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ABSTRACT

With the significant increase in computing power of processors and tremendous improvement
in the performance of networking hardware, clusters have become a popular platform for high
performance computing. In order to make the performance of clusters comparable to that of tra-
ditional high performance computing systems, it is crucial to make the communication subsystems
of these systems as efficient as possible. In recent years, communication subsystems with user-level
protocols have been proposed by the research community and industry to address this issue. All
of these communication systems use much simpler communication protocols in comparison with
legacy protocols such as the TCP/IP. The role of the operating system has been much reduced
in these systems and in most cases user applications are given direct access to the network inter-
face. The Virtual Interface Architecture (VIA) specification has been developed to standardize
these user-level protocols and to make their ideas available in commercial systems. The primary
objective of this research is to design and implement efficient and high performance communication
subsystems for clusters with user-level protocols such that the high performance of the networking
technologies is passed to applications. To achieve this goal, this thesis is focused on five components
of communication subsystems: network interface support, communication mechanism, distribute
shared memory (DSM) support, distributed memory support, and performance evaluation. Several
design choices for various components of VIA are proposed and evaluated on different platforms.
A prototype implementation of VIA is developed for IBM SP-connected clusters. This implemen-
tation remains to be the most efficient software implementation of VIA to date. The performance
of this implementation is extensively evaluated and performance bottlenecks have been identified.
Furthermore, several hardware enhancements for improving the performance are studied. Design
and implementation of the communication infrastructure required for supporting distributed shared
memory and distributed memory programming models on top of user-level communication proto-
cols are also studied. The proposed communication mechanisms and their extensive evaluation
demonstrate significant potential to be applied to the design of communication subsystems for
current and future clusters.
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CHAPTER 1

INTRODUCTION

1.1 Network-Based Computing

Network-Based Computing (NBC) is becoming increasingly popular for providing cost-effective
and affordable parallel computing for day-to-day computational needs [10, 31, 52]. Such envi-
ronments consist of clusters of workstations connected by System, Local, or Wide Area Networks
(SANs, LANs, or WANs). Figure 1.1 illustrates such an environment. The major advantage of
the NBC environments over traditional high performance computing platforms (such as massively
parallel processors (MPPs)) is their lower cost. Although the cost of a group of workstations con-
nected to each other through available networking technologies has been always much less than the
cost of an MPP with the same number of nodes, the major obstacles in the usage of clusters as
high performance computing platforms has been the limitation of the available networking tech-
nologies (in terms of achievable latency and bandwidth). The introduction and mass production
of high bandwidth networking technologies such as Myrinet [22], Fast Ethernet, Gigabit Ethernet,
FDDI, and ATM [11] has made clusters and Networks of Workstations (NOWSs) a viable alterna-
tive platform for high performance computing. A wide variety of systems have recently emerged
to create a new class of computing platforms for high performance computing. Systems from the
Beowulf clusters of Linux PCs interconnected through Ethernet or Myrinet networking technologies
to clusters of RS6000 workstations interconnected by SP switches [50, 8] fall into this new class of
computing platforms. However, since the new hardware and software networking technologies have
not been primarily developed for high performance computing, the communication overhead seen
by high performance applications can be too high to make them directly usable for this branch
of computing. In order to make the performance of clusters comparable to that of traditional
high performance computing systems, it is crucial to make the communication subsystems of these
systems as efficient as possible.

A portable programming environment [29] is also key to the success of high performance com-
puting systems. Over the last few years, researchers have developed standard interfaces such as
PVM [52, 57] and Message Passing Interface (MPI [23, 39, 40]) to provide portability for the par-
allel programs written in distributed memory programming model. These interfaces and standards
do not force an application developer to understand the intricate details of the hardware, software,
and network characteristics. However, the performance of applications depends heavily on the
latency and bandwidth required for interprocessor communication and synchronization across the
nodes as seen by applications developed by using these standards.

In recent years, the MPI standard has become the most popular and widely used standard
for developing message passing high performance applications. Many older applications have been

1
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Figure 1.1: A Network-Based Computing environment consisting of different types of computers
and networking technologies.

rewritten using the communication primitives as defined by the MPI standard. New applications
are mostly being written by using this standard as well. The MPI standard defines a set of functions
for point-to-point communications. In the earlier versions of MPI (Versions 1.0 and 1.1), all point-
to-point operations were two-sided operations. In these operations, for every send operation there
should exist a corresponding receive operation. In the latest version of the MPI standard (Version
2.0), one-sided operations have been provided too. One sided operations (also known as Remote
Memory Access operations) extend the communication mechanisms of MPI by allowing one process
to specify all communication parameters, both for the sending side and for the receiving side [40].
In addition to point-to-point operations, MPI defines a rich set of collective operations (such as
broadcast, barrier synchronization, gather, and reduction). Collective communication is defined as
communication that involves a group of processes. Many parallel applications make extensive use
of such collective communications.

The distributed shared memory (DSM) programming model [29] is another programming model
used in developing parallel applications. In order to support applications developed in this model,
the communication subsystem should provide the required facilities to maintain a coherent view
of the shared memory by all application processes running across different computing nodes of a
cluster. The performance of this type of applications will heavily depend on the performance of
the underlying communication subsystems.

In order to achieve an acceptable performance (comparable to the performance of MPPs) in NBC
environments, having efficient communication and synchronization services is crucial. Furthermore,
the high performance of the communication subsystem should be passed to the applications, if NBC
systems are to become a viable choice for high performance computing.

The remaining part of this chapter is organized as follows. Different components of communica-
tion subsystems in NBC environments are discussed in Section 1.2. The description of the problem
this research aims to solve is presented in Section 1.3. The overview of this thesis is presented in
Section 1.4.



1.2 Components of Communication Subsystems in NBC Environments

Designing an efficient communication subsystem requires a comprehensive study of different
components of the communication subsystem and the interaction between these components. We
divide the communication subsystem into several layers based on the functional and architectural
characteristics of the components. Figure 1.2 shows the different components of the communication
subsystem in an NBC environment used for high performance computing.
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Figure 1.2: The components of the communication subsystem in a network-based computing envi-
ronment.

The bottom most layer consists of the interconnection topology, switching technology, and
routing schemes. As shown in Fig. 1.1, the topology of the interconnection network in an NBC
system is typically irregular. In general, such a system can be a WAN consisting of several LANs
connected to each other through possibly different networking technologies. Switching elements
are responsible for forwarding packets from one link to another one. They perform the forwarding
of packets by using techniques such as store-and-forward and cut-through. Given the source and
destination of a message, the routing scheme determines the path (links) the message takes. The
routing scheme must also provide a mechanism for deadlock avoidance or recovery.

The next layer in the communication subsystem is called network interface support. The net-
work interface at the host typically has a processor, memory and a few DMA engines. DMA engines
are used to transfer the packets between the host memory and the interface memory and between
the interface memory and the network. Modern network interfaces are programmable and can have
a significant role in reducing the communication load of host processors.



The next layer in Fig. 1.2 is called the communication mechanism. This layer is responsible for
transmitting the data from a source node to a destination node. This layer is also responsible for
adding the required header information to the message. The communication mechanism layer deals
also with the fragmentation (packetization) and re-assembly of messages at sending and receiving
sides. This layer may enforce the ordering among messages and may guarantee the reliable delivery
of data.

The communication mechanism layer is used to implement two components of the next layer: 1)
distributed memory support for the programs written in this model by providing communication
and synchronization services, and 2) distributed shared memory support for DSM programs by
providing the required infrastructure for coherence protocols.

The performance evaluation component as shown in Fig. 1.2 is used for evaluation and tuning
of different components of the communication subsystem. It is crucial that the performance of
different components and alternative choices for their implementation are evaluated such that the
implementation can be tuned for the best performance. Furthermore, the performance evaluation
can be used for identifying software and hardware approaches that can be used to eliminate the
performance bottlenecks.

1.3 Problem Description

The primary objective of this research is to design and implement efficient and high perfor-
mance communication subsystems for Network-Based Computing environments with SAN/LAN
technologies which are also known as Clusters such that the high performance of the networking
technologies is passed to applications. To achieve this goal, this thesis is focused on five major
components of communication subsystems (depicted in Fig. 1.2): network interface support, com-
munication mechanism, DSM support, distributed memory support, and performance evaluation
components. In the rest of this section, we explain the challenges involved in achieving such a goal
and present the specific problems this research addresses.

Raw bandwidth of networks have increased significantly in the past few years and networking
hardware supporting bandwidths in the order of gigabits per second have become widely available.
However, the traditional networking architectures and protocols do not reach the performance of
the hardware at the application level. The layered nature of the legacy networking softwares and
the usage of expensive system calls and extra memory—to—memory copies required in these systems
are some of the factors responsible for degradation of the communication subsystem performance
as seen by the applications. In recent years, user-level communication subsystems [29] such as
AM [55], VMMC [21], FM [42], U-Net [54, 56], LAPI [45], and BIP [43] have been proposed by the
research community and industry to address these issue. All of these communication systems use
much simpler communication protocols in comparison with legacy protocols such as the TCP/IP.
The role of the operating system has been much reduced in these systems and in most cases user
applications are given direct access to the network interface.

The Virtual Interface Architecture (VIA) specification has been developed to standardize these
user-level network interfaces and to make their ideas available in commercial systems [7]. However,
the flexibility of the VIA specification has left several choices viable for the implementation of
various components of VIA. These design choices should be identified and evaluated. The impact
of network interface support on the performance of these components and the overall performance
of the communication subsystem needs to be investigated. Whether a framework for evaluating
different implementations of VIA can be developed is an important question which should be
addressed.



The main goal of providing high performance (low latency and high bandwidth) communication
subsystems is to make such a performance available at the user application level. If only a small
fraction of the low latency and high bandwidth provided by the communication subsystem (such
as VIA and LAPI) becomes available at the application level, the main purpose of using efficient
communication subsystems has been practically defeated. As mentioned earlier, distributed mem-
ory and DSM are the two major programming paradigms used for high performance computing.
Therefore, it is crucial to provide the performance of the underlying communication subsystems to
the applications written in either of these programming models.

Specifically, this thesis looks at the following problems:

1.

How different components of VIA can be designed and developed with respect to modern
network interface cards?

. How these components can be used to build VIA in the most efficient manner?
. Can a set of micro-benchmarks be used for evaluating different implementations of VIA?

. How DSM applications can take advantage of high performance user-level communication

protocols such as VIA?

How the high performance and efficiency of user-level communication protocols such as LAPI
can be passed to distributed memory applications?

Let us look at these problems and the associated challenges in detail.

e Design, Implementation, and Evaluation of VIA Components:

As mentioned earlier in this chapter, VIA is made of several components. In order to imple-
ment VIA in the most efficient manner, various approaches for developing these components
should be studied, implemented, and evaluated. Virtual-to-physical address translation, door-
bells, and completion queues are among the major components whose implementations are
extremely important. How the network interface support can be utilized to implement these
components in the most efficient manner is also an important issue which should be addressed.

Approaches for implementing the virtual-to-physical address translation component should
address two major questions: 1) which agent is responsible for performing the translation
(i.e. the host processor or the Network Interface Controller (NIC)) and 2) where the address
translation tables are stored. VIA doorbells can be implemented in software or hardware.
Both software and hardware approaches for implementing doorbells should be studied and
evaluated. Similarly, software and hardware implementations of completion queues should be
proposed and evaluated.

Design and Implementation of VIA:

After different design choices for VIA components are evaluated, it is important to show how
these components can be put together in order to achieve the lowest latency and highest
bandwidth possible. The impact of software and hardware restrictions and limitations on any
given platform needs to be taken into account. The division of the work between different
units such as the host processor and the NIC may have a significant impact on the overall
performance of the communication subsystem. Considering the imbalance in processing power
of these units, it is crucial that units with smaller computing power are not overloaded by
performing too many operations. Furthermore, the performance of the implementation needs
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to be evaluated in a comprehensive manner such that the factors limiting the performance
can be identified.

e Framework for Evaluating VIA Implementations:

Considering the importance of VIA and its potential for becoming the standard communica-
tion protocol for clusters, providing a systematic method for evaluating different implementa-
tions of VIA is of utmost importance. However, no such method is currently available. A suite
of micro-benchmarks can be used for this purpose. Such a suite of micro-benchmarks can be
used not only for the evaluation of different implementations of VIA, but also for pinpointing
performance bottlenecks and possible approaches for alleviating them. Furthermore, such a
suite of micro-benchmarks can be used by designers of higher communication layers to achieve
the best performance by taking into account the performance of different VIA features.

o Efficient Shared Memory Support for DSM Applications:

DSM applications rely on a global shared address space across different machines. Softwares
such as TreadMarks [36, 9] provide such a view and hide from the applications the communi-
cation operations required for providing a coherent view of the shared address space. These
systems usually use legacy protocols such as UDP and TCP for the required communications.
It is important to take advantage of the high performance of user-level communication pro-
tocols to perform the required communication operations in the most efficient manner. The
request /reply model used in Software DSM (SDSM) systems such as TreadMarks requires
the communication subsystem to deal with unexpected requests. Therefore, using an efficient
mechanism for notifying the system of the arrival of requests is crucial. Connection man-
agement, buffer management, and support for unexpected messages are among other issues
which should be studied.

o Efficient Message Passing Facility for Distributed Memory Applications:

In order to pass the high performance of the communication subsystem to the distributed
memory applications, the communication primitives as defined in standards such as MPI
should be implemented in terms of the low level primitives provided by the underlying com-
munication subsystem. It is crucial to keep the overhead of these implementations as low
as possible such that the high performance associated with the communication networks and
low-level messaging libraries become available to the applications. The most important issue
in implementing standards such as MPI is avoiding any unnecessary data copies. Another
important issue is that in MPI, received messages can be matched with posted receives in
an out-of-order fashion. Providing such a feature without using extra data copies is another
challenge.

1.4 Thesis Overview

Having examined the research issues in the design of efficient communication subsystems for
clusters, we now present an overview of our solutions. We focus on improving the performance of
applications in cluster environments along five major directions as discussed in Section 1.3.

Chapter 2 focuses on different design issues involved in implementing a high bandwidth, low
latency communication subsystem. We evaluate and compare the performance of different imple-
mentations of essential VIA components. We discuss the advantages and disadvantages of each
design approach and describe the required network interface support for implementing each of



them. In particular, different possible approaches for implementing components such as software
doorbells, virtual-to-physical address translation, and completion queues are discussed. We use
NAS Parallel Benchmarks [6] to study the effect of caching the address translation tables on the
NIC and to study design issues involved in implementing completion queues. We consider two plat-
forms: IBM Netfinity SP cluster running the NT 4.0 operating system and a Myrinet connected
cluster of PCs running the Linux operating system. We identify the best choices for implementing
each of these components on both of these platforms.

In Chapter 3, we look at a prototype implementation of VIA for SP-connected NT clusters.
We use the results presented in Chapter 2 and show how different components of a communication
subsystem can be put together in order to achieve the lowest latency and highest bandwidth possi-
ble. In particular, we explain how the virtual-to-physical address translation can be implemented
efficiently with a minimum Network Interface Card (NIC) memory requirement. We show how
caching the VIA descriptors on the NIC can reduce the communication latency. We also present
an efficient scheme for implementing the VIA doorbells without any hardware support. A compre-
hensive performance evaluation study of the implementation is provided. The performance of the
implemented VIA surpasses that of other existing software implementations of the VIA and is com-
parable to that of a hardware VIA implementation. The peak measured bandwidth for our system
is observed to be 101.4 MBytes/s and the one-way latency for short messages is 18.2 microseconds.
We evaluate the performance of our prototype in a comprehensive manner and present the factors
limiting the performance. Furthermore, we show how additional hardware support can be used to
improve the performance. It is shown that with hardware support for doorbells and a reasonably
large amount of NIC memory, it is possible to provide single digit one-way latency with current
technology.

VIA has different components (such as doorbells, completion queues, and virtual-to-physical
address translation) and attributes (such as maximum transfer unit and reliability modes). Differ-
ent implementations of VIA lead to different design strategies for efficiently implementing higher
level communication layers/libraries (such as Message Passing Interface (MPI [39]). It also has
implication on the performance of applications. Currently, there is no framework for evaluating
different design choices and for obtaining insight about the design choices made in a particular im-
plementation of VIA and their impact on the performance. In Chapter 4, we address these issues by
proposing a new micro-benchmark suite called Virtual Interface Architecture Benchmark (VIBe).
This suite consists of several micro-benchmarks which are divided into three major categories: non-
data transfer related micro-benchmarks, data transfer related micro-benchmarks, and client /server
micro-benchmarks. By using the new benchmark suite, the performance of VIA implementations
can be evaluated under different communication scenarios and with respect to the implementation
of different components and attributes of VIA. We demonstrate the use of VIBe to evaluate two
implementations of VIA (M-VIA and Berkeley VIA). Through these evaluations we show how the
VIBe suite can provide insights to the implementation details of VIA and help higher layer software
developers.

As mentioned earlier in this Chapter, VIA, as well as other high performance communication
subsystems, has a low-level API which provides only the basic communication primitives, it is dif-
ficult for user applications to directly use these primitives unless the applications are rewritten. In
Chapter 5, we take on a challenge of developing a communication substrate over VIA such that
applications using the popular TreadMarks DSM package can take advantage of the enhanced com-
munication performance of VIA. We take a four-step approach in developing the targeted substrate.
First, we identify the mismatches between the communication requirements by TreadMarks and



the services provided by VIA. After identifying these mismatches, we propose a set of schemes to
eliminate such mismatches. These schemes include connection setup, buffer management, advance
posting of descriptors for unexpected messages, and alternative designs to handle asynchronous
messages. We also propose and evaluate different design alternatives for enhancing some VIA func-
tions (such as the VIA Notify mechanism) so that the new substrate can be designed with low
overhead. Finally, we derive the best set of alternatives and implement them on two enhanced im-
plementations of VIA (MVIA [3] and Berkeley VIA [24]) on two different networking technologies,
Gigabit Ethernet and Myrinet, respectively. We evaluate the performance of our implementation
by using several micro-benchmarks and applications. We show that the communication and wait
times, and therefore the total execution times of different applications can be significantly reduced
by using VIA. A reduction in the overall execution time up to 2.05 on an eight node system is
demonstrated in comparison with the original UDP implementation. The new implementation also
demonstrates better parallel speedup as the system size increases.

Since a large number of high performance applications are written (and being written) in the
distributed memory programming model by using the communication primitives provided by the
MPI standard, it is crucial to implement MPI on top of user-level communication protocols. The
IBM RS/6000 SP system is one of the most cost-effective commercially available high performance
machines. IBM RS/6000 SP systems support the Message Passing Interface standard (MPI) and
LAPI [45]. LAPI is a user-level, reliable and efficient one sided communication APT library, imple-
mented on IBM RS/6000 SP systems. In Chapter 6, we explain how the high performance of the
user-level communication library LAPT has been exploited in order to implement the MPI standard
more efficiently than the existing MPI. We describe how to avoid unnecessary data copies at both
the sending and receiving sides for such an implementation. The resolution of problems arising
from the mismatches between the requirements of the MPI standard and the features of LAPI is
discussed. As a result of this exercise, certain enhancements to LAPI are identified to enable an
efficient implementation of MPI on LAPI. The performance of the new implementation of MPI is
compared with that of the underlying LAPI itself. The latency (in polling and interrupt modes)
and bandwidth of our new implementation is compared with that of the native MPI implementa-
tion on RS/6000 SP systems. The results indicate that the MPI implementation on LAPI performs
comparably or better than the original MPI implementation in most cases. Improvements of up
to 17.3% in polling mode latency, 35.8% in interrupt mode latency, and 20.9% in bandwidth are
obtained for certain message sizes. It is shown that the implementation of MPI on top of LAPI
also outperforms the native MPI implementation for the NAS Parallel Benchmarks.

In Chapter 7, the research contributions of this thesis are summarized. In addition, directions
for future research are discussed. Some interesting open problems in related areas are also described.



CHAPTER 2

COMPARISON AND EVALUATION OF DESIGN CHOICES FOR
IMPLEMENTING THE VIRTUAL INTERFACE ARCHITECTURE (VIA)

The Virtual Interface Architecture (VIA) [7] is the most important communication protocol
developed for clusters. It has been developed to standardize user-level communication protocols.
In this chapter, we discuss the essential components of VIA and present different approaches for
implementing these components. We discuss the advantages and disadvantages of each approach
and present the required support for their implementations. In particular, we discuss different
possible approaches for implementing components such as software doorbells, virtual-to-physical
address translation, and completion queues. We use the NAS Parallel Benchmarks to study the
effect of caching the address translation tables on the NIC and to study different completion queue
implementations. We use a subset of VIA implemented on an IBM SP-connected Netfinity clus-
ter [17] running the MS Windows NT operating system and a Myrinet-connected cluster of PCs
running the Linux operating system to evaluate different components of VIA.

The rest of this chapter is organized as follows: In Section 2.1, we briefly overview the Virtual
Interface Architecture, discuss the VIA send and receive operations in detail, and identify different
components involved in these operations. Different design alternatives for implementing these
components of VIA are discussed in Section 2.2. The performance evaluation results are presented
in Section 2.3. Related work is discussed in Section 2.4. In Section 2.5, we present our conclusions.

2.1 Virtual Interface Architecture (VIA)

In this section we first present an overview of VIA. Then, we discuss different events that occur
during the send and receive operations and present the basic components involved in performing
these operations. We focus on systems with programmable NICs.

2.1.1 Overview

The Virtual Interface Architecture (VIA) is designed to provide high bandwidth, low latency
communication support over a System Area Network (SAN). A SAN interconnects the nodes of
a distributed computer system[7]. The VIA specification is designed to eliminate the system pro-
cessing overhead associated with the legacy network protocols by providing user applications a
protected and directly accessible network interface called the Virtual Interface (VI).

Each VI is a communication endpoint. Two VI endpoints on different nodes can be logically
connected to form a bidirectional point-to-point communication channel. A process can have multi-
ple VIs. A send queue and a receive queue (also called as work queues) are associated with each VI.
Applications post send and receive requests to these queues in the form of VIA descriptors. Each



descriptor contains one Control Segment (CS) and zero or more Data Segments (DS) and possibly
an Address Segment (AS). Each DS contains a user buffer virtual address. The AS contains a
user buffer virtual address at the destination node. Immediate Data mode also exists where the
immediate data is contained in the CS. Applications may check the completion status of their VIA
descriptors via the Status field in CS. A doorbell is associated with each work queue. Whenever
an application posts a descriptor, it notifies the VIA provider by ringing the doorbell. Each VI
work queue can be associated with a Completion Queue (CQ) too. A CQ merges the completion
status of multiple work queues. Therefore, an application need not poll multiple work queues to
determine if a request has been completed.

The VIA specification requires that the applications register the virtual memory regions which
are going to be used by VIA descriptors and user communication buffers. The intent of the memory
registration is to give an opportunity to the VIA provider to pin (lock) down user virtual memory
in physical memory so that the network interface can directly access user buffers. This eliminates
the need for copying data between user buffers and intermediate kernel buffers typically used in
traditional network transports.

The VIA specifies two types of data transfer facilities: the traditional send-receive messaging
model and the Remote Direct Memory Access (RDMA) model. In the send/receive model, there is
a one to one correspondence between send descriptors on the sending side and receive descriptors
on the receiving side. In the RDMA model, the initiator of the data transfer specifies the source
and destination virtual addresses on the local and remote nodes, respectively. The RDMA write
operation is a required feature of the VIA specification while the RDMA read operation is optional.
In this chapter, we focus on the send/receive messaging facilities of VIA.

2.1.2 Message Passing in VIA

For sending and receiving messages, the following major steps are taken:

Constructing the descriptor: The application creates a descriptor in a registered memory
region. This descriptor includes the virtual address of the send or receive buffer and its length.
The message buffer is allocated from a registered memory region. The descriptor also contains
a status field which the VIA provider updates upon completion of the operation. Posting the
descriptor: The application posts the descriptor using the VipPostSend or VipPostRecv function
call. Through the doorbell mechanism, the NIC is informed about the existence of the posted
descriptor. Obtaining the descriptor by the NIC: The NIC retrieves from the descriptor the
information required for sending or receiving a message. The information includes the address and
the length of the user buffer and the address of the status field of the descriptor. Performing the
operation: The NIC performs the send operation by injecting the data into the network after it is
transferred from the user buffer to the NIC. For the receive operation, the message is received from
the network into the NIC memory and then into the user buffer. Marking the descriptor as
complete: After performing the send or receive operation, the NIC marks the status field of the
VIA descriptor as complete. If a CQ is associated with the VI, the NIC also makes an entry in the
CQ so that the application can detect the completion through CQ as well. Application detecting
the completion of the operation: The application can check the status of the operation using
VipSendDone and VipRecvDone in a non-blocking fashion, VipSendWait and VipRecvWait in a
blocking fashion, and VipCQDone and VipCQWait if a CQ is associated with the corresponding work
queue.
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2.1.3 Basic Components of VIA

Considering different operations involved in sending and receiving messages, three major com-
ponents can be identified as the basic components of the message passing operations. These com-
ponents are: 1) informing the NIC of an outstanding send or receive request, 2) the NIC obtaining
information about the outstanding operation and corresponding user data buffers and performing
the operation, and 3) the NIC informing the user program of the completion of send and receive
operations. In order to implement the send and receive operations efficiently, it is crucial to imple-
ment these components as efficiently as possible. In the next section, we present different design
alternatives for implementing these components and present the pros and cons of each of them.
It should be noted that we only consider the methods which do not require any unnecessary data
copies.

2.2 Design Alternatives

In this section, we discuss the implementation of doorbells which are related to the first com-
ponent of message passing operations and are used for informing the NIC of the existence of out-
standing send or receive descriptors. We also study different implementations of virtual-to-physical
address translation and the possibility of caching descriptors. These two issues relate to the second
basic component or the mechanism through which the NIC obtains information about the out-
standing operations and corresponding user data buffers. The third component, the mechanism
through which the user program is informed of the completion of send and receive operations, is
also discussed with respect to the implementation of completion queues.

2.2.1 Doorbells

VIA specifies that each VI be associated with a pair of doorbells. The purpose of a doorbell is
to notify the NIC of the existence of newly posted descriptors. Doorbells can be implemented in
hardware or software. However, most of the current generation NICs do not provide any hardware
support for doorbells, they need to be implemented in software. Therefore, in this chapter, we
focus on the design choices for implementing doorbells in software.

Approach 1 (D1): One approach for implementing doorbells in software is allocating space for
each doorbell in the NIC memory and mapping it to the address space of the process. The user
application rings the doorbell by simply setting the corresponding bit in the NIC memory or by
writing the address of the descriptor (or the descriptor itself) in the NIC memory. To protect a
doorbell from being tampered by other processes, doorbells of different processes need to be on
separate memory pages in the NIC since protection granularity of a kernel is one page (e.g. 4KB).
The advantage of using this mechanism is that there is no need to go through the kernel for ringing
the doorbells and this operation can be implemented in user space. The disadvantage of this
approach is the cost of polling the VIs for send descriptors. As the number of active VIs increases,
the NIC spends more time polling the send doorbells to check if there is any send descriptor to be
processed. This limits the scalability of the communication subsystem. The other shortcoming of
this approach when a single word or bit is used for each VI is that when a descriptor is posted,
the subsequent post cannot proceed until the NIC becomes aware of the first posted descriptor. To
overcome this shortcoming, a circular buffer can be used as a queue for each VI such that multiple
descriptors can be posted by the user application even when the NIC firmware is busy performing
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other operations (such as sending and receiving messages) and hasn’t become aware of some of the
posted descriptors yet.
Approach 2 (D2): In order to avoid the cost of polling of VIs for send descriptors, a second
approach in which the kernel intervention is required can be used. In this approach, a centralized
queue of send descriptors (or handles to descriptors) are maintained by the NIC. Since all VIs share
the same centralized queue, a mechanism is required to guarantee that this queue is accessed in
an operating system safe fashion. Thus kernel intervention is required. In this approach, the need
for polling all the active VIs is eliminated and the NIC needs to only look at the centralized queue
for send descriptors. The disadvantage of this approach is the added delay of going through the
kernel. The advantage of this approach is the elimination of the NIC polling active send requests.
The problem of polling send descriptors does not occur for receive descriptors. When a message
is received at the NIC, the VI id of the received message is used to obtain the receive descrip-
tor posted for that particular VI. If for some reasons the posted receive descriptors need to be
preprocessed before the messages arrive (for example to perform the virtual-to-physical address
translation which will be discussed later) then finding receive descriptors requires polling the active
VIs and causes a similar problem.

2.2.2 Caching Descriptors

As discussed in Section 2.1.2, when the NIC recognizes that a descriptor is posted, it needs
to obtain the information about the message (such as the user buffer address and the size of
the message) from the descriptor. The descriptors are constructed by the VIA applications and
therefore are stored in the host memory. The question is whether the host initiates the transfer of
the descriptor or the NIC. Since DMA is the only way by which most NICs can access the host
memory but the host can use PIO for transferring data to the NIC, there is a tradeoff between
these two approaches with respect to the size of the descriptor being transferred from the host
memory to the NIC memory. For the receive descriptors, the advantage of moving the descriptors
to the NIC memory when the descriptors get posted is that the time for this transfer is not part
of the the message latency. It should be noted that the host processor is required to be involved
in PIO operations while the DMA operations are performed without the involvement of the host
processor. We'll have a performance evaluation of these methods in Section 2.3.2.

2.2.3 Address Translation

Most NICs (including the widely used PCI based NICs) use physical addresses for performing
DMA operations, whereas VIA descriptor elements, e.g. user buffer addresses, are virtual addresses.
Therefore virtual-to-physical address translation is required. This address translation is required
not only for transferring data, but also for accessing descriptors (if they are not cached in the
NIC memory) and updating the status of operations by NIC. VIA specifies a memory registration
mechanism to ensure that the page frames which are accessed by the NIC are present in the physical
memory. Registered virtual memory pages are pinned down in physical memory. Before data is
transferred to or from these memory regions, the virtual addresses should be translated to physical
addresses. It should be noted that using approaches such as using a preallocated pinned contiguous
buffer (at the boot time) from which user buffers are allocated or using DMA regions through which
data transfers to and from NIC are performed is not reasonable. Allocating user buffers from a
preallocated buffer requires modifications to the applications to use a custom routine for user buffer
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allocations. Using DMA regions for data transfers is not a viable choice because of the required
extra data copies to and from these regions at the sending and receiving nodes.

Two critical issues in implementing the address translation for VIA are the location of address
translation tables (commonly known as Translation Lookaside Buffers or TLBs) and the method
of accessing them (i.e. whether the host or the NIC performs the translation). The VIA TLBs
can be located in the host or NIC memory and can be accessed by the host or the NIC. Therefore,
there are four possible approaches for performing the address translation: 1) the TLB is in the
host memory and host performs the address translation, 2) the TLB is stored in the NIC memory
and the NIC does the address translation, 3) the TLB is located in the host memory and the NIC
performs the translation, and 4) the TLB is in the NIC memory and the host performs the address
translation. Among these approaches, the fourth approach does not provide any advantage over
the other approaches and has no practical use. In the rest of this section, we discuss the other three
approaches in more detail.

Approach 1 (AT1): In this approach, the TLB is located in the host memory and the address
translation is performed by the host. Since the user processes can not be trusted to provide the
physical addresses, the translation (the TLB lookup) is performed in kernel space. The disadvantage
of this approach is the need for user to kernel context switching. Since the VIA requires all data
buffers to be in registered memory regions, the TLB lookup cost can be minimized by the creation
of an address translation table for each registered memory region. This table should include the
addresses of all the physical page frames which correspond to the memory region. By creating such
a table at the memory registration time, the address translation can be efficiently done by indexing
this table. The advantage of this approach is that the NIC memory requirement is small since the
TLB is located in the host memory.

Approach 2 (AT2): In this approach, the TLB is located in the NIC memory and the NIC
is responsible for performing the virtual-to-physical address translation. The limitation of this
approach is the size of memory required for the TLB. For example, in order to support 256 MB
of registered memory, a TLB of 256 KB is required. The available memory of the NIC is usually
much smaller than that of the host, and the memory required for storing the TLB puts a heavy
burden on the NIC resources and makes the implementation not scalable.

Approach 3 (AT3): In this approach, the TLB is located in the host memory but the translation
is done by the NIC. The advantage of using this approach is that there is no need for using a
big portion of the NIC memory for storing the TLB. The disadvantage of this approach is that
the NIC requires to access the host memory for obtaining the translation. This access is usually
done by a DMA operation and may have a high DMA startup delay. In order to minimize this
problem, a portion of the NIC memory can be used to cache the translations such that future
references to a particular page frame can be resolved without accessing the host memory. The size
and characteristics of this cache along with the behavior of the application programs affect the
overall performance of the address translation operation.

We discuss the cost of implementing these approaches for the virtual-to-physical address trans-
lation in Section 2.3.3.

2.2.4 Completion Queues

As mentioned in Section 2.1.1, each work queue can be associated with a Completion Queue
(CQ). In these cases, the notification of completed requests should be directed to a CQ on a per-VI
work queue basis. The description of the VipCQDone states that it is possible to have multiple
threads of a process wait on a CQ and its associated work queues [7]. Therefore, the VIA provider
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updates both the work queue and its associated CQ upon the completion of a request. Marking a
descriptor as complete (in the work queue) is done by DMAing the status field of the descriptor
(with the bit corresponding to the completion of the operation set) from the NIC to the host. For
supporting the CQs, there are two possible approaches.
Approach 1 (CQ1): In this approach, the NIC in addition to updating the status field of the
descriptor, inserts the descriptor handle into the associated CQ. The disadvantage of this approach
is that an extra DMA operation is required for the insertion of the descriptor handle to the CQ. The
advantage of this approach is that the application spends constant time checking for a completed
operation regardless of the number of work queues associated with a CQ.
Approach 2 (CQ2): In this approach, no entries are added into the CQ. In fact there is no CQ in
the host memory. The completed operations are simply found by polling the work queues associated
with the CQ. That is, the VipCQDone function is implemented such that either VipSendDone or
VipRecvDone is called for each work queue associated with the CQ. The advantage of this approach
is that NIC need not perform a DMA operation for inserting the handle of the completed descriptor
into the CQ. The disadvantage of using polling in this manner is that the method does not scale
well with the increase in the number of work queues associated with a CQ. However, since in
many applications each node communicates only with a small set of other processes, and therefore
a limited number of work queues are associated with each CQ, this approach may be viable for
implementing CQs.

We compare the cost of the implementation of these two approaches in Section 2.3.4. We also
investigate how the scalability issue of the second approach can be dealt with.

2.3 Performance Evaluation

In order to evaluate different design alternatives discussed in Section 2.2, we implemented a
subset of VIA on two different systems. The first system consisted of 300 MHz Pentium IT PCs
with 128 MB of SDRAM and a 33 MHz/32-bit PCI bus and ran the Linux 2.0 operating system.
The Myrinet switches and 33 MHz LANai 4.3 NICs were used as the interconnect [22]. The second
system was an IBM Netfinity SP switch-connected Cluster [17]. This cluster consisted of 450 MHz
Pentium IIT PCs. Each node had 128 MB of SDRAM and a 33 MHz/32-bit PCI bus and ran
the NT 4.0 operating system. These PCs were interconnected by an IBM SP switch and 100
MHz TB3PCI NICs [17]. These two testbeds represent a wide range of available network-based
computing platforms.

In the rest of this section, we first present the cost of the basic operations in these two systems.

Then, we evaluate and compare different alternatives for implementing different components of
VIA.

2.3.1 Basic Operations

Since Programmed I/O (PIO) and DMA are the major methods for transferring data between
the host and the NIC, we measured the cost of these operations. We also measured the cost of
user to kernel space switch for both systems. For our NT testbed we used the Fast IO Dispatch
method [53] and for our Linux testbed, we used a fast trap. These measurements are presented in
Table 2.1.
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| Operation | Myrinet-Linux | SP-NT ‘

Host PIO Write 0.16 ps/word 0.33 ps/word

Host PIO Read 0.49 ps/word 0.87 us/word

User-space to Kernel-space | 1.06 us (Fast Trap) | 2.27 us (Fast 10 Dispatch)
DMA Startup (host to NIC) | 1.72 us 1.78 us

DMA Startup (NIC to host) | 1.47 us 1.61 ps

Table 2.1: Cost of basic operations in the Myrinet-Linux and SP-NT testbeds.

2.3.2 Caching Descriptors

As discussed in Section 2.2.2, the choice of caching the send descriptors when they are posted
depends on the cost PIO and DMA operations. From the cost of these operations in our testbeds
(Table 2.1), it can be seen that transferring up to five words through PIO is less time consuming
than using the DMA in the Netfinity SP system. In the Myrinet-Linux testbed, transferring up
to ten words can be done in a faster manner by using PIO. It should be noted that in neither of
our testbeds, PCI write combining was used. If a system supports PCI write combining, a larger
number of words can be transferred by PIO before the point where using DMA becomes more
efficient. Another factor which affects the decision about caching send descriptors is the CPU
utilization. While the host processor is not involved if DMA is used, using PIO requires the host
to perform the transfer and increases the host CPU cycles used for send operations.

The situation is slightly different for receive descriptors. If the receive descriptors are to be
accessed by DMA operations, a simple implementation performs the DMA when the corresponding
message is received at the NIC of the receiving node. This will result in an increase in the latency
by the cost of transferring the descriptor to the NIC. However, if the descriptor is cached at the time
it gets posted, in most cases the cost of this transfer is not part of the send and transmission times
of the message. Even if the NIC is responsible for the transfer, it is possible to mask the transfer
time for receive descriptors by transferring the descriptors before the corresponding messages arrive
at the NIC. However, implementing this feature requires an increase in the complexity of the NIC
firmware. Furthermore, the NIC may need to poll all the receive queues of active VIs to see if there
is any posted receive descriptor to be processed. Since the NIC processors are usually much slower
than the host processors (4.5 times in our Netfinity cluster and 10 times in our Myrinet network),
the increase in the complexity of firmware and the need for polling can degrade the performance of
the firmware and increase the latency of messages. Furthermore, if the rate of incoming messages
is high and/or the rate of messages being sent out from a particular node is high, the NIC may not
get a chance to get the receive descriptor before the message arrives. In these situations, before
NICs can retrieve the information about the descriptor, it has to store the message in a temporary
location. If the message is kept in the NIC memory, messages might be dropped or the reception of
messages might need to be stalled because of the usually small amount of available NIC memory.
If the temporary storage is in the host memory (with an address known to the NIC), there will
be an unnecessary data copy. Either way, the performance of the communication subsystem will
degrade.
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It is to be noted that the whole descriptor need not to be cached. Only those portions of the
descriptor which are required by the NIC should be cached. In particular, the address and size of
the data buffer, the control field of the descriptor (which includes the information such as the type
of the operation) and the address of the status field of the descriptor should be cached on the NIC.

2.3.3 Address Translation

Three approaches for performing the address translation were discussed in Section 2.2.3. In the
first approach (AT1), where the TLB is in the host memory and the host performs the translation,
the cost of the address translation is essentially the one time user space to kernel space switch for
each send or receive operation and the cost of the table lookup for each page frame of the send or
receive buffer. In order to reduce the TLB lookup cost, one table for each registered memory can
be created upon the registration of the memory region. This table includes the physical addresses
of (the beginning of) all the page frames that the memory region spans over. By creating such a
table, the virtual-to-physical address translation can be done by indexing the address translation
table without any need for searching the table or multiple indirections. The Average cost of the
address translation when the AT1 approach is used, is shown in the first row of Table 2.2. The
overall cost of the translation is this additional cost plus the time required for accessing the TLB
for each page frame of the send or receive buffer.

AT Location/ | NIC Memory | Myrinet-Linux | SP-NT
Method | Translator | Requirement | Additional Cost | Additional Cost

AT1 host /host None 1.06 2.27
AT2 NIC/NIC Proportional | 0 0
AT3 host /NIC Constant 1.72 x Miss Rate | 1.78 x Miss Rate

Table 2.2: Cost of different methods of implementing the virtual-to-physical address translation.
(See Figures 1 through 4 for the value of Miss Rate for different benchmarks.)

In the second approach (AT2), where the TLB is located in the NIC memory, a similar mech-
anism can be used. In this method, there is no need to go through the kernel for the address
translation. The second line in Table 2.2 shows the additional cost for performing the translation
by using this approach. It can be seen that this additional cost is zero. The overall cost of the
translation for each send or receive operation is equal to the number of page frames of the send
or receive buffers times the time required to access an element of the TLB. The cost of registering
memory regions is increased in this method because the TLB should be created and transferred to
the NIC. Creating the TLB on the NIC requires multiple PIO write operations (based on the size of
the registered memory). However, since the memory registration happens infrequently, this increase
in the cost of memory registration can be tolerated. The more limiting factor for implementing
this approach is the large memory space required for keeping the TLBs on the NIC. While there
are NICs with large amount of memory, most NICs provide a limited amount of memory. On the
other hand, with the increase in the size of available host physical memory and registered memory
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regions, the required memory on the NIC increases. These requirements make the third approach
a more realistic and scalable approach for implementing the address translation.

In the third approach (AT3), the NIC perform the translation while the TLB is stored in the
host memory. Since the TLB is stored in the host memory, the memory requirement on the NIC is
minimal. However, if for every address translation the NIC is required to access the host memory
(through DMA) this approach performs much worse than the second approach. In order to reduce
the cost of the address translation while the size of required NIC memory is kept low, caching
the address translations is used. If the translation of a particular physical address is found in a
software cache (kept in the NIC memory), the translation can be performed quickly by accessing
the corresponding cache entry. If the translation is not found in the cache, an access to the TLB
in host memory (through DMA) is required (Table 2.2).

In order to evaluate the effectiveness of caching and estimating the required cache size, and in
the absence of the existence a wide variety of applications and benchmarks for VIA, we used the
NAS Parallel Benchmarks (NPB) [6, 12] version 2.3 to gather the list of addresses being referred
in these benchmarks. We profiled the NAS benchmarks to record the addresses of the send and
receive buffers being used in these benchmarks. We ran the benchmark with 4, 16, and 64 processes
and used two different problem sizes: class A and class B. We used different TLB cache sizes and
degrees of associativity. It should be noted that the TLB cache is implemented in software and is
stored in the NIC memory. (We haven’t presented the data for the Embarrassingly Parallel (EP)
and Fast Fourier Transform (FT) benchmarks because the communication operations used in these
benchmarks are such that the performance of the address translation does not affect the execution
time of the program significantly.)

Figure 2.1 shows the cache miss rates for the class A NAS benchmarks on a system with 128-
entry direct-mapped caches. The results for running these programs on four and 16 processes
are shown and cache misses are broken down into send and receive misses (compulsory and non-
compulsory). It can be seen that with such a small cache and when four processes are used, in
four of the benchmarks more than 80% of memory accesses result in a cache miss. When the
programs are run on 16 processes the number of cache misses reduces significantly. If the cache
size is increased to 1024 (Fig. 2.2), the cache miss rates for all benchmarks other than IS become
negligible. Increase in the number of processes result in an decrease in message sizes and this
compensate the effect of the increase in the number of messages being transmitted. It is interesting
to see that miss rates are identical for a 1024-entry direct mapped cache or a 1024-entry cache
with the degree of associativity of eight. The access time of a software direct-mapped cache is
less than that for a software associative cache. Therefore, given the same performance, using a
direct-mapped cache is preferred over an associative cache when implemented in software.

Figure 2.3 shows the cache miss rates for the class B NAS benchmarks on a system with 128-
entry direct-mapped caches. Note that the results shown in this figure have been obtained from
running these programs using 16 and 64 processes. The cache miss rates for systems with 1024-
entry caches are shown in Figure 2.4. A similar pattern to those for class A benchmarks (smaller
problem size) can be seen. It is interesting to compare the cache miss rates for these benchmarks
with different problem sizes. When the benchmarks use 16 processes, increasing the problem size
(from class A to class B) result in an increase in the cache miss rates. Using caches with 1024
entries are shown to be enough to make the cache miss rates for all class A benchmarks negligible.
However, when the problem size is increased, the BT and IS benchmarks produce a significant
number of misses.
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Figure 2.1: The cache miss rate for the NAS benchmarks (class A) using four processes (left)
and 16 processes (right) with 128-entry direct-mapped caches. C and NC denote compulsory and
non-compulsory misses, respectively.
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Figure 2.2: The cache miss rate for the NAS benchmarks (class A) using four processes (left) and
16 processes (right) with 1024-entry direct-mapped caches and 128-entry 8-way associative caches.
(The miss rates are identical for both of these cache types.) C and NC denote compulsory and
non-compulsory misses, respectively.

It can be seen that providing a larger cache size reduces the number of misses significantly.
The required cache size for making cache misses negligible is shown to be very small. We have
also studied the effect of using victim caches. The results show that the gain obtained from using
victim caches is minimal. (We do not present the results for victim caches here because of the
space limitation.) It should be noted that the NAS benchmarks are only representative of scientific
applications and other applications and benchmarks need to be used to evaluate the caching for
VIA too.

It should be noted that for receive operations, the cost of address translation might be hidden
if the translation is done before the message arrives. The AT1 method can be easily used to take
advantage of this characteristic. But the AT2 and AT3 methods can be implemented more easily
if the translation is done when the message arrives. When the AT2 and AT3 methods are used,
performing the translation before the message arrives increases the complexity of the firmware and
can decrease the overall performance of the communication subsystem. Another issue which should
be considered is that while for performing the address translation by using the AT3 approach the
host processor is not involved, the AT1 approach requires the host to perform the translation.

Another important issue worth mentioning is the translation of the address of the status field
of descriptors. Since after the completion of an operation, the status field of the corresponding
descriptor should be updated, the NIC needs to know the physical address of the status field.
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Figure 2.3: The cache miss rate for the NAS benchmarks (class B) using 16 processes (left) and
64 processes (right) with 128-entry direct-mapped caches. C and NC denote compulsory and non-
compulsory misses, respectively.
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Figure 2.4: The cache miss rate for the NAS benchmarks (class B) using 16 processes (left) and
64 processes (right) with 1024-entry direct-mapped caches and 128-entry 8-way associative caches.
(The miss rates are identical for both of these cache types.) C and NC denote compulsory and
non-compulsory misses, respectively.

(Obviously, this update could be done by issuing an interrupt to the host, but this approach will
be too costly to be used in situations where the application is polling for the completion of an
operation.) If the address translation is to be done by the NIC, there will be a need to access the
TLB one more time to perform the translation of the status field address for each operation.

2.3.4 Completion Queues

We presented two approaches for implementing the completion queues in Section 2.2.4. The
cost for the first approach (CQ1) is practically the cost of NIC performing a DMA operation to
add an entry to the CQ. In the second approach (CQ2) the work queues associated with a CQ are
polled. CQ2 approach won’t be scalable if the number of work queues associated with a CQ is large.
On the other hand in many real-life applications each process usually communicates only with a
small set of processes. In order to evaluate the performance of CQ2, we used the NAS benchmarks.
Among the NAS benchmarks, the LU and MG benchmarks use the MPI_Waitany function to receive
any message from a collection of processes. Usage of this primitive is similar to waiting to receive
a message by examining the completion queue associated with a set of VI receive queues. In order
to find out the number of work queues associated with a CQ, we recorded the number of processes
with which a process communicates and waits for the completion of the transfers by using the
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Proce- | Avg. # of Recv | Average | Myrinet-Linux SP-NT
sses Queues / CQ CQ2 Cost CQ1 Cost CQ1 Cost
LU 4 2 0.16 1.47 1.61
LU 16 3 0.24 1.47 1.61
LU 64 3.5 0.28 1.47 1.61
MG 4 3 0.24 1.47 1.61
MG 16 4.6 0.37 1.47 1.61
MG 64 6.5 0.52 1.47 1.61

Table 2.3: Comparison between different approaches for implementing CQs.

MPI Waitany function. Table 2.3 shows the average number of processes a process communicates
with using MPI Waitany function in a 64-process system running the LU and MG benchmarks. The
data shows that processes communicate with only a small set of processes. For example, in MG
benchmark running on 64 nodes, each process communicates to 6.5 other processes on the average.
Polling the VI work queues of these 6.5 processes is less time consuming (0.52 microseconds) than
the NIC adding a completion entry to CQ (1.61 microseconds). It can be seen that the cost of the
CQ2 approach is less than that of the CQ1 approach for these applications. It should be noted
that the host CPU utilization is higher for the CQ2 approach.

2.4 Related Work

There have been several implementations of VIA. The Berkeley VIA (Version 1) [25] is one of the
first software implementations of the VIA. (This implementation is a partial implementation of VIA
mainly done to obtain a better insight on different aspects of the implementation of the VIA.) In
this implementation, a memory page on the NIC memory has been used for the implementation of a
pair of doorbells. The doorbells for send queues are polled for finding outstanding send descriptors.
This polling is expensive and increases linearly with the number of active VIs. The Berkeley VIA
does not perform any caching of descriptors. In other words, for sending messages NIC has to
access the host memory twice: once for obtaining the descriptor and once for obtaining the data
itself. In this implementation, only a subset of descriptors are moved between the host and the NIC
to reduce the high cost of transferring the descriptors. The Berkeley VIA (Version 2) [24] is based
on the the Berkeley VIA (Version 1) implementation and adds memory registration and increased
VI/user support. In this implementation each memory page on the NIC can support up to 256 pairs
of doorbells that belong to a single process. For the address translation a buffer with limited size on
the NIC is used for the TLB. If the size of registered memory is bigger than what can be supported
with this table, the translation of some portions of the registered memory won’t be present in the
NIC TLB. In these cases the host memory is accessed to obtain the translation. The location of the
host buffers holding the complete translations for registered memory regions are known to the NIC.
The FirmVIA [17] is an experimental implementation of the Virtual Interface Architecture for the
IBM SP Switch-Connected NT cluster which is one the newest clustering platforms available. In
this implementation, the address translation is performed by the host. Descriptors are also cached
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for improving the performance. The performance of GigaNet cLAN [1] and the Tandem ServerNet
VIA implementations are studied in [48].

The effect of using caching for address translation for user-level network interfaces (and in
particular U-Net) has been presented in [56]. The address translation issues have also been studied
in [44] and the address translation methods are classified according to where lookup and the miss
handling are performed. The major difference between the address translation in systems discussed
in these papers and that in systems supporting VIA is the memory registration mechanism required
by VIA. In VIA, all the memory locations used as send and receive buffers are in registered memory
regions and VIA implementations are not concerned with the possibility of accessing a location
which belongs to swapped page frames.

2.5 Summary

In this chapter, we studied different components of VIA for sending and receiving messages. We
presented various approaches for implementing different components of VIA and evaluated these
approaches on two different platforms. We showed that caching the descriptors in the NIC memory
can improve the performance of the communication subsystem by overlapping some portions of
the receive overhead with those of send and transmission overhead. Using the NAS benchmarks,
we showed that a small caching area for the address translation entries eliminates the need for
accessing TLBs stored in the host memory for most of the send and receive operations. We also
discussed the issues related to the implementation of completion queues. We showed that a software
implementation (polling) performs well for the NAS benchmarks because of the limited number
of processes with which a given process communicate. We also presented a few approaches for
implementing VIA doorbells in software.
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CHAPTER 3

EFFICIENT VIRTUAL INTERFACE ARCHITECTURE SUPPORT FOR
IBM SP SWITCH-CONNECTED NT CLUSTERS

In the previous chapter, we presented several approaches for implementing various components
of VIA. We also evaluated these alternative approaches on two different platforms. It is important
to study the overall performance of the implementation when VIA components are put together.
In this chapter, we present the results of an exercise in implementing a subset of VIA on the IBM
SP systems hardware using the NT 4.0 operating system. We call our implementation FirmVIA,
which stands for VIA implemented in firmware.

The IBM SP is one of the most successful parallel systems commercially available today. The
IBM SP system consist of RS/6000 nodes running AIX. These nodes are interconnected by the
IBM SP switch interconnect. The RS/6000 SP network interface cards (NIC) support the TCP/IP
protocol suite and a proprietary user—space protocol. The MPI and LAPI [45, 14] communication
libraries are layered over the proprietary user—space protocol. During 1999, IBM announced the
Netfinity SP System which is an SP Switch—connected NT cluster. The Netfinity SP nodes are
based on Intel x86 architecture and run the NT 4.0 operating system. Netfinity SP supports the
TCP/IP protocol suite over the SP Switch. The implementation of a low—level, high—performance
communication subsystem such as VIA for the Netfinity SP system seems to be the next logical
step.

We studied approaches in implementing VIA efficiently on the Netfinity SP system. However, we

believe that our results are applicable to many other hardware and software platforms. There were
many challenges in the implementation including: 1)performing fast and efficient virtual-to-physical
address translation, 2) eliminating the double indirection of VIA, and 3) fast implementation of
VIA doorbells on the NIC in the absence of any hardware support and without using polling. In
this chapter we address all of these issues. The main contributions presented in this chapter are:
1) We explore the partition of the VIA functions among the user space, the kernel space, and the
NIC firmware. A NIC processor is generally not as powerful as host processor in current systems.
In SMP systems, multiple host processors need to communicate with a single NIC processor. Thus,
in our design, only the operations that impact latency and bandwidth are performed by the NIC.
We describe mechanisms for offloading NIC housekeeping tasks to the host processor.
2) We introduce the notion of a Physical Descriptor (PD) which is a condensed VIA descriptor with
all the virtual addresses translated to physical addresses. PDs allow for efficient virtual-to-physical
address translation without putting burden on the NIC processor or the NIC memory. PDs are
cached in the NIC memory. There is no separate Translation Lookaside Buffer (TLB) on the NIC.
This approach makes most efficient use of the NIC memory. Physical Descriptors are written to
the NIC by the host instead of DMA to eliminate the NIC overhead. Therefore, in our design, the
so called double indirection of VIA is implemented efficiently.
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3) In the send/receive model, caching PDs in the NIC memory eliminates the need for stalling the
reception of messages (for doing address translation lookup from host memory), or the need for
copying the received data into intermediate buffers. Therefore, we implement a zero-copy protocol
both on sending and receiving ends, transferring data directly between the user buffer and the NIC.
4) In the absence of hardware support for doorbells, we use a centralized (but protected) door-
bell/send queue for caching PDs on the NIC. Firmware overhead of polling multiple VI doorbells
of multiple user processes is eliminated. VIA is intended to be a user space protocol. However, we
confirm the observations that going through the kernel is not very costly. In fact, the overhead of
going through kernel is more than compensated by eliminating the NIC overhead of polling multiple
doorbells and DMA for address translation, as well as supporting multiple user processes easily.

We have measured a peak point-to-point bandwidth of 101.4 MBytes/s for our implementation.
This performance number surpasses all published VIA results that we are aware of [3, 24, 25,
48]. The half-bandwidth is reached for messages of 864 bytes. The one-way latency of four-byte
messages is 18.2 us which is better other VIA implementation’s latencies except for the hardware
implementation of VIA [1]. Performance results of FirmVIA and other VIA implementations are
summarized in Table 3 in Section 3.4. It is to be noted that our results are very general and can
be easily extended to other hardware and software platforms.

The rest of this chapter is organized as follows: We discuss the characteristics of the SP switches
and Network Interface Cards in Section 3.1. The design and implementation issues of the VIA
implementation for SP-connected N'T Clusters are discussed in Section 3.2. In Section 3.3, we
present the experimental results including the latency and bandwidth of our implementation and
provide a detailed discussion on different aspects of its performance. Related work is discussed in
Section 3.4. In Section 3.5, we present our conclusions.

3.1 IBM SP Switch

In this section we present a brief discussion about the architecture of the IBM Scalable Parallel
(SP) Switch. We also provide a brief discussion of the functional modules associated with the
switch. We also discuss the architecture of the SP network interface card.

3.1.1 Elements of the SP Switch

The current generation of SP networks is called the “SP Switch”. The SP Switch is a bidi-
rectional multistage interconnect incorporating a number of features to scale aggregate bandwidth
and reduce latency [51]. The basic elements of the SP Switch are the 8-port switch chips and
the network interface cards (NIC) interconnected by communication links. Switch chips provide
means for passing data arriving at an input port to an appropriate output port. In the current
implementation of Netfinity SP systems, the switch chips and NIC ports have 150 MBytes/s data
bandwidth in each direction, resulting in 300 MBytes/s bidirectional bandwidth per link and 1.2
GBytes/s aggregate bandwidth per switch chip.

The switch chip, called the TBS chip, contains eight input ports and eight output ports, a
buffered crossbar, and a central queue. All switch chip ports are one flit (one byte) wide. When an
incoming packet encounters no contention for the selected output port, it cuts through the crossbar
in wormhole fashion [51]. Cut through latency is less than 300 nanoseconds. When an incoming
packet is blocked due to unavailability of an output port, flits of the packet are sent to the central
queue for temporary buffering until the output port becomes available. The central queue stores
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up to 4KB of incoming data and this storage space is dynamically allocated for 8 output ports
according to the demand.

The TBS chip is used both in RS/6000 SP and Netfinity SP systems. The TBS chips can be
interconnected by links to form larger networks. Basic building block of Netfinity SP network is
an 8-port switch board that comprises a single TBS chip. Netfinity SP software currently supports
cascading of two 8-port switch boards resulting in a network of maximum of 14 nodes. However,
the SP hardware technology allows larger networks to be constructed as evidenced by the 1464
node RS/6000 SP system, the ASCI Blue, in existence (http://www.lIlnl.gov/asci/).

3.1.2 SP Network Interface Card

In the Netfinity SP systems, each host node is attached to the SP Switch by a PCI based
network interface card (NIC) illustrated in Fig. 3.1. The NIC consists of a 100 MHz PowerPC 603
microprocessor, 512 KB SRAM, an interface chip to the network called TBIC2, Left and Right
DMA engines for moving data to/from PCI bus and for moving data over the internal bus. Two
4 KB speed matching FIFO buffers (called as Send-FIFO and Recv/Cmd-FIFO) also exist on the
NIC for buffering data between the internal bus and the PCI bus. Architecture of this NIC is
similar to the Micro Channel based SP2 adapter architecture reported in literature[51, 50] and it
is the PCI bus version of the NIC used in the RS/6000 SP systems.

PPC 60 SRAM TBIC2 Network
Interface Chip
100 MH 0.5 MB
150 Mbyte/s
¢ | | @) SWITCH LINKS
Internal Bus

Send FIFO 4KB > 8 byte/33MHz 4KB F'F9| 150 Mbyte/S

N
RIGHT-HAND
DMA ENGINE

Recv/Cmd FIFO 4KH

PCI Bus
Y 4 byte/33MHz

Figure 3.1: The Network Interface Card (NIC) architecture in the Netfinity SP system.

The TBIC2 interface chip has a full duplex switch link capable of moving data at a rate of
150 MBytes/s in both directions. TBIC2 supports variable size switch packets up to 2040 bytes.
Each switch packet consists of a 16 byte switch header and payload. The header contains routing
instructions for the SP switch chips. The header and payload are written to their respective buffers
in the TBIC2. TBIC2 then transmits the packet to the SP Switch to be received at the destination
TBIC2.

The 100 MHz PPC603 microprocessor runs the NIC firmware and it is responsible for managing
the resources on the NIC. Firmware initiates DMA transfers to send or receive switch packets,
creates or decodes switch packet headers, and communicates with the host processor through the
SRAM or through interrupts. The TBIC2 registers are memory mapped in the 603 address space.
The SRAM is divided mainly into cached and non-cached regions. Cached regions contain the
firmware executable and private data. Non-cached SRAM regions are used for communicating with
the host processor. The host (an Intel x86 based PC with NT 4.0) typically maps the shared
regions of the SRAM into its kernel or user address space. The host processor stores or loads 32-bit
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words (using x86 mov instruction) to/from SRAM to communicate with the firmware. Firmware
can assert the PCI interrupt signal to notify asynchronous events to the host processor.

Two 4KB FIFO buffers are used as an intermediate storage between the PCI bus and TBIC2
(Fig. 3.1). Two DMA engines control one end of these FIFO buffers. The Right-Hand Side (RHS)
DMA engine moves data from Send-FIFO to TBIC2 or from TBIC2 to Recv/Cmd-FIFO. The Left-
Hand Side (LHS) DMA engine moves data from Recv/Cmd-FIFO to host memory or from host
memory to Send-FIFO over the PCI bus. The PPC603 microprocessor communicates with the LHS
engine by inserting command words in the Recv/CMD-FIFO. The peak internal bus bandwidth
of the NIC is 264 MBytes/s (64 bit/33MHz). The NIC has a 32 bit/33 MHz PCI bus interface
resulting in a peak PCI bandwidth of 132 MBytes/s.

3.2 Design and Implementation of FirmVIA

In this section, we first discuss the requirements and scope of our VIA implementation on the
SP Switch-connected NT clusters. Then, we discuss the design choices we made and present the
rationals for these. We focus on VIA functions which affect the latency and bandwidth and are on
the critical path of sending and receiving messages.

3.2.1 Requirements and Scope

We used an RDBMS application’s requirements as a guideline for our VIA design and imple-
mentation. The application requires 128 VIs per host, 256 outstanding descriptors per work queue,
support for a minimum of 256 MB of registered memory and a minimum of 16 registered memory
regions, and an MTU size of 4 KB with one data segment per VIA descriptor. Our design meets
or exceeds all the requirements. It supports 128 VIs and a MTU of 64KB with any number of data
segments. There is no inherent limit in our design for the registered memory size which is only
bounded by the amount of memory that the operating system can pin. Even this limit may be
exceeded as we will discuss in Section 3.2.2.

We imposed our own requirements to improve performance. VIA send and receive operations
are zero—copy thereby moving data directly between the user buffer and the NIC. Status and length
fields of the posted VIA descriptors are set by the NIC directly, rather than going through a host
interrupt. For polled send/receive operations this results in a smaller application to application
latency.

We wrote the firmware entirely in C language except for a few inlined processor control in-
structions. There is no operating system or run time libraries. Firmware is developed as a single
threaded application that runs in an infinite loop multiplexing between various operations such
as send and receive. The firmware would have been easier to implement with multiple threads.
However, single threading made the firmware latency predictable.

Our design was mostly influenced by limited amount of memory on the NIC. To reduce the
development time, we based our firmware on the existing firmware for Netfinity SP systems. This
meant that only a small portion of the NIC memory was left to work with. NIC memory was also
insufficient for storing virtual to physical address translations needed for a reasonable amount of
registered memory. An additional limitation of the NIC is the lack of VIA doorbell support. There
is no hardware means for host to interrupt the NIC either.

As it will become apparent in the following sections, our design generally uses the principle of
keeping the firmware very simple. Operations that impact latency and bandwidth are performed by
the NIC processor whereas housekeeping tasks are offloaded to the host at the expense of spending
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many more host cycles. For example, NIC DMA operations generally have a high startup overhead,
whereas the NIC overhead of interrupting the host is almost zero. When it is not in the critical
path, replacing a NIC DMA operation with the host interrupt service routine activated through
PCI interrupt gives better overall performance. There is a temptation to put more functions in
the NIC, however a NIC processor is not as powerful as the host processor (or processors in SMP
systems). Our experience shows that adding more functionality to the NIC increases the latency
and decreases the bandwidth.

3.2.2 Design Alternatives and Practical Choices for Implementation

In this section, we discuss the different design choices we encountered for implementing VIA.
We explain the advantages and disadvantages of these choices and discuss the decisions we made
in implementing VIA.

Virtual-to—Physical Address Translation

PCI based NICs use physical addresses when doing DMA operations, whereas VIA descriptor
elements, e.g. user buffers, are virtually addressed. Therefore virtual to physical address translation
is required. VIA specifies a memory registration mechanism intended for this purpose ( VipRegister-
Memory). Registered virtual memory is pinned down in physical memory and address translation
tables (commonly known as Translation Lookaside Buffer or TLB) are created. TLB lookup is later
performed before data is to be moved by a DMA operation. In our design we create one TLB for
each registered memory region. The table is linearly addressed. Thus, no searching is necessary.
Address translation is simply done by indexing the table with the virtual page frame number.

Two critical issues in implementing a TLB for VIA are the location of the TLB and the method
of accessing it. In order to support 256 MB of registered memory, a TLB of 256 KB is required.
The NIC memory is too small for this purpose. An approach to circumvent this problem is to use
an intermediate buffer. The buffer should be small enough so that the NIC can support an on-
board TLB. However user data needs to be copied to/from this intermediate buffer when sending or
receiving messages. We did not choose this option as it would not satisfy our zero—copy requirement,
and we decided to put the TLB in the host memory.

Then, the next problem is how to pass the information in the TLB to the NIC. In one approach,
the NIC can do the TLB lookup by performing a DMA operation from the TLB in the host memory.
In another approach, the host processor can do the TLB lookup on NIC’s behalf and then pass the
information to the NIC. In our case the first approach has a high startup cost of DMA, complicates
the firmware and increases it’s execution path. Queuing delays may also occur in send and receive
FIFO buffers (Fig. 3.1) which will increase the communication latency. In the second approach, the
host processor needs to do the TLB lookup in kernel space, since user space applications cannot
be trusted to provide valid physical addresses to the NIC. User to kernel task switch is generally
an expensive operation in operating systems. However, the NT 4.0 operating system provides a
relatively fast method called FAST IO Dispatch [53]. We measured the overhead of this method
to be 2.27 microseconds on our host system. Therefore, we decided to go through the kernel and
have the host processor perform the translation. This approach promises to significantly simplify
the firmware as well as results in similar if not better latency than the first approach. There are
also other reasons to go through the kernel such as for ringing VIA doorbells as we will describe
later in this section. Thus, we followed the second approach.
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To implement the second approach, we defined a data structure called Physical Descriptor
(PD). In essence, a PD is a subset of a VIA descriptor with virtual addresses of user buffers and
key control segment fields translated to physical addresses. The PD contains only the portions
of the VIA descriptor needed by the NIC. The PD consists of two parts: the translated control
segment (PDCS) and the translated data segments (PDDS). The host processor creates a PD by a
TLB lookup of user buffer addresses specified in the data segments and the status field address in
the control segment. The status field physical address is required in a PDCS so that the NIC can
set the completion status directly and reduce communication latency. A single data segment may
span multiple physical page frames. Therefore, a PDDS may contain a list of physical addresses.
For example, a 64 KB VIA data segment may result in as many as 17 physical addresses in PDDS
(or 16 if the buffer is aligned on 4KB page boundary.)

Caching Physical Descriptors

When the application posts send and receive descriptors the VIA provider queues them in
send and receive work queues, respectively. Descriptors may be queued in the host memory but
eventually the NIC needs each descriptor so as to transfer data to/from user buffers specified in the
descriptors. In one approach, the descriptors can be queued only in the host memory and the NIC
fetches the descriptors by DMA as needed. However, as stated before, there is a high startup cost
associated with DMA operations. More importantly, when receiving a message from a high speed
network, there is little time for the NIC to fetch the desired descriptor from the host memory. If
the NIC cannot fetch the descriptor fast enough it may need to stall the reception of the message.
This can result in message packets backing up into the network which may eventually block the
entire communication in the network.

Therefore, we decided to use an alternative approach and cache PDs on the NIC whenever they
get posted. Fortunately, VIA descriptors exhibit high locality of reference for the VIA send and
receive operations since they are consumed in sequential order and thus cache hit rate is essentially
100%. Each VI has its own caching area in the NIC memory for receive descriptors as shown
in Fig. 3.2. This area is called Receive Queue Cache (RQC). (We will discuss caching the send
descriptors in Section 3.2.2.) The RQCs are circular FIFO queues implemented in the NIC memory.
There is a tail and head associated with each RQC. When the application posts a receive descriptor,
the host processor creates a PD and writes it into the RQC starting at the tail location and advances
the tail to next available location. When a switch packet arrives at the NIC from the network, the
firmware determines the VI id of the message and the first descriptor in the corresponding RQC is
consumed. The firmware advances the head upon consuming the descriptor.

Because of the relatively small amount of NIC memory not all posted receives can be cached in
an RQC. Then the host processor queues the request in the host memory. As cached descriptors
are consumed by messages received, RQCs will have free space. Then two possibilities exist for
caching new descriptors: 1) using DMA operations to transfer new descriptors to the NIC, or 2)
interrupting the host processor to write more descriptors into the RQC, called “refill interrupt.”
The first approach complicates the firmware but spends no host processor cycles. The second
approach of using interrupts keeps the firmware simple and minimizes NIC cycles. However, it uses
many more host processor cycles due to the interrupt.

In order to keep the firmware simple we chose to implement the interrupt method at the expense
of wasting host processor cycles because the RQC refill operation is not in the critical path that
affects latency or bandwidth provided that the descriptors in the RQC are not depleted. If there
is insufficient cache space for a descriptor a handle to the descriptor is queued in the kernel space.
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Figure 3.2: Sending and receiving messages using Physical Descriptors and address translation.

A flag in the NIC memory is set to indicate the existence of the queued descriptor(s) in the host
memory. On the NIC side, a low watermark is associated with each RQC. If the amount of
descriptors in the RQC goes below the low watermark and if the RQC has the queued flag set, then
the firmware sends a refill interrupt to host which will dequeue the descriptors on the host and
write as many of them as possible into the RQC. The low watermark is chosen such that the time
required for processing a refill interrupt is less than the time it will take for arriving messages to
deplete the descriptors in the RQC. Furthermore, when a new descriptor is posted, if the host finds
other descriptors which have been posted earlier but not cached yet, it caches as many descriptors
as possible into the NIC. The posting order of the descriptors is preserved during these operations.

Note that the operating system limitation on maximum registered memory size may be increased
by taking advantage of the caching of descriptors in the NIC. In this scheme, we need to pin only the
user buffers that have a corresponding descriptor cached in the NIC. And the remaining memory
can be pinned on the fly as descriptors are cached. This will permit registering more memory
than the amount of physical memory. However, the downside of pinning memory on the fly is the
increased complexity of the device driver and a possible increase in message latency. To implement
this scheme efficiently, the cached queues on the NIC need to be deeper and the low watermarks
need to be higher so that page faults can be serviced in time before cached descriptor queues are
depleted. We are currently working on such a scheme.

Centralized Doorbell and Send Queue

VIA specifies that each VI is associated with a pair of doorbells. The purpose of a doorbell is
to notify the NIC of the existence of newly posted descriptors. Our NIC does not have hardware
support for doorbells as stated before. Therefore we emulate the doorbells in the firmware. One
approach for emulating doorbells is allocating space for each doorbell in the NIC memory and
mapping this doorbell memory to the process’ address space. The user application rings the doorbell
by simply setting the corresponding bit in the NIC memory. To protect a doorbell from being
tampered by other processes, doorbells of different processes need to be on separate memory pages
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in the NIC. An issue in emulating doorbells is the cost of polling them in the NIC. Polling will add
to the message latency with increasing number of processes and active VIs. Therefore, we decided
to combine doorbells and send queues in a central place on the NIC.

Considering the fact that we go through the kernel for address translation as discussed in
Section 3.2.2, combining send descriptors of all VIs in a central queue on the NIC makes more
sense. We took such an approach. We call this queue as the Central Send Queue Cache (CSQC).
Since descriptors go through the kernel, multiple processes can post them to the CSQC in an
operating system safe manner. Effectively, the CSQC queue becomes the centralized doorbell
queue. Changing the state of CSQC from empty to not empty is equivalent to ringing a doorbell.
Similar to the RQCs, the CSQC is implemented as a FIFO circular buffer and it has a head and
tail pointer. An advantage of a central send queue is that the firmware is required to poll only one
variable, namely the tail pointer of the queue, thereby avoiding the overhead of polling of multiple
VI endpoints. Situations where the CSQC is full or about to go empty is dealt using a mechanism
similar to the one used for RQCs (as discussed in the previous subsection).

The VIA specifications provide a mechanism to put an upper bound on the number of out-
standing descriptors associated with a particular VI. Enforcing this upper bound guarantees that
no VI will suffer from starvation when using a shared queue in the NIC.

Immediate Data

We have also implemented the immediate-data mode of data transmission. On the receiving
side, if the immediate data flag of a receive descriptor is set, a physical address in PD points to the
immediate data field of the user VIA descriptor. On the send side, instead of writing a physical
data segment address (PDDS) into the NIC, the immediate data itself is written. A flag in the
control field of the PDCS is set to indicate that what follows the PDCS is the immediate data itself
and not an address.

Since performing DMA operations for small messages is inefficient, we also experimented with
sending messages of smaller than a certain size as if they were being sent in the immediate-data
mode. In other words, instead of writing a physical address of the user buffer in the central send
queue cache (CSQC), the host writes the message itself in CSQC.

Remote Direct Memory Access (RDMA)

In the VIA RDMA mode of transfer, the RDMA initiating node specifies a virtual address at
the target node’s memory. The issue here is how to translate this virtual address to the physical
address on the target NIC. We do not expect the caching of physical addresses to have as high hit
rates for RDMA as for send/receive operations. Because for send/receive operations, descriptors
are consumed in sequential order hence caching works well due to the prefetching of descriptors.
However for RDMA, the initiating node can specify arbitrary virtual addresses at the target node
memory. Thus predicting next physical address in RDMA is difficult.

In our RDMA design, this address translation problem can be solved in two different ways: 1)
In order to prevent stalling the reception of RDMA packets, the NIC can DMA all RDMA packets
directly into a kernel buffer (whose physical address is known to the NIC). Then, these messages
can be copied to the target user buffer by the host processor. 2) The NIC can do the TLB lookup
from host memory by DMA upon message reception. The second method, as mentioned earlier in
Section 3.2.2, may have a problem of stalling message reception momentarily and cause messages
backing up into the network. Thus, the first method looks attractive for implementation and we
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are currently incorporating this method to our implementation for supporting RDMA operations
efficiently.

3.3 Performance Evaluation

In this section we present the communication latency and bandwidth measurements obtained in
our experimental testbed. We discuss various aspects of our implementation and provide a detail
evaluation of different components of the FirmVIA. We also discuss the impact of several hardware
improvements on the performance of FirmVIA.

3.3.1 Experimental Setup

The results presented in this section were obtained on a cluster of PCs with 450 MHz Pentium
ITI processor nodes and 100 MHz system bus. Each node has 128 MB of SDRAM, 16 KB of L1 data
cache, 16 KB of L2 instruction cache, and 512 KB of L2 cache. Each node has a 33 MHz/32-bit
PCI bus and runs the NT 4.0 operating system. Table 3.1 shows the cost of elementary operations
on this system. For all experiments, the maximum switch packet payload was set to 1032 bytes
(1024 bytes of payload plus 8 bytes of VIA control header) unless otherwise stated.

‘ Operation ‘ Cost ‘
Host PIO Write 0.33  ps/word
Host PIO Read 0.87  ps/word
NT FAST IO (user/kernel switch) | 2.27  pus
NT Interrupt Latency 10-17 s

Table 3.1: Cost of Basic Operations

3.3.2 Latency

We determined the message latency as one half of the measured roundtrip latency. The test
application sends a message to a remote node’s test application. The remote node replies back with
a message of the same size. Upon receiving the reply, the initiating node repeats the ping—pong
test and repeats it large number of times so that the overhead of reading the timer is negligible.
We aligned the send and receive buffers to the beginning of physical pages so that buffers crossing
page boundaries do not influence latency measurements for small messages. Performance effects of
crossing page boundaries are discussed in Section 3.3.3. The test application uses the VipPostSend
and VipPostRecv function calls for posting send and receive descriptors. Messages were received
using VipRecvDone function call and by polling on the completion status of the posted receive
descriptors.

The latencies for different message sizes are shown in Fig. 3.3. The one-way latency for four-byte
messages was observed to be only 18.2us.
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Figure 3.3: Message latency for different message sizes.

Components of Latency

To find out where and how the measured time is spent, we instrumented the firmware and
the device driver to measure different components of latency. Each component was measured
several times and the minimums were recorded. Due to this method of recording, the summation
of the delays of different stages of transfer is slightly lower than the measured one-way latencies,
shown in Fig. 3.3. However, such a study provides insight to our implementation. Figure 3.4
illustrates the time spent in different stages of data transmission from the source node data buffer
to the destination node data buffer. It can be seen that the time spent by the host processor is
independent of the message size (for the range shown in the figure) which is a result of the zero—copy
implementation. Breakdown of the host overhead is given in Table 3.2. Note that the PIO cost of
writing a physical descriptor (PD) into the NIC is the time for writing five words (three words for
the PDCS and two words for the PDDS).

Time spent in Various stages of transfer

40+ B TBIC to Host DMA (recv)
| BNIC Recv Processing
OSwitch Latency

™ BFIFO to TBIC DMA (send)
) ENIC Send Processing
BEHost to FIFO DMA (send)
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Figure 3.4: The breakdown of short message latencies.

The host memory to Send-FIFO transfer time is shown as the second bar from the bottom in
Fig. 3.4. The cost of the NIC firmware processing a physical descriptor (PD) is shown as the third
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‘ Operation ‘ Cost ‘
NT FAST IO (user/kernel switch) | 2.27  pus
PIO write 5 words of PD to NIC | 1.65  us/word

Processing in user space 0.27  us
Processing in kernel space 1.63  us
| Total | 5.82 s |

Table 3.2: Breakdown of the Host Overhead

bar from the bottom. It can be observed that this cost remains almost constant for messages up
to 128 bytes. There is a slight increase in the NIC send processing delay for larger than 128 byte
messages and this can be attributed to the firmware sequencing effect as discussed in Section 3.3.2.
It is to be noted that for messages of eight bytes or less, the data is transferred to the NIC
through Programmed IO (PIO) instead of using DMA, as described in Section 3.2.2. We discuss
the performance tradeoff between PIO and DMA in more detail later.

After the message is transferred by the LHS DMA engine into the NIC Send-FIFO, it is sent
out by the RHS DMA engine into the TBIC2. This DMA transmission is performed at a rate of
264 MBytes/s and it is shown as the fourth bar from the bottom. Note that as soon as the first
word of data is written into it, the TBIC2 starts sending it out to the network. The SP switch
has less than 0.3us latency. This overhead and the overhead of the injection and consumption of
one word to/from TBIC2 at the sending and receiving sides are shown as the fifth bar. Finally the
cost of processing the received message and transferring the message by DMA into the user buffer
is shown as the two top most bars.

It is to be noted that on the receiving side the LHS DMA and RHS DMA engine receive
operations are almost completely overlapped. While the RHS DMA engine is transferring message
payload from the TBIC2 buffer to the Recv/CMD-FIFO, the LHS DMA engine is transferring that
payload from the Recv/CMD-FIFO to the host memory. Since the PCI bus bandwidth is less than
that of the NIC internal bus, the cost of data transmission from TBIC2 to the Recv/CMD-FIFO is
masked and does not appear as a separate item in Fig. 3.4. This behavior is different on the send
side because for the message (or more precisely the payload of a packet) to be transferred from
Send-FIFO to TBIC2, the hardware requires the whole payload to be present in the Send-FIFO.
Thus two separate DMA operations (bars 2 and 4) appear in Fig. 3.4 for sends. The NIC send and
receive processing costs also contain the time for marking the VIA descriptors in host memory as
complete.

PIO vs. DMA

As discussed in Section 3.2.2, for short messages, the message itself (instead of its address) can
be directly written into the central send queue cache (CSQC) to avoid the startup cost of DMA.
Figure 3.5 illustrates the cost of NIC send overhead for short messages. It can be observed that
for messages of 16 bytes or less, the NIC send overhead using PIO operation is less than that of
the DMA operation. The savings were less than what we anticipated. Closer examination of the
firmware revealed that the C compiler for firmware was not producing efficient instructions to move
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the message in the SRAM. Another constraint limiting the use of PIO for transmitting the data
was turned out to be the additional cost of caching the descriptors into the NIC (not shown in
Fig. 3.5). The extra space required in the CSQC was another constraint. Thus, we chose to use
PIO for messages of eight bytes and less only.

PIO vs. DMA
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Figure 3.5: Delays for sending data with PIO vs. DMA. Descriptor processing delay is included.

3.3.3 Bandwidth

To measure the bandwidth, we sent messages from one node to another node for a number
of times and then waited for the last message to be acknowledged by the destination node. We
started the timer before sending these back to back messages and stopped the timer when the
acknowledgment message for the last sent message was received. The number of messages was large
enough to make the acknowledgment message delay negligible compared to the total measured time.

The peak measured bandwidth for different message sizes is shown in Fig. 3.6. The maximum
observed bandwidth is 101.4 MB/s. Note that the half-bandwidth is achieved for a message size of
864 bytes.
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Figure 3.6: Measured bandwidth for different message sizes. The half-bandwidth is achieved for
864-byte messages.
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The Bandwidth Bottleneck

The theoretical maximum bandwidth of PCI bus is 132 MBytes/s. This is less than the SP
Switch link uni-directional bandwidth (150 MBytes/s) and the NIC internal bus bandwidth (264
MBytes/s). This led us to believe that the longest stage of the pipeline for sending and receiving
messages is the PCI bus on which data is transferred between the host memory and the NIC
FIFO buffers (Fig. 3.1). To determine the sustained bandwidth of the PCI bus we measured the
DMA bandwidth from the host memory to the NIC FIFO and vice versa. Figure 3.7 shows the
measurement results. Note that these numbers do not include any VIA processing overhead. It is
observed that for transfer size of 1 KB and more the cost of DMA from the NIC Recv/CMD-FIFO
to the host memory is more than that of moving the same amount of data in the opposite direction.
Therefore, we conclude that the maximum bandwidth of our VIA implementation is limited by the
receive side.
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Figure 3.7: The raw PCI DMA bandwidth.

Effect of Packet Size

As mentioned in Section 3.1.2, the maximum payload of a switch packet is 2040 bytes. Since
each VIA packet has a eight-byte software header, the payload for user data is 2032 bytes at
maximum.

Figure 3.8 illustrates the effect of varying the packet size on the maximum possible bandwidth.
It is seen that the maximum bandwidth is achieved for the switch packet size with a user payload
of 1024 bytes. Increasing the size of user payload beyond 1KB does not increase the bandwidth. In
fact, there is a slight decrease in the bandwidth for larger payloads. This can be attributed to the 4
KB size of the NIC Send-FIFO. When the maximum user payload in switch packets is set to 1KB,
the Send-FIFO can be filled with exactly 4 switch packets worth of data (4 x 1 KB). When using
larger payloads the Send—FIFO can take only 3 or 2 switch packets worth data. Fewer packets
reduce the benefits of pipelining. Consider the fact that the PCI bandwidth is less than that of the
internal bus and the switch links. This may lead to the situation where the NIC is ready to send
out the next packet but the packet hasn’t been completely transferred in to the Send-FIFO yet.

Figure 3.8 illustrates another effect where increasing the size of the user payload from 1000 bytes
to 1024 increase the bandwidth significantly. This has to do with our firmware implementation. To
simplify the firmware we structured it so that each LHS DMA initiation on the NIC results in one
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switch packet sent out to the network. This means that if a section of a message buffer is crossing
a physical page boundary then it is sent in two separate switch packets. For example, consider the
case of a 5000 byte page aligned message to be sent. With 1000 byte packet payload, four 1000 byte
packets followed by a 96 byte packet, followed by a 904 byte packet is sent (Total 5000 bytes and 6
switch packets). With 1024 byte packet payload, four 1024 byte switch packets, followed by a 904
byte packet is sent (Total 5000 bytes and 5 switch packets.) Thus for long messages the NIC has
% less DMA initiation overhead than for 1024-byte payloads and this results in higher bandwidth
in Fig. 3.8.
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Figure 3.8: Effect of packet size on the bandwidth.

3.3.4 Estimated Performance on Future Systems

In this section, we discuss the impact of several hardware improvements on the performance of
FirmVIA. In particular, we consider the impact of increasing the speed of host and NIC processors,
larger NIC memory, and hardware support for doorbells on the latency of short messages. We also
study the impact of using write combining. Write combining is a PCI feature that NIC may or may
not support. When NIC supports write combining, multiple PCI writes to sequential addresses are
in the form of one bus arbitration and one address cycle followed by multiple data cycles. This is
a more efficient form of data transfer that does not require one bus arbitration and one address
cycle for each word transferred. In this section, we do not consider the effect of improvement in
networking technologies.

Not having the necessary hardware support for doorbells and having a limited amount of mem-
ory on the NIC were the major reasons for going through kernel to post send and receive descriptors
in FirmVTIA. Therefore, having an efficient hardware support for doorbells and a reasonably large
NIC memory which can store the TLB eliminates the need for using system calls during send and
receive operations. In such a system, descriptors can be cached into the NIC memory directly
without being converted to PDs in the kernel space. Furthermore, supporting write combining and
using wider and faster PCI bus can reduce the time needed for transferring VIA descriptors from
host memory to NIC memory significantly.

Based on the detailed breakdown of the host and NIC overheads for FirmVIA (presented in
Section 3.3.2) and in order to study the effect of described features, we estimated the oneway
latency in a Netfinity cluster with the following added features: 1) Hardware support for doorbells
which eliminates the need for polling at the NIC when separate send queues for VIs are used, 2)
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The NIC memory is large enough to hold the entire TLB, 3) 64-bit/66-MHz PCI bus, and 4) The
NIC internal bus is assumed to be working at 50 MHz resulting in an internal bandwidth of 400
MBytes/s.

Figure 3.9 shows the estimated oneway latency of 16-byte messages on such a system when the
speed of the NIC processor varies. It can be observed that the NIC speed has a significant effect on
the latency. With a NIC processor running at 250MHz, the oneway latency is estimated to be only
9.27us. The impact of the host processor speed was evaluated by estimating the latency while the
host processor speed varied from 450MHz to 2 GHz. The estimated improvement was found to be
negligible. Figure 3.10 shows the effect of changing the speed and width of the PCI bus as well as
using write combining. It can be observed that the impact of these features are significant. If the
PCI bus is improved from 32-bit/33-MHz to 64-bit/66-MHz and write combining is also used, the
oneway latency is reduced from 13.73us to 9.27us.
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Figure 3.9: Impact of NIC cpu speed.
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Communication L BW Host Network OS
System

Berkeley VIA [25] | 23 29.3 | USPARC 167 | Myrinet (SBus) | Solaris 2.6
Berkeley VIA [25] | 26 53.1 | Pentium 300 | Myrinet (PCI) | NT 4.0
Berk. VIAvl [24] | ~24 | ~64 | Dual PII 400 | Myrinet (PCI) | NT 4.0
Berk. VIAv2 [24] | =32 | =64 | Dual PIT 400 | Myrinet (PCI) | NT 4.0

Giganet VIA [48] | =10 | =70 | Xeon 450 cLAN NT 4.0
Servernet VIA [48] | ~ 100 | 22 Xeon 450 ServerNet NT 4.0
MVIA [3] 19 60 SMP PII 400 | GBit Ether Linux 2.1
MVIA [3] 23 11.9 | SMP PII 400 | 100MB Ether Linux 2.1
FirmVIA 18.2 101.4 | PIIT 450 SP (PCI) NT 4.0

Table 3.3: Latency (L in psec) and Bandwidth (BW in M Bytes/sec) Results of Different VIA
Implementations

3.4 Related Work

Performance results of several VIA implementations are summarized in Table 3.3. The Berkeley
VIA (Version 1) [25] is one of the first software implementations of the VIA. (This implementation
is a partial implementation of VIA mainly done to obtain a better insight on different aspects of
the implementation of the VIA.) In this implementation, a memory page on the NIC memory has
been used for the implementation of a pair of doorbells. The doorbells for send queues are polled
for finding outstanding send descriptors. This polling is expensive and increases linearly with the
number of active VIs. The Berkeley VIA does not perform any caching of descriptors. In other
words, for sending messages, NIC has to access the host memory twice: once for obtaining the
descriptor and once for obtaining the data itself. In this implementation, only a subset of the
descriptors are moved between the host and the NIC to reduce the high cost of transferring the
descriptors. Not caching the descriptors have a greater impact at the receiving side. During receive
operations it is required that the interface momentarily buffers or blocks the incoming message to
retrieve the destination receive descriptor. One of the systems used for performance evaluation
consisted of a pair of 300 MHz Pentium processors with a 33MHz PCI bus and 128 MB of memory
running the Windows NT operating system. For the network, Myricom’s Myrinet M2F [22] with
the LANai 4.x-based network interface card were used. The minimum reported latency for a PCI-
based system is 26us. The bandwidth results are reported only for messages of up to 4K bytes. The
peak bandwidth of 425 Mbits/s (53.13 MBytes/s) on the PCI-based system is measured. Different
extensions to the original implementation have been discussed: descriptorless transfers and merged
descriptors. It is reported that supporting these extensions increased the complexity of the firmware
and slowed down even the standard descriptor model.

The Berkeley VIA (Version 2) [24] is based on the Berkeley VIA (Version 1) implementation and
adds memory registration and increased VI/user support. In this implementation, each memory
page on the NIC can support up to 256 pairs of doorbells that belong to a single process. For
the address translation a buffer with limited size on the NIC is used for the TLB. If the size
of registered memory is bigger than what can be supported with this table, the translation of

37



some portions of the registered memory won’t be present in the NIC TLB. In these cases the host
memory is accessed to obtain the translation. The location of the host buffers holding the complete
translations for registered memory regions are known to the NIC. PCs with 400 MHz processors,
running Windows NT 4.0 and interconnected by the Myrinet M2F switches were used to obtain
the bandwidth and latency of this improved version of the VIA implementation. The increased
latency of short messages due to the the new address translation mechanism was about 6 us. The
latency for the case where TLB miss happens only at the first use of VI was shown to be as high
as 34 ps (Fig. 7 of [24]). When the misses happen all the time, the latency can increase up to
40 ps. The complexity of the new firmware contributed to the increased latency which is what
we tried to avoid by using Physical Descriptors. The maximum peak bandwidth was reported as
64 MBytes/s. The half-bandwidth was achieved by messages longer the 1000 bytes. Unlike our
implementation, no caching of descriptors is being used in this study. The new address translation
mechanism which is essentially added in response to the limited resources available on the NIC
(the similar restriction that we faced in our system) increases the latency by more than 6us. In
contrast, our implementation pays only the 2.27us cost of the Fast IO dispatch which also gives us
the chance of using central send queue on the NIC to avoid the polling of send doorbells.

Speight et al. [48] study the performance of GigaNet cLAN [1] and the Tandem ServerNet VIA
implementations. The platform used in this study consists of a set of 450 MHz Xeon processors with
a pair of 33 MHz, 32-bit PCI busses running NT 4.0. While the cLAN provides hardware support
for the VIA implementation, ServerNet emulates VIA in software. The peak measured bandwidth
of the VIA implementations is around 70 MBytes/s for the cLAN and just above 20 MBytes/s for
the ServerNet (Fig. 2 of [48]). The maximum link bandwidths of cLAN and ServerNet switches
are 125 and 50 MB/s/link, respectively. The reported small message latency for the cLAN is 24
us for the cLAN and around 100 us for the ServerNet. It should be noted that for the latency
measurements in this study the blocking VIA calls are used for detecting the completion of the
receive operations. The native VIA latency of the cLAN hardware is reported to be around 10
ps [48].

3.5 Summary

In this chapter, we presented an experimental VIA implementation on the SP Switch connected
NT Cluster. The design issues and the details of the implementation have been discussed. We
presented the notion of Physical Descriptors and showed how Physical Descriptors can be used to
efficiently implement virtual-to-physical address translation for network interface cards with limited
amount of memory. We also showed how caching descriptors can be used to provide a zero copy
communication system. We presented a mechanism to implement the doorbells efficiently in the
absence of any hardware support. A central send/doorbell queue in the NIC has been used to
eliminate polling of multiple VI endpoints. Our design carefully distributes the work between the
host and the NIC for the best performance. Our VIA implementation performs comparably or
better than the other VIA implementations including hardware and software implementations.
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CHAPTER 4

VIBE: A MICROBENCHMARK SUITE FOR EVALUATING VIRTUAL
INTERFACE ARCHITECTURE (VIA) IMPLEMENTATIONS

As discussed in previous chapters, VIA has different components (such as doorbells, completion
queues, and virtual-to-physical address translation) and attributes (such as maximum transfer
unit and reliability modes). The VIA specification is not very strict with respect to the way
these components need to be implemented. Modern computing systems are having programmable
Network Interface Cards (NICs). The availability of these NICs lead to many alternative ways
to implement the VIA components [13] by dividing the operations involved in message transfers
between the host and NIC processors. The current VIA implementations demonstrate some of
these alternatives.

As different VIA implementations are emerging, it is increasingly becoming a challenging task
about how to report the VIA-level performance results accurately. The standard latency (ping-
pong test) and bandwidth (consecutive sends) measurements are sensitive to the way different
components of the VIA are implemented. For example, performing the address translation at the
host vs. the NIC will lead to different performance results. Similarly, a latency test where buffers
are reused will have significant difference in performance compared to the test where buffers are
not reused at all. Implementation methodologies for other VIA components such as doorbell and
completion queues also have significant impact on the performance. In the absence of any standard
way to report VIA results, it is increasingly becoming difficult to understand the strengths and
weakness of a VIA implementation from the standard latency and bandwidth tests.

As VIA implementations are being available on multiple networks, researchers and developers
are also engaged in developing better implementations of higher-level layers (such as MPI [39], sock-
ets [46], distributed shared memory [16]). Designing these higher level layers requires an in-depth
understanding of the performance, strength, and weakness of the underlying VIA implementation.
For example, knowing the impact of virtual-to-physical address translation can help higher layer
developer to optimize buffer pool and memory management implementations. Understanding the
impact of multiple open VIs (between a set of processes) on the latency can provide a higher layer
developer insight about the number of VIs to be used in an implementation and analyze scalability
studies.

Currently, there is no framework for 1) evaluating different design choices and for obtaining
insight about the design choices made in a particular implementation of VIA, 2) study their impact
on the overall performance, and 3) study the implication of the design choices and performance
on designing higher layers. The LogP [28] model attempts to capture the major characteristics of
communication subsystems (including the share of the host processor in data transfer operations)
with a few parameters, namely, L (Latency), o (overhead), g (gap), and P (the number of pro-
cessors). However, this model is not sufficient to provide answers to the three questions raised at
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the beginning of this paragraph. This leads to a challenge whether a micro-benchmark suite can
be designed to evaluate and compare different VIA implementations and provide guidelines to the
higher-layer developers.

This work takes on such a challenge. We propose a new micro-benchmark suite called Virtual
Interface Architecture Benchmark (VIBe). This suite is divided into three major categories: 1)
Non-Data Transfer related, 2) Data Transfer related, and 3) Higher-Level Layer related. Under
the first category, we include micro-benchmarks for measuring the cost of several basic non-data
transfer related operations: creating/destroying VIs, establishing/tearing down VIs, memory reg-
istration/deregistration, and creating/destroying completion queues. The second category consists
of several data-transfer related micro-benchmarks. A set of micro-benchmarks under this category
are designed in a systematic manner so that only one VIA component (such as address transla-
tion, multiple data segments, completion queues, multiple VIs) is changed at a time. This clearly
brings out the strengths and limitations of a given VIA implementation with respect to that com-
ponent. A set of other micro-benchmarks are also included in this category to study the impact of
asynchronous message handling, RDMA operations, maximum transfer size, reliability, and sender
pipeline lengths. For each of these data transfer related micro-benchmarks, we include latency,
bandwidth, and CPU utilization numbers for transferring messages of varying size. The third cat-
egory focuses on micro-benchmarks related to higher-level layers. In this chapter, we include a
micro-benchmark corresponding to the client-server environment. In future, we plan to include
micro-benchmarks related to other higher-level layers (such as distributed memory, distributed
shared memory, and Get/Put) under this category. The micro-benchmarks under these three cate-
gories provide many insights to a VIA developer to optimize its implementation as well as provide
design guidelines for the developer of a higher-layer to develop an optimized implementation on a
given VIA layer. It should be noted that the impact of the performance of user-level networking
protocols on that of higher layers has been studied in [37]. In contrast, the main focus of our work
has been the evaluation of different implementations of VIA.

The chapter is organized as follows: In Section 4.1, we discuss in detail the motivations behind
developing a micro-benchmark suite for VIA. We introduce the VIBe micro-benchmark suite in
Section 4.2. The micro-benchmarks are evaluated on two implementations of VIA: Berkeley VIA [25,
24] (on Myrinet [22] connected Linux machines) and MVIA [3] (on Gigabit Ethernet connected
Linux machines). The evaluation results are presented in Section 4.3. Through these evaluations
we show how the VIBe suite can provide insights to the details of a VIA implementation and help
higher layer software developers to develop their layers on top of the VIA implementation. In
Section 4.4 we present our conclusions.

4.1 Motivation behind a Micro-benchmark Suite for VIA

As indicated above, a particular VIA implementation has several components and attributes.
Developer of a VIA implementation may choose to implement these components and attributes in
a certain manner based on the characteristics of the underlying node, operating systems, NIC, and
network. For a given implementation, the developer may report latency and bandwidth results
under an idealized condition (i.e, sending messages from the same buffer, opening only one open VI
between sender and receiver, not implementing completion queue). However, in reality, a higher-
level layer (MPI, socket, distributed shared memory, or client-server) may use the underlying VIA
implementation under different scenarios: multiple VIs between a set of processes, send messages
from different buffers, etc. Thus, it leads to the following questions:
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1. How do we accurately report VIA results so that different VIA implementations can be
compared with respect to their strengths and weaknesses in a standardized manner?

2. For a given VIA implementation, how to report performance numbers with respect to their
components and attributes so that,

(a) A VIA developer can get enough insights to optimize his implementation.

(b) A higher-layer developer can get insights to a VIA implementation and come up with
appropriate strategies (optimizing buffer pool, memory management implementation,
scalability study, etc.) for implementing the higher layer.

By using a set of micro-benchmarks and characterizing the performance of the communication
system under different conditions, insight about the internal implementation of VIA implementa-
tions can be obtained. This insight can be used as a guideline for the higher-layer developers for
improving the performance of their layers. In the next section, we describe a set of such micro-
benchmarks, defined as VIBe suite.

4.2 VIBe Micro-benchmark Suite

In this section, we discuss the VIBe micro-benchmarks. While developing these micro-benchmarks,
we considered different design alternatives that can be used for different components of VIA and
devised the methods to measure the impact of these particular decision choices. Besides quantifying
the performance seen by the user under different circumstances, the benchmarks can also be useful
to identify how much time is spent in each of the components in the implementation, and pinpoint
the bottlenecks that can be improved. This set of benchmarks cover most important aspects of
VIA implementation.

The micro-benchmarks can be categorized into three major groups: non-data transfer re-
lated micro-benchmarks, data transfer related micro-benchmarks, and higher-level layer related
(client/server) micro-benchmarks. These groups and related micro-benchmarks are presented and
discussed in detail in the rest of this section.

4.2.1 Non-Data Transfer Related Micro-Benchmarks

In this category there are four micro-benchmarks which measure the costs of basic non-data
transfer VIA operations: 1) creating/destroying VIs, 2) establishing/tearing down VI connections,
3) memory registration/deregistration, and 4) creating/destroying completion queues.

Before any VIA data transfer can occur VIs on end nodes should be created. Furthermore,
a connection between the VIs should be established. Therefore, it is important that the cost of
creating/destroying VIs and establishing/tearing down connections are evaluated. All data transfers
should be from/to buffers in registered memory regions. Therefore, evaluating the performance of
memory registration/deregistration is important. Completion queues are frequently used in VIA
applications. All of these parameters have a significant effect on the scalability of the system,
suitability of the communication subsystem for large and dynamic run-time systems.
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4.2.2 Data Transfer Related Micro-Benchmarks

The micro-benchmarks in this category evaluate the performance of VIA operations used for
transferring data by measuring the latency, CPU utilization, and bandwidth under different con-
ditions. For measuring latency, the standard ping-pong test is used. To measure the bandwidth,
messages are sent out repeatedly from the sender node to the receiver node for a number of times and
then the sender node waits for the last message to be acknowledged. The CPU utilization is mea-
sured by using the getrusage function. In the rest of this section we discuss the micro-benchmarks
in this category in detail.

Base Latency(Lpgse), Utilization(Up,se ), and Bandwidth(Bpggs.)

These benchmarks are used to find the latency, CPU utilization, and bandwidth for our base
configuration. The base VIA setup used for these micro-benchmarks has the following properties:
1) 100% buffer reuse (all messages are sent from one single send buffer and are received in one
single receive buffer), 2) one data segment, 3) no completion queue, 4) one VI connection, 5) no
notify mechanism.

For measuring latency, the standard ping-pong test can be used. In this micro-benchmark,
two VIs are created on two nodes and a connection is established between them. The latency is
measured by measuring the time to send a number of messages (with a particular message size)
from one node to another node. Each time the receiving node sends back a message of the same
size. The sender node sends a new message only after receiving a message from the receiver. The
number of messages being sent back and forth is long enough to make the timing error negligible.
The same user buffer (which is in a registered memory region) is used as the send and receive
buffers. Before posting a send descriptor, a receive descriptor is posted to avoid situations where a
message arrives at a node before its corresponding receive descriptor is posted. This test is repeated
for different message sizes. We report the results for two cases where polling or blocking is used for
checking the completion of data transfers. The CPU utilization is measured by using the getrusage
function in the latency micro-benchmark.

To measure the bandwidth, messages are sent out repeatedly from the sender node to the
receiver node for a number of times and then the sender node waits for the last message to be
acknowledged. The time for sending these back to back messages is measured and the timer is
stopped when the acknowledgment of the last message is received. The number of messages being
sent is kept large enough to make the time for transmission of the acknowledgment of the last
message negligible in comparison with the total time.

In the following four micro-benchmarks, we change only one of the parameters of the setup to
isolate and evaluate the impact of each parameter.

Impact of Virtual-to-Physical Address Translation (L47, Uar, and Bar)

A very important component of any low-level communication subsystem is the virtual-to-
physical address translation. Different methods for performing the address translation are discussed
in [13]. Depending on whether the host or the NIC performs the translation and whether the ad-
dress translation tables are stored in the host memory or in the NIC memory, four possible VIA
implementations are possible. Since the virtual-to-physical address translation is required (in most
systems) for transferring data between the host memory and the NIC memory in each data transfer,
the translation method used in an implementation may have a significant effect on the performance
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of the communication subsystem. Studying the impact of virtual-to-physical address translation
can help higher layer developer optimize buffer pool and memory management implementations.

In order to evaluate the effect of the virtual-to-physical address translation on the performance
of the communication subsystem, simple latency, CPU utilization, and bandwidth tests can be
used. These micro-benchmarks are similar to the one used for measuring the base latency, CPU
utilization, and bandwidth with the only difference being that different send and receive buffers are
used in different iterations of the experiments. Similar to the base micro-benchmarks, two VIs are
created on two nodes and a connection is established between them. Send and receive buffers for
all the iterations of the experiments are allocated and registered before the measurements begin.
While the Lp,s. represents the latency observed when the same send and receive buffers are used
in all the iterations of the ping-pong experiment, La7 represents the latency observed when a
different send and receive buffer is used in each iteration. The difference between L 7 and Lpgse
corresponds to the cost of address translation.

Impact of Multiple Data Segments (Lyps, Unps, and Byps)

In most of the networking protocols, a packet is assembled from a single buffer. This requirement
may result in extra data copies to put different segments of a message in a contiguous buffer. How-
ever, VIA provides a way to assemble packets using data from different buffers (gather). Similarly,
received messages can be scattered into multiple buffers (scatter). In a VIA descriptor, multiple
data segments may be present. Each VIA data segment has pointer to a buffer along with the size
of the data to be sent from or received to that buffer. For writing layered protocols over VIA, this
information can help in a design decision such as whether to use header coalescing or not.

In order to evaluate the performance of VIA implementations with respect to this feature, the
latency, CPU utilization, and bandwidth tests are used in a situation where send and/or receive
buffers consists of multiple data segments. For every message size, the number of segments which
constitute the message is varied such that the effect of using multiple segments can be evaluated.
For a given number of segments the difference between Lp,s. and Ljsps gives the overhead of using
multiple segments.

Impact of Completion Queues (Lcg, Ucg, and Bcg)

In VIA implementation, a process can figure out the completion of a send or a receive operation
by checking the completion queue in VIA. A process may have multiple VIs and it may choose to
associate the work queues of these VIs with a single completion queue. By using this mechanism,
the process is relieved form checking each VI to see if any operation has completed. By polling the
completion queue (or blocking on it), a process can know if any of the operations has been marked
as complete. Many applications require to receive messages from different nodes without the order
of the receptions being important. Completion queues in VIA provide an easy method for doing
so. Therefore, it is important to see how using CQs affect the latency of data transfers. This can
allow an application developer writing multi-threaded applications using multiple VIs to estimate
the cost of using a CQ for checking the completion of operations on multiple work queues.

In order to quantify the cost associated with using completion queues, the following micro-
benchmarks can be used. In these benchmark, the completion of send and/or receive operations in
latency, CPU utilization, and bandwidth tests are checked through the completion queue associated
with the corresponding send and/or receive queues. Similar to the base micro-benchmarks, a VI
connection established between a pair of VIs on the sending and receiving nodes are used for
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performing the tests. The difference between Lp,s. and Lcg indicates the overhead of using
completion queues.

Impact of Multiple VI (LMVIS’ UMVIs, and BMVIs)

Since VIA is a connection-oriented communication subsystem, for any pair of processes which
want to communicate with each other, a VI connection should be established between two VIs of
these processes. Therefore, in many applications, there are number of active VIs at each process
(node). Therefore, it is important to see whether the number of active VIs on the nodes which are
exchanging data has any effect on the latency, CPU utilization, and bandwidth of messages. This
benchmark can provide insights into scalability of VIA implementation.

In order to evaluate the performance of the communication subsystem when a number of VIs
are active, a new set of micro-benchmarks can be used. These micro-benchmarks are similar to
the base micro-benchmarks with the difference being that before the tests are executed, multiple
VIs are created by both of the participating processes. Then, a VI connection established between
a pair of these processes is used for performing the ping-pong test. The number of active VIs on
each side of the communication is varied and the same experiment is repeated such that the effect
of number of VIs on the latency, utilization, and bandwidth can be quantified.

Asynchronous Messages (L async, Uasync, and Bagync)

The latency of asynchronous messages can have a significant effect on the overall performance of
many applications. VIA provides a Notify mechanism for handling asynchronous messages. When
a notify procedure is associated with a queue and is activated, this procedure is invoked upon
completion of an operation on that queue. Depending on how this mechanism is implemented the
performance varies significantly [16].

In order to quantify the cost associated with using the Notify mechanism, the Base latency
micro-benchmark is modified such that upon completion of every receive operation, a user procedure
is executed. This procedure is responsible for sending a message back to the other node.

RDMA Operations (LRDMA, Urpnma, and BRDMA)

In addition to the Send/Receive data transfer mode, VIA provides support for RDMA opera-
tions. The implementation of the RDMA write operation is compulsory while that of RDMA read
operation is not. This micro-benchmark evaluates the performance of the RDMA write operation.

Impact of Maximum Transfer Size (Lyrs, Unrs, and Byrs)

VIA architecture allows different attributes to be attached to a VI. One of the attributes is Max-
imum Transfer Size (MTS). MTS represents the maximum amount of data that can be transferred
using a single descriptor. A VIA implementation can be optimized for a certain range of MTS. It
is essential to study the impact of MTS on the performance. Furthermore, studying the impact
of maximum transfer size helps in assessing the cost of fragmentation/reassembly of application
buffers.

Impact of Reliability Levels (Lgr, Urr, and Bgrr)

The three levels of communication reliability supported by VIA are: Unreliable Delivery, Re-
liable Delivery, and Reliable Reception. A VIA implementation can guarantee these reliabilities
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by using either hardware or software or combination of hardware/software. The use of different
reliability levels can have significant impact on the design, implementation, and performance of the
layers built on VIA. For example, the use of reliable delivery VIs can free the higher layer devel-
opers from handling out-of-order segments and retransmissions. Efficient native hardware support
for reliable delivery can lead to lighter weight high level software layer such as stream sockets over
VIA [46]. Thus, for a given VIA implementation, it is very important to study the impact of
reliability levels on the performance.

Impact of Sender Pipeline Length (Bspy)

The VIA separates the data transfer initiation (post operations) from the data transfer com-
pletion (polling and blocking operations). This enables asynchronous data transfers. In [46], it
was shown that deferred dequeuing of send descriptors can improve the performance of software
layers built on VIA. Thus, the number of send operations that can be pipelined before checking
for completion can have significant impact on the performance and CPU utilization of the system.
Furthermore, the number of send operations that can be initiated in a burst can provide insights
into the cost of simple credit-based flow control schemes built over VIA [46].

4.2.3 Client/Server Micro-Benchmarks

Cluster of servers connected by a SAN are being deployed today to provide reliable and scalable
Internet services. The nodes within this cluster perform client/server like communications. In
order to evaluate the performance of VIA in this type of environments, a set of micro-benchmarks
is presented in this subsection.

Request /reply type of communication is performed in distributed object computing and RPC-
like environments. A transaction test that roughly approximates synchronous request/reply is used
as a micro-benchmark here. In this micro-benchmark, two VIs are created on two nodes and then
a connection is established between them. The client sends some amount of bytes as a request and
receives some number of bytes as a response. The client sends a new request only after receiving
the entire reply from the server. Two different buffers: one for the request and the other one for
the reply, are used. For experiments, the reply size is varied for a fixed request size. The number of
transactions/second measured by this micro-benchmark relates to the number of RPCs or method
calls/second.

A multi-threaded server version of the above micro-benchmark is described next. The server
in this micro-benchmark handles multiple requests from multiple clients concurrently. A worker
thread on the server provides response to a client’s request. Different worker thread models such
as master/slave, and worker pool will be tested. This micro-benchmark will provide insights into
the scalability of the VIA and the multi-threading related issues with VIA.

4.3 Performance Evaluation

In this section, we show how our benchmarks can be used to evaluate two available implemen-
tations of VIA, namely Berkeley VIA from University of California, Berkeley [25] and MVIA from
NERSC at Lawrence Berkeley National Laboratory [3]. First, we discuss our experimental testbed
and the studied VIA implementations. Then, we present the results obtained from running a couple
of micro-benchmarks from VIBe on our testbed. For detailed results on other micro-benchmarks,
readers are requested to refer to [15].
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4.3.1 Experiment Testbed

One of our experimental testbed consisted of 300 MHz Pentium II PCs with 128 MB of SDRAM,
a 33 MHz/32-bit PCI bus and Linux 2.2 operating system. The PCs in the testbed were equipped
with 33 MHz LANai 4.3 NICs and Packet Engines GNIC-II Gigabit Ethernet network interface
cards. Myrinet and Gigabit Ethernet switches were used to construct two separate interconnection
networks.

MVTA is implemented as a part of the NERSC PC cluster project. In our tests, we used Release
1.0 which was made available in September, 1999. MVIA supports some Fast Ethernet cards, and
Packet Engines GNIC-I and GNIC-II Gigabit Ethernet network interface cards. Where hardware
support for doorbells is not provided, MVIA uses a fast trap mechanism to trap to privileged
mode, avoiding the high cost of a regular system call. Berkeley VIA is implemented as a part of the
Millennium project, at the University of California, Berkeley. In our experiments we used Release
2.2 for Linux 2.2.x kernels and Myrinet 7.x network interface cards. Berkeley VIA runs on top of
Myrinet NIC’s from Myricom. Some parts of the Berkeley implementation is done by the firmware
of the NIC.

4.3.2 Non-Data Transfer Micro-Benchmarks

The results obtained from the non-data transfer benchmarks are presented in Table 4.1. It can
be observed that the costs of creating VIs and establishing connections are higher in the MVIA
implementation. The cost of tearing down a connection and creating and destroying a CQ is higher
in BVIA. The cost of destroying VIs are the same for both implementations.

| Operation MVIA | BVIA
Creating VI 93 28
Destroying VI 0.19 0.19
Establishing Connection 6465 496
Tearing Down Connection | 2.56 9
Creating CQ 16.87 206
Destroying CQ 8.44 35

Table 4.1: Non-data transfer micro-benchmarks

4.3.3 Data Transfer Micro-Benchmarks
In this section, we present the results obtained from data transfer related micro-benchmarks.

Base Latency(Lpgse), Utilization(Upgse ), and Bandwidth(Bpggs.)

The results of base latency and CPU utilization micro-benchmarks are presented in Figures 4.1
and 4.2. It should be noted that the latency is measured with using polling and blocking methods
of checking the completion of data transfer. For both cases the CPU usage is given. It can be seen
that MVTA has a lower latency for short messages. BVIA outperforms MVIA for longer messages
because MVTA require extra data copies which are significant for longer messages.
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It can be seen that the CPU utilization is around 100% when polling is used for checking
the status of send and receive operations. The BVIA shows a much smaller CPU utilization
when blocking operations are used. The reason for the high CPU utilization of MVIA even when
blocking operations are used is that before the checking process is blocked the MVIA routine polls
for completion for some time.

Base Micro-benchmark
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Figure 4.1: Basic latency and CPU utilization with polling.

Impact of Virtual-to-Physical Address Translation (L47, Uar, and Bar)

The difference between latency results and the results obtained from L 47 micro-benchmark for
BVIA is shown in Figures 4.3 and 4.4. It can be seen that changing the send and receive buffers has
a significant effect on the latency of messages for Berkeley VIA. The reason for this significant effect
is that in Berkeley VIA the address translation tables are kept in the host memory and the NIC
performs the translation. A software cache is used for caching the translations on the NIC. When
only one buffer is used for say send messages, after the first send, the required address translation
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Figure 4.2: Basic latency and CPU utilization with blocking.

entry is cached on the NIC memory and consequent sends don’t require the NIC to access the host
memory. Since send and receive buffers in L 1 are used only once, the overhead of accessing the
host memory for obtaining the address translation entries occur for each transfer. Depending on
the application and the size and type of the software cache used by the NIC, applications may
see latencies between those measured by Lp,s. and those measured by L4r. Since the results for
MVIA do not change significantly with the percentage of buffer reuse, we have not presented those
results here.

4.4 Summary

In this chapter we proposed VIBe, a micro-benchmark suite for evaluating VIA implemen-
tations. We showed that in addition to the standard bandwidth and latency measures, other
micro-benchmarks are required for obtaining a better insight into the implementations of VIA.
This micro-benchmark suite has been used to evaluate two different existing VIA implementations.
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Figure 4.3: Latency for varying percentage of send/receive buffer reuse for BVIA with polling.

Buffer Reuse Micro-benchmark with

Blocking
%’? 1400 - 100%
» 1200 - 0
£ 1000 - ~80%
‘e 800 60%
> 600 1 40%
% 400 - ~«20%
<(—G' 200 7 » —.— 0%
- 0 T T T T T T T T T T T T T T T 1 -
X O X o N o O O A
N OO R A
VS Y

Message Size (bytes)

Figure 4.4: Latency for varying percentage of send/receive buffer reuse for BVIA with blocking
operations.
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CHAPTER 5

DESIGN ISSUES AND ALTERNATIVES FOR SUPPORTING
DISTRIBUTED SHARED MEMORY APPLICATIONS IN CLUSTERS

VIA has a low-level API which provides only the basic communication primitives. However, it is
difficult for user applications to directly use these primitives unless the applications are rewritten.
Thus, a set of middlewares (communication libraries, infrastructures, and substrates) are needed
to be built on top of VIA so that the user applications written using popular programming envi-
ronments such as distributed memory, distributed shared memory, and get/put can take advantage
of VIA. As the VIA communication architecture is becoming popular, a lot of research effort is
currently being undertaken to design and develop such middlewares. The inherent challenge in
designing such a middleware is to translate the functionalities of the programming environment to
the basic services provided by the VIA layer with as little additional communication overhead as
possible. Such a translation requires the following four-step approach: 1) identifying all mismatches
between the functionalities of the programming environment layer and the services provided by the
VIA layer, 2) deriving a set of schemes with various components to eliminate such mismatches,
3) analyzing performance trade-offs in implementing the schemes/components and selecting the
best ones, and 4) implementing the best schemes/components over a VIA layer. Thus, design and
development of such middlewares are complex.

During the last year, there have been many projects to support distributed memory program-
ming environment on VIA for NOWSs. All these projects have focused on efficient implementation
of the commonly used middleware (Message Passing Interface (MPI) standard [39]) on top of
VIA [5, 4]. Compared to distributed memory programming environment, shared memory program-
ming environments provide a much more easier programming paradigm for application developers.
In the recent years, many research projects have focused on developing software Distributed Shared
Memory (DSM) systems for NOWs [49, 35, 20]. TreadMarks [36, 9] is one of the most popular
software DSM systems and has been deployed on many NOWs. Unfortunately, TreadMarks and
other software DSM systems do not deliver good parallel speedup and are not scalable due to the
high overhead of communication in NOWs. Since VIA provides high-bandwidth and low-latency
communication, it is an open challenge whether suitable middleware can be developed for software
DSM systems like TreadMarks so that many application developers can enjoy the benefits of DSM
environment on NOWSs. To the best of our knowledge, there has not been any work on developing
a middleware for supporting TreadMarks on top of VIA for NOWs.

In this chapter, we take on such a challenge and study how an efficient middleware can be
developed such that applications using the popular TreadMarks DSM package can take advantage
of the communication performance of VIA. Currently the communication primitives of TreadMarks
are built on top of UDP protocol. Due to the high overhead associated with UDP, TreadMarks
cannot exploit the maximum performance delivered by the emerging gigabit networking technologies
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such as Myrinet and Gigabit Ethernet. Thus, it is essential to design and develop a middleware
involving a thin communication substrate between VIA and TreadMarks as shown in Figure 5.1.

TreadM arks Treadmarks

Network Network

Figure 5.1: Goal: designing and implementing a thin communication substrate so that TreadMarks
can run on top of VIA with little overhead. The left stack shows the existing implementation of
TreadMarks. The right stack shows the new implementation discussed in this chapter.

The open challenge in designing such a substrate is that it should bridge the gap between
the services provided by VIA and those required for an efficient implementation of TreadMarks. In
this chapter, we take the four-step approach mentioned earlier in developing the targeted substrate.
First, we identify the mismatches between the communication requirements by TreadMarks and the
services provided by VIA. In particular, we show how the request-response communication model
required by TreadMarks can not be directly supported by VIA. The VIA specification requires that
a receive descriptor which contains the address of a receive buffer must be posted before the arrival
of a message. Otherwise, the message is dropped. However, the arrival of request messages at
participating nodes under the TreadMarks can not be predicted. Furthermore, VIA requires that
all send and receive buffers be in registered (pinned) memory regions.

After identifying these mismatches, we propose a set of schemes to eliminate such mismatches.
These schemes include connection setup, buffer management, advance posting of descriptors for
unexpected messages, and alternative designs to handle asynchronous messages. Next, we analyze
the performance impact of these schemes together with the VIA functions. We also propose and
evaluate different design alternatives for enhancing some VIA function (such as the VIA Notify
mechanism) so that the new substrate can be designed with low overhead. Finally, we derive the
best set of alternatives and implement them on two enhanced implementations of VIA (MVIA and
Berkeley VIA) on two different networking technologies, Gigabit Ethernet and Myrinet, respectively.
These implementations are carried out in the Linux environment.

We  evaluate the performance of our implementation by using several
micro-benchmarks and applications. We show that the communication and wait times, and there-
fore the total execution times of different applications can be significantly reduced by using VIA.
It is shown that factors of improvement up to 2.05 on an eight node system can be achieved in
comparison with the original UDP implementation. Due to the reduced communication overhead
with VIA, the applications also exhibit better parallel speedup as the system size increases. The
new VIA implementation also delivers better performance for a range of application sizes.

It is to be mentioned that the goal of this work has been to analyze the challenges involved in
designing the communication substrate, implementing it, and evaluating its performance without
performing any major modifications to the TreadMarks layer. Our design experience and evaluation
study indicate that there are multiple opportunities to improve the performance of TreadMarks over
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VIA by performing modifications to the TreadMarks layer, VIA layer, or both. We are currently
focusing along these directions.

The rest of this chapter is organized as follows: A brief discussion of the communication model
and primitives used in TreadMarks is presented in Section 5.1. In Section 5.2, we briefly overview the
relevant features of Virtual Interface Architecture, outline the services offered by VIA, and discuss
the mismatches between the VIA services and the communication requirement of TreadMarks.
Schemes to alleviate the mismatches and their implementation issues are discussed in Sections 5.3
and 5.4, respectively. In Section 5.5, we present the experimental results including the evaluation
of different design alternatives, micro-benchmarks, and applications. Related work is discussed in
Section 5.6. In Section 5.7, we present our conclusions.

5.1 Overview of TreadMarks

TreadMarks is a popular software DSM system which runs on networks of workstations without
any modification to the operating system kernel. Furthermore, it does not rely on any particular
compiler. TreadMarks relies on user-level memory management techniques to provide coherency
among participating processes for distributed shared memory regions. TreadMarks uses the UDP
communication protocol for exchange of control and data messages. Since the overhead of UDP
communication is high, effort has been made in the design of TreadMarks such that the amount
of communication necessary is as low as possible. In the rest of this section we briefly discuss the
coherency protocol and the communication model and primitives used by TreadMarks.

5.1.1 Coherency Protocol

Shared memory accesses in TreadMarks are divided into two groups: ordinary accesses and
synchronization accesses. Synchronization accesses are further categorized into acquire and release
accesses. TreadMarks uses a lazy implementation of release consistency. In lazy release consistency
(LRC), the propagation of modifications is postponed until the time of the acquire [36]. In order
to do so, execution of each process is divided into intervals. An index is associated with each time
interval. Upon the execution of acquire or release, a new interval begins. Intervals of different pro-
cesses are partially ordered. The partial order can be represented by assigning a wvector timestamp
to each interval. For a process p to pass an acquire, write notices for all intervals named in the
current vector time stamp of the previous releaser ¢ but not in p’s vector timestamp should become
visible to p. The arrival of a write notice for a page causes the invalidation of the copy of that
page. The modifications to the page are propagated to the local copy only when the next access
to the page causes a miss. The coherence protocol of TreadMarks works on a memory page-level
granularity. However, it supports multiple concurrent writes to modify a page to address the false
sharing problem.

Shared pages are initially write protected. At the first write, in response to the protection
violation, a copy of the page (a twin) is made and the write protection is removed such that further
writes to the page can occur without the involvement of TreadMarks. The twin and the current
version of a page can be compared to create a diff. TreadMarks uses a lazy diff creation mechanism
in which the diff is created only when a request for the modifications of a page is received from
another processor in the system.
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5.1.2 Communication Model and Primitives

TreadMarks relies on a request-reply type of communication. As shown in Figure 5.2, Request
messages (such as a request for page diffs) are sent out by using socket function calls. Upon arrival
of a Request message at a node, an interrupt is issued and after the message has been processed
by the kernel, the SIGIO signal is raised. The SIGIO signal handler then processes the Request
message and sends a Response message if necessary (say, the requested diff). It is possible that the
Request message may get forwarded to another node to prepare and send the response. Whenever
a Response is expected, the node which has sent the Request message waits until the Response

message is received. Then the received response message is processed (say, by incorporating a page
diff).

Node 1 Node 2
Send I nterrupt
Request SIG O
Vait f Request
Relspongtre Hand| er
Receive| Send
Response Response

Figure 5.2: Request-response communication model used in TreadMarks with UDP support

The communication services required by TreadMarks can be divided into four major groups:
sending Request messages, sending Response messages, receiving Request messages, and receiving
Response messages. These services along with the corresponding UDP/TCP function calls are
shown in Fig.5.3. It can be observed that in addition to the send and recv primitives, select (Recv-
any) primitive is also used. Select is mainly used for finding out if any Request message has been
received from any node. TreadMarks takes advantage of the operating system feature that allows
for user level signal to be provided and the fact that completion of receive operations on sockets
raises the SIGIO signal.

Since TreadMarks was developed on top of UDP/TCP primitives, the communication services
required by TreadMarks matches well with the communication services provided by the UDP/TCP
primitives. Examples of such UDP services which TreadMarks uses are: ability to send message
from any user buffer, automatic allocation of temporary buffers for receives, and ability to receive
a message from any node out of a group of nodes. As we discuss the features of VIA in the next
section, we will see that significant mismatches exist between the services required by TreadMarks
and those supplied by VIA.
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Figure 5.3: Four major groups of communication services required by TreadMarks and their imple-
mentation using UDP/TCP communication primitives.

5.2 Relevant Features of Virtual Interface Architecture (VIA)

VIA specifies two types of data transfer facilities: the traditional send/receive messaging model
and the Remote Direct Memory Access (RDMA) model. In the send/receive model, there is a one
to one correspondence between the send descriptors on the sending side and the receive descriptors
on the receiving side. In the RDMA model, the initiator of the data transfer specifies the source
and destination virtual addresses on the local and remote nodes, respectively. The RDMA write
operation is a required feature of the VIA specification while the RDMA read operation is optional.
There is no need for posting any descriptors at remote nodes for RDMA operations. There is one
exception and that is when an RDMA write message contains immediate data.

Figure 5.4 illustrates the services provided by VIA with a brief description of their requirements
and characteristics. There are five basic services: send, receive, RDAM write, Completion Queue
(CQ), and Notify mechanism. One critical aspect associated with the VIA-level communication is
that the communication primitives (send, receive, and RDMA write) require their associated buffers
to be in registered memory. The intent of the memory registration is to give an opportunity to
the VIA provider to pin (lock) down user virtual memory in physical memory so that the network
interface can directly access the user buffers. This eliminates the need for copying data between
the user buffers and intermediate kernel buffers typically used in traditional network transports.
The other critical aspect of the VIA specification is that a receive descriptor with the addresses of
user buffers must be posted before the arrival of a message. Otherwise, the message is dropped.

The CQ and Notify mechanisms help in detecting the completion of a communication operation
and taking appropriate steps. Each VI work queue can also be associated with a CQ. A CQ merges
the completion status of multiple work queues. Therefore, an application need not poll multiple
work queues to determine if a request has been completed. The Notify mechanism allows a user
handler procedure to be associated with a work queue or completion queue. Upon completion of
any operation associated with such a queue, the corresponding handler procedure will be executed.

It can be observed that the services provided by VIA and their requirements are different from
those of the standard UDP protocol. Thus, for implementing TreadMarks over VIA, there are
inherent mismatches between the communication requirements of TreadMarks and the services
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Figure 5.4: Services provided by VIA together with their requirements and characteristics

provided by VIA. In the next section, we elaborate on these mismatches and propose alternatives
for designing the substrate to alleviate the mismatches with as little communication overhead as
possible.

5.3 Challenges in Designing the Communication Substrate

In this section, first we outline the major issues of designing the communication substrate by
identifying the mismatches between the services provided by VIA and the communication require-
ments of TreadMarks. Next, we present a set of components to alleviate the mismatches and
evaluate design alternatives for each of these components.

5.3.1 Major Issues

Let’s closely look at the requirements and characteristics of the VIA services as shown in Fig. 5.4
and compare them with those of the UDP services shown in Fig. 5.3. We have briefly analyzed
some of the mismatches in [18]. The major mismatches can be identified as given below:

1. The communication model of TreadMarks on top of UDP, as shown in Fig. 5.3, handles Re-
quest and Response messages differently. In particular, it can be seen that while Request
messages arrive in an asynchronous manner, Response messages are exchanged in a syn-
chronous fashion. Under VIA, the arrival of asynchronous message on a VI connection can
be identified and processed by associating a Notify handler with the receive queue of the VI.
Furthermore, a single Notify handler can be used for a group of VI connections if a CQ is
associated with the receive queues of those connections. However, once a CQ and Notify
handler is associated with a VI connection, it is not possible to use these features (which are
costly) only for a subset of messages arriving at the connection. Therefore, it is difficult to
provide differentiated service (for Response and Request messages) on a single VI between
any pair of processes.

2. In the UDP protocol, temporary buffers are automatically allocated on the arrival of messages.
The user can look at these buffers later on. However, the VIA specification requires that recv

55



descriptor with the addresses of user buffer must be posted before the arrival of the message.
Otherwise, the message is dropped.

3. The VIA specification requires that the applications register the virtual memory regions which
are going to be used by VIA descriptors and user communication buffers for send, recv, or
RDMA write operation. The intent of the memory registration is to give an opportunity to
the VIA provider to pin (lock) down user virtual memory in physical memory so that the
network interface can directly access the user buffers. This eliminates the need for copying
data between the user buffers and intermediate kernel buffers typically used in traditional
network transports. No such memory registration is needed for UDP.

4. TreadMarks implemented on top of the UDP protocol uses and a SIGIO handler and the
‘select’ call to detect the arrival of asynchronous messages and operate on them. VIA provides
a mechanism to associate a CQ with a set of work queues. The VIA notify mechanism and
the associated handler can be used to detect and process the arrival of a message from a
group of nodes. In order to receive and process asynchronous messages by using these VIA
features in an efficient manner, it is critical that the CQs and the notify mechanism are
implemented efficiently. A prompt and efficient mechanism for responding to Requests can
have a significant role in reducing the wait time and therefore the overall execution time of
applications.

5.3.2 Components of the Substrate

In order to alleviate the above mismatches, we propose the substrate as shown in Fig. 5.5. While
proposing this substrate our goal has been three-fold: 1) not making any changes to the coherency
protocol of TreadMarks or its communication model, 2) not adding any new functionality to the
VIA layer, and 3) making minimal changes to the communication primitives of TreadMarks so that
they can be interfaced with the new substrate.

The substrate has basically four major components: connection management, pre-posting of
receive descriptors, buffer management, and schemes for handling asynchronous messages. These
four components solve the four mismatches mentioned in the previous subsection. These four
components work together with the VIA level primitives and services leading to three new com-
munication primitives (New Send, New Recv, and New Recv_any) at the substrate layer. The new
implementation of TreadMarks uses these new primitives. The dependencies of the new compo-
nents on the VIA-level primitives and services and relationships between the TreadMarks message
types are shown in detail in Fig. 5.5. The design alternatives behind each of the four components
and their cost-performance trade-offs are discussed in detail in the following subsections.

5.3.3 Connection Management

As mentioned earlier, under the communication model of TreadMarks, the arrival of Request
messages at receiving nodes cannot be predicted. However, Response messages are exchanged in
response to a Request message and therefore the process which has issued a Request expects to
receive a Response message. As mentioned in Section 5.3.1, in VIA, all messages received on a given
VI are treated the same way. Thus, it is difficult to provide differentiated services for messages
arriving on a single VI. In order to provide such differentiated services, a scheme of using two
different VI connections between each pair of processes looks attractive. One VI can be used for
receiving Request messages and the other one for Response messages. Figure 5.6 illustrates such
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Figure 5.5: Components of the communication substrate and their relations with VIA services and
TreadMarks requirements

a connection management procedure. This way, Notify handler procedures can be associated with
only Request messages and the overhead involved in invoking these handlers can be avoided for
Response messages.

For a system consisting of n processes, the baseline VIA setup requires (n — 1) VIs per process.
The proposed scheme requires 2(n — 1) VIs per process. It is to be noted that current VIA
implementations easily support 1-2K VIs per node. Thus, the use of 2 VIs between each pair
of process (instead of the default one) does not provide a serious threat for designing a DSM
system with 512-1024 processes using the currently available VIA implementations. As the VIA
implementations are moving more into the hardware level and modern NICs are supporting more
memory, the number of VIs per process on future implementations will continue to rise. Thus,
larger DSM configurations can be supported with the proposed approach in future.

It is to be noted that separating Request and Response messages will have an effect on how
asynchronous messages are processed. We will discuss these issues in more detail in Section 5.3.6.

5.3.4 Pre-posting of Receive Descriptors

As mentioned in Section 5.3.1, in VIA, received messages for which receive descriptors are not
posted are dropped. In other words, unexpected messages are dropped at the receiving nodes.
However, TreadMarks (like many other systems) relies on the request-reply mechanism. Therefore,
each node must be ready to receive requests from any other participating node at any time. In
order to support such a feature while avoiding the need for a costly retransmission mechanism, it
is crucial to guarantee that for every incoming message a corresponding receive descriptor and the
associated receive buffer are posted ahead of time.
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Figure 5.6: Proposed connection management scheme with two VI connections between each pair
of processes.

This leads to the following questions: 1) How many descriptors/receive buffers we post in
advance? and 2) When do we post these descriptors/receive buffers? As we have seen earlier,
TreadMarks uses two kinds of messages: Request messages and Response messages. We provide
answers to the above two questions by considering these two different kinds of messages separately.

Let us consider the Request messages first. For a given process, a Request message can come
from any other process. Thus, from the point of view of a single receiver process in a system
with n processes, we need at least (n — 1) descriptors and the associated (n — 1) receive buffers.
The number of posted descriptors/receive buffers may need to be scaled by a factor of o, if o
outstanding messages between each pair of processes are allowed. The above number of pre-posted
descriptors/receive buffers are sufficient because after a request message is received and before the
corresponding Response message is sent out, a new receive descriptor can be posted. In cases
where the Request is forwarded to another node a new receive descriptor should be posted before
the Request is forwarded.

Let us consider the amount of registered memory needed for posting the descriptors and buffers
using the proposed scheme. A VIA descriptor is 48 bytes long. The size of a request size message
under TreadMarks could be up to the MTU size (32K bytes). For a reasonable system size (say
256 processes) and up to one outstanding message between each pair of processes, the proposed
scheme requires 8 MBytes of receive buffers and 12KBytes of receive descriptors. Since current and
future systems can easily provide such amount of registered memory, we adopted this approach in
our design.

For large-scale systems, if the amount of available registered memory can not support at least
one descriptor/receive buffer from each of the other processes, a rendezvous protocol can be used.
Under this scheme, a sender needs to first send a request message using immediate data (which
requires a descriptor but not a receive buffer at the remote node), wait for an acknowledgment,
and then send the actual Request message. The receiver, after receiving the request message (for
which a descriptor is pre-posted), can post a descriptor and a receive buffer to receive the actual
Request message. This scheme can work with only a fixed number of receive buffers per process.
However, it will add additional communication overhead and may degrade the overall performance.
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Since the earlier approach is realistic for a reasonable-sized system, we did not proceed along this
rendezvous approach further.

Now let us consider the Response messages. There are two types of response messages: response
to lock requests and response to non-lock requests. Response to a non-lock request comes from the
node to which the request was targeted. In this case, a descriptor and a receive buffer for that node
can only be pre-posted. However, response to a lock request can come from any of the other nodes.
In this case, we do have to pre-post descriptors and receive buffers for each node of the system.
Since responses to both types of requests (locks and non-lock) come on the same VI, we must
post descriptors and receive buffers for all nodes in this system. The size of the receive buffers for
response to non-lock requests could be as long at the maximum transfer unit of TreadMarks. Thus,
this situation becomes identical to the handling of Request messages and requires the same amount
of total memory size. As discussed earlier, the amount of memory needed is not a constraint for
current and future systems. Thus, we adopted this approach. With respect to when to pre-post
the descriptors, we suggest posting (n — 1) descriptors and receive buffers per process during the
initialization. Every time a Response message arrives and gets consumed, we post a new descriptor
with the associated receive buffer.

Another approach for dealing with Response messages is to use two VI connections (instead
of one) for Response messages. One of these connections can be used for lock messages and one
for non-lock messages. Rendezvous protocol can be used for lock messages. This way the need
for assigning receive buffers for all non-lock responses can be eliminated. This approach requires a
total of 3 connections between each pair of nodes. As discussed in the earlier subsection, such an
increase may limit the maximum number of nodes that can be supported.

It should be noted that RDMA write operations cannot be used in order to avoid the need for
posting receive descriptors in advance because there is no mechanism through which the remote
node is notified about completion of the RDMA operation. Immediate data field can be used in an
RDMA write operation as a mechanism for notifying the remote node. However if an RDMA write
operation contains an immediate data, the remote node is required to post a receive descriptor
before the RDMA write operation is executed (Section 2.3.2 of [7]).

5.3.5 Buffer Management

VIA requires that send and receive buffers to be in registered memory regions. Registered
memory regions contain memory pages which are pinned down in the physical memory. Therefore,
the size of registered memory is limited by the size of physical memory and the OS requirements
on each node and can affect the performance of running applications.

Outgoing Request and Response messages are constructed by TreadMarks. The VIA capability
for sending messages from noncontiguous buffers (by using multi-data segment descriptors) can
be used whenever the outgoing message is noncontiguous. In order to avoid extra data copies,
TreadMarks is required to be modified such that outgoing messages are constructed in registered
memory regions. We did not follow this approach. Instead we used a pool of send buffers in the
registered memory for outgoing messages and copied outgoing messages into these buffers before
sending them.

The incoming messages can be received into a buffer in registered memory before being pro-
cessed. Since a pointer to incoming Requests is passed to TreadMarks routines, Request messages
can be processed without any extra data copies. The Response messages are required to be copied
from the buffer in which they have been received to TreadMarks data structures before being pro-
cessed. This approach does require an extra data copy on receive side but does not require any
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changes in TreadMarks. We used this approach. Alternatively, TreadMarks can be modified such
that received Response messages can be processed without making any extra copies.

5.3.6 Schemes for Handling Asynchronous Messages

Handling asynchronous messages (i.e. Request messages) is another important issue that should
be addressed. VIA provides a Notify mechanism through which a user handler routine is executed
whenever a communication operation is completed. Send, receive, and completion queues can be
associated with handler routines. Whenever a descriptor associated with these queues is completed,
the corresponding handler routine is executed. The way this mechanism is implemented can have
a great impact on a system such as TreadMarks in which Request messages are unexpected and
should be processed as quickly as possible. In this section, we discuss four different approaches
that can be used to implement the Notify mechanism or can be directly used by applications for
processing asynchronous messages.

It should be noted that if asynchronous messages (i.e. Request messages) are expected to
arrive only on a subset of VI connections (as suggested in Section 5.3.3), the overhead involved in
processing these messages can be avoided when other messages (i.e. Response messages) received on
other connections are processed. For all of the proposed approaches, associating all asynchronous
receive work queues with a Completion Queue will make the implementation easier and more
scalable. In the rest of this section, we discuss these approaches.

Communication Thread: In this approach, a separate thread is created to process asynchronous
messages. This thread polls or blocks for completion of receive operations on VI connections of
interest. This approach can be both used by TreadMarks and by the implementation of VIA to
implement the Notify mechanism. If the communication thread blocks for the completion of receive
operations, using a CQ and associating it with receive queues on which asynchronous messages may
arrive becomes more important. (Otherwise one thread for each such receive queue is required.)
Even when the communication thread polls for completion of receive operations, using a CQ be-
comes more beneficial when the number of processes in the system increases. The performance of
this method will greatly depend on the performance of operating system support for threads.
Timer: In this approach, a timer interrupt handler is used for checking on receive or completion
queues of interest. If any receive operation is completed, the necessary action is taken (i.e. the
corresponding handler is invoked). Depending on the granularity of the timer, the overhead and
response time of this approach will vary. This approach can be employed by TreadMarks or by the
VIA implementation of Notify mechanism.

Interrupt: In this approach, Receive queues or a completion queue which is associated with these
queues are associated with a Notify handler procedure. Upon completion of a receive operation,
an interrupt is raised and the interrupt handler invokes the corresponding Notify handler. This
approach can be used for implementing the VIA Notify mechanism.

Polling: In this approach, the user application is responsible for detecting the arrival of asyn-
chronous messages by polling for asynchronous messages. This approach requires that TreadMarks
is modified such that it provides the user with a function which polls for Request messages. The
effect of using such an approach will heavily depend on the frequency and location of the polling
operations in the application. We will compare the performance of these approaches in Section 5.5.
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5.4 Implementation

In this section, we present the details of our implementation of the communication substrate.
We also present the modifications we have made to the VIA implementation in order to improve the
performance of the VIA Notify mechanism. The implementation follows the design choices made,
as presented in Section 5.3. As mentioned earlier, the primary goal of our exercise is to alleviate the
mismatch between TreadMarks requirements and VIA services without changing the TreadMarks
protocol. TreadMarks was minimally modified to be interfaced with our communication substrate.

We used two publicly available implementations of VIA: MVIA [3] and the VIA implementation
from Millennium Project at Berkeley (Berkeley VIA) [25]. MVIA is a software implementation of
VIA in which fast traps and interrupts are used for sending and receiving messages. Completion
queues, notification mechanism, and RDMA operations are supported by MVIA. BVIA imple-
ments only a subset of VIA for Myrinet Network. We used the BVIA version working on Myrinet
LANai 7 network interface cards. Completion queues are implemented by BVIA. But, Notification
mechanism and RDMA operations are not supported.

The Connection Management component of the implemented substrate establishes connections
between all pair of nodes. The number of connections between each pair of nodes can be passed to
this component as an input parameter. For our implementation, the number of connections was set
to two (one for Request messages and one for Response messages) as suggested in Section 5.3.3. By
doing so, we can easily distinguish between the Request and Response messages based on the VI
connection on which they are received. The receive queue and/or send queue of each VI connection
can be associated with a CQ. Furthermore, each queue can be associated with a Notify handler
procedure. In our implementation, all receive queues associated with Request connections were
associated with one single CQ. Furthermore, this completion queue was associated with a Notify
handler procedure. This association between the CQ and a Notify handler was done only for the
cases where the Notify mechanism was used for handling asynchronous messages. We discuss this
issue in detail towards the end of this section.

The Buffer Management component of the substrate was implemented such that each work
queue can be associated with a registered memory region to hold descriptors and communication
buffers. As discussed in Section 5.3.5, for each VI connection, this registered memory region was
used for both send and receive descriptors. For each VI connection, we also used a portion of
this registered memory for communication buffer. In the current implementation, all incoming and
outgoing messages are sent from or received into these buffers. The size of the receive and send
buffers were set to be equal of the TreadMarks maximum transfer unit (32 KBytes).

The Pre-posting Receive Descriptors unit was implemented as discussed in Section 5.3.4. This
component pre-posts a number of descriptors on all work queues. Whenever a descriptor from a
work queue is consumed, a new descriptor is posted to the same work queue. The number of posted
descriptors to each work queue can be passed onto this component as a parameter. In the current
implementation this number was set to one corresponding to one outstanding message between
each pair of processes.

As mentioned earlier, MVIA supports the Notify mechanism but BVIA does not support it. We
implemented several mechanisms for handling asynchronous messages as discussed in Section 5.3.6.
Here we discuss our implementations. The evaluation of these approaches are discussed later in
Section 5.5.2.

MVIA uses the Communication Thread approach for implementing the Notify mechanism. We
also implemented the same approach at the substrate level by using a thread which blocks until
a communication operation associated with a queue of interest (the completion queue associated

61



with receive queues of Request connections) takes place. Whenever this thread gets unblocked, it
invokes the TreadMarks procedure responsible for servicing asynchronous messages. The SIGIO
handler procedure is responsible for servicing asynchronous messages in TreadMarks. We used the
same procedure with the only difference being that select and read statements were replaced by
VIA calls for checking CQs and receiving messages. After servicing an asynchronous message, the
thread blocks until the arrival of the next asynchronous message.

For the Timer approach, the communication substrate was implemented such that a SIGALRM
signal is raised periodically. The TreadMarks was modified such that the handler for SIGALRM
signal was set to be the TreadMarks modified SIGIO handler. In our systems the granularity of
generating SIGALRM is 10ms and that is what we used in our implementation.

For the Interrupt approach, we modified the MVIA driver to issue a SIGUSRI signal whenever
a communication operation on a queue associated with a Notify handler is completed. (It should
be noted that incoming messages cause an interrupt in the MVIA implementation.) For the BVIA
implementation, the BVIA Myrinet Control Program (MCP) was modified to issue an interrupt for
operations associated with a Notify handler. The interrupt handler routine was used to raise the
SIGUSRI1 signal. In cases where a completion queue is associated with a work queue, the BVIA
interrupt handler routine for processing completion queues was used to raise the SIGUSR1 handler.
The SIGUSRI1 signal handler for both BVIA and MVIA were written to invoke the corresponding
Notify handler. TreadMarks was minimally modified to use the modified SIGIO as the Notify
handler procedure.

For the implementation of the polling approach, TreadMarks was modified to provide access to
a new TreadMarks procedure called Tmk_poll. This procedure was written to call the procedure
which polls for incoming Requests. If any Request message is detected, it is processed. We used this
approach only to evaluate the effect of handling asynchronous messages on the system performance.

5.5 Performance Evaluation

In this section we evaluate the performance of our proposed implementation. First, we provide
a brief description of our experimental testbed. Then, we evaluate the impact of different design
choices for handling asynchronous messages and select the one which delivers the best performance.
Using the selected design, next we compare the base implementation of TreadMarks on UDP and
our new implementation on VIA. Performance results corresponding to both micro-benchmarks
and application-level evaluations are presented. For application-level evaluations, first we present
comparison results for the default system size and application size. Next, we study the effect of
system size and the effect of application size separately.

5.5.1 Experimental Testbed and Setup

The results presented in this section were obtained on a cluster of eight PCs connected with
Gigabit Ethernet and Myrinet interconnects. Each PC uses a 300 MHz dual Pentium II processor
with 128 MB of SDRAM and a 33 MHz/32-bit PCI bus. Linux 2.2.5 operating system runs
on all these systems. For the BVIA implementation the SMP version of the kernel is required
to be used while the MVIA implementation runs on the non-SMP version of the kernel. In all
of our experiments only one processor on each node was used. Regarding the Gigabit Ethernet
interconnect, a switch and a set of network interface cards from Packet Engine were used. The
Myrinet interconnect included a switch and a set of LANai 7 cards from Myricom.
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The experimental setup consisted of TreadMarks running over four different communication
subsystems. These subsystems were as follows:

1. UDP over Gigabit Ethernet (the base TreadMarks implementation)
2. UDP over Myrinet (porting the base TreadMarks implementation onto the UDP/GM layer)

3. VIA over Gigabit Ethernet (TreadMarks running over our proposed new substrate on top of
MVIA [3], the standard VIA implementation for Gigabit Ethernet)

4. VIA over Myrinet (TreadMarks running over our proposed new substrate on top of the lat-
est version of Berkeley VIA [25], the implementation developed by the Berkeley group for
Myrinet).

In the remaining part of this section, these four communication systems are identified as
UDP/Ethr, UDP/Myri, MVIA /Ethr, and BVIA /Ethr, respectively. The raw latency numbers for
these four communication subsystems were observed to be as follows: 85.0 microsec (UDP/Ethr),
111.0 microsec (UDP/Myri), 23.0 (MVIA/Ethr), and 30.0 (BVIA/Myri).

5.5.2 Evaluation of Alternatives for Handling Asynchronous Messages

Four alternative approaches were mentioned in Section 5.3.6 to handle asynchronous messages.
We implemented these alternatives as discussed in Section 5.4. It is to be noted that we implemented
the TreadMarks level communication thread approach only for MVIA.

In order to evaluate the effectiveness of these four alternative approaches, we evaluated the
performance of two applications from the TreadMarks Distribution: Jacobi and SOR. The charac-
teristics of these two applications together with other applications are described in Section 5.5.4.
For evaluating the polling mechanism we modified both applications and inserted calls to Tmk_poll
such that we got the best execution time. We evaluated the communication thread approach (both
at the TreadMarks level and the VIA level) only for the MVIA /Ethr communication subsystem.
The overall performance for both these methods was found out to be comparable to that of the
timer method and are not shown here. Note that we ran the applications in non-SMP mode as
required by the MVIA implementation!. Figure 5.7 illustrates the execution times of Jacobi and
SOR applications when alternative methods for handling asynchronous messages are used.

It can be observed that the interrupt approach provides the best performance. Thus, for the
remaining part of our performance evaluation, we only consider the interrupt-based approach of
implementing the VIA notify mechanism.

5.5.3 Micro-benchmark-level Evaluation

The micro-benchmark-level evaluation was carried out by using the four micro-benchmarks in-
cluded in the TreadMarks distribution. These micro-benchmarks are: Barrier, Lock, Diff, and Page.
These micro-benchmarks measure the time required for performing basic TreadMarks operations.
The Barrier micro-benchmark reflects the time for performing a barrier across a set of nodes. In
the Lock micro-benchmark, the cost of acquiring a lock is measured. There are two versions of this
micro-benchmark: direct and indirect. The direct case reflects the situation where the lock being

!There are some known bugs in the MVIA implementation for SMP nodes.
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Figure 5.7: Performance impact of three alternative approaches (timer, polling, and interrupt) for
handling asynchronous messages. Overall execution times for two applications (Jacobi and SOR)
on the two VIA communication subsystems (MVIA /Ethr and BVIA /Myri) are shown.

acquired has already been acquired and released by its manager node. The indirect case reflects
the situation where the lock being acquired has been acquired and released by a third node.

The Page and Diff micro-benchmarks are used to evaluate the performance of TreadMarks
when shared memory is accessed and diffs are obtained and applied to a page. In the Page micro-
benchmark, a shared memory region consisting of multiple memory pages is first created (by using
Tmk malloc) and then distributed among participating processes (by using Tmk_distribute) by
process 0. After process 0 reads one word from each page, process 1 reads the same word from each
page.

The Diff micro-benchmark has two cases: small and large. In the first case, one word from each
page is read by one process while the same words have been written into by another process earlier.
The second case is similar to the first case with the difference being that all words of the shared
memory region are accessed by the writer and reader processes.

Figure 5.8 shows the performance results of four micro-benchmarks and their different cases. It
can be easily seen that for all cases, the VIA implementations outperform the UDP implementations.
For the barrier operation on eight nodes, the factor of improvement when UDP/Ethr is replaced
by MVIA /Ethr is 1.76. When UDP /Myri is replaced by BVIA /Myri, the factor of improvement of
1.84 is achieved for barrier on eight nodes. For the lock operations, the factor of improvement is
up to 3.09 and 2.76 when UDP is replaced by MVIA and BVIA, respectively. The improvement of
Page and Diff operations is up to 2.31 and 2.06 for MVIA and BVIA, respectively.

Comparing the results obtained from MVIA /Ethr and BVIA /Myri shows that MVIA /Ethr out-
performs BVIA /Myri by a factor of 1.90 and 1.68 for Barrier and Lock operations, respectively.
While both of these systems perform comparably for Diff operations, the BVIA/Myri implementa-
tion shows an improvement of 20.0% in comparison with MVIA /Ethr for Page micro-benchmark.

5.5.4 Application-Level Evaluation

In this section, we first describe the applications we used in our evaluation and then discuss the
results. It should be noted that no attempt was made to improve the performance by modifying the
applications. We used these applications as they were in the TreadMarks distribution and made
no attempt to improve the performance by modifying them.
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Figure 5.8: Performance results of four micro-benchmarks (Barrier, Lock, Page, and Diff). Different
cases of Barrier, Lock, and Diff are shown. Barrier (x) indicates the time to achieve a barrier on
x nodes. For each of the micro-benchmarks and their individual cases, the four bars (left to right)
reflect the time on four different communication subsystems: UDP /Ethr, MVIA /Ethr, UDP/Myri,
and BVIA /Myri.

Characteristics of Applications

We used four applications from TreadMarks distribution for evaluating our implementation.
These applications are: SOR (red-black successive over-relaxation on a grid), TSP (traveling sales-
man problem), Jacobi, and 3D FFT. By default, SOR performs 10 iterations on a grid of 2000 x 1000
single-precision floating-point numbers. TSP solves the traveling salesman problem for a 18-city
tour. Jacobi uses a 1022 x 1022 grid of real numbers. By default, FF'T works on a 32 x 32 x 32
array. The important statistics from the execution of these applications on our base system (eight
nodes on UDP/Ethr) are shown in Table 5.1. (Note that every 8 barriers are counted as one.)

| [ SOR | TSP | Jacobi | 3D FFT |
Input 2000 x 1000 | 18-city tour | 1022 x 1022 | 32 x 32 x 32
Time (s) 0.91 0.81 5.68 0.49
Barrier/s 27.63 3.85 35.51 67.08
Lock/s 553.6 34.13 0 3.2
Messages/s 4810.10 3852.6 1309.4 8328.57
Comm. rate (MB/s) 8.17 1.65 0.79 14.10
Avg. msg. size (Bytes) 1698 429 606 1709

Table 5.1: Execution statistics for an 8-processor run on TreadMarks with UDP /Ethr communica-
tion subsystem
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It can be seen that Jacobi exclusively uses barriers for synchronization. On the other hand, SOR
uses Locks for synchronization more than other applications. TSP and 3D FFT mostly use locks and
barrier, respectively, for synchronization. Jacobi has the highest computation to communication
ratio while 3D FFT has the highest volume of messages exchanged in a unit of time. The average
size of exchanged messages in ascending order belongs to TSP, Jacobi, SOR, and FFT. The data
exchange rates in an ascending order belong to Jacobi, TSP, SOR, and FFT.

Overall Results

The overall execution times of these applications on an 8-mnode system with
UDP/Ethr, MVIA /Ethr, UDP/Myri, and BVIA /Myri are shown in Fig. 5.9. The execution times
are normalized with respect to the execution time on UDP/Ethr communication subsystem. The
breakdown of these execution times are also shown. The total execution time is divided into four
categories: Computation, Communication, Wait, and Tmk Protocol. The Computation category is
the time spent in executing the application code. The Communication is the time spent for sending
and receiving messages. For receive operations only the time spent on receiving a message after its
arrival is counted (by either using a socket select call or by checking the status of the corresponding
descriptor). The Wait category represents the time spent on waiting for arrival of messages. The
Tmk Protocol category shows the time spent for the execution of TreadMarks code excluding the
Communication and Wait time.

BEWait
@Communication
OTmk Protocol
W Computation

Communication
OTmk Protocol
W Computation

Figure 5.9: Overall execution times and their breakdowns for four applications on four imple-
mentations. For each application, the bars from left to right represent the results for UDP/Ethr,
MVIA /Ethr, UDP/Myri, and BVIA /Myri communication subsystem, respectively. The left graph
shows times normalized to the UDP /Ethr time. The right graph shows the percentage breakdown
of different components.

It is to be noted that when the UDP /Ethr communication subsystem is replaced with MVIA /Ethr,
the factors of improvement in Communication time of SOR, TSP, Jacobi, and 3D FFT are 2.12,
2.35, 1.96, 2.34, respectively. In addition to the reduction of communication time, the Wait time
is also significantly reduced when MVTIA replaces UDP. The factors of improvement for the overall
execution time are 1.97, 1.26, 1.09, and 2.06 for SOR, TSP, Jacobi, and 3D FFT, respectively.
It can be seen that there is a correlation between the rate of data exchange and the overall fac-
tor of improvement, i.e., the application exhibiting maximum data exchange rate gets maximum
improvement with the new communication subsystem.
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When the performance of UDP/Myri and BVIA /Myri are compared, it can be observed that the
communication and wait times are also reduced. Although the communication rate is low for TSP,
since the majority of exchanged messages are short (for which the UDP/Myri performs poorly) the
improvement in the communication time is more significant in comparison with other applications.
Factors of improvement for the overall execution time are 1.45, 1.24, 1.04, and 1.65 for SOR, TSP,
Jacobi, and 3D FFT, respectively.

It can be observed that the performance of MVIA /Ethr and BVIA /Myri are comparable with
MVIA /Ethr outperforming BVIA/Myri slightly. While both BVIA and MVIA perform equally
for operations with large messages (as seen in the diff micro-benchmark), the latency for short
messages is higher for BVIA implementation. This results in a small degradation of performance
for BVIA/Myri in comparison with the MVIA /Ethr implementation.

However, UDP/Myri outperforms UDP /Ethr significantly for SOR and 3D FFT applications.
The performance of these two systems for TSP and Jacobi are comparable. It can be observed that
the amount of improvement or degradation when UDP /Ethr is replaced by UDP/Myri correlates
with the average message size of the applications.

Effect of System Size

In order see the effect of the system size on the performance of TreadMarks implementations,
we ran our applications on one to eight nodes. Figure 5.10 illustrates the execution times of our
applications on different number of nodes. The speedup curves for these applications are shown in
Figures 5.11 and 5.12.

It can be observed that the VIA implementations deliver better speedup compared to the
UDP implementations. Sometimes the speedups achieved with the VIA implementations are quite
significant. For example, when UDP /Ethr is used, SOR achieves a speedup of only 2.0 with eight
nodes. It can be observed that increasing the number of nodes from four to eight doesn’t increase
the speedup significantly for UDP/Ethr. On the other hand, with MVIA /Ethr, the speedup is 3.95
with 8 nodes. On Myrinet network, the VIA implementation pushes the speedup for SOR to 3.72
(BVIA/Myri) compared to a speedup of 2.56 with the UDP implementation (UDP/Myri).

Across the applications, the speedups for both VIA implementations are very similar. The
speedups for UDP implementations follow also a similar trend. It can be observed that Jacobi
achieves a near-linear speedup. The high computation to communication ratio contributes to the
scalability of Jacobi. Speedups of 7.35, 7.70, 7.24, and 7.47 are achieved on eight processors for
UDP/Ethr, BVIA /Ethr, UDP/Myri, and BVIA /Myri, respectively. For TSP, speedups of 3.70 and
4.67 is observed for the UDP/Ethr and MVIA /Ethr implementations, respectively. The maximum
speedups for TSP and UDP/Myri and BVIA /Myri are 3.64 and 4.51, respectively. 3D FFT has a
very low computation to communication ratio with a large data exchange rate and a relatively large
average message size (1709 bytes). All these contribute to a low speedup. The 3D FFT performs
well when the number of nodes is a power of two. When UDP is used the speedup remains around
one when up to eight nodes are used. By replacing UDP with VIA, maximum speedups of 2.36 and
2.27 are achieved for MVIA /Ethr and BVIA /Myri, respectively. It should be noted that increasing
the number of nodes from four to eight increases the execution time for 3D FFT on UDP /Ethr and
UDP/Myri implementations.
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Figure 5.10: Execution times for four applications on four different communication subsystems as
the number of nodes are varied from 1 to 8. The bars from left to right (for a given number of
nodes) represent results for UDP /Ethr, MVIA /Ethr, UDP/Myri, and BVIA /Myri, respectively.

Effect of Application Size

The application execution times on an 8-node system for different problem sizes are shown in
Fig. 5.13. The problem sizes used for SOR were: 2000 x 1000, 2000 x 2000, 2000 x 3000, and
2000 x 4000. For TSP, different problem sizes for 17, 18 and 19-city tours were used. For Jacobi
the problem sizes of 500 x 500, 1000 x 1000, 1500 x 1500, and 2000 x 2000 were used. Problem sizes
used for 3D FFT were 8 x 8 x 8, 16 x 16 x 16, 32 x 32 x 32, and 64 x 64 x 64.

The achieved factors of improvement in the overall execution time when VIA/Ethr is replaced
by MVIA /Ethr are in the range of 1.86—2.05, 1.10—1.26, 1.02—1.05, and 1.97—2.17 for SOR, TSP,
Jacobi, and 3D FFT, respectively. When UDP/Myri is used in comparison with BVIA /Myri, the
factors of improvement are in the range of 1.45—1.96, 1.18—1.28, 1.02—1.13, and 1.54—2.39 for SOR,
TSP, Jacobi, and 3D FFT, respectively. These numbers indicate that the VIA implementations are
able to deliver better performance for a range of application sizes.
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Figure 5.11: Speedups for the four applications on different number of nodes for MVIA /Ethr and
UDP/Ethr (on Gigabit Ethernet).
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Figure 5.12: Speedups for the four applications on different number of nodes for BVIA /Myri and
UDP/Myri (on Myrinet).
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Figure 5.13: Effect of application size on execution times of applications with different problem
sizes. The respective problem sizes (A, B, C, and D) are presented in the text. For each application
size, the bars from left to right represent the results for UDP /Ethr, MVIA /Ethr, UDP /Myri, and
BVIA /Myri communication subsystem, respectively.

5.6 Related Work

In this section we briefly discuss the related work. A comparison between the performance of
PastSet Software DSM system using TCP/IP and VIA is discussed in [20]. In this work it is shown
that by replacing TCP/IP by the MVIA implementation of VIA improves the performance of a
few micro-benchmarks. The authors indicate that due to problems with the MVIA implementation
they haven’t been successful in designing and implementing the complete system. A few issues
involved in taking advantage of low-latency high-bandwidth communication layers in Software
DSM systems are discussed in [20]. The communication system used in this work is Fast Messages
(FM) on Myrinet. In this work, a new mechanism called MultiView for providing small-size pages
is proposed for avoiding false sharing, reducing the size of messages, and preventing excessive buffer
copying. Methods for customizing network drivers for providing efficient support for asynchronous
messages is discussed for the Windows-NT operating system.

5.7 Summary

In this chapter we discussed challenges involved in providing services required by the TreadMarks
software DSM system by using the VIA features. We provided a systematic approach in bridging the
gap between TreadMarks requirements and the functionality provided by VIA. We first identified all
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mismatches between the functionalities of TreadMarks and the services provided by the VIA layer.
Then we presented a set of schemes with various components to eliminate such mismatches. We also
analyzed the performance trade-offs in implementing the schemes/components and identified the
best ones. We discussed and evaluated our complete implementation of the required communication
substrate on two different networks and for two different implementations of VIA. We have shown
that with a careful design and implementation, the VIA communication architecture can lead to a
reduction of the execution time of applications by a factor of up to 2.05 on an 8-node system.
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CHAPTER 6

DESIGN ISSUES AND ALTERNATIVES IN SUPPORTING DISTRIBUTED
MEMORY APPLICATIONS IN CLUSTERS

The IBM RS/6000 SP? system [8, 50, 51] (referred to as SP in the rest of this chapter) is a
general-purpose scalable parallel system based on a distributed-memory, message-passing architec-
ture. Configurations ranging from 2-node systems to 128-node systems are available from IBM.
Larger configurations can be obtained via special order. The uniprocessor nodes are available
with the latest Power2-Super (P2SC) microprocessors and the TB3 adapter. The SMP nodes are
available with the 4 way, Power-PC 332MHz microprocessors and the TBMX adapter. The nodes
are interconnected via a switch adapter to a high-performance, multistage, packet-switched net-
work [30] for interprocessor communication capable of delivering bi-directional data-transfer rate
of up to 160 MB/s between each node pair. Each node contains its own copy of the standard AIX
operating system and other standard RS/6000 system software.

A portable parallel programming environment [29] is key to the success of high performance
computing systems. Over the last few years, researchers have developed standard interfaces such
as PVM [52, 57] and Message Passing Interface (MPI [23, 39]) to provide portability. These
interfaces and standards attempt to abstract the intricate details of the hardware, software, and
network characteristics from the application developer. However, the performance of applications
depends heavily on the latency and bandwidth required for interprocessor communication, and
synchronization across the nodes.

IBM SP systems support several communication libraries like MPI [39], MPL and LAPI [34, 45].
MPL, an IBM designed interface, was the first message passing interface developed by IBM on
SP systems. Subsequently, after MPI became a standard it was implemented by reusing most
of the infrastructure of MPL. This reuse allowed for SP systems to provide an implementation
of MPI quite rapidly, but also imposed some inherent constraints on the MPI implementation
which are discussed in detail in Section 6.1. In 1997, the LAPI library interface was designed
and implemented on SP systems. The primary design goal for LAPI was to define an architecture
with semantics that would allow efficient implementation on the underlying hardware and firmware
infrastructure provided by SP systems. LAPI is a user space library, which provides a one-sided
communication model thereby avoiding the complexities associated with two-sided protocols (like
message matching, ordering, etc.).

In this chapter we describe the implementation of the MPI standard on top of LAPI (MPI-
LAPI) to avoid some of the inherent performance constraints of the current implementation of MPI
(native MPI) and to exploit the high performance of LAPI. There are some challenges involved

*IBM, RS/6000, SP, ATX, Power-PC, and Power2-Super are trademarks or registered trademarks of the IBM
Corporation in the United States or other countries or both.
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in implementing a 2-sided protocol such as MPI on top of a 1-sided user-level protocol such as
LAPI. The major issue is finding the address of the receiving buffer. In 2-sided protocols, the
sender does not have any information about the address of the receive buffer where the message
should be copied into. There are some existing solutions to this problem. A temporary buffer
can be used at the receiving side to store the message before the address of its destination is
resolved. This solution incurs the cost of a data copy which increases the data transfer time and
the protocol overhead especially for large messages. An alternative solution to this problem is using
a rendezvous protocol, in which in response to the request from the sender, the receiver provides
the receive buffer address to the sender, and then the sender can send the message. In this method
the unnecessary data copy (into a temporary buffer) is avoided, but the cost of roundtrip control
messages for providing the receive buffer address to the sender impacts the performance (especially
for small messages) considerably. The impact is increased latency and control traffic. It is therefore
important that a more efficient method be used for resolving the receive buffer address. In this
chapter, we explain how the flexibility of the LAPI architecture is used to solve this problem in
an efficient manner. Another challenge in implementing MPI on top of LAPI is to keep the cost
of enforcing the semantics of MPI small so that the efficiency of LAPI is realized to the fullest.
Another motivation behind our effort has been to provide better reuse by making LAPI the common
reliable transport layer for other communication libraries. It should be noted that for this work we
use the user-level LAPI which is the IBM propriety product (and not VIA).

This chapter is organized as follows: In Section 6.1, we detail the different messaging layers
in the current implementation of MPI. In Section 6.2, we present an overview of LAPI and its
functionality. In Section 6.3, we discuss different MPI communication modes and show how these
modes are supported by using LAPI. In Section 6.4, we discuss different strategies that are used
to implement MPI on top of LAPI and the various changes we made to improve the performance
of MPI-LAPI. Experimental results including latency, bandwidth, and benchmark performance are
presented in Section 6.5. Related work is discussed in Section 6.6. In Section 6.7, we outline some
of our conclusions.

6.1 The Native MPI Overview

The protocol stack for the current implementation of MPI on SP systems is shown in Figure 6.1a.
This protocol stack consists of several layers. The functions of each of the layers is described briefly
below:

MPI - MPI semanticslayer

MPCI - pt-to-pt msg layer

MPI - MPI semanticslayer

New MPCI - pt-to-pt msg layer

Pipes- reliable bytes stream

LAPI - reliabletransport layer

LAPI - reliabletransport layer

HAL - Packet Layer

HAL - Packet Layer

HAL - Packet Layer

Adapter Microcode

Adapter Microcode

Adapter Microcode

Adapter Hardware

Adapter Hardware

Adapter Hardware

Switch Hardware

Switch Hardware

Switch Hardware

(a) MPI (Messaging L ayers)

(b) LAPI (Messaging Layers)

(c) MPI on LAPI (Messaging L ayers)

Figure 6.1: Protocol Stack Layering.
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e The MPI layer enforces all MPI semantics. It breaks down all collective communication
calls into a series of point-to-point message passing calls in MPCI (Message Passing Client
Interface).

e The MPCI layer provides a point-to-point communication interface with message matching,
buffering for early arrivals, etc. It sends data by copying data from the user buffer into
the pipe buffers. The pipe layer then has responsibility for sending the data. Likewise data
received by the pipe layer is matched, and if the corresponding receive has been posted, copied
from the pipe buffers into the user buffer, otherwise the data is copied into an early arrival
buffer (if the receive is not posted).

e The Pipes layer provides a reliable byte stream interface [47]. It ensures that data in the
pipe buffers is reliably transmitted and received. This layer is also used to enforce ordering of
packets at the receiving end pipe buffer if packets come out of order (the switch network has
four routes between each pair of nodes and packets on some routes can take longer than other
routes based on the switch congestion on the route). A sliding window flow control protocol
is used. Reliability is enforced using an acknowledgment-retransmit mechanism.

e The HAL layer (packet layer, also referred to as the Hardware Abstraction Layer) provides
a packet interface to the upper layers. Data from the pipe buffers are packetized in the HAL
network send buffers and then injected into the switch network. Likewise packets arriving
from the network are assembled in the HAL network receive buffers. The HAL network buffers
are pinned down. The HAL layer handshakes with the adapter microcode to send/receive
packets to/from the switch network.

e The Adapter DMAs the data from the HAL network send buffers onto the switch adapter and
then injects the packet into the switch network. Likewise, packets arriving from the switch
network into the switch adapter are DMAed onto the HAL network receive buffers.

The current MPI implementation, for the first and last 16K bytes of data, incurs a copy from the
user buffer to the pipes buffer and from the pipe buffers to the HAL buffers for sending messages [47].
Similarly, received messages are first DM Aed into HAL buffers and then copied into the pipe buffer.
The extra copying of data is performed in order to simplify the communication protocol. These
two extra data copies affect the performance of MPI. In the following sections we discuss LAPI
(Fig. 6.1b) and explain how LAPI can replace the Pipes layer (Fig. 6.1¢) in order to avoid the extra
data copies and improve the performance of the message passing library.

6.2 LAPI Communication Model Overview

LAPI is a low level API designed to support efficient one-sided communication between tasks
on SP systems [50]. The protocol stack of LAPI is shown in Figure 6.1b. An overview of the
LAPI communication model (for LAPI_Amsend) is given in Figure 6.2 which has been captured
from [45]. Different steps involved in LAPI communication functions are as follows. Each message
is sent with a LAPI header, and possibly a user header (step 1). On arrival of the first packet
of the message at the target machine, the header is parsed by a header handler (step 2) which is
responsible for accomplishing three tasks (step 3). First, it must return the location of a data buffer
where the packets of the message must be assembled. Second, it may optionally specify a pointer
to a completion handler function which is called when all the packets have arrived in the buffer
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location returned. Finally, if a completion handler function is provided, it also returns a pointer
to data which is passed to the completion handler. The completion handler is executed after the
last packet of the message has been received and copied into a buffer (step 4). In general, three
counters may be used so that a programmer may determine when it is safe to reuse buffers and to
indicate completion of data transfer. The first counter (org_cntr) is the origin counter, located in
the address space of the sending task. This counter is incremented when it is safe for the origin
task to update the origin buffer. The second counter, located in the target task’s address space,
is the target counter (tgt_cntr). This counter is incremented after the message has arrived at the
target task. The third counter, the completion counter (cmpl cntr) is updated on completion of
the message transfer. This completion counter is similar to the target counter except it is located
in the origin task’s address space.

LAPI_Amsend ( handle, target, hdr_hdl, uhdr, uhdr_len, udata, udata_len,
tgt_cntr, org_cntr, cmpl_cntr )

org_cntr udata buffer
[]
cmpl_cntr uhdr tgt_cntr
[] []
.ori gin / .target /
process procéss
[ ] [ ]

LAPI_Amsend [~ - LAPI Dispatcher |  buffer |

Completion Hndlr|
cmpl_hdl

Figure 6.2: LAPI overview.

The use of LAPI functions may require that the origin task specify pointers to either functions
or addresses in the target task address space. Once the address of the header handler has been
determined, the sending process does not necessarily need to know the receive buffer address in
the receiver’s address space since the header handler is responsible for returning the receive buffer
address. The header handler may, for example, interpret the header data as a set of tags which, when
matched with requests on the receiving side, may be used to determine the address of the receive
buffer. As we shall see, this greatly simplifies the task of implementing a two sided communication
protocol with a one sided infrastructure. To avoid deadlocks, LAPI functions cannot be called from
header handlers. The completion handlers are executed on a separate thread and can make LAPI
calls.

LAPI functions may be broadly broken into two classes of functions. The first of these are com-
munication functions using the infrastructure described above. In addition to these communication
functions, there are a number of utility function provided so that the communication functions may
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LAPI Function  Purpose

LAPI_Init Initialize the LAPI subsystem
LAPI_Term Terminate the LAPI subsystem
LAPI Put Data transfer function

LAPI_Get Data transfer function
LAPI_Amsend Active message send function
LAPI Rmw Synchronization read-modify-write
LAPI Setcntr Set the value of a counter

LAPI _Getcntr Get the value of a counter
LAPI_Waitcntr Wait for a counter to reach a value
LAPI_Address._init Exchange addresses of interest
LAPI Fence Enforce ordering of messages
LAPI Gfence Enforce ordering of messages
LAPI_Qenv Query the environment state
LAPI Senv Set the environment state

Table 6.1: LAPI Functions.

be effectively used. All the LAPI functions are shown in Table 6.1. For more information about
LAPI we refer the reader to [45].

6.3 Supporting MPI on top of LAPI

The protocol stack used for the new MPI implementation is shown in Figure 6.1c. The PIPE
layer is replaced by the LAPI layer. The MPCI layer used in this implementation is thinner than
that of the native MPI implementation since it does not include the interface with the PIPE layer.
In this section, we first discuss different communication modes defined by MPI and then explain
how the new MPCI layer has been designed and implemented to support MPI on top of LAPI.

The MPI standard defines four communication modes: Standard, Synchronous, Buffered, and
Ready modes [39]. These four modes are usually implemented by using two internal protocols
called FEager and Rendezvous protocols. The translation of the MPI communication modes into
these internal protocols in our implementation is shown in Table 6.2. The Rendezvous protocol is
used for large messages to avoid the potential buffer exhaustion caused by unexpected messages
(whose receives have not been posted by the time they reach the destination). The value of Eager
Limit can be set by the user and has a default value of 4096 bytes. This value can be tuned based on
the size of the buffer available for storing unexpected early arrival messages and the requirements
of the applications.

In Eager protocol, messages are sent regardless of the state of the receiver. Arriving messages
whose matching receives have not yet been posted are stored in a buffer called the Farly Arrival
Buffer until the corresponding receives is posted. If an arriving message finds a matching receive,
the message is copied directly to the user buffer. In the Rendezvous protocol, a Request_to_send
control message is first sent to the receiver which is acknowledged as soon as the matching receive
gets posted. The message is sent to the receiver only after the arrival of this acknowledgment.

The blocking and nonblocking versions of the MPI communication modes have been defined
in the MPI standard. In the blocking version, after a send operation, control returns to the
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| MPI Communication Mode | Internal Protocol |

Standard if (size < Eager Limit)
Eager else Rendezvous

Ready Eager

Synchronous Rendezvous

Buffered if (size < Eager Limit)
Eager else Rendezvous

Table 6.2: Translation of MPI communication modes to internal protocols.

application only after the user data buffer can be reused by the application. In the blocking
version of the receive operation, control returns to the application only when the message has been
completely received into the application buffer. In the nonblocking version of send operations,
control immediately returns to the user once the message has been submitted for transmission and
it is the responsibility of the user to ensure safe reuse of its send buffer (by using MPI_ WAIT or
MPI_TEST operations). In the nonblocking version of receive, the receive is posted and control is
returned to the user. It is the responsibility of the user to determine if the message has arrived.
In the following sections we explain how the internal protocols and MPI communication modes are
implemented by using LAPIL.

6.3.1 Implementing the Internal Protocols

As mentioned in Section 6.2, LAPI provides one-sided operations such as LAPI_Put and LAPI_Get.
LAPI also provides Active Message style operations through the LAPI_Amsend function. We de-
cided to implement the MPI point-to-point operations on top of this LAPI active message infras-
tructure. The LAPI active message interface (LAPI_Amsend) function provides some enhancements
to the active message semantics defined in GAM [55]. The LAPI_Amsend function allows the user
to specify a header handler function to be executed at the target side once the first packet of the
message arrives at the target. The header handler must return a buffer pointer to LAPI where the
packets of the message must be reassembled. The ability of the target task of the LAPI_Amsend
call to specify the destination address for the messages being sent, makes it ideally suited for imple-
menting MPI-LAPI. The header handler is used to process the message matching and early arrival
semantics, thereby avoiding the need for an extra copy at the target side. The header handler also
allows the user to specify a completion handler function to be executed after all the packets of the
message have been copied into the target buffer. The completion handler therefore serves to allow
the application to incorporate the arriving message into the ongoing computation. In our MPI
implementation the completion handler serves to update local state of marking messages complete,
and possibly sending control message back to the sender. The LAPI_Amsend therefore provides
the hooks to allow applications to get control when the first packet of a message arrives and when
the complete message has arrived at the target buffer, making it ideal to be used as a basis for
implementing MPI-LAPI. We explain below how the Eager and Rendezvous protocols have been
implemented.
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Implementing the Eager Protocol

In the MPI-LAPI implementation, LAPI_Amsend is used to send the message to the receiver
(Fig. 6.3a). The message descriptions (such as message TAG and Communicator) are encoded in
the user header which is passed to the header handler (Fig. 6.3b). Using the message description,
the posted “Receive Queue” (Receive_queue) is searched to see if a matching receive has already
been posted. If such a receive has been posted, the address of the user buffer is returned to LAPI
and LAPI assembles the data into the user buffer. It should be noted that LAPI will take care
of out of order packets and copy the data into the correct offset in the user buffer. If the header
handler doesn’t find a matching receive, it will return the address of an “Early Arrival Buffer”
(EA _buffer) for LAPI to assemble the message into. (The buffer space is allocated if needed.) The
header handler also posts the arrival of the message into the “Early Arrival Queue” (EA_queue).
If the message being received is a Ready-mode message and its matching receive has not yet been
posted, a fatal error is raised and the job is terminated. If the matching receive is found, the
header handler also sets the function Eager_cmpl hdl to be executed as the completion handler.
The completion handler is executed, when the whole message has been copied into the user buffer,
and the corresponding receive is marked as complete (Fig. 6.3c). In order to make the description of
the implementation more readable, we have omitted some of the required parameters of the LAPI
functions from the outlines.

(a)
Function Eager_send
LAPI_Amsend(eager_hdr_hdl, msg_description, msg)
end Eager_send
(b)
Function Eager_hdr_hdl(msg_description)
if (matching receive_posted(msg_description)) begin
completion_handler = Eager_cmpl_hdl
return (user_buffer)
end else begin
if (Ready_Mode)
Error_handler(Fatal, “Recv not posted”)
post msg_description in EA _queue
completion_handler = NULL
return (EA_buffer)
endif

end Eager_hdr_hdl

Function Eager_cmpl_hdl(msg_description)
Mark the msg as COMPLETE
end Eager_cmpl hdl

Figure 6.3: Outline of the Eager protocol: (a) Eager send, (b) the header handler for the Eager
send and (c) the completion handler for the Eager send.
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(a)
Function Request_to_send
LAPI_Amsend(Request_to_send_hdr_hdl,
msg-description, NULL)

end Request_to_send
(b)
Function Request_to_send_hdr_hdl(msg_description)
if (matching receive_posted(msg_description)) begin
completion_handler = Request_to_send_cmpl hdl
return (NULL)
end else begin
post msg_description in EA queue
completion_handler = NULL
return (NULL)
endif

end Request_to_send_hdr_hdl
(c)
Function Request_to_send_cmpl hdl(msg_description)
LAPI_Amsend(Request_to_send_acked_hdr_hdl,
msg-description, NULL)

end Request_to_send_cmpl_hdl

Figure 6.4: Outline of the first phase of the Rendezvous protocol: (a) Request to Send, (b) The
Header handler for the request to send and (c) the completion handler for the request to send.

Implementing the Rendezvous Protocol

The Rendezvous protocol is implemented in two steps. In the first step a request_to_send control
message is sent to the receiver by using LAPT_Amsend (Fig. 6.4). The second step is executed when
the acknowledgment of this message is received (indicating that the corresponding receive has been
posted). The message is sent by using LAPI_Amsend the same way the message is transmitted in
Eager protocol (Fig. 6.3a). In the next section, we explain how these protocols are employed to
implement different communication modes as defined in the MPI standard.

6.3.2 Implementing the MPI Communication Modes

Standard-mode messages which are smaller than the Eager Limit and Ready-mode messages
are sent by using the Eager protocol (Fig. 6.5). Depending on whether the send is blocking or not,
a wait statement (LAPI_Waitcntr) might be used to ensure that the user buffer can be reused.

Standard-mode messages which are longer than the Eager Limit and Synchronous-mode mes-
sages are transmitted by using the 2-phase Rendezvous protocol. Figure 6.6 illustrates how these
sends are implemented. In the non-blocking version, the second phase of the send is executed in the
completion handler which is specified in the header handler corresponding to the active message
sent for acknowledging the Request_to_send message as shown in Figure 6.7.
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Function StndShort_ready_send

Eager_send
if (blocking)
Wait until Origin counter is set

end StndShort ready_send

Figure 6.5: Outline of the standard send for messages shorter than the Eager Limit and the ready-
mode send.

Buffered mode messages are transmitted using the same procedure as used for sending nonblock-
ing standard messages. The only difference is that messages are first copied into a user specified
buffer (defined by MPI Buffer_attach). The receiver informs the sender when the whole message
has been received so that the sender can free the buffer used for transmitting the message (Figure
6.8).

Figure 6.9 shows how blocking and non-blocking receive operations are implemented. It should
be noted that in response to a Request_to_send message, a LAPT_Amsendis used to acknowledge the
request. When this acknowledgment is received at the sender side of the original communication,
the entire message will be transmitted to the receiver. If the original send operation is a blocking
send, the sender is blocked until the Request_to_send message is marked as acknowledged and the
blocking send will send out the message. If the original message is a nonblocking send, the message
is sent out in the completion handler specified in the header handler of Request_to_send_acked (Fig.
6.7). When a message is found marked as COMPLETE, if the message has been stored in the
EA buffer, message will be copied into the user buffer.

Function StndLong sync_send

Request_to_send

if (blocking) begin
Wait until request_to_send is acknowledged
Eager_send
Wait until Origin counter is set

endif

end StndLong sync_send

Figure 6.6: Outline of the standard send for messages longer than the Eager Limit and the
synchronous-mode send.

6.3.3 A Closer Look at the Implementation of MPI_Send and MPI_Recv

In this section, we examine how the procedures discussed in Section 6.3.2 are used to implement
two major MPI communication primitives: MPI_Send and MPI_Recv. We also discuss the sequence
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Function Request_to_send_acked_hdr_hdl
if (blocking(msg_description))
mark the request as acknowledged
else
completion_handler =
Request_to_send_acked_cmpl_hdl
end Request_to_send_acked hdr_hdl
Function Request_to_send_acked_cmpl_hdl
Eager_send

end Request_to_send_acked _cmpl_hdl

Figure 6.7: Outline of receive for messages sent using the Rendezvous protocol.

Function Buffered_send

Copy the msg to the attached buffer

if (msg-size < EagerLimit)
Eager_send

else

Request_to_send

end Buffered send

Figure 6.8: Outline of the buffered-mode send.

Function Receive

if (found_matching msg(EA_queue, msg_description))
if (request_to_send) begin
LAPI_Amsend(Request_to_send_acked,
msg_description, NULL)
endif
else
Post the receive in Receive_queue
if (blocking)
Wait until msg is marked as COMPLETE
if (this_msg_in EA _buffer)
Copy the msg from the EA _buffer to the user buffer

end Receive

Figure 6.9: Outline of receive for messages sent by the Eager protocol.
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of actions taken at the sending and receiving tasks in detail. For clarity, we present the details of
MPI _Send for messages shorter than the Eager Limit and other messages separately.

Figure 6.10 illustrates how the MPI_Send function is implemented for messages shorter than the
Eager Limit. MPI_Send calls the Eager_send routine. The Eager_send routine uses a LAPI_Amsend
call to send the message to the destination task. The corresponding header handler routine at the
destination is set to be the Eager_hdr_hdl routine. The message description (which consists of
information such as the communicator, tag, and the sender rank in the communicator) is also sent
with the message to be passed to this header handler. When the message arrives at the destination
task, Eager_hdr_hdl is executed. By using the message description passed to this routine, the queue
of posted receives is searched to see if a matching receive has been already posted. If a matching
receive is found, the address of the user buffer into which the message should be copied is returned
to the LAPI subsystem. Otherwise, the address of an EA buffer is returned and an entry in the
EA_queue is created for this message. The Eager_cmpl_hdl routine is set to be executed as the
completion handler. The buffer address returned from the header handler is used by the LAPI
communication subsystem to copy the data. After the whole message has been copied (into the
user buffer or an early arrival buffer) Eager_cmpl hdl is executed. The only action taken in this
completion handler is that the message is marked as COMPLETE (such that the matching receive
can detect this condition).

Sending Task Receiving Task

MPI_Send (data, msg_description)
Eager_send

LAPI_Amsend
(hdr_hdl = Eager_h_M
uhdr = msg_descriprion Eager_hdr_hdl (msg_description)

udata = data
: if amatching recv is posted
return user buffer address
else
alocate early arrival buffer
return early arrival buffer address
cmpl_hdl = Completion_Handlerl

Copy the data (done by LAPI)

Completion_Handler1
mark the message as COMPLETE

Figure 6.10: Outline of MPI_Send and the sequence of actions taken at the sending and receiving
tasks when the message size is less than the Eager Limit.

Figure 6.11 illustrates how the MPI_Send function is implemented for messages whose size
is greater than or equal to the Eager Limit. For these messages, MPI_Send calls the function
Request_to_send to initiate the first phase of the Rendezvous protocol. The Request_to_send routine
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uses a LAPI_Amsend call to send the description of the message to the destination task. It should
be noted that the user data is not being sent in this message. The header handler to be executed at
the destination task is set to the Request_to_send_hdr_hdl routine. When this routine is executed at
the destination task, the posted messages queue is searched for a matching receive. If a matching
receive is found, an acknowledgment is sent to the sender task. However, since calling LAPI
functions in header handlers is not allowed, the completion handler needs to perform this operation.
Therefore, the Request_to_send_cmpl_hdl completion handler is set to be executed as the completion
handler. Since there is no data to be copied, a NULL pointer is returned to the LAPT subsystem.
The Request_to_send_cmpl_hdl sends the acknowledgment by using a LAPI_Amsend call. When
this acknowledgment arrives at the sender task, the user data is sent using a method similar to
the one used for sending short messages. In cases where no matching receive is found, an entry
in the EA_queue is created for the message. Since no other action needs to be taken and the
completion handler and buffer address returned by the header handler are NULL. In these cases,
the acknowledgment is sent to the sender task when a matching receive get posted. This point
becomes clearer when MPI_Recv is discussed.

Sending Task Receiving Task
MPI_Send (data, msg_description)
Request_to_send
LAPI_Amsend - _
(hdr_hdl = Tt~ e
thiifq:u ?s_gtfa:g;gﬁgﬂr,_hdl ' T R_eq uest_to__send_hplr_hdl (msg_description)
udata = Null) if amatching recv is posted
cmp_hdl = Completion_Handler2
else

post an early arrival with RequestToSend mark
cmpl_hdl = NULL

_ . Request_to_send_cmpl_hdl
--7 1 sendan OKToSend to sender |

LAPI_Amsend

P
(data) \

Figure 6.11: Outline of MPI _Send and the sequence of actions taken at the sending and receiving
tasks when the message size is equal to or greater than the Eager Limit.

As illustrated in Fig. 6.12, whenever MPI _Recv is called, the EA_queue is searched for a match-
ing message. If a message with matching descriptions is not found, a receive is posted (i.e., an
entry in the Receive_queue with the description of the message is created). If a matching message
is found, the description of the received message is checked to see if the received message is a
Request_to_send message. If that’s the case, an acknowledgment is sent back to the sender task by
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Receiving Task

MPI_Recv (user_buffer, msg_description)

if found a matching message
if the messageis a Request_to_send message
send an acknowledgment message to the sender
endif /* Rendezvous*/
else
post the receive
wait until the message is marked as COMPLETE
if messageisin EA_buffer
copy the message to the user buffer

Figure 6.12: Outline of MPI_Recv.

using a LAPI_Amsend call to initiate the second phase of the Rendezvous protocol at the sending
task. In all cases, the status of the message is checked until it is marked as COMPLETE. If the
message has been received in an EA _buffer, it is copied into the user buffer.

6.4 Optimizing the MPI-LAPI Implementation

In this section we first discuss the performance of the base implementation of MPI-LAPI which
is based on the description outlined in Section 6.3. After discussing the shortcomings of this
implementation, we present two methods to improve the performance of MPI-LAPI.

6.4.1 The Base MPI-LAPI

We compared the performance of our base implementation with that of LAPT itself. We mea-
sured the time to send a number of messages (with a particular message size) from one node to
another node. Each time the receiving node would send back a message of the same size, and the
sender node will send a new message only after receiving a message from the receiver. The number
of messages being sent back and forth was long enough to make the timer error negligible. The
granularity of the timer was less than a microsecond. LAPI Put and LAPI Waitcntr were used
to send the message and to wait for the reply, respectively. The time for the MPI-LAPI imple-
mentation was measured in a similar fashion. MPI_Send and MPI_Recv were the communication
functions used for this experiment. It should be noted that in all cases, the Rendezvous protocol
was used for messages larger than the Eager Limit (4K bytes). Figure 6.13 shows the measured
time for messages of different sizes. We observed that message transfer time of the MPI-LAPI
implementation was too high to be attributed only to the cost of protocol processing like message
matching which are required for the MPI implementation but not for the 1-sided LAPI primitives.

6.4.2 MPI-LAPI with Counters

Careful study of the design and profiling of the base implementation showed that the cost
of thread context switching required from the header handler to the completion handler was the
major source of increase in the data transfer time. It should be noted that completion handlers are
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Figure 6.13: Comparison between the performance of raw LAPI and MPI-LAPI.

executed on a separate thread (Section 6.2) in LAPI. To verify this hypothesis, we modified the
design such that we do not require the execution of completion handlers. As described in Section
6.3, when the Eager protocol is used, the only action taken in the completion handler is marking
the message as completed (Fig. 6.3) such that the receive (or MPI_.WAIT or MPI.TEST) can
recognize the completion of the receipt of the message. LAPI provides a set of counters to signal
the completion of LAPI operations. The target counter specified in LAPI_Amsend is updated
(incremented by one) after the message is completely received (and the completion handler, if
there exist any, has executed). We used this counter to indicate that message has been completely
received. However, the address of this counter which resides at the receiving side of the operation
should be specified at the sender side of the operation (where LAPI_Amsend is called). In order
to take advantage of this feature, we modified the base implementation to use a set of counters
whose addresses are exchanged among the participating MPI processes during initialization. By
using these counters we avoided using the completion handler of messages sent through the Eager
protocol. We could not employ the same strategy for the first phase of the Rendezvous protocol.
The reception of the Request_to_send control messages at the receiving side does not imply that
the message can be sent. If the receive has not yet been posted, the sender cannot start sending
the message even though the Request_to_send message has been already received at the target.
The time for the message transfer of this modified version is shown in Figure 6.14. As it can be
observed, this implementation provided better performance for short messages (which are sent in
Eager mode) compared to the base implementation. This experiment was solely performed to verify
the correctness of our hypothesis.

6.4.3 MPI-LAPI Enhanced

The results in Figure 6.14 confirmed our hypothesis that the major source of overhead was the
cost of context switching required for the execution of the completion handlers. We showed how
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Figure 6.14: Comparison between the performance of raw LAPI and improved version of MPI-LAPI

we can avoid using completion handlers for messages which are sent in Eager mode. However, we
still need to use completion handlers for larger messages (sent in Rendezvous mode). In order to
avoid the high cost of context switching for all messages, we enhanced LAPI to include pre-defined
completion handlers in the same context. In this modified version of LAPI, operations such as
updating a local variable or a remote variable (which requires a LAPI function call), indicating the
occurrence of certain events, were executed in the same context. The results of this version is shown
in Figure 6.15. The time of this version of MPI-LAPI comes very close to that of the bare LAPI
itself. The difference between the curves can be attributed to the cost of posting and matching
receives required by MPI, and also the cost of locking and unlocking of the data structures used
for these functions at the MPI level.

In the following section, we compare the latency and bandwidth of our MPI-LAPI Enhanced
implementation with that of the native MPI implementation. We also explain the difference between
the performance of these two implementations.

6.5 Performance Evaluation

In this section, we first present a comparison between the native MPI and MPI-LAPI (the
Enhanced version) in latency and bandwidth. Then we compare the results obtained from running
the NAS benchmarks using MPI-LAPI with those obtained from running NAS benchmarks using
the native MPI. In all of our experiments we used a SP system with Power-PC 332MHz nodes and
the TBMX adapter. The Eager Limit was set to 4K bytes for all experiments.

6.5.1 Latency and Bandwidth

We compared the performance of MPI-LAPI with that of the native MPI available on SP sys-
tems. The time for message transfer was measured by sending messages back and forth between two
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Figure 6.15: Comparison between the performance of raw LAPI and different versions of MPI-LAPI.

nodes as described in Section 6.4. The MPI primitives used for these experiments were MPI_Send
and MPI_Recv. The Eager Limit for both systems was set to 4K bytes. To measure the bandwidth,
we repeatedly sent messages out from one node to another node for a number of times and then
waited for the last message to be acknowledged. We measure the time for sending these back to
back messages and stop the timer when the acknowledgment of the last message is received. The
number of messages being sent is large enough to make the time for transmission of the acknowl-
edgment of the last message negligible in comparison with the total time. For this experiment we
used MPI_Isend and MPI_Irecv primitives.

Figure 6.16 illustrates the time of MPI-LAPI and the native MPI for different message sizes.
The time of MPI-LAPIT for very short messages is slightly higher than that of the native MPI. This
increase is in part due to the extra parameter checking by LAPI which, unlike the internal Pipes
interface, is an exposed interface. The difference between the size of the packet headers in these
two implementations is another factor which contributes to the slightly increased latency. The size
of headers in the native MPI is 16 bytes, and the size of headers for MPI-LAPI is 48 bytes. It can
be also observed that for messages larger than 256 bytes, the latency of MPI-LAPI becomes less
than that of the native MPI. An improvement of up to 17.3% was measured. As mentioned earlier,
unlike the native implementation of MPI, in the MPI-LAPI implementation messages are copied
directly from the user buffer into the NIC buffer and vice versa. Avoiding the extra data copying
helps improve the performance of the MPI-LAPI implementation.

The obtainable bandwidth of the native MPI and MPI-LAPI is shown in Figure 6.17. It can
be seen that, for a wide range of message sizes, the bandwidth of MPI-LAPI is higher than that of
the native MPI. For 64K byte messages, MPI-LAPI achieves a bandwidth of 83.35M B/sec which
indicates a 20.9% improvement in comparison with the 68.93M B/sec bandwidth obtained by using
the native MPL.

For measuring the time required for sending messages from one node to another node in interrupt
mode, we used a method similar to the one used for measuring latency. The only difference was
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that the receiver would post the receive (using MPI Irecv) and check the content of the receive
buffer until the message has arrived. Then it would send back a message with the same size. The
results of our measurements are shown in Figure 6.18. It can be seen that MPI-LAPI performs
consistently and considerably better than the native MPI implementation. For short messages of 4
bytes an improvement of 35.8% is observed. The native MPI performs poorly in this experiment.
One reason behind the poor performance of the native MPI is the hysteresis scheme used in it. In
the interrupt handler of the native MPI, the interrupt handler waits for a certain period of time to
see if more packets are coming to avoid further interrupts. If more are coming then they increase
the time the interrupt handler waits in the loop. The value of this waiting period can be set by
the user. LAPI does not use any such hysteresis in its interrupt handler and thus, provides better
performance.

6.5.2 NAS Benchmarks

In this section we present the execution times of programs from the NAS benchmarks for the
native MPI and MPI-LAPI. NAS Parallel Benchmarks (version 2.3) consist of eight benchmarks
written in MPI. These benchmarks were used to evaluate the performance of our MPI implemen-
tation in a more realistic environment. We used the native implementation of MPI and MPI-LAPI
to compare the execution times of these benchmarks on a four-node SP system. The benchmarks
were executed several times. The best execution time for each application was recorded.

As presented in Table 6.3, the MPI-LAPI performs consistently better than the native MPIL.
Improvements of 1.9%, 4.1%, 4.6%, 5.1% and 13.8% were obtained for LU, IS, CG, BT and FT
benchmarks, respectively. The percentages of improvement for EP, MG, and SP were less than
1.0%.
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| NAS Benchmark | Improvement(%) |

BT 5.1
CG 4.6
EP 0.1
FT 13.8
IS 4.1
LU 1.9
MG 0.3
SP 0.0

Table 6.3: The percentage of improvement for NAS Benchmarks

6.6 Related Work

Previous work on implementing MPI on top of low-level one-sided communication interfaces
include (a) the effort at Cornell in porting MPICH on top of their GAM (generic active message)
implementation on the SP [26], and (b) the effort at University of Illinois in porting MPICH on top
of the FM (fast messages) communication interface on a workstation cluster connected with the
Myrinet network [38]. In both cases the public domain version of MPI (MPICH [32]) has been the
starting point of these implementations. In the MPI implementation on top of AM, short messages
are copied into a retransmission buffer after they are injected into the network. Lost messages
are retransmitted from the retransmission buffers. The retransmission buffers are freed when a
corresponding acknowledged is received from the target. Short messages therefore require a copy at
the sender side. The other problem is that for each pair of nodes in the system a buffer should be
allocated which limits scalability of the protocol. MPI-LAPI implementation avoids these problems
(which degrade the performance) by using the header handler feature of LAPI. Unlike MPI-LAPI,
the implementation of MPI on AM described in [26] does not support packet arrival interrupts
which impacts performance of applications with communication behavior that is asynchronous. In
the implementation of MPI on top of FM [27, 38], FM was modified to avoid extra copying at the
sender side (gather) as well as the receive side(upcall). FM has been optimized for short messages.

MPI on the I-WAY [33] is another available implementation of the MPI standard. However, in
this implementation the emphasis has been on features such as authentication and multi-method
communication rather than the pure performance of the implementation. MPI-BIP is another
implementation of the MPI standard on top of BIP [43]. BIP is an API designed, and implemented
for the Myrinet network. BIP ensures reliable and ordered transmission of messages in the absence
of network fault.

6.7 Summary

In this chapter, we have presented how the the MPI standard is implemented on top of LAPI
for the IBM SP system. The details of this implementation and the mismatches between the MPI
standard requirements and LAPI functionality have been discussed. We have also shown how LAPI
can be enhanced in order to make the MPI implementation more efficient. The flexibility provided
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by having header handlers and completion handlers makes it possible to avoid any unnecessary data
copies. The performance of MPI-LAPI is shown to be very close to that of bare LAPI and the cost
added because of the MPI standard semantics enforcement is shown to be minimal. MPI-LAPI
performs comparably or better than the native MPI in terms of latency and bandwidth. MPI-LAPI
also outperforms the native MPI for NAS benchmarks.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this chapter we summarize the contributions of this thesis and suggest some directions for
future research.

7.1 Summary of Research Contributions

This thesis makes the following major contributions for design and development of efficient
communication subsystems for clusters.

1. Design, Development, and Performance Evaluation of Several Important Com-
ponents of the Virtual Interface Architecture (VIA): High bandwidth, low latency
communication subsystems in general and the Virtual Interface Architecture in particular
are made of several components such as virtual-to-physical address translation component,
mechanisms for hosts informing NICs about outstanding operations (i.e. doorbells), and
mechanisms for waiting for completion of any data transfer operation among a given group
of operations (i.e. completion queues). Several design alternatives for implementing these
components are proposed. These design alternatives are evaluated on different clusters.

2. Design, Development, and Performance Evaluation of a Prototype Implementa-
tion of the Virtual Interface Architecture (VIA): A prototype implementation of VIA
is developed on IBM SP-connected NT clusters. Impact of design choices for components of
VIA on the overall performance is evaluated. It is shown how VIA can be implemented in
the most efficient manner under certain requirements and restrictions. The bottlenecks for
reaching a better performance are identified. Furthermore, it is shown how adding several
hardware improvements affect the overall performance of the communication subsystem.

3. The VIBe Micro-Benchmark Suite for Evaluating Communication Subsystems:
A framework for evaluating different VIA design choices and for obtaining insight about the
design choices made in a particular implementation of VIA and their impact on the perfor-
mance is developed. A new micro-benchmark suite called VIBe is designed and implemented.
This suite consists of several micro-benchmarks which are divided into three major cate-
gories: non-data transfer related micro-benchmarks, data transfer related micro-benchmarks,
and client/server micro-benchmarks. By using the new benchmark suite, the performance of
VIA implementations is evaluated under different communication scenarios and with respect
to the implementation of different components and attributes of VIA.
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4. Design and Implementation of TreadMarks over VIA: A thin and efficient substrate
over VIA is developed such that applications using the popular TreadMarks DSM package
can take advantage of the enhanced communication performance of VIA. The mismatches
between the communication requirements by TreadMarks and the services provided by VIA
are identified. A set of schemes to eliminate such mismatches is proposed. These schemes
include connection setup, buffer management, advance posting of descriptors for unexpected
messages, and alternative designs to handle asynchronous messages. Different design alter-
natives for enhancing some VIA functions (such as the VIA Notify mechanism) are proposed
such that the new substrate is implemented with low overhead. The best set of alternatives
are derived and implemented on two enhanced implementations of VIA (MVIA and Berkeley
VIA) on two different networking technologies, Gigabit Ethernet and Myrinet, respectively.

5. Design and Implementation of MPI over LAPI: Since a large number of high perfor-
mance applications are written (and being written) in the distributed memory programming
model by using the communication primitives provided by the MPI standard, it is crucial to
implement MPI on top of high performance communication subsystems. It is explained how
the high performance of the LAPI communication library is exploited in order to implement
the MPI standard more efficiently than the existing MPI. Unnecessary data copies at both the
sending and receiving sides are avoided in order to improve the performance. The resolution
of problems arising from the mismatches between the requirements of the MPI standard and
the features of LAPI is discussed. As a result of this exercise, certain enhancements to LAPI
are identified and implemented to enable an efficient implementation of MPI on LAPI.

7.2 Suggestions for Future Research

The topic discussed in this thesis is a fertile area for further research with immediate impact in
the computer industry. Many interesting and practical problems in this area still wait for solutions.
In this section, we describe some of the problems and provide a few suggestions.

e Coherence Protocols on top of VIA: We studied how a popular software DSM system
(i.e. TreadMarks) can be implemented on top of VIA. However, in our work we focused on
supporting DSM systems on top of VIA without modifying the software DSM system and
related coherence protocols. Because of the importance of VIA and its potential in becoming
the communication standard for System Area Networks (SANs) it is very important to study
how coherence protocols can be developed such that they can take advantage of the features
of VIA. How to cost-effectively support a coherence protocol on top of VIA is a new and
exciting area for future study with potentially a strong impact on the computer industry.

e Other Programming Models: Distributed memory and distributed shared memory pro-
gramming models are the two most important programming models for clusters. We studied
how these programming models can be supported on top of high performance user-level com-
munication protocols. However, there are other programming models such as the Get/Put
model [19] and Global Arrays [41]. It is interesting to see how VIA can be used for support-
ing such programming models. VIA Remote Direct Memory Access (RDMA) operations (i.e.
RDMA Read and RDMA Write) seem to be the features that can be used for implementing
operations supported by Get/Put and Global Arrays models.

e Application Traces for VIBe: VIBe micro-benchmarks suite is made of synthetic micro-
benchmarks. It evaluates the performance of VIA implementations under various scenarios
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which can be set by the user. It is very interesting to add a micro-benchmark to the suite
which uses traces of real applications. The communication patterns of various applications
can be gathered and then fed to this micro-benchmark. Various traces can be obtained from
different types of applications. By using such an approach VIA implementations can be
evaluated under a more realistic set of conditions.

InfiniBand Architecture (IBA):

“Today’s computing model is becoming more distributed as companies work to meet the
growing demands of the Internet economy. The demands of the Internet and distributed
computing are challenging the scalability, reliability, availability, and performance of servers.
To meet this demand a balanced system architecture with equally good performance in the
memory, processor, and input/output (I/O) subsystems is required. The InfiniBand Architec-
ture (IBA) will de-couple the I/O subsystem from memory by utilizing channel based point
to point connections rather than a shared bus, load and store configuration” [2].

The basic IBA concepts are very similar to those of VIA. The same concepts such as work
queues, doorbells, completion queues, and descriptors are used in both VIA and IBA. In
addition to the features present in the VIA specification, there are several new features pre-
sented in the IBA specifications: RDMA atomic operations, support for connection-less data
transfers, virtual lanes, service levels, and global addressing. We believe that many design
alternatives proposed in our work can be applied to IBA implementations. However, the per-
formance and requirements of these alternatives should be reevaluated under new scenarios
and with respect to the impact of the proposed approaches on the implementation of new
features.

The high performance communication subsystems as discussed in this dissertation have been
used only for inter-processor communication. With the introduction of IBA, the need for
evaluation of these communication subsystems for I/O operations is felt more than ever.
Although a similar communication architecture is going to be used for I/O data transfers,
the difference between characteristics of I/O data transfers and those of inter-processor data
transfers may lead to different solutions. It is interesting to study the Characteristics of I/O
data transfers in this context.

Providing Quality of Service (QoS) on top of VIA and IBA: VIA does not support
any form of quality of service. In order to support applications with such requirements it’s
essential to provide some kind of quality of service on top of VIA. If the semantics of VIA
is to preserved and no additional features are added, a substrate on top of VIA is required
to provide QoS. Enhancing VIA such that it provides QoS needs to be investigated. The
results of such a study can be used to influence the future versions of the protocol. Similarly,
providing QoS on IBA needs to be investigated. It is interesting to see if the service levels
specified by IBA are sufficient for providing QoS.

Data Centers: Clusters have become increasingly popular for building Data Centers. Data
centers are essentially a collection of servers and personal computers which serve the requests
of the Internet applications. These data centers contain hundreds of computing nodes and
storage devices. High performance communication subsystems can be deployed in such centers
to improve the performance. Some of the important related research issues which should
be addressed are the topology of the interconnections and routing schemes used in such
systems. It will be interesting to study and see if current topologies and routing schemes are
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efficient enough for interconnecting hundreds of computing nodes and storage devices in such
environments.

Commercial Workloads: High performance communication subsystems have been studied
and evaluated by the industrial and research communities. However, most of these studies
have been carried out for high performance applications. By the increasing popularity of
the high performance communication subsystems for data centers, it is crucial that the per-
formance of these systems is evaluated under commercial workloads which are seen in such
environments. It is interesting to see if such workloads show any characteristic which may
differentiate them from high performance computing workloads.
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