High Performance Distributed Lock Management Services usig Network-based
Remote Atomic Operations*

S. Narravula A. Mamidala A. Vishnu K. Vaidyanathan D. K. Pand

Department of Computer Science and Engineering
The Ohio State University
{narravul, mamidala, vishnu, vaidyana, pap@szse.ohio-state.edu

Abstract 1 Introduction

Massive increase in computing requirements have

R_ecentlythere has beenamgss[ve increase in COmputm%ecessitated the use of parallel applications in several
requirements for parallel applications. These parallel fields. Applications in scientific computing, data-

applications anq supporting cluster service_s of_ten need tOmining web-hosting data-centers, etc. and services like
sharg system—mde_ resources. The coord_lna_t fon of thesqoad balancing, cooperative caching, cluster file-systems
applications is typically managed by a distributed lock etc. supporting the applications often involve multiple

manager. The performance of the lock manager is extremely e - .
critical for application performance. Researchers parallel coordinating processes accomplishing the requir

; . .~ _computational tasks. Cluster based architectures are
have shown that the use of two sided communication S)
. ; becoming increasingly popular for the deployment of these
protocols, like TCP/IP (used by current generation lock o i,
A : .. parallel applications due to their high performance-tstco
managers), can have significant impact on the scalability ™. X e
o o L ratios. In such architectures, the applications’ processe
of distributed lock managers. In addition, existing one-

) N . : . __are often distributed across different nodes and efficient
sided communication based locking designs support locking o . "

) . L coordination of these processes is extremely critical for
in exclusive access mode only and can pose S'gmflcantachievin hiah performance
scalability limitations on applications that need both st 9gh p '

. ; e Effective cooperation among the multiple processes
and exclusive access modes like cooperative/file-system,. . . . :
) - g . .~~~ distributed across the nodes is needed in a typical data-
caching. Hence the utility of these existing designs in high

: g, : center environment where common pools of data and
performance scenarios can be limited. In this paper, we

i , , resources like files, memory, CPU, etc. are shared
present a novel protocol, for distributed locking services ; . ! .
S . . across multiple processes. This requirement is even more
utilizing the advanced network-level one-sided atomic

operations provided by InfiniBand. Our approach augments pronounce_d for cI_us_,ters spanning Se"?fa' thoqsands of
o L . nodes. Highly efficient distributed locking services are
existing approaches by eliminating the need for two sided . . .
o . L . imperative for such clustered environments.
communication protocols in the critical locking path.

Further, we also demonstrate that our approach provides Wh”e. tradltlona_l locking e_lpproa_lches provide basic
-~ mechanisms for this cooperation, high performance, load
significantly higher performance in scenarios needing

both shared and exclusive mode access to resourc:es.reSIIIenCy and good distribution of lock management

Our experimentl resuls show 3% mprovement in {01405 % ey sses 1l necd nmedite addresarg
basic locking latencies over traditional send/receivedihs eithert? dﬁgtributin thé 'erilock workload (i.e o?1e i
implementations. Further, we also observe a significant y g P L

(upto 317% for 16 nodes) improvement over existing RDMA manages all operations for a predefined set of locks) and/or

o : . by distributing each individual lock’s workload (i.e. a
based Q|str|buted gueuing schemes for shared mode Iockln%%/ servers sﬁare the workload by distributin(g thegl(;FEeue
scenarios.

management for the locks). While the former is popularly
used to distribute load, it is limited to a high granularity
of workload distribution. Further, some locks can have
*This research is supported in part by DOE grants #DE-FC02- significantly higher workload as compared to others and
06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-020234 thereby possibly causing an unbalanced overall load.

#CNS-0509452; grants from Intel, Mellanox, Cisco systerh#ux s
Networx and Sun Microsystems; and equipment donations firabed, The second approach of distributed queue management

Mellanox, AMD, Apple, Appro, Dell, Microway, PathScale, NB has been prqpo_sed_ by researchers for load-sharing fairness
SilverStorm and Sun Microsystems. and better distribution of workload. In such approaches,

employing two-sided communication protocols in data- in Section 3. We present our experimental results in Section
center environments is inefficient as shown by our earlier 4. Related work in the field is summarized in Section 5.
studies [13]. Devulapalli. et. al. [7], have proposed Finally, Section 6 presents the conclusions and future work
a distributed queue based locking protocol which avoids
two-sided communication operations in the locking critica 2 Background
path. This approach only supports locking of resources in ,
exclusive access mode. However, supporting all popular !N this section, we briefly describe the required
resource access patterns needs two modes of locking: (i)background in InfiniBand and Advisory Locking services.
Exclusive mode locking and (ii) Shared mode locking. Lack 21
of efficient support for shared mode locking precludes the —
use of these locking services in common high performance InfiniBand Architecture (IBA) [3] is an industry
data-center scenarios like multiple concurrent readara fo standard that defines a System Area Network (SAN) to
file (in file system caching), or multiple concurrent readers design clusters offering low latency and high bandwidth.
for a data-base table, etc. Hence the distributed lockA typical IBA cluster consists of switched serial
management needs to be designed taking into account allinks for interconnecting both the processing nodes
of these issues. and the I/O nodes. IBA supports two types of
On the other hand, the emergence of modern generatiorcommunication semantics: Channel Semantics (Send-
interconnects have significantly changed the design scopeReceive communication model) and Memory Semantics
for the cluster based services with the introduction of (RDMA communication model). Remote Direct Memory
a range of novel network based features. InfiniBand Access (RDMA) [9] operations allow processes to access
Architecture (IBA) [3], based on open standards, defines athe memory of a remote node process without the remote
network that provides high performance (High bandwidth node CPU intervention. These operations are transparent at
and low latencies). IBA also provides Remote Direct the remote end since they do not involve the remote CPU’s
Memory Access (RDMA) which allows processes to inthe communication.
access the memory of a process on a remote nodeRDMA Atomic Operations: InfiniBand provides
without interrupting the remote node’s processor. In two network level remote atomic operations, namely,
addition, IBA also defines two network level atomic fetchandadd and compareandswap The network
primitives, fetchandadd and compareandswap that interface card (NIC) on the remote node guarantees the
allow atomic operations on a 64-bit field on the remote atomicity of these operations. These operations act on
node’s memory. Leveraging these novel network features,64-bit values. In atomidetchand.add operation, the
locking operations can be designed with very low latencies issuing process specifies the value that needs to be added
and with minimal CPU overhead on the target node. and the remote address of the 64-bit location to which
In this paper, we propose and design a comprehensivehis value is to be added. After the operation, the new
high performance distributed locking service for datateen value present at this remote address is the original value
applications and services in clustered environments overplus the supplied value. Further, the original value is
InfiniBand. In particular, our contributions in designing a returned to the issuing process. On the other hand in
distributed lock manager are: an atomicCompareand.swap operation, the value at the

1. Providing efficient locking services by using network- remote location is atomically compared with the 'compare

based RDMA Atomic operations in the critical path for value’ specified by the issuing process. If both the values
locking operations are equal, the original remote value is swapped with the new

5> Providi Hicient tfor locki . in both value which is also provided by the issuing process. If these
- Froviding eflicient Supportioriocking Services INDotN 5,65 are not the same, swapping does not take place. In

shar_ed _and EXC'PS'VG acc_ess modes both the cases, the original value is returned to the issuing
3. Designing locking services that have CPU load process.

resilient latencies

4. Designing locking services that try to fairly distribute 2.2 Advisory Locking Services
the workload only among processes involved in
locking operations

InfiniBand

Concurrent applications need advisory locking services
[6, 11, 10] to coordinate the access to shared resources.
Our experimental results show 39% improvement in The lock manager often deals with only the abstract
basic locking latencies over traditional send/receiveedas representations of the resources. The actual resources
implementations. Further, we also observe a significantare usually disjoint from the manager. Each resource

(upto 317% for 16 nodes) improvement over existing is uniquely mapped to &ey All locking services are
RDMA based distributed queuing schemes for shared modeperformed using thé&eys A given lock is usually in one
locking scenarios. of several possible states: (i) UNLOCKED, (ii) SHARED

Section 2 briefly describes InfiniBand Architecture and LOCK and (iii) EXCLUSIVE LOCK. There are several
cluster based data-centers. Our proposed design is dktaileexisting approaches providing these locking serviceshén t

following subsections, we describe two relevant distelout good performance. These DLM processes are assigned rank

lock management (DLM) approaches. ids (starting from one) based on their order of joining the
DLM group.

2.2.1 Send/Receive-based Server

The basic communication model used in this design is | Cluster Node conn
based on the OpenFabrics-Gen2 [8] two-sidedd-receive 1P Tagher
primitives. For all locking operations, the local node send ‘

the requests to the remote node responsible for the key.

Based on the availability, the remote node responds. If

the lock is unavailable, the remote server node queues the

request and responds when possible. The basic advantage of Figure 1. External Module-based Service

this approach is that an inherent ordering of message is done o]])

for each request. And the number of messages required for 1he DLM maintains the information on each lock with
each lock/unlock operation is fixed. Hence, the approach is@n associated key. These keys and related lock information

free of live-locks and starvation. is partitioned among the participating nodes; i.e. each
key has ehomenodehat represents the default location of
2.2.2 Distributed Queue-based Locking the locking state information for that lock (and the keys

This approach has been proposed by researchers [7] atshemselves are randomly distributed among all the nodes).
pp prop y ' In order to support these operations, we have three

an attempt to use one-sided communication for d'Str'bUtEdthreads in each of our design: (i) Inter-node communication

locking. In this apprqach, RDMA Compare-and-Swap is hread, (ii) IPC thread and (ii) Heartbeat thread. The inter
used to create a distributed queue. Each lock has a globa — ;
.) : node communication thread blocks on gen2-level receive
64-bit value representing the tail of the current queue. A -
e ; calls. The IPC thread performs the majority of the
new process requiring the lock performs an atomic RDMA . L
work. It receives IPC messages from application processes

CS operation on this 64-bit value assuming it is currently (lock/unlock requests) and it also receives messages from
free (i.e. value = 0). If the RDMA CS succeeds then the lock the other threads as needed. The heartbeat thread is

is granted, otherwise the RDMA CS is repeated replacing ; Lo
. . X responsible for maintaining the work queues on each node.
the current 64-bit value with the new value representing the . o
This thread can also be extended to facilitate deadlock

re_qu_esting node's rank. This rank forms th_e new tail of the detection and recovery. This issue is orthogonal to our
distributed queue. It is to be noted that this approach does i

not support locking in true shared mode. Shared locks canCurrent scope and is not dealt in the current paper.

: : o In our design we use one-sided RDMA atomics in
only be granted in exclusive modes and hence are senahzedfhe critical locking path. Further, we distribute the

locking workload among the nodes involved in the locking
operations. Hence our design maintains basic fairness
among the cluster nodes.

In this section, we describe the various design aspects of .)
our RDMA based complete DLM locking services. Section 3-2 Network-based Combined Shared/Exclusive
3.1 describes the common implementation framework for Distributed Lock Design (N-CoSED)
our system. Section 3.2 describes the design details of our
locking designs.

3 The Proposed Design

In this section, we describe the various aspects of
our high performance design for providing shared and
exclusive locking using network based atomic operations.
In particular, we provide the details of the various proteco

The DLM works in a client-server model to provide and data-structures we use in order to accomplish this. This
locking services. In our design we have the DLM server section is organized as the following. First, we explain the
daemons running on all the nodes in the cluster. Theseorganization of the data-structures used in protocols. We
daemons coordinate over InfiniBand using OpenFabricsthen explain the N-CoShED protocol proposed in this paper.
Gen2 interface [8] to provide the required functionality. Global Shared Data-Structures: The primary data
Figure 1 shows the basic setup on each node. Theelement used in our proposed DLM design is a 64-bit
applications (i.e. clients) contact their local daemons value. The required attributes of this value is that it sdoul
using IPC message queues to make lock/unlock requestsbe globally visible and accessible (i.e. RDMA Atomics
These requests are processed by the local daemons anare enabled on this memory field) by all the participating
the response is sent back to the application appropriatelyprocesses. Each 64-bit value used for lock management
Since typical data-center applications have multiplegfoft is divided equally into two regions: Exclusive region and
transient) threads and processes running on each node, thiShared region, each making up 32-bits. These fields are
approach of having one DLM server daemon on each nodeinitalized to zero at the start and the details of the the @sag
provides optimal sharing of DLM resources while providing are described in the following subsections.

3.1 Basic Framework

Node 1 Node 2Home Node) Node 3 Node 1 Node ZHome Node) Node 3

_ Exclusive Lock \ijl/f\ n _ Shared Lock 77&@)@
Request swapVabT[0] Request T
R R
_ -
X100
Exctse oo | Fo V] [XT0] stareatosk__ | PV [T 1]
Granted if (X ==0) ___cmp val3170] Granted
SwapVafI[®] |
— Addva:[0TZ] | Shared Lock
— 1 dd val BEE] SharedLock
Reval 3T0] [2T0] | Reduet
— vl
Lock Reguasr! - Retval[0 1] Shared Lock ___
Quest| Granted
i [o] 2]
— — L
Lock Grant | —— L Untock . » ""’**—%‘ff'ﬂejiﬁ
JJJ/J,,J/ T
—— UnLock
Lock Grant [=~ e

R REEEEEEEEEEE Lock Release ____—

o
Unlock
""""""" 1 Cmp valZ]0]

Swap Va0 0] |
|
Ret Val:

Figure 3. Locking protocols: (a) Exclusive only (b) Shared O nly

shows an example of this case.
Locking Protocol: Step 1 To acquire the lock the
TGES ghared requesting client process issues an atomic compare-and-
N Rk swap operation to the home node. In this operation, two
values are provided by this process, the swap value and the
compare value. The swap value is a 64-bit value whose
first 32 bits correspond to the rank of the issuing process
and the next 32 bits are zer@sink : 0]. The compare
value [0 : 0] is passed for comparison with the value at
Eclusive the home node. If this value equals the value at the home
node, the compare operation succeeds and the value at the
home node is swapped with the supplied swap value. If the
) . comparison fails then the swapping does not take place. The
Figure 2. An Example Scenario of N-CoSED issuing process is returned with the original 64-bit valfie o
the home node after the atomic operation completes.

Step 2 If the exclusive region of the returned value
corresponds to zero, it indicates that no process is clyrent
owning the lock. The process can safely acquire the lock in
this circumstance.

Step 3 |If the value is not zero, then the exclusive
: region of the returned value corresponds to the rank of the
Exclusive locks. o -

: process at the end of the distributed queue waiting for the

Figure 2 shows a sample snapshot of the state of theIock. In this case, the issued atomic comparison would

ditributed queue for locks in our design. The C|rcled_ have failed and the entire atomic operation has to retried.
numbers label the lock request arrows to show the order 'nHowever, this time the exclusive region of the compare
which the queue locks are granted. The three nodes ShOWQ/alue[currenttail : 0] is set to the rank of the last process
have exclusive lock requests and ea_lch of them have a feV\(/vaiting in the queue. Once the atomic operation succeeds,
shared Iock requests qugued that will be granted after theythe local DLM process sends a separate lock request
are done with the exclusive lock. message (using Send/Recv) to the last process waiting for
_ _ the lock. The rank of this process can be extracted from
3.2.1 Exclusive Locking Protocol the 64-bit returned value of the atomic operation. This
In this section we outline the locking and unlocking approach is largely adequate for performance reasons since
procedures when only exclusive locks are issued. Asthis operation is not in critical path.

explained above a 64-bit value (on the home node) is usedUnlocking Protocol: Step 1 After the process finishes up

for each lock in the protocol. For exclusive locking, only with the lock, it checks whether it has any pending requests
the first 32 bits of the 64-bit value are used. The following received from other processes. If there is a pending lock

steps detail the exclusive lock/unlock operation. Figyeg 3 request, it sends a message to this process indicating that i

Home Node

Exclusive
Lock REQ

Shared
Lock
Request:

Exclusive
ock REQ

We now explain the combined distributed locking
protocol for shared and exclusive locks. To simplify
understanding, we break this protocol into four broad
cases:(i) Only Exclusive locks are issued, (ii) Only Shared
locks are issued, (iii) Exclusive locks are issued follagvin
Shared locks and (iv) Shared locks are issued following

Node 1 Node 2Home Node) Node 3 Node 1 Node ZHome Node) Node 3

.SxcusiveLock_ | cmp val@T0) [0]1] . Shared Lock | agd var T (3] 0]
Request swap Vel 0] Request

P
-

Shared Lock

- -
' -[X
Exclusive Lock | Retvar[@TT] 0] Ret Val:
............. s
Not Granted ___cmpval0T1] Granted if (X == 0

H

SwapVafI[®] | —
— —

_ Lo, T —
~Ret val.[0T] [t] 0] ok Reque|

o e—
ck Requesr e

Lok —

Lock Release_—— 7/

-

T Uniogy
—Mock Req,
Lock Q@,‘i‘r‘—/’”"”// ;QG -
<LockGrant | _— _ Lock Grant —

Unlock
""""""" * | cmpvalZl0] L Mnlogk o cmpvalBD
Swap Va0 0] — e — Swap Va0 [0]

* revaEm o

Figure 4. Locking protocols: (a) Shared followed by Exclusi ve (b) Exclusive followed by Shared

can go ahead and acquire the lock. This process is the nexto zero atomically by the home node.
in the distributed queue waiting for the lock. _ _ _
Step 2 If there are no pending lock requests, the given 3.2.3 Shared Locking followed by Exclusive locking:

process is the last in the queue and it resets the 64-bit value\le now outline the steps when an exclusive lock request
at the home-node to zero for both the exclusive and sharedarrives after the shared locks have been issued. In this

regions. case, the value at the home node reads the following.
_ The first 32 bits corresponding to the exclusive portion
3.2.2 Shared Locking Protocol would be zero followed by the next 32 bits which contain

In this section we explain the protocol steps when only the count of the shared locks issued so far. The process
requests for the shared lock are issued. In this part ofacquiring the exclusive lock issues an atomic compare-and-
the protocol, the shared region portion of the 64-bit value swap operation on the 64-bit value at the home node as
is employed which makes up the last 32 bits. The basic described in the above exclusive protocol section. The
principle employed is that the shared region is atomically following steps occur during the operation. Figure 4(a)
incremented using Fetch-and-Add operation every time ashows the basic steps.

shared lock request arrives at the home node. Thus, at any Step 1 Similar to the exclusive locking protocol, the
given time the count in the shared region represents theissuing client process initiates an atomic compare-arapsw
number of shared lock requests arrived at the home nodeoperation with the home node. Since shared locks have been
The following are the detailed steps involved. issued, the atomic operation fails for this request. This is
Locking Protocol: Step 1 The process acquiring the because the value in the home node does not match with the
shared lock initiates an atomic fetch-and-add incrementcompare value supplied which is equal to zero. The atomic
operation on the 64-bit value at the home node. Pleaseoperation is retried with the new compare value set to the
note that in effect, the operation is performed on the sharedreturned value of the previous operation.

region of the value. The first 32 bits are not modified. Step 2 Once the retried atomic operation succeeds, the

Step 2 If the exclusive portion of the returned value 64-bit value at the home node is swapped with a new value
corresponds to zero then the shared lock can be safelywhere the shared region is re-set to zero and the exclusive
acquired. region contains rank of the current issuing process.

Step 3 If the exclusive portion of the returned value Step 3 The issuing process then gets the number of
contains a non-zero value, itimplies that some other psces shared locks issued so far from the last 32 bits of the
has issued an exclusive lock request prior to the sharedreturned value. It also obtains the value of the first 32 bits
lock request on the lines of the exclusive locking protocol which is the exclusive region. In our case, since we are
described earlier. We explain this scenario in detail in the assuming that only shared locks have been issued so far
following sections. this value is zero. It then sends an exclusive lock acquire
Unlocking Protocol: Step 1 The process after acquiring message to the home node. It also sends the count of the
the shared lock issues a lock release message to the homaumber of shared locks to this process. This count helps the
node. home node keep track of the shared locks issued so far and

Step 2 Once all the lock release messages from the hence needs to wait for all these unlock messages before
shared lock owners have arrived, the shared region is re-setorwarding the lock to the node requesting the exclusive

lock. Table 1. Communication Primitives: Latency

Step 4 The exclusive lock is acquired only when [Primitive]| Polling (us) | Nofification (us) |
the home node process receives the shared lock release Send/Recv 2.07 11.18
messages from all the outstanding shared lock holders in RDMA CS 5.78 12.97
which case it grants the exclusive lock request. RDMA FA 5.77 12.96

The case of subsequent exclusive lock requests is the
same as described in the exclusive locking protocol section
outlined above. Unlock procedures are similar to the earlie

cases. The basic latencies observed for each of the InfiniBand’s
primitives used in our experiments are shown in Table 1

The latencies of each of these is measured in polling
and notification mode. The three primitives shown are
The following are the sequence of operations when sharedsend/recy RDMA compare-and-swafRDMA CS) and
locks are issued after exclusive locks. Figure 4(b) shows anRDMA fetch-and-add(RDMA FA). For the send/recv
example scenario. operation we have used a message size of 128 bytes.

Step 1 The issuing client process initiates a fetch-and- As clearly seen from the numbers, the polling approach
add atomic operation in the same fashion described in theleads to significantly better latencies. However, the pgHi
locking protocol for shared locks. However, the value of based techniques consume many CPU cycles and hence are
exclusive region in the returned value may not match with Not suitable in typical clustered data-center scenarios.
the rank of the home process. This is because the exclusive In addition to network based primitives, a DLM needs
region contains the rank of the last process waiting for @n intra-node messaging primitive as explained in Section
exclusive lock in the queue. 3.1. In our experiments we use System V IPC message

Step 2 The shared lock requests are sent to the lastdUeues. The choice is orthogonal to our current scope of
process waiting for the exclusive lock. This is obtained reéSearch. We observe a latency of 2.9 microseconds for

from the exclusive portion of the returned value of Fetch- cOmmunicating with IPC message queues for a 64 byte
and-Add operation. message. The cost for initiating such a request is observed

to be 1.1 microseconds. It is to be noted that while the
process waiting for the exclusive lock is finished with the network primitives operate in .bOth poliing and. notifipgtiqn
lock. mode, the |r_1tr§1-node messaging is used only in not|f|cat|qn

) mode. This is because multiple processes that require
_ The same procedure is followed for any shared lock |5cking services usually exist on a single node and the
issued after the exclusive locks. situation of having all of these processes polling pratitica

block the node from doing any useful computation and

4 Experimental Results needs to be avoided.

4.1 Microbenchmarks

3.2.4 Exclusive Locking followed by Shared Locking:

Step 3 The shared lock is granted only after the last

[@ Lock-Request IPC mINetwork C1Lock-Response -IPC_CJAddI|

In this section, we present an in-depth experimental
evaluation of our Network-based Combined
Shared/Exclusive Distributed Lock Management (N-

CoSED). We compare our results with existing algorithms 7
(i) Send/Receive-based Centralized Server Locking 15 i i

o

Latency (us)

(SRSL) (Section 2.2.1) and (ii) Distributed Queue-based
Non-Shared Locking (DQNL) (Section 2.2.2).

All these designs are implemented over InfiniBand's

H
S

o

OpenFabrics-Gen2 interface [8]. Message exchange was O aRSLPol DONLFGl NCoSED | SRSL | DQNL | NCoSED
implemented over IBA's Send/Receive primitives. The one- Poll | Motfeaton Noteaton Notfeator

sided RDMA operations were usezbfnpare-and-swagnd Figure 6. Timing breakup of lock operations
fetch-and-adyifor all the one-sided operations for DQNL

and N-CoSED. All the locking mechanisms dealing with the distributed

Experimental Test Bed: For our experiments we used the locking service daemon, the total lock/unlock latency is
a 32-node Intel Xeon cluster. Each node of our testbeddivided into two parts: (i) the intra-node messaging lagyenc
has two 3.6 GHz Intel processor and 2 GB main memory. and (i) the lock wait + network messaging. While various
The CPUs support the EM64T technology and run in 64 bit distributed locking schemes differ significantly in the
mode. The nodes are equipped with MT25208 HCAs with second component, the first component is usually common
PCI Express interfaces. A Flextronics 144-port DDR switch to all the different designs and hence can be eliminated
is used to connect all the nodes. OFED 1.1.1 softwarefor the sake of comparing the performance across different
distribution was used. designs.

18.00 30.00

25.00

12.00 20.00

15.00

Latency (us)
Latency (us)

6.00 q 10.00

0004 O | N 000

Excl - Lock Excl - Unlock Shrd - Lock Shrd - Unlock Excl - Lock Excl - Unlock Shrd - Lock Shrd - Unlock

ESRSL MDQNL ON-CoSED ESRSL MDQNL ON-CoSED

Figure 5. Basic Locking Operations’ Latency: (a) Polling (b) Notification

Table 2. Cost Models operations the applications just initiate the unlock opera
[Scheme | Lock | Unlock | by sending the command over messages queues. This actual
SRSL 2% Tgena +2xTrpc Trpo—rnitiate unlock operation latency is hidden from the process issuing
DQNL Trpmaatomic + 2% Trpc | Trpc—initiate the unlock operation. Table 2 shows the cost models for
N-CoSED || Trpmaatomic +2* Trpc | TIPC—TInitiate

each of the operations.

_ _ 4.3 Cascading Unlock/Lock delay
4.2 Detailed Performance Evaluation , _ ,
While the basic unlock latency seen by any unlocking

In this section, we compare the locking performance of process is minimal, the actual cost of this operation is seen
the various lock/unlock operations involved across theghr by processes next in line waiting for the lock to be issued.
schemes: SRSL, DQNL and N-CoSED. This aspect is equally important since this directly impact

Figure 5 shows the average latency of the basic lockingthe delay seen by all processes waiting for locks. The two
operations as seen by the applications. In this experimentextreme cases of locking scenarios are considered: (i) All
we have only one outstanding lock/unlock request (serial processes waiting for exclusive locks and (ii) all waiting
locking) for a given resource at any given point of time. processes are waiting for shared locks. In this experiment,
Both polling and notification modes are shown. a number of processes wait in the queue for a lock currently

As seen in Figure 5(a) for polling based latencies, held in exclusive mode, once the lock is released it is
basic locking latency for SRSL is 16.0 microseconds propagated and each of the processes in the queue unlock
and is identical for shared and exclusive mode locking. the resource as soon as they are granted the lock. This test
This basically includes work related to two Send/Recv intends to measure the propagation delay of these locks.
messages of IBA, two IPC messages plus book keeping. In Figure 7(a), the basic latency seen by DQNL increases
The DONL and N-CoSED schemes perform identically at a significantly higher rate as compared to SRSL and
for serial locking and show a lower latency of 14.02 N-CoSED. This is due to the fact that DQNL is as such
microseconds. As shown in Figure 6 the main benefit hereincapable of supporting shared locks and grants these in
is from the fact that two networkend/recwoperations are a serialized manner only, whereas the other two schemes
replaced by one RDMA atomic operation. release all the shared locks in one go. It is to be noted that

Figure 5(b) shows the same latencies in notification all the shared lock holders are immediately releasing the
mode. The lock latencies for DQNL and N-CoSED show an locks in this test. This effect is heightened when the lock
average latency of 19.6 microseconds whereas SRSL showsolding time of each of the shared lock holders increases.
a latency of 27.37 microseconds. As compared to N-CoSED, DQNL and SRSL incur 317%

The more interesting aspect to note is that in case ofand 25% higher latencies, respectively. The difference in
polling based approach the SRSL lock latency is 14% more SRSL and N-CoSED is the extra message SRSL required
than the RDMA based DQNL and N-CoSED, while in the from the last lock holder to the home-node server before
notification case the SRSL latency is 39.6% higher than the release can be made.
the the RDMA based designs. As shown in Figure 6 The increase in the latency for the N-CoSED scheme
this higher increase of latency for SRSL is in the network for longer wait queues is due to the contention at the
communication part which is due to the fact that it requires local NIC for sending out multiple lock release messages
notifications for each of the tweend/recymessages needed using Send/Recv messages. This problem can be addressed
for it. On the other hand the RDMA based schemes incur by the use of multicast or other optimized collective
only one notification. Hence the RDMA based schemes communication operations [12]. These techniques are
offer better basic latencies for locking over two sided orthogonal to the scope of this paper.
schemes. Figure 7(b) captures this lock cascading effect by

The basic unlocking latency seen by any process ismeasuring the net exclusive lock latency seen by a set of
just about 1.1 microseconds. This is because for unlockprocesses waiting in a queue. The latency for propagation

250 400.00

350.00
200 4
300.00
3 25000
.

150
& 200.00

Latency (us)
tency (|

=
o
S}

& 150.00

100.00

@
S

50.00 -

p4

o
o
o
]

1 2 4 8 16 1 2 4 8 16
Number of waiting processes Number of waiting processes

—-SRSL = DQNL N-CoSED —-SRSL = DQNL N-CoSED

Figure 7. Lock Cascading Effect: (a) Shared Lock Cascade (b) Exclusive Lock Cascade

of exclusive locks is similar for both DQNL and N-CoSED, Our experimental results have shown that we can
each of which incurs the cost of one IB Send/Recv messageachieve 39% better locking latency as compared to basic
per process in the queue. On the other hand, the SRSLsend/recvbased locking schemes. In addition, we have
scheme incurs two Send/Recv messages per unlock/lockalso demonstrated that our design provides excellentdhare
operation since all the operations have to go the serverlocking support using RDMA FA. This support is not

before they can be forwarded. In all these cases, N-CoSEDprovided by existing RDMA based approaches. In this

performs the best. regard we have demonstrated the performance of our design
which can perform an order of magnitude better than the
5 Related Work basic RDMA CS based locking proposed earlier [7].

_ We plan to extend our designs to include efficient
Several researchers [1, 6, 11, 5, 4] have designed andsypport for starvation free one-sided locking approaches,
evaluated DLMs for providing better parallel application provide these as a part of the necessary data-center service

performance. Most of these rely on the traditional two sided primitives and demonstrate the overall utility with typica
communication protocols (like TCP/IP) for all network complex applications.
communication. On the other hand, prior research work
[13, 7] have shown the performance benefits and load
resiliency that one-sided RDMA based designs have over
the trad|t|qnal deSIQnS'. In our current deSIQr.] we Ieygrage [1] M. Aldred, I. Gertner, and S. McKellar. A distributed loenanager
the benefits of one-sujed RDMA to p_rowde efficient on fault tolerant mpphicss 00:134, 1995.
lock mar!agement services to the apphcanong _DSM 2] Gabriel Antoniu, Luc Bouge, and Lacour Lacour. Making snd
synchronizations [2] can be used to provide distributed consistency protocol hierarchy-aware: an efficient symeization
locking, however, the DSM implemenation itself needs an scheme. 2003.
underlying support of the |ocking primitives_ [3] Infiniband Trade Association. http://www.infinibandieg.
Devulapalli et. al. [7], have proposed distributed [4] E.Born. Analytical performance modelling of lock mameagent in
queue based DLM using RDMA operations. Though this (iggt)%buted systemsDistributed Systems Engineering(1):68-76,
WOFK eXDIOIrt]S .th%be.nems of RDlMA operatlonslfor_ IOCkm% [5] Oracle8i Parallel Server Concepts and Administratibttp://www.
Serv_mes’ their design can _Ony support exclusive mc_) e csee.umbc.edu/help/oracle8/server.815/a67778/toc.ht
locking. In our work we provide both shared and exclusive (6]

References

Nirmit Desai and Frank Mueller. A log(n) multi-mode lacky

mode locking using RDMA operations. protocol for distributed systems.
[7] A. Devulapalli and P. Wyckoff. Distributed queue basedking
6 Conclusion and Future Work using advanced network features.|GPP, 2005.

)]]) [8] Open Fabrics Gen2. http://www.openfabrics.org.
The massive increase in cluster based computing [9] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. @ RDMA

requirements has necessitated the used of highly efficient ~ Protocol Verbs Specification (Version 1.0). Technical regRDMA
DLMs. In this paper, we have presented a novel distributed Consortium, April 2003.

locking protocol utilizing the advanced network level one- [10] Exclusive File Access in Mac OS X. http://developepliepcom/
sided operations provided by InfiniBand. Our approach technotes/in/pdf/in2037.pdf. . -
arguments the existing approaches by eliminating the need!!l H: Kishida and H. Yamazaki. Ssdim: architecture of ariisted
for two sided communication protocols in the critical lock manager with high degree of locality for clustered fijstems.

. [12] Jiuxing Liu, Amith R.Mamidala, and Dhabaleswar K. Pandrast
|0Cklng path. Furt_her’ W_e hz_ive also,demonStrated that and Scalable MPI-Level Broadcast using InfiniBand’s Handwa
our apprqach prov_ldes significantly higher perfprmance Multicast Support. IrProceedings of IPDP2004.
in scenarios needing t_)Oth Shared. and_ eX_C|US|Ve mModg13] s. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamiby, J. Wu,
access to resources. Since our design distributes the lock and D. K. Panda. Supporting Strong Coherency for Active €ga
management load Iargely on some of the nodes using the Multi-Tier Data-Centers over InfiniBand. 18ystem Area Networks

lock, basic fairness is maintained. (SAN) 2004.

