic compare-and-
swap operation to the home node. In this operation, two
values are provided by this process, the swap value and the
compare value. The swap value is a 64-bit value whose
first 32 bits correspond to the rank of the issuing process
and the next 32 bits are zeros[rank : 0]. The compare
value [0 : 0] is passed for comparison with the value at
the home node. If this value equals the value at the home
node, the compare operation succeeds and the value at the
home node is swapped with the supplied swap value. If the
comparison fails then the swapping does not take place. The
issuing process is returned with the original 64-bit value of
the home node after the atomic operation completes.

Step 2. If the exclusive region of the returned value
corresponds to zero, it indicates that no process is currently
owning the lock. The process can safely acquire the lock in
this circumstance.

Step 3. If the value is not zero, then the exclusive
region of the returned value corresponds to the rank of the
process at the end of the distributed queue waiting for the
lock. In this case, the issued atomic comparison would
have failed and the entire atomic operation has to retried.
However, this time the exclusive region of the compare
value[currenttail : 0] is set to the rank of the last process
waiting in the queue. Once the atomic operation succeeds,
the local DLM process sends a separate lock request
message (using Send/Recv) to the last process waiting for
the lock. The rank of this process can be extracted from
the 64-bit returned value of the atomic operation. This
approach is largely adequate for performance reasons since
this operation is not in critical path.
Unlocking Protocol: Step 1. After the process finishes up
with the lock, it checks whether it has any pending requests
received from other processes. If there is a pending lock
request, it sends a message to this process indicating that it



0 0

1 0

1 0

0 0

1 0

0 1

0 1

0 1

0 1

0 1

1 0

Node 3Node 1

0 0

Request

Exclusive Lock

Exclusive Lock

Node 2(Home Node)

Cmp Val:

Swap Val:

Cmp Val:

Swap Val:

Ret Val:

Ret Val:

Lock Grant

Unlock

Swap Val:

Cmp Val:

Ret Val:

Not Granted

1 0

Lock Grant

Lock Request

Lock Release

3 0

3 1

3 1

0 0

X 0

Node 3Node 1

Request

Node 2(Home Node)

Granted if (X == 0)

Ret Val:

Lock Grant

Unlock

Add Val:

Lock Request

Lock Grant

Unlock Request

Swap Val:

Cmp Val:

0 0

Shared Lock

Shared Lock

0 1

Figure 4. Locking protocols: (a) Shared followed by Exclusi ve (b) Exclusive followed by Shared

can go ahead and acquire the lock. This process is the next
in the distributed queue waiting for the lock.

Step 2. If there are no pending lock requests, the given
process is the last in the queue and it resets the 64-bit value
at the home-node to zero for both the exclusive and shared
regions.

3.2.2 Shared Locking Protocol
In this section we explain the protocol steps when only
requests for the shared lock are issued. In this part of
the protocol, the shared region portion of the 64-bit value
is employed which makes up the last 32 bits. The basic
principle employed is that the shared region is atomically
incremented using Fetch-and-Add operation every time a
shared lock request arrives at the home node. Thus, at any
given time the count in the shared region represents the
number of shared lock requests arrived at the home node.
The following are the detailed steps involved.
Locking Protocol: Step 1. The process acquiring the
shared lock initiates an atomic fetch-and-add increment
operation on the 64-bit value at the home node. Please
note that in effect, the operation is performed on the shared
region of the value. The first 32 bits are not modified.

Step 2. If the exclusive portion of the returned value
corresponds to zero then the shared lock can be safely
acquired.

Step 3. If the exclusive portion of the returned value
contains a non-zero value, it implies that some other process
has issued an exclusive lock request prior to the shared
lock request on the lines of the exclusive locking protocol
described earlier. We explain this scenario in detail in the
following sections.
Unlocking Protocol: Step 1. The process after acquiring
the shared lock issues a lock release message to the home
node.

Step 2. Once all the lock release messages from the
shared lock owners have arrived, the shared region is re-set

to zero atomically by the home node.

3.2.3 Shared Locking followed by Exclusive locking:
We now outline the steps when an exclusive lock request
arrives after the shared locks have been issued. In this
case, the value at the home node reads the following.
The first 32 bits corresponding to the exclusive portion
would be zero followed by the next 32 bits which contain
the count of the shared locks issued so far. The process
acquiring the exclusive lock issues an atomic compare-and-
swap operation on the 64-bit value at the home node as
described in the above exclusive protocol section. The
following steps occur during the operation. Figure 4(a)
shows the basic steps.

Step 1. Similar to the exclusive locking protocol, the
issuing client process initiates an atomic compare-and-swap
operation with the home node. Since shared locks have been
issued, the atomic operation fails for this request. This is
because the value in the home node does not match with the
compare value supplied which is equal to zero. The atomic
operation is retried with the new compare value set to the
returned value of the previous operation.

Step 2. Once the retried atomic operation succeeds, the
64-bit value at the home node is swapped with a new value
where the shared region is re-set to zero and the exclusive
region contains rank of the current issuing process.

Step 3. The issuing process then gets the number of
shared locks issued so far from the last 32 bits of the
returned value. It also obtains the value of the first 32 bits
which is the exclusive region. In our case, since we are
assuming that only shared locks have been issued so far
this value is zero. It then sends an exclusive lock acquire
message to the home node. It also sends the count of the
number of shared locks to this process. This count helps the
home node keep track of the shared locks issued so far and
hence needs to wait for all these unlock messages before
forwarding the lock to the node requesting the exclusive



lock.
Step 4. The exclusive lock is acquired only when

the home node process receives the shared lock release
messages from all the outstanding shared lock holders in
which case it grants the exclusive lock request.

The case of subsequent exclusive lock requests is the
same as described in the exclusive locking protocol section
outlined above. Unlock procedures are similar to the earlier
cases.

3.2.4 Exclusive Locking followed by Shared Locking:

The following are the sequence of operations when shared
locks are issued after exclusive locks. Figure 4(b) shows an
example scenario.

Step 1. The issuing client process initiates a fetch-and-
add atomic operation in the same fashion described in the
locking protocol for shared locks. However, the value of
exclusive region in the returned value may not match with
the rank of the home process. This is because the exclusive
region contains the rank of the last process waiting for
exclusive lock in the queue.

Step 2. The shared lock requests are sent to the last
process waiting for the exclusive lock. This is obtained
from the exclusive portion of the returned value of Fetch-
and-Add operation.

Step 3. The shared lock is granted only after the last
process waiting for the exclusive lock is finished with the
lock.

The same procedure is followed for any shared lock
issued after the exclusive locks.

4 Experimental Results

In this section, we present an in-depth experimental
evaluation of our Network-based Combined
Shared/Exclusive Distributed Lock Management (N-
CoSED). We compare our results with existing algorithms
(i) Send/Receive-based Centralized Server Locking
(SRSL) (Section 2.2.1) and (ii) Distributed Queue-based
Non-Shared Locking (DQNL) (Section 2.2.2).

All these designs are implemented over InfiniBand’s
OpenFabrics-Gen2 interface [8]. Message exchange was
implemented over IBA’s Send/Receive primitives. The one-
sided RDMA operations were used (compare-and-swapand
fetch-and-add) for all the one-sided operations for DQNL
and N-CoSED.
Experimental Test Bed: For our experiments we used the
a 32-node Intel Xeon cluster. Each node of our testbed
has two 3.6 GHz Intel processor and 2 GB main memory.
The CPUs support the EM64T technology and run in 64 bit
mode. The nodes are equipped with MT25208 HCAs with
PCI Express interfaces. A Flextronics 144-port DDR switch
is used to connect all the nodes. OFED 1.1.1 software
distribution was used.

Table 1. Communication Primitives: Latency
Primitive Polling (us) Notification (us)

Send/Recv 4.07 11.18
RDMA CS 5.78 12.97
RDMA FA 5.77 12.96

4.1 Microbenchmarks

The basic latencies observed for each of the InfiniBand’s
primitives used in our experiments are shown in Table 1
. The latencies of each of these is measured in polling
and notification mode. The three primitives shown are
send/recv, RDMA compare-and-swap(RDMA CS) and
RDMA fetch-and-add(RDMA FA). For the send/recv
operation we have used a message size of 128 bytes.

As clearly seen from the numbers, the polling approach
leads to significantly better latencies. However, the polling-
based techniques consume many CPU cycles and hence are
not suitable in typical clustered data-center scenarios.

In addition to network based primitives, a DLM needs
an intra-node messaging primitive as explained in Section
3.1. In our experiments we use System V IPC message
queues. The choice is orthogonal to our current scope of
research. We observe a latency of 2.9 microseconds for
communicating with IPC message queues for a 64 byte
message. The cost for initiating such a request is observed
to be 1.1 microseconds. It is to be noted that while the
network primitives operate in both polling and notification
mode, the intra-node messaging is used only in notification
mode. This is because multiple processes that require
locking services usually exist on a single node and the
situation of having all of these processes polling practically
block the node from doing any useful computation and
needs to be avoided.

0

5

10

15

20

25

30

SRSL-Poll DQNL-Poll N-CoSED
Poll

SRSL-
Notification

DQNL-
Notification

N-CoSED
Notification

La
te

nc
y 

(u
s)

Lock-Request IPC Network Lock-Response -IPC Addl

Figure 6. Timing breakup of lock operations

All the locking mechanisms dealing with the distributed
locking service daemon, the total lock/unlock latency is
divided into two parts: (i) the intra-node messaging latency
and (ii) the lock wait + network messaging. While various
distributed locking schemes differ significantly in the
second component, the first component is usually common
to all the different designs and hence can be eliminated
for the sake of comparing the performance across different
designs.



0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Excl - Lock Excl - Unlock Shrd - Lock Shrd - Unlock

La
te

nc
y 

(u
s)

SRSL DQNL N-CoSED

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Excl - Lock Excl - Unlock Shrd - Lock Shrd - Unlock

La
te

nc
y 

(u
s)

SRSL DQNL N-CoSED

Figure 5. Basic Locking Operations’ Latency: (a) Polling (b ) Notification

Table 2. Cost Models
Scheme Lock Unlock

SRSL 2 ∗ TSend + 2 ∗ TIPC TIPC−Initiate

DQNL TRDMAAtomic + 2 ∗ TIPC TIPC−Initiate

N-CoSED TRDMAAtomic + 2 ∗ TIPC TIPC−Initiate

4.2 Detailed Performance Evaluation

In this section, we compare the locking performance of
the various lock/unlock operations involved across the three
schemes: SRSL, DQNL and N-CoSED.

Figure 5 shows the average latency of the basic locking
operations as seen by the applications. In this experiment,
we have only one outstanding lock/unlock request (serial
locking) for a given resource at any given point of time.
Both polling and notification modes are shown.

As seen in Figure 5(a) for polling based latencies,
basic locking latency for SRSL is 16.0 microseconds
and is identical for shared and exclusive mode locking.
This basically includes work related to two Send/Recv
messages of IBA, two IPC messages plus book keeping.
The DQNL and N-CoSED schemes perform identically
for serial locking and show a lower latency of 14.02
microseconds. As shown in Figure 6 the main benefit here
is from the fact that two networksend/recvoperations are
replaced by one RDMA atomic operation.

Figure 5(b) shows the same latencies in notification
mode. The lock latencies for DQNL and N-CoSED show an
average latency of 19.6 microseconds whereas SRSL shows
a latency of 27.37 microseconds.

The more interesting aspect to note is that in case of
polling based approach the SRSL lock latency is 14% more
than the RDMA based DQNL and N-CoSED, while in the
notification case the SRSL latency is 39.6% higher than
the the RDMA based designs. As shown in Figure 6
this higher increase of latency for SRSL is in the network
communication part which is due to the fact that it requires
notifications for each of the twosend/recvmessages needed
for it. On the other hand the RDMA based schemes incur
only one notification. Hence the RDMA based schemes
offer better basic latencies for locking over two sided
schemes.

The basic unlocking latency seen by any process is
just about 1.1 microseconds. This is because for unlock

operations the applications just initiate the unlock operation
by sending the command over messages queues. This actual
unlock operation latency is hidden from the process issuing
the unlock operation. Table 2 shows the cost models for
each of the operations.

4.3 Cascading Unlock/Lock delay

While the basic unlock latency seen by any unlocking
process is minimal, the actual cost of this operation is seen
by processes next in line waiting for the lock to be issued.
This aspect is equally important since this directly impacts
the delay seen by all processes waiting for locks. The two
extreme cases of locking scenarios are considered: (i) All
processes waiting for exclusive locks and (ii) all waiting
processes are waiting for shared locks. In this experiment,
a number of processes wait in the queue for a lock currently
held in exclusive mode, once the lock is released it is
propagated and each of the processes in the queue unlock
the resource as soon as they are granted the lock. This test
intends to measure the propagation delay of these locks.

In Figure 7(a), the basic latency seen by DQNL increases
at a significantly higher rate as compared to SRSL and
N-CoSED. This is due to the fact that DQNL is as such
incapable of supporting shared locks and grants these in
a serialized manner only, whereas the other two schemes
release all the shared locks in one go. It is to be noted that
all the shared lock holders are immediately releasing the
locks in this test. This effect is heightened when the lock
holding time of each of the shared lock holders increases.
As compared to N-CoSED, DQNL and SRSL incur 317%
and 25% higher latencies, respectively. The difference in
SRSL and N-CoSED is the extra message SRSL required
from the last lock holder to the home-node server before
the release can be made.

The increase in the latency for the N-CoSED scheme
for longer wait queues is due to the contention at the
local NIC for sending out multiple lock release messages
using Send/Recv messages. This problem can be addressed
by the use of multicast or other optimized collective
communication operations [12]. These techniques are
orthogonal to the scope of this paper.

Figure 7(b) captures this lock cascading effect by
measuring the net exclusive lock latency seen by a set of
processes waiting in a queue. The latency for propagation



0

50

100

150

200

250

1 2 4 8 16

Number of waiting processes

La
te

nc
y 

(u
s)

SRSL DQNL N-CoSED

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

1 2 4 8 16

Number of waiting processes

La
te

nc
y 

(u
s)

SRSL DQNL N-CoSED

Figure 7. Lock Cascading Effect: (a) Shared Lock Cascade (b) Exclusive Lock Cascade

of exclusive locks is similar for both DQNL and N-CoSED,
each of which incurs the cost of one IB Send/Recv message
per process in the queue. On the other hand, the SRSL
scheme incurs two Send/Recv messages per unlock/lock
operation since all the operations have to go the server
before they can be forwarded. In all these cases, N-CoSED
performs the best.

5 Related Work

Several researchers [1, 6, 11, 5, 4] have designed and
evaluated DLMs for providing better parallel application
performance. Most of these rely on the traditional two sided
communication protocols (like TCP/IP) for all network
communication. On the other hand, prior research work
[13, 7] have shown the performance benefits and load
resiliency that one-sided RDMA based designs have over
the traditional designs. In our current design we leverage
the benefits of one-sided RDMA to provide efficient
lock management services to the applications. DSM
synchronizations [2] can be used to provide distributed
locking, however, the DSM implemenation itself needs an
underlying support of the locking primitives.

Devulapalli et. al. [7], have proposed distributed
queue based DLM using RDMA operations. Though this
work exploits the benefits of RDMA operations for locking
services, their design can only support exclusive mode
locking. In our work we provide both shared and exclusive
mode locking using RDMA operations.

6 Conclusion and Future Work

The massive increase in cluster based computing
requirements has necessitated the used of highly efficient
DLMs. In this paper, we have presented a novel distributed
locking protocol utilizing the advanced network level one-
sided operations provided by InfiniBand. Our approach
arguments the existing approaches by eliminating the need
for two sided communication protocols in the critical
locking path. Further, we have also demonstrated that
our approach provides significantly higher performance
in scenarios needing both shared and exclusive mode
access to resources. Since our design distributes the lock
management load largely on some of the nodes using the
lock, basic fairness is maintained.

Our experimental results have shown that we can
achieve 39% better locking latency as compared to basic
send/recvbased locking schemes. In addition, we have
also demonstrated that our design provides excellent shared
locking support using RDMA FA. This support is not
provided by existing RDMA based approaches. In this
regard we have demonstrated the performance of our design
which can perform an order of magnitude better than the
basic RDMA CS based locking proposed earlier [7].

We plan to extend our designs to include efficient
support for starvation free one-sided locking approaches,
provide these as a part of the necessary data-center service
primitives and demonstrate the overall utility with typical
complex applications.

References

[1] M. Aldred, I. Gertner, and S. McKellar. A distributed lock manager
on fault tolerant mpp.hicss, 00:134, 1995.

[2] Gabriel Antoniu, Luc Bouge, and Lacour Lacour. Making a dsm
consistency protocol hierarchy-aware: an efficient synchronization
scheme. 2003.

[3] Infiniband Trade Association. http://www.infinibandta.org.

[4] E. Born. Analytical performance modelling of lock management in
distributed systems.Distributed Systems Engineering, 3(1):68–76,
1996.

[5] Oracle8i Parallel Server Concepts and Administration.http://www.
csee.umbc.edu/help/oracle8/server.815/a67778/toc.htm.

[6] Nirmit Desai and Frank Mueller. A log(n) multi-mode locking
protocol for distributed systems.

[7] A. Devulapalli and P. Wyckoff. Distributed queue based locking
using advanced network features. InICPP, 2005.

[8] Open Fabrics Gen2. http://www.openfabrics.org.

[9] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA
Protocol Verbs Specification (Version 1.0). Technical report, RDMA
Consortium, April 2003.

[10] Exclusive File Access in Mac OS X. http://developer.apple.com/
technotes/tn/pdf/tn2037.pdf.

[11] H. Kishida and H. Yamazaki. Ssdlm: architecture of a distributed
lock manager with high degree of locality for clustered file systems.

[12] Jiuxing Liu, Amith R.Mamidala, and Dhabaleswar K. Panda. Fast
and Scalable MPI-Level Broadcast using InfiniBand’s Hardware
Multicast Support. InProceedings of IPDPS, 2004.

[13] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu,
and D. K. Panda. Supporting Strong Coherency for Active Caches in
Multi-Tier Data-Centers over InfiniBand. InSystem Area Networks
(SAN), 2004.


