
An MPI-Stream Hybrid Programming Model for Computational Clusters

Emilio P. Mancini, Gregory Marsh, and Dhabaleswar K. Panda
Department of Computer Science and Engineering,

The Ohio State University
Columbus, OH (USA)

{mancini, marshgr, panda}@cse.ohio-state.edu

Abstract—The MPI programming model hides network type
and topology from developers, but also allows them to seam-
lessly distribute a computational job across multiple cores in
both an intra and inter node fashion. This provides for high
locality performance when the cores are either on the same
node or on nodes closely connected by the same network
type. The streaming model splits a computational job into a
linear chain of decoupled units. This decoupling allows the
placement of job units on optimal nodes according to network
topology. Furthermore, the links between these units can be of
varying protocols when the application is distributed across a
heterogeneous network.

In this paper we study how to integrate the MPI and Stream
programming models in order to exploit network locality and
topology. We present a hybrid MPI-Stream framework that
aims to take advantage of each model’s strengths. We test
our framework with a financial application. This application
simulates an electronic market for a single financial instrument.
A stream of buy and sell orders is fed into a price match-
ing engine. The matching engine creates a stream of order
confirmations, trade confirmations, and quotes based on its
attempts to match buyers with sellers. Our results show that the
hybrid MPI-Stream framwork can deliver a 32% performance
improvement at certain order transmission rates. 1

Keywords-MPI, Streams, Hybrid Programming, Clusters and
Financial Application.

I. INTRODUCTION

Achieving optimal performance in a parallel application
is a hard task when underlying topology becomes complex,
and the network parameters can affect overall performance in
unpredictable ways. The increased number of nodes in mod-
ern computational systems introduces implicit heterogeneity,
for example, when using switch hierarchies. In these cases,
some links may have higher latency and lower bandwidth,
because the data crosses a different number of switches.
MPI implementations are the most common frameworks
used for parallel programming, but they hide the system
topology [1]. Therefore, exploiting the locality can improve
the performance of a parallel MPI program.

1This research is supported in part by U.S. Department of Energy
grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755; National Sci-
ence Foundation grants #CNS-0403342, #CCF-0702675, #CCF-0833169,
#CCF-0916302 and #OCI-0926691; grant from Wright Center for Inno-
vation #WCI04-010-OSU-0; grants from Intel, Mellanox, Cisco, QLogic,
and Sun Microsystems; Equipment donations from Intel, Mellanox, AMD,
Advanced Clustering, Appro, QLogic, and Sun Microsystems.

In some cases, users want to exploit clusters of clusters,
so that one MPI program can spawn across multiple clusters.
Often this architecture uses a high performance network
for intra-cluster communication, and low performance com-
munication for inter-cluster data transfers. A flat model
such as MPI with heavy coupled tasks can only exploit
such configurations with difficulty. Stream programming
models, instead, use independent computational units, that
can easily exploit heterogeneous networks. However, most
of the algorithms commonly used in parallel programming
need to be reformulated for stream use [2].

In this paper, we propose a hybrid approach that combines
the Stream model to build an application across hetero-
geneous communication systems, and an MPI model to
exploit heavy local computation on computational clusters.
We designed a framework with a minimal set of primitives
to support distributed hybrid Stream/MPI programming.

One of the most studied areas of application of the stream
paradigm is the financial area. We tested the proposed frame-
work with a financial application comparing two models:
the first with a pure MPI model, the second with a hybrid
Stream/MPI paradigm. The results show that the lighter
overhead and data structures in the stream portion of the
hybrid model deliver a 32% performance improvement in
some scenarios as compared to the pure MPI model.

In this paper, in Section II we present the stream and
MPI programming models. Then in Section III we propose
a way to mix the two models. In Section IV we introduce
a new streaming framework, and in Section V we apply it
to a financial application in order to compare a pure MPI
implementation with a hybrid MPI-Stream architecture. In
Section VI we present a performance evaluation with the
application. After a review of related work, in Section VIII
we draw conclusions and outline future work.

II. THE STREAM AND MPI PROGRAMMING MODELS

The Message Passing Interface (MPI) is a specification
that describes a parallel programming model. MPI is the
de-facto standard in parallel programming, providing a well
defined interface and several efficient implementations. It
explains how several processes can move data between
their address spaces using communication operations, such
as, point-to-point, collective, or one-sided. Besides this,

MPI offers other interesting features like Dynamic Process
Management, parallel IO, and new features are continuously
proposed [1].

Every MPI program is a set of autonomous processes
that do not run necessarily the same code; they elaborate
and exchange data, through message passing, following the
Multiple Instructions Multiple Data (MIMD) model. The
basic operations are point-to-point transactions that involve
two processes: one that initiates the data transfer with send
routines, and the other that is ready to receive incoming data
with a receive function. Collective and one-side operations
can optimize such processes in various scenarios. MPI tries
to hide the underlying network topology presenting a flat
view to the processes. While the user’s program does not
know about the hardware structure, several MPI implemen-
tations try to exploit any knowledge they have to optimize
the most complex operations such as the collectives [3].

The Stream approach is quite different. A parallel applica-
tion using the Stream Programming Model is composed of
multiple tasks, called “kernels”, connected by point-to-point
links. These connect two successive kernels, so that each
one sends its output as input to another one. The next kernel
gathers and elaborates the data before placing it in another
stream. Therefore, the streams are an unbounded flow of
data records that link computational units. Each kernel is
independent; the only way it has to communicate is through
streams. It does not have control on arriving data; it can
only filter it and then chose to discard or send forward the
results of its computations [2], [4].

Fig. 1 shows a generic acyclic communication stream
model. The basic way to compose the kernels is the pipeline,
but more advanced schemas can use splits, joins and feed-
backs. The splits can duplicate a stream, so that successive
kernels gather the same data set, or it can divide the records
so the successive kernels take only a part of original data. In
other words, data streams can be duplicated on two physical
links, or separated so that the computational effort can be
divided on two different kernels. The join operations put
different streams in the same receive queue.

Figure 1. Generic streams model

III. DESIGNING A HYBRID STREAM/MPI MODEL

As described in the preceding section, MPI implemen-
tations are the ideal way to exploit strictly interconnected
nodes, and have high performance on computational clusters.

But when the topology becomes more complicated, it is
harder to exploit it in an optimal way [5].

MPI uses a flat view of its parallel virtual machine, so, for
example, the joint use of different clusters, and the access
to internal hidden nodes can be a hard and time-consuming
task. The resulting performance may not be so good, because
the presence of slow links, can reduce the overall speed due
to synchronization and collective operations involving both,
fast and slow links.

On other side, streams can easily exploit heterogeneous
networks. Because the kernels are highly independent, the
user can design the kernel chain so that it can exploit faster
machines to handle complex duties. The absence of explicit
synchronizations and the decoupling of computational units
can result in better performance when using heterogeneous
networks. If some part of the computation is particularly
heavy, the user can assign it to a parallel MPI application,
rather than to a single sequential kernel as in Fig. 2. In this
way the latency of the whole chain should be lower.

Figure 2. The use of an MPI application as stream kernel.

When heterogeneous technologies are involved, the
launching process is complex. It requires a description
of the whole system, and running and synchronization of
both MPI and sequential programs on different nodes. As
described in Fig. 3, the user runs a first level launcher, which
launches sequential tasks as new remote processes, and
parallel kernels using the standard MPI launchers. An XML
file can provide all necessary information to dynamically
produce MPI hostfiles and startup scripts. When it starts,
every kernel has to call an initialization routine, in order to
build a local graph data structure that the middleware can
use to direct the communication; this graph is similar to the
one shown in Fig. 1.

Every kernel, at this point, should register itself with the
middleware, so that it can run the right function on the right
machine. A different approach is to let each kernel poll the
stream autonomously without explicit middleware manage-
ment. We used the first method for sequential kernels, and
the second for MPI kernels. When the application registers
the kernels, it can specify some additional information about
their behavior, for example if they are stateless or statefull, or
if they use a polling or callback model to elaborate streams.
At this point, the application can ask the middleware to start
the kernel processes, and open the streams with the Get and
Put operations. A fragment of a typical program in the model
we propose is:

/* Source kernel: opens an output

Figure 3. The sequence diagram of the hybrid MPI/Stream model.

stream */
osf_Result_t SourceKernel(

osf_KernelContext_t *ctx) {
static osf_Stream_t *s = NULL;
if (s==NULL)

osf_Open(&s, OSF_STR_OUT, 1);
...
record = sin(t)+sin(4+2*t);
osf_Put(s, &record, sizeof(record));
return OSF_ERR_SUCCESS;

}

/* Destination kernel: takes the
data from source kernel and
elaborates */

osf_Result_t FilterKernel(
osf_KernelContext_t *ctx) {

static osf_Stream_t *sIn = NULL;
if (sIn==NULL)

osf_Open(&sIn, OSF_STR_INPUT, 0);
...
res = osf_Get(sIn, &x, sizeof(double),

&receiv);
return OSF_ERR_SUCCESS;

}

/* Main function: registers
the kernels and starts the
streams */

int main (...) {

osf_KernelContext_t *kctx;
osf_Init(...);
osf_RegisterKernel(0,
OSF_KRNTYP_POLLING, OSF_KRN_STATELESS,
SourceKernel, &kctx);

osf_RegisterKernel(1,
OSF_KRNTYP_POLLING, OSF_KRN_STATELESS,
FilterKernel, &kctx);

osf_StartStreams();
osf_Finalize();

}

In the preceding example, each kernel is coded in a
function with a well-defined interface. We have chosen a
functional implementation model to be consistent with the
MPI functional logic. Other solutions require the use of
compiler or language extensions [6].

The main procedure registers the kernel procedures using
the osf RegisterKernel API. In this way the middleware
knows what are the kernels and how to associate each
routine to the internal graph. Then it starts the streams
(osf StartStreams()) according to the external launcher in-
dications, activating one or more kernels on each computa-
tional node.

IV. THE STREAMING FRAMEWORK

To implement a framework supporting the hybrid
Stream/MPI approach we studied the architecture shown in
Fig. 4. The core module is a modularized communication
subsystem. The application can interact with the system
using the Abstract Communication Interface. The framework

Operations Description
RegisterKernel() Register the kernel in the middleware;
StartKernels() Optional hints (for future purposes);

Open() Open or subscribe a stream;
Put() Put a set of record in the stream;
Get() Get records from incoming stream.

Table I
THE PROPOSED MINIMAL SET OF PRIMITIVES.

hides the network type so that different segments of the
stream chain can use different communication technologies.
When the user starts more than one kernel on the same
node, the middleware uses Posix threads and IPC in order
to optimize local communication. When the launcher starts
the kernels on different nodes it can chose the network
technology as a function of its hardware and of its needs.
For example, it can reserve high performance networks for
communication intensive MPI kernels, and low performance
networks to connect sequential kernels. Besides supporting
different network technologies, the current prototype uses
only socket communication. In the future, we plan to extend
the communication modules.

One of the goals of this study is to identify a minimal
set of primitives for designing a framework supporting the
integration of stream and MPI programming models. Table
I presents this set, leaving out utility functions like initial-
ization routines. The osf RegisterKernel() function inserts
information about each kernel into the framework. The
framework gathers such information from two sources: the
compiled program, using the API and an external configu-
ration file, which maps the kernels with the computational
nodes. After the program registers the kernels, it can start
them as new processes using osf StartKernels().

To communicate, a kernel needs to open a stream with the
osf Open() function. This creates the required connections
to the right kernels so that the sender can transmit its data
with the osf Put() operation, and the destination can gather
data with the osf Get() function.

Figure 4. The framework prototype high level architecture.

V. CASE STUDY WITH A FINANCIAL APPLICATION

We tested our framework on a simulation of the market
for a single financial instrument such as a stock. The

code was originally developed by the ZeroMQ project as
a test application for its messaging middlware [7]. Our
adaptations (Figures 5 and 6) have 4 major components:
a Random Data Generator, a Matching Engine, an Order
Confirmation receiver, and a Store. The Matching Engine is
the core of the simulation and contains data structures that
receive, hold, and process orders from the Random Data
Generator. The order type, price, and volume are randomly
generated numbers, the ranges of which were choosen by
the simulation’s original designers. The order type may be
either a bid (buy) or ask (sell). The price of an order is an
integer between 450 and 549 inclusive. The volume is the
amount to be bought or sold and is an integer between 1 and
100 inclusive. If a bid price is equal to or greater than the
lowest available ask price, the Matching Engine executes a
trade and sends a confirmation and a quote with the current
market price to the Order Confirmation receiver. The Order
Confirmation component sends everything it receives to the
Store which archives all messages on disk.

Figure 5. The case study financial application chain: pure MPI implemen-
tation.

Figure 6. The case study financial application chain: hybrid implementa-
tion.

1) Data Structures and Global Variables: The Matching
Engine simulates a market with the help of an OrderBook
vector comprised of double-ended queues and two global
variable integers (Figure 7).

vector <double-ended queue> OrderBook[0..999]: Each
index of OrderBook vector represents a price. Orders with
the same price are stored in the double-ended queue at the
vector element for their price-index. These queues preserve
orders that cannot be traded immediately while ensuring that

any order may be matched for a trade in the sequence that
it was received at the Matching Engine.

integer min ask: The OrderBook index storing ask orders
with the lowest available selling price. Any orders queued
in OrderBook elements at, and to the right of, min ask are
ask orders.

integer max bid: The OrderBook index storing bid orders
with the highest available buying price. Any orders queued
in OrderBook elements at, and to left of, max bid are bid
orders.

2) Matching Engine Algorithm: The Matching Engine is
composed of a receive loop that retrieves orders sent over
the network by the Random Data Generator and two routines
that simulate the market by processing either bid or ask
orders, depending on order type.

Matching Engine Receive Loop:
loop

Recieve order
if order.type = ask then

Ask Order Routine(order)
else

Bid Order Routine(order)
end if

end loop

Overview of Order Processing Routines: In brief the
Ask Order Routine and the Bid Order Routine each do
the following. More precise details are presented in the
Appendix at the end of this paper.

1) Compare the price of the received order against
min ask or max bid to determine if the order can be
immediately matched for a trade with orders already
enqueued in the OrderBook (Figure 7).

2) If the received order can not be matched immediately
then it is enqueued in the OrderBook at its price index.

3) When executing trades, each routine considers the re-
ceived order’s volume. If there is not enough matching
volume at one price level, each routine will match
whatever volume is available and then search other
matchable price levels in the OrderBook in order to
totally satisfy the remaining volume in the received
order. For example, an ask order of price 500 with
volume 100 is received and the max bid is 510 while
the min ask is 500. The Ask Order Routine first
tries to dequeue as many bid orders as needed at price
510 to satisfy the ask order’s volume of 100. Suppose
that the bids enqueued at 510 only total 30 in volume.
Trade confirmations are sent for these matched trades.
The routine will then decrement max bid and try to
find matching bids in the price range 509 to 501,
creating as many trades as needed to fill the remaining
ask order volume of 70. If the ask order can only

be partially filled the volume of the order is adjusted
and the order is enqueued in the OrderBook for future
matching of the remaining volume.

Each routine runs in O(n ∗max price depth) where
n is the range of prices (450...549 in this simlation)
and max price depth is the size of the largest doubled-
ended order queue within the OrderBook. However in
this simulation as orders rapidly accumulate across the
range of prices, the runtime of these routines approach
O( ∗max price depth) as more often that not a price
match can be immediately found without searching through-
out the price range for compatible orders.

Figure 7. Matching Engine Data Structures.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

As detailed above, the Matching Engine receives orders
and matches the prices in buy orders to the prices in sell
orders. A compatible price match results in a trade. The
Matching Engine produces three types of messages which
are sent back to the Order Confirmation component: trade
confirmations, order confirmations, and price quotes. Order
confirmations are produced when there is no matching price
to make a trade. Price quotes occur when the stock’s maxi-
mum bid or ask price changes due to trading activity. During
the course of their operation, the Random Data Generator,
Matching Engine, Order Confirmation component, and Store
produce both throughput and latency measurements. The
Random Data Generator generates the following measure-
ment:

1) Orders per second sent from the Random Data Gen-
erator to the Matching Engine.

The Order Confirmation component measures the following:
1) Average Order Confirmation Time: Time in microsec-

onds between when an order is sent by the Random

Data Generator and when an order confirmation is
received by the Order Confirmation component.

2) Average Trade Confirmation Time: Time in microsec-
onds between when an order is sent by the Random
Data Generator and when a trade confirmation is
received by the Order Confirmation component.

3) Aggregated trade confirmations, order confirmations,
and quotes received per second from the Matching
Engine by the Order Confirmation component.

The Matching Engine produces the following measurements:
1) Orders per second received from the Data Generator.
2) Aggregated trade confirmations, order confirmations,

and quotes sent per second from the Matching Engine
to the Order Confirmation component.

Our evaluation uses a cluster consisting of Intel Xeon
Quad dual-core processor hosts. Each host node has 6GB
RAM and is equipped with a 1 Gigabit Ethernet network
interface controller. The operating system for each node is
Red Hat Enterprise Linux Server 5. For MPI operations we
used MPICH2 Version 1.2 middleware [8]. Each message
type (orders, confirmations, and quotes) exchanged between
the components has a different sized payload. However for
the sake of uniformity we held transmitted message size at
a constant 18 bytes, an amount that could encompass all
required payloads. The application’s performance may be
tested by varying the number of random orders per second
created by the Random Data Generator as well as varying the
programming model scheme (MPI or Hybrid MPI-Stream).
In our tests we used order generation rates of 5,000, 10,000,
15,000, 20,000, 25,000, and 30,000 orders/second and cre-
ated 2,000,000 orders at each rate. We recorded the resulting
measurements at each rate. Beyond 30,000 orders/second,
the application stressed the limits of the hardware and would
not record a full set of measurements.

B. Experimental Results

Figure 8 summarizes Average Order Confirmation Time
on the Order Confirmation Component. The MPI-Stream
Hybrid scheme on Gigabit Ethernet (hygrid-ge) achieves a
faster order confirmation time than the corresponding MPI-
only scheme (mpi-ge) at all order generations rates. We feel
that this result reflects the lighter overhead and minimal data
structures of the streaming framework within the Hybrid
scheme, as compared the MPI scheme where all processes
must make use of the MPICH2 middleware. The Hybrid
scheme’s improvement ranges from around 5% at low order
transmission rates, to 32% at the hightest rate (30,000). We
feel the increased improvement at higher order rates reflects
a situation where the high overhead of the MPI middleware
is more efficiently amortized over a high network load
that the middleware effectively bears. We are carrying out
further optimizations in the hybrid design to obtain better
performance.

Figure 8. Financial Application Order Completion Time

VII. RELATED WORK

Several studies try to apply the MPI model to hetero-
geneous scenarios, exploiting for instance clusters of clus-
ters. Some implementations, like MPICH-G2 uses the Grid
technologies to hide the heterogeneity and to allow users to
manage it. MPICH-G2 uses the Globus Toolkit services to
implement communication and management layers in both
local and wide-area networks [9]. The framework proposed
in this paper differs from the MPICH-G2 approach because
we don’t want to hide the topology, but empathize with
it, and exploit this knowledge in order to choose the best
communication technology in each program segment.

Stream processing has been widely studied to support high
performance computing. Babcock et al. [2] and Gaber et al.
[10] propose overviews on models and data mining using
streams as well an overview of current projects, algorithms
and techniques related to streaming models.

One of the most interesting application areas for streams
is related to the use of dedicated processors, like GPUs
[11]–[13]. While the major efforts focus on stream processor
architectures [14], several studies exist on the use of such
models in parallel systems. Wagner and Rostoker [15] pro-
pose an interesting stream-processing framework based on
the MPI library: using the standard MPI structures they build
a stream environment. To prove their approach, they apply it
to a financial data analysis workflow. In this paper, instead,
we use a whole MPI program as building block in a stream
application, using it, not as communication framework, but
only to speed-up heavy computational units, and exploit
locality in clusters.

Financial data analysis is a hot topic in stream processing,
although most of studies have focused on the use of single
machines. For example Agarwal et al. [16] focus on financial
analysis on multicore computers. There is also interest in
how to adapt legacy code, written for streaming hardware
architectures, to general purpose processors. Gummaraju et
al., in their inspiring paper [17], show how to map salient

features of streaming models (e.g., kernels ...) to general
purpose CPU components. The approach we propose in this
paper, instead, exploits general-purpose parallel heteroge-
neous architectures.

Several studies focus on the languages and methodologies
to describe streaming programming. Usually they propose
the design of new languages [18], [19], or the extension of an
existing one like C [12] or Java [20], [21]. Carpenter et al.,
for example, in [6] propose an extension to the C language
as a set of OpenMP-like directives. In our design, we have
chosen a functional approach to be consistent with the MPI
approach. A similar approach is suggested, for example in
[17].

VIII. CONCLUSIONS

The use of heterogeneous networks or “cluster of compu-
tational clusters” makes it difficult to reach optimal perfor-
mance using only MPI programs. The impact of a slow link
can strike the overall behavior, mainly when using collective
operations. In this paper, we propose a way to exploit
locality in complex heterogeneous computational systems
using a hybrid approach of Stream and MPI programming
models. We propose to model a parallel application as a
chain of kernels following the “stream” approach, and to use
MPI to develop the kernels that need more computational
power.

We presented the prototype of a framework that supports
the launch and the communication between sequential and
MPI kernels. The evaluation on a financial application shows
that the lighter overhead and minimal data structures in
the stream portion of a hybrid MPI/Stream framework can
improve processing time at certain order generation rates by
as much as 32% compared to the corresponding MPI-only
framework where the entire application is subject to higher
middleware overhead.

In the future, we plan to study the use of the described
techniques on a cluster of clusters in order to analyze
the impact of the proposed paradigm on low performance
inter-cluster interconnects. We also expect to support more
communication infrastructure and to study how to describe
the application in order to give the framework the hints
needed to optimize the overall behavior of the application.

REFERENCES

[1] MPI Forum, “Mpi: A message-passing interface standard,”
September 2009, http://www.mpi-forum.org/docs/mpi-2.2/
mpi22-report.pdf.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data stream systems,” in PODS
’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. New
York, NY, USA: ACM, 2002, pp. 1–16.

[3] K. Kandalla, H. Subramoni, G. Santhanaraman, M. Koop,
and D. K. Panda, “Designing multi-leader-based allgather al-
gorithms for multi-core clusters,” in Parallel and Distributed
Processing Symposium, International, vol. 0. Los Alamitos,
CA, USA: IEEE Computer Society, 2009, pp. 1–8.

[4] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 re-
quirements of real-time stream processing,” SIGMOD Rec.,
vol. 34, no. 4, pp. 42–47, 2005.

[5] E. P. Mancini, S. Marcarelli, I. Vasilev, and U. Villano, “A
grid-aware mip solver: implementation and case studies,”
Future Generation Computer Systems, vol. 24, no. 2, pp. 133–
141, February 2007.

[6] P. Carpenter, D. Rodenas, X. Martorell, A. Ramirez, and
E. Ayguade, “A streaming machine description and program-
ming model.” in Proc. of SAMOS’07 Conf., ser. Lecture Notes
in Computer Science, S. Vassiliadis and et al., Eds., vol. 4599.
Springer, 2007, pp. 107–116.

[7] ZeroMQ Stock Exchange Example, http://www.zeromq.org/
code:examples-exchange.

[8] MPICH2 Message Passing Inter-
face Standard, http://www.mcs.anl.gov/
research/projects/mpich2/.

[9] N. T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A grid-
enabled implementation of the message passing interface,”
Journal of Parallel and Distributed Computing Special Issue
on Computational Grids, vol. 63, pp. 551–563, May 2003.

[10] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining
data streams: a review,” SIGMOD Rec., vol. 34, no. 2, pp.
18–26, 2005.

[11] J. H. Ahn, W. Dally, B. Khailany, U. Kapasi, and A. Das,
“Evaluating the imagine stream architecture,” in Computer
Architecture, 2004. Proceedings. 31st Annual International
Symposium on, June 2004, pp. 14–25.

[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for gpus: stream
computing on graphics hardware,” in SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers. New York, NY, USA: ACM, 2004,
pp. 777–786.

[13] S. Yamagiwa and L. Sousa, “Design and implementation of a
stream-based distributed computing platform using graphics
processing units,” in CF ’07: Proceedings of the 4th interna-
tional conference on Computing frontiers. New York, NY,
USA: ACM, 2007, pp. 197–204.

[14] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H.
Ahn, P. Mattson, and J. D. Owens, “Programmable stream
processors,” Computer, vol. 36, no. 8, pp. 54–62, 2003.

[15] A. Wagner and C. Rostoker, “A lightweight stream-processing
library using MPI,” Parallel and Distributed Processing Sym-
posium, International, vol. 0, pp. 1–8, 2009.

[16] V. Agarwal, D. A. Bader, L. Dan, L.-K. Liu, D. Pasetto,
M. Perrone, and F. Petrini, “Faster fast: multicore acceler-
ation of streaming financial data.” Computer Science - R&D,
vol. 23, no. 3-4, pp. 249–257, 2009.

[17] J. Gummaraju and M. Rosenblum, “Stream programming
on general-purpose processors,” in MICRO 38: Proceedings
of the 38th annual IEEE/ACM International Symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 343–354.

[18] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data flow programming language LUSTRE,” in
Proc. IEEE, vol. 79, no. 9, 1991, pp. 1305–1320.

[19] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard,
“Cg: a system for programming graphics hardware in a c-
like language,” in SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers. New York, NY, USA: ACM, 2003, pp. 896–907.

[20] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek, “Stream-
flex: high-throughput stream programming in java,” SIGPLAN
Not., vol. 42, no. 10, pp. 211–228, 2007.

[21] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit:
A language for streaming applications,” in CC ’02: Pro-
ceedings of the 11th International Conference on Compiler
Construction. London, UK: Springer-Verlag, 2002, pp. 179–
196.

APPENDIX

For reference we show algorithm details for only the
Ask Order Routine. The Bid Order Routine is identical ex-
cept that it focuses on bid orders that are equal to, or greater
than, the min ask price.

Ask Order Routine(order)

Save current min ask and max bid for future reference.
loop

if (order.price > max bid) then
{There are no matching buyers for this seller. Place
the order on the tail of its price-appropriate double-
ended queue in the OrderBook.}
OrderBook[order.price].push back(order)
{Change min ask value if needed.}
min ask ←min(min ask, order.price)
Break from loop

end if

{At this point order.price is less than or equal to
max bid. Get previously stored bid orders at max bid
price.}
bid deque← OrderBook[max bid]
cumulative volume← 0

while (bid deque not empty) do
{Execute a trade by matching current ask order with
most recent bid order at this price level, and then
send trade confirmation to bidder.}
prev bid← bid deque.front()
trade volume ← min(order.volume,
prev bid.volume)

send trade conf(prev bid.id, max bid, trade volume)

{Adjust volume of prev bid, ask order, and cumula-
tive volume to reflect this trade}
prev bid.volume ← prev bid.volume −
trade volume
order.volume ← order.volume − trade volume
cumulative volume ← cumulative volume +
trade volume

if (prev bid.volume = 0) then
{Entire prev bid has been filled. Discard the bid.}
bid deque.pop()

end if
if (order.volume = 0) then
{Entire ask order has been filled.}
Break from loop

end if
end while

if (cumulative volume > 0) then
{Send a trade confirmation to the asker.}
send trade conf(order.id, max bid,
cumulative volume)

end if

if (order.volume = 0) then
{Entire ask order has been filled.}
Break from loop

end if

{Any further iteration of loop will try to make trades
at prices less than current max bid.}
max bid← max bid− 1

end loop

while (OrderBook[max bid].front() is an empty queue
AND max bid 6= lower price limit) do

Decrement max bid by 1
end while
if (max bid or min ask are different from the values
saved at the beginning of the routine) then
{The market price has changed.}
send quote(max bid, min ask)

end if
if (No trade confirmations were sent in the steps above
) then
{Confirm the asker’s order in the event that it cannot
be immediately filled with a bid at current market
conditions.}
send order conf(order.id)

end if

