
SCALABLE AND HIGH PERFORMANCE

COLLECTIVE COMMUNICATION FOR NEXT

GENERATION MULTICORE INFINIBAND CLUSTERS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Amith Rajith Mamidala, B. Tech, M. S.

* * * * *

The Ohio State University

2008

Dissertation Committee:

Prof. Dhabaleswar K. Panda, Adviser

Prof. P. Sadayappan

Prof. Feng Qin

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c© Copyright by

Amith Rajith Mamidala

2008

ABSTRACT

High Performance Computing is enabling rapid innovations spanning several

key areas ranging from science, technology and manufacturing disciplines to en-

tertainment and financial markets. One computing paradigm contributing signif-

icantly to the outreach of such capabilities is Cluster Computing. Cluster com-

puting involves the use of multiple Commodity PCs interconnected by a network

to provide the required computational resource in a cost-effective manner. Re-

cently, commodity clusters are rapidly transforming into capability class machines

with several of them featuring in the Top 10 list of supercomputers. The two

primary drivers for this trend being: a) Advent of Multicore technology and b)

Performance and Scalability of InfiniBand, an open standard based interconnec-

tion network. These two factors are ushering in an era of ultra-scale InfiniBand

Multicore clusters comprising of tens of thousands of compute cores.

Utilizing Message Passing Interface (MPI) is the most popular method of pro-

gramming parallel appplications. In this model, communication occurs via explicit

exchange of data messages. MPI provides for plethora of communication primitives

out of which Collective primtives are especially significant. These are extensively

used in a variety of scientific and engineering applications (such as to compute fast

fourier transforms and multiply large matrices, etc.). It is imperative that these

collectives be designed efficiently to ensure good performance and scalability. MPI

ii

collectives pose several challenges and requirements in terms of guaranteeing data

reliability, enabling efficient scalable means of data transfers and providing for

process skew tolerance mechanisms. Moreover, the characteristics of underlying

network and multicore systems directly impact the behavior of the collective op-

erations and need to be taken into consideration for optimizing performance and

resource usage.

In this dissertation, we take on these challenges to design a Scalable and High

Performance Collective Communication subsystem for MPI over InfiniBand Mul-

ticore clusters. The central theme used in our approach is to have an in-depth

understanding of the capabilities of underlying network/system architecture and

leverage these to provide optimal design alternatives. Specifically, the dissertation

describes novel communication protocols and algorithms utilizing a) InfiniBand’s

hardware Multicast, RDMA capabilities and b) System’s shared memory to meet

the stated requirements and challenges. Also, the collective optimizations discussed

in the dissertation take into account the different transport methods of InfiniBand

and the architectural attributes of Multicore systems. The designs proposed in the

dissertation have been incorporated into the open source MVAPICH software used

by more than 680 organizations worldwide. It is used in several cluster installa-

tions, and currently used by the world’s third fastest supercomputer.

iii

Dedicated to Amma, Baba and Nandu

iv

ACKNOWLEDGMENTS

I would like to thank my adviser Prof. Dhabaleswar K. Panda for his guidance

throughout my PhD study. I am grateful for his tremendous effort, friendship and

counsel through the course of my PhD. Especially, I would like to thank him for

his invaluable advice and support during many tough periods at OSU.

I would like to thank my committee members Prof. P. Sadayappan, Prof. Feng

Qin and Prof. Srini Parthasarathy for their help and suggestions.

I am grateful to Ohio State University, National Science Foundation (NSF) and

Department of Energy (DOE) for the financial support.

I would also like to thank Dr. Rajeev Thakur and Dr. Bill Gropp for their

advice during my internship at Argonne National Labs.

I am thankful to Dr. Jiuxing Liu who was my mentor during the first and sec-

ond years of my PhD. I am grateful to Dr. Hyun-Wook Jin for his effort and advice

during my study. I would also like to thank my seniors Dr. Jiesheng Wu, Dr. Pavan

Balaji, Dr. Darius Buntinas and Dr. Weikuan Yu for their helpful comments and

suggestions. I am fortunate for having worked closely with Abhinav Vishnu, Sun-

deep Narravula, Gopal Santhanaraman, Rahul Kumar, Karthikeyan Vaidyanathan,

Sayantan Sur, Lei Chai, Wei Huang, Matthew Koop, Ranjit Noronha, Savitha Kr-

ishnamurthy, Sushmitha Kini, Uday Bondhugula, Bala Chandrasekaran, Qi Gao,

Ping Lai, Prachi Gupta, Karthik and Jaidev.

v

I would like to thank all my friends, Sandy, Mallu, Gopal, Devi, Naps, Naveen,

Boondi and Vishnu for making my stay at Columbus a wonderful experience.

Finally, I am thankful to my parents and brother for their love, support and

friendship.

vi

VITA

June 18, 1980 .Born - Secunderabad, India.

July, 1998 - June, 2002 B.Tech, Computer Science and Engi-
neering, Indian Institute of Technology
Madras, Chennai, India

September, 2002 - May, 2003Graduate Teaching Associate,
The Ohio State University.

June, 2003 - May, 2006 Graduate Research Associate,
The Ohio State University.

June, 2006 - September, 2006 Summer Intern,
Argonne National Labs, Argonne, IL

September, 2006 - May 2008 Graduate Research Associate,
The Ohio State University.

PUBLICATIONS

Jiuxing Liu, Amith R Mamidala and Dhabaleswar K Panda. “Performance Eval-
uation of InfiniBand with PCI-Express”, IEEE Micro Journal, 2005

Abhinav Vishnu, Matthew Koop, Adam Moody, Amith R Mamidala, Sundeep

Narravula and Dhabaleswar K Panda. “Topology Agnostic Hot-Spot Avoidance
with InfiniBand”, Concurrency and Computation: Practice and Experience

Rahul Kumar, Amith R Mamidala and Dhabaleswar K Panda. “Scaling Alltoall

Collective on Multicore Systems”, Workshop on Communication Architecture for
Clusters, IPDPS 2008

Amith R Mamidala, Rahul Kumar, Debraj De and Dhabaleswar K Panda. “MPI

Collectives on Modern Multicore Clusters: Performance Optimizations and Com-
munication Characteristics”, Int’l Symposium on the Cluster Computing and the

Grid (CCGrid), May 2008

vii

Rahul Kumar, Amith R Mamidala, Matt Koop, Gopal K Santhanaraman and

Dhabaleswar K Panda. “Lock-free Asynchronous Rendezvous Design for MPI
Point-to-point communication”, EuroPVM/MPI 2008

Amith R Mamidala, Sundeep Narravula, Abhinav Vishnu, Gopal K Santhanara-

man and Dhabaleswar K Panda. “Using Connection-Oriented and Connection-
Less transport on Performance and Scalability of Collective and One-sided op-

erations: Trade-offs and Impact”, Accepted at ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 07

Gopal K Santhanaraman, Sundeep Narravula, Amith R Mamidala, and Dha-

baleswar K Panda. “MPI-2 One Sided Usage and Implementation for Read Modify

Write operations: A case study with HPCC”, In Proceedings of EuroPVM/MPI
’07, Paris, France

Sundeep Narravula, Amith R Mamidala, Abhinav Vishnu, Karthik Vaidyanathan

and Dhabaleswar K Panda. “High Performance Distributed Lock Management
Services using Network-based Remote Atomic Operations”, Int’l Symposium on

Cluster Computing and the Grid (CCGrid), Rio de Janeiro - Brazil, May 2007

Sundeep Narravula, Amith R Mamidala, Abhinav Vishnu and Dhabaleswar K
Panda. “High Performance MPI over iWARP: Early Experiences”, International

Conference for Parallel Processing, ICPP 2007

Abhinav Vishnu, Matt Koop, Adam Moody, Amith R Mamidala, Sundeep Nar-
ravula and Dhabaleswar K Panda. “Hot-Spot Avoidance With Multi-Pathing

Over InfiniBand: An MPI Perspective”, Int’l Symposium on Cluster Computing

and the Grid (CCGrid), Rio de Janeiro - Brazil, May 2007

Abhinav Vishnu, Amith R Mamidala, Sundeep Narravula and Dhabaleswar K
Panda “Automatic Path Migration over InfiniBand: Early Experiences”, Third

International Workshop on System Management Techniques, Processes, and Ser-
vices, to be held in conjunction with IPDPS ’07, March 2007

Abhinav Vishnu, Prachi Gupta, Amith R Mamidala, and Dhabaleswar K Panda.

“A Software Based Approach for Providing Network Fault Tolerance in Clusters
with uDAPL interface: MPI Level Design and Performance Evaluation”, Super-

computing, SC 06

viii

Amith R Mamidala, Abhinav Vishnu and Dhabaleswar K Panda. “Shared Memory
and RDMA based design for MPI Allgather over InfiniBand”, EuroPVM/MPI

Conference, 2006

Amith R Mamidala, Lei Chai, Hyun-Wook Jin and Dhabaleswar K Panda. “Ef-
ficient SMP-Aware MPI-Level Broadcast over InfiniBand’s Hardware Multicast”,

Workshop on Communication Architecture for Clusters, IPDPS 2006

Jiuxing Liu, Amith R Mamidala and Dhabaleswar K Panda. “Performance Eval-
uation of InfiniBand with PCI-Express”, IEEE Micro, 2005

Amith R Mamidala, Hyun-Wook Jin and Dhabaleswar K Panda. “Efficient Hard-

ware Multicast Group Management for Multiple MPI Communicators over Infini-

Band”, EuroPVM/MPI Conference 2005

Sayantan Sur, Uday Bondhugula, Amith R Mamidala, Hyun-Wook Jin and Dha-
baleswar K Panda. “High Performance RDMA Based All-to-all Broadcast for

InfiniBand Clusters”, International Conference on High Performance Computing,
HiPC 2005

Abhinav Vishnu, Amith R Mamidala, Hyun-Wook Jin and Dhabaleswar K Panda.

“Performance Modeling of Subnet Management on Fat Tree InfiniBand Networks
using OpenSM”, Workshop on System Management Tools for Large-Scale Parallel

Systems, IPDPS 2005

Amith R Mamidala, Jiuxing Liu and Dhabaleswar K Panda. “Efficient Barrier
and Allreduce on InfiniBand clusters using Hardware Multicast and Adaptive al-

gorithms”, International Conference on Cluster Computing, Cluster 2004

Jiuxing Liu, Amith R Mamidala and Dhabaleswar K Panda. “Fast and Scalable

MPI-Level Broadcast using InfiniBand’s Hardware Multicast Support”, Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2004

Jiuxing Liu, Amith R Mamidala and Dhabaleswar K Panda. “Performance Eval-

uation of InfiniBand with PCI-Express”, Hot Interconnects: Symposium on high
performance interconnects, HOTI 2004

Jiesheng Wu, Amith R Mamidala and Dhabaleswar K Panda. “Can NIC mem-

ory in InfiniBand Benefit Communication Performance?: A Study with Mellanox
Adapter”, Technical report, OSU-CISRC-4/04-TR20

ix

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Computer Architecture Prof. Dhabaleswar K. Panda
Computer Networks Prof. Dong Xuan
Software Systems Prof. Srini Parthasarathy

x

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Figures . xv

Chapters:

1. Introduction . 1

2. Background and Motivation . 6

2.1 MPI Collective Communication 6

2.1.1 Important Collective Operations in MPI 6
2.1.2 Salient Issues and Requirements for MPI Collectives . . . 8

2.1.3 Collective Algorithms . 14

2.2 Trends in Interconnect and Multicore Systems 17
2.2.1 InfiniBand Architecture Overview 17

2.2.2 InfiniBand Transport Services 20
2.2.3 Send/Recv and RDMA 21

2.2.4 Hardware Multicast in InfiniBand 23
2.2.5 Multicore Architecture . 25

3. Problem Statement . 26

xi

4. Methodology . 32

4.1 Research Approaches . 32
4.2 Collectives in MVAPICH . 39

5. Reliable Multicast . 41

5.1 Reliability protocol for IBA’s H/W Multicast 41
5.1.1 Basic Design . 42

5.1.2 Sliding-Window Based Design 43
5.1.3 Avoiding ACK Implosion 44

5.1.4 Benefits and Usage . 47

5.2 Managing MPI Communicators and H/W Multicast Groups . . . 48
5.2.1 Communicator Creation Mechanism 48

5.2.2 Basic Protocol for H/W Multicast Group Management . . 49
5.2.3 Lazy Approach for improved overlap 51

5.2.4 Multicast Group Pool Based Design 52
5.2.5 Performance Evaluation 53

5.3 Relation to Existing Work . 56
5.4 Summary . 58

6. Efficient Data Transfer Mechanisms . 59

6.1 High Concurrency RDMA-based AlltoAll 59
6.1.1 Detailed Design . 59

6.1.2 Performance Evaluation 63
6.2 RDMA and Shared Memory based Collectives 65

6.2.1 Design and Implementation 65

6.2.2 Performance Evaluation 68
6.3 H/W Multicast with Shared Memory 71

6.3.1 Why Hardware Multicast is not enough? 71
6.3.2 Shared Memory based MPI Bcast 73

6.3.3 Performance Evaluation 78
6.4 Summary . 83

7. Skew Tolerant Algorithms . 85

7.1 Design of the Adaptive Algorithm 85
7.1.1 Basic Idea . 85

7.1.2 Deciding the root of the tree 87
7.1.3 RDMA approach to handle the Token and Acks 88

7.1.4 Avoiding Race conditions 89

xii

7.1.5 Reliability . 89
7.1.6 Flow control . 90

7.1.7 Related Work . 90
7.2 Performance Evaluation . 91

7.3 Summary . 102

8. Performance and Memory Scaling . 103

8.1 Designing Alltoall over UD . 103

8.2 Evaluating Performance and Memory Trade-offs 105
8.3 New IBA primitives . 109

8.3.1 RDMA Emulation over UD 109

8.3.2 Performance Evaluation 113
8.4 Summary . 115

9. Architecture Driven Optimizations . 116

9.1 Communication in Multicores . 116
9.2 Multicore Optimizations . 120

9.2.1 Optimized MPI Bcast and MPI Allgather 120
9.2.2 Optimized MPI Allreduce 122

9.2.3 Optimized Shared Memory MPI Alltoall 124
9.2.4 Related Work . 125

9.3 Performance Evaluation . 126
9.3.1 MPI Bcast Latency . 126

9.3.2 MPI Allgather Latency 127
9.3.3 MPI Allreduce Latency 129

9.3.4 MPI Alltoall Latency . 130

9.4 Summary . 131

10. Open Source Software Release and its impact 132

11. Conclusions and Future Work . 133

11.1 Research Summary . 134

11.1.1 New Communication Protocols 134
11.1.2 Efficient Data Transfer Methods 134

11.1.3 Achieving Skew Tolerance 136
11.1.4 Issues in Performance and Memory Scaling 136

11.1.5 Architecture Driven Optimizations for Multicores 137
11.2 Future Work . 138

xiii

Bibliography . 140

xiv

LIST OF FIGURES

Figure Page

1.1 Cluster Architecture . 2

2.1 Typical MPI Collective Designs . 10

2.2 Impact of Process Skew . 11

2.3 Multicore Architecture . 13

2.4 InfiniBand Architecture (Courtesy InfiniBand Trade Association) . 18

2.5 InfiniBand Protocol Stack (Courtesy InfiniBand Trade Association) 19

2.6 InfiniBand Transport Models (a) Send/Recv Model, (b) RDMA Model 22

2.7 InfiniBand Hardware Multicast (Courtesy InfiniBand Trade Associ-
ation) . 23

3.1 Broad Theme . 27

4.1 Broad Overview . 33

4.2 MVAPICH Design Overview . 39

5.1 Sliding Window Buffer Management 43

5.2 Co-Root Scheme . 46

5.3 Mapping between IBA Multicast Groups and MPI Communicators . 49

5.4 Multicast Group Setup Operations 49

xv

5.5 Tuning of Multicast Testing . 54

5.6 Overhead of Basic Multicast Group Operations 54

5.7 Effective Latency with Collectives 16 processes 55

5.8 Effective Latency with Collectives 32 processes 55

5.9 Effective Latency with Computation and Collectives 16 processes . 57

5.10 Effective Latency with Computation and Collectives 32 processes . 57

6.1 Zero Copy over Channel Semantics 60

6.2 High-concurrency AlltoAll . 62

6.3 (a) Concurrent vs Serial (b) RDMA vs Send/Recv 65

6.4 Steps 0,1 . 67

6.5 Steps 2,3 . 67

6.6 Cluster A:(16x2) . 70

6.7 Cluster A:(32x2) . 70

6.8 Cluster B:(16x2) . 70

6.9 Cluster B:(32x2) . 70

6.10 Cluster A:(32x2) . 70

6.11 Cluster B:(32x2) . 70

6.12 Operational principle of IBA Hardware Multicast 71

6.13 MPI Bcast Latency with IBA hardware multicast on two system

configurations of 8 nodes . 72

xvi

6.14 Comparison between inter-node and intra-node Point to Point La-
tency . 73

6.15 Leader-based design . 75

6.16 Dynamic Attach Policy . 76

6.17 Broadcast Latency, Cluster A: (a) 4x2 (b) 8x2 (c) 16x2 79

6.18 Broadcast Latency, Cluster A: (a) 8x2 (b) 16x2 79

6.19 Broadcast Latency, Cluster B: (a) 8x2 (b) 16 processes 80

6.20 Impact of Dynamic Attach on Broadcast Latency when Leaders ar-
rives late . 80

7.1 Adaptive vs Nonadaptive algorithm 87

7.2 Combining trees for barrier and allreduce 92

7.3 Average Latency: (a) MPI Barrier (b) MPI Allreduce 94

7.4 Synchronization Delay: (a) MPI Barrier (b) MPI Allreduce 97

7.5 Single node arrives late: (a) MPI Barrier (b) MPI Allreduce 98

7.6 Two nodes arrives late: (a) MPI Barrier (b) MPI Allreduce 100

7.7 Single node arrives late, Barrier . 100

8.1 Basic Performance (a) Latency (b) Bandwidth 105

8.2 (a) Queue Pair Memory requirements, (b) RC Multiple QPs 106

8.3 (a)Hybrid algorithm . 107

8.4 UD Collectives (a) Small messages (b) Medium messages 107

8.5 Emulating RDMA over UD . 110

8.6 Emulating RDMA Read over UD (a) Latency (b) Bandwidth 113

xvii

8.7 Emulating RDMA Write over UD (a) Latency (b) Bandwidth . . . 114

9.1 (a)Send-Recv latency test . 117

9.2 (a)Effects of L2 cache sharing (b)Intra-node Reductions (c)Scheduling

communication over HyperTransport 118

9.3 Broadcast . 121

9.4 Optimized shared memory allreduce schemes 124

9.5 Bcast Latency:(a) 64X4 (b) 64X8 (c) Effect of Cache on 4 nodes . . 128

9.6 (a)Allreduce:Opteron, NUMA (b)Allreduce:Intel Clovertown (c)Scheduling

in Alltoall . 128

9.7 Allgather Latency . 129

9.8 Matrix Multiplication . 130

xviii

CHAPTER 1

INTRODUCTION

High Performance Computing is rapidly making inroads into diverse disciplines

from all walks of life. The availability of significant and cheap compute power is

accelerating the frontiers in basic sciences, technology, manufacturing and even

making profound impact in the entertainment, financial sectors. One of the major

factors contributing to this phenomenon is the increasing use of high-end supercom-

puters built from commodity components. This paradigm of parallel computing,

also known as Cluster Computing, has gained enormous popularity and usage. In

fact, the Top 500 list of supercomputers feature hundreds of large scale clusters

delivering massive amounts of computational power. The easy availability of low

cost commodity PCs together with scalable and high performance interconnection

networks is making Compute Clusters more affordable and cost-effective.

Figure 1.1(a) summarizes a typical cluster comprising of compute nodes inter-

connected by a network. As shown in the figure, each of the compute nodes can

contain more than one processing elements. Interconnecting hundreds or thou-

sands of these nodes is the cluster interconnect. There exists many approaches

to program applications for these architectures. One of the most popular and

successful programming model is to parallelize an application into several distinct

1

TECHNOLOGY
NETWORK MULTICORE

ARCHITECTURECLUSTER INTERCONNECT

N/W INTERFACEN/W INTERFACE N/W INTERFACE

COMPUTE COMPUTE COMPUTE
NODE NODE NODE

P2 P3

P1P0

P6 P7

P5P4

P9P8

P10 P11 P22 P23

P21P20

P14

P12 P13 P16 P17

P18 P19P15

ARCHITECTURE
CLUSTER

PARALLEL APPLICATIONS

PRIMITIVES
MPI

Collective

One−sided

Point−to−Point
Operations Operations

Operations

a) CLUSTERING PARADIGM b) COMMUNICATION STACK

Figure 1.1: Cluster Architecture

processes with each of the processes potentially running on separate processing

elements. These processes perform computation on their individual address spaces

and explicitly exchange data by communicating via messages. The semantics of

the communication are standardized and adopted as the well known Message Pass-

ing Interface or MPI. MPI provides an easy, powerful and portable abstraction for

exchanging data between processes. As shown in Figure 1.1(b), MPI functions

as a communication middleware hiding the details of the underlying network or

system architecture. It is the critical component bridging the gap between the

hardware and the communication requirements of the application. MPI exposes

a plethora of communication calls to the application. In order to achieve high

parallel speed-ups it is important that, firstly the applications choose these oper-

ations intelligently and secondly, these operations in turn be designed to scale to

thousands of processes and deliver best performance.

2

Broadly, the MPI operations can be divided into three main classes: (a) Point-

to-Point primitives (b) Collective primitives and (c) One-sided primitives. Out

of these, the collective operations are especially significant as these provide sim-

ple and manageable methods of moving data between group of processes. Infact,

these operations form the communication core of many application codes. As an

example, FT and IS exclusively use MPI AlltoAll personalized collective communi-

cation calls in their compute kernels. Further, certain operations like MPI Reduce,

MPI Allreduce also permit global reductions on the data sets. The rationale for

providing a separate set of collectives rather than using the available Point-to-Point

primitives is to ensure high performance and scalability. This can be accomplished

either by using optimal collective algorithms or by taking advantage of the underly-

ing network features. For instance, in some of the high performance interconnects

certain collective primitives are offloaded to the network hardware. One example

of this would be hardware supported multicast operation where a data packet in-

jected into the network is replicated and sent to multiple destinations. As discussed

earlier, it is important that MPI designs leverage such primitives and efficiently

transfer the raw capabilities of underlying network and system architectures to the

application.

Recently, two popular trends have ushered in an era of peta-scale computing

in commodity clusters. The first significant factor being the advent of Multicore

architecture. Due to the physical limitations of increasing clock-rates, the recent

trend of Multicore technology is to substitute a single high clocked processor with

multiple low-frequency compute cores. There could be tens of these cores on a

single node. For example, the Barcelona Multicore chip from AMD already has

3

16 cores on a single node and many more cores are planned to be added in their

next generation processors. The other trend is the rapid proliferation of Infini-

Band Architecture (IBA) [18]. Good scalability together with high performance

has made IBA a popular choice of clustering thousands of processing cores. In

addition to delivering low latency and high bandwidth, IBA provides a rich set of

network primitives like Remote Direct Memory Operations (RDMA), hardware-

level Multicast and Send/Shared-Receive Queue capabilities over different message

transports. These two technology drivers are enabling peta-scale capable clusters

comprising of tens of thousands of cores. Infact, the recent induction of Ranger [41]

with 3936 nodes each having 16 cores (totaling 62,976 cores) exemplifies this phe-

nomenon.

As discussed above, MPI plays a pivotal role in harnessing the capabilities of

these ultra-scale clusters. As MPI provides the necessary communication interface

to the applications, it becomes imperative that the MPI primitives be scalable

and channel the hardware capabilities efficiently to the application while adding

very low overheads. This is true especially with MPI Collective operations whose

designs are intricately intertwined with underlying parallel architecture of the sys-

tem. Moreover, Collective operations are realized using communication algorithms

which need to take into account application requirements and characteristics such

as load imbalances, communication behavior, etc.

The main objective of this thesis is to design a “Scalable Collective Communi-

cation Subsystem in MPI for the Next-generation Multicore InfiniBand clusters”.

The central goals are to:

• Leverage IBA mechanisms to build efficient and scalable MPI collectives

4

• Understand the impact of multicore architecture on collectives and design

communication algorithms accordingly

• Take into account application’s characteristics and behavior to propose

a) new collective algorithms and b) new network primitives

In the following chapters of this dissertation, we describe the detailed solutions

to achieve these objectives. Specifically, Chapter 2 discusses the background and

motivation of our research. We describe the salient issues and challenges in MPI

collective communication followed by the trends in network and system architec-

tures. The chapter also outlines the architecture of InfiniBand and its capabilities

followed by a brief overview of Intel and AMD multicore platforms. Chapter 3

describes the problem studied in this dissertation. We provide the broad method-

ology for the research pursued in Chapter 4. Chapters 5 through 9 describe the

detailed designs, experiments conducted and evaluations of the proposed designs.

Chapter 10 provides an overview of the open source MVAPICH distribution. We

conclude the dissertation with Chapter 11 summarizing the contribution of the

research undertaken and the new research directions that can be pursued in the

future.

5

CHAPTER 2

BACKGROUND AND MOTIVATION

In this chapter, we first provide an overview of MPI Collective Communication.

We discuss the salient issues and requirements in designing collective operations in

MPI, standard collective algorithms used and their limitations. We then describe

the current trends in InfiniBand interconnect technology and Multicore architec-

ture.

2.1 MPI Collective Communication

We begin this section by describing the semantics of the different collective

operations in MPI.

2.1.1 Important Collective Operations in MPI

MPI allows for a variety of collective operations. The important collectives

together with their operational semantics is explained below.

• Allreduce: This operation performs both computation and communication of

data. In Allreduce, each process supplies a vector of data. This data can be

of any type, e.g. an integer. Also, the data may be stored in non-contiguous

chunks in memory. After the operation is complete, each process receives

6

a result vector which is the reduction of the vectors from all the processes

participating in the collective. This primitive is extensively used in many

scientific applications like Parallel Ocean Modeling (POP) [22], etc.

• Reduce: The semantics of this operation are the same as that of Allreduce

except that after the operation is complete, not all the processes receive

the resulting vector. Only one process, called as the root of the collective,

receives the final data.

• Broadcast: This is a data moving primitive. In this collective, the root

process supplies a vector of data. After the operation is complete, all the

processes in the collective receive this vector of data. Once again, the data

can be of any type and non-contiguous. This is true for all the collectives

explained in this section except Barrier synchronization. An efficient im-

plementation of Broadcast can be used in all the major collectives such as

Allreduce, Barrier, etc.

• Alltoall: This important collective is a personalized operation. In this op-

eration, each process sends a distinct vector of data to each of the other

processes. As the semantics state, this collective is a data intensive opera-

tion. The communication kernels of applications like FFT [28] use Alltoall

exclusively.

• Allgather: Like Alltoall, this operation is also data intensive. However, this

operation involves an alltoall broadcast of data. In this collective, each pro-

cess supplies a vector of data which is broadcasted to everyone else. This is

heavily used in matrix multiplication kernels.

7

• Barrier: Unlike all the other collectives described above, barrier is a syn-

chronization operation. The semantics of this operation state that a process

can complete a barrier only after all the other processes have invoked this

operation.

2.1.2 Salient Issues and Requirements for MPI Collectives

MPI offers various collective routines with different functionality and communi-

cation patterns. As discussed earlier, efficient and scalable implementation of these

collective operations is critical for achieving superior application performance. This

raises several interesting challenges and requirements that need to be thoroughly

understood and carefully evaluated for achieving the desired objective. In this

chapter, we provide an overview of these issues. In subsequent chapters, we explain

how to meet these requirements on modern multicore clusters using the popular

interconnect, InfiniBand.

We now describe the salient issues and requirements for MPI Collectives on

emerging multicore clusters:

a) Efficient Communication Protocols:

As explained earlier, MPI specifies different collective operations having dis-

tinct communication semantics and patterns. Further, MPI guarantees data reli-

ability. In other words, after the MPI collective operation returns, the final data

in the message buffers is correct and is from the same source that the application

is expecting. Apart from efficient collective algorithms, the onus to deliver the

data reliably with low overhead lies on the data transfer protocols. Most modern

networks like Quadrics, Myrinet and recently InfiniBand, have advanced network

8

primitives for unicast (one-to-one) and multicast (one-to-many) communication.

Collective algorithms can utilize these primitives for obtaining the best perfor-

mance. For most of these primitives, the data reliability is handled by the network

stack. For example, checking data correctness by doing checksum calculations is

handled by the network hardware. However, they may not provide guarantees in

data delivery for some cases. This is true with some of the transports of Infini-

Band. In such scenarios, the MPI middleware should guarantee the necessary data

reliability via robust protocols.

In MPI, communication occurs within groups of processes called as commu-

nicators. Each communicator has a distinct context so that messages from one

communicator don’t interfere with the other. It is the responsibility of the MPI

layer to manage these multiple communicators efficiently, especially for the col-

lective functions. This management can potentially involve interactions with the

network management modules. So, it is important that all these activities proceed

in a non-obtrusive manner to the application.

b) Fast Data Transfer Methods:

Figure 2.1 illustrates the general methodology adopted in typical MPI designs

for collective communication. The basic approach is to layer collectives over the

existing point-to-point MPI primitives. In the figure two such blocks are shown, one

for communication across the nodes and the other for communication within the

node. The collective algorithm optimally chooses the point-to-point calls in order

to make progress with the least communication steps and/or communication time.

However, as shown in the figure, data copies are not avoided. For example, there

are separate set of buffers (A and C) used by the point-to-point communication

9

substrate differing from the set of buffers (B and D) used by the underlying data

transfer layers.

A very desirable approach would be to avoid the extra set of buffers (A and C)

used in the above scenario. Staging and copying the buffers is a costly operation

potentially consuming CPU resources and system memory. In order to enable fast

data movement in a collective operation these extraneous costs need to be avoided.

These could be avoided in two possible ways: 1) Bypass the point-to-point layer and

2) Integrate the disjoint sets of the two point-to-point communication operations

into a unified collective layer.

Buffer: A

Buffer: B Buffer: D

Buffer: C

(via Memory Copies)

COMMUNICATION
INTRA−NODE

POINT−TO−POINT
OPERATIONS

MPI COLLECTIVE OPERATIONS

POINT−TO−POINT
OPERATIONS

(via Network Transports)
COMMUNICATION
INTER−NODE

1

2

Figure 2.1: Typical MPI Collective Designs

c) Process Skew in Collective Communication:

A collective function is called by all the processes. The standard communication

algorithms for collective which define the schedule of data transfers assume that

all the processes arrive at the same time. For example, Figure 2.2(a) shows the

schedule for barrier synchronization. The algorithm described uses two phases:

gather phase followed by a broadcast phase. This approach has been well studied

10

in literature [20] and used in different scenarios. As shown in the figure, there are

three steps in this collective. In the first step, the leaf processes send a message

to their parents. In the second step, the message is forwarded to the root. Once

the root receives the messages from both its children, it releases all the processes.

This is the final step in the collective. These algorithms work optimally if all the

processes arrive very close to each other. Figure 2.2(b) elucidates the scenario

if one of the leaf process arrives late. As seen from the Figure 2.2(c), it takes

additional two steps before the message receives the root. The message from other

process has been already forwarded to the root. Thus, the schedule mentioned

above is not optimal when the processes are skewed in an application.

Process skew is common on large scale clusters and as shown in [33] little

system noise can potentially alter the arrival patterns of the processes. Thus, for

obtaining best performance, it is important that skew be factored into the design

of the communication algorithm.

22 2

3

11

3
2

1 1

3 3

a) Every one arrives synchronously b) One process arrives late
releasing everybody

c) Additional two hops before

Figure 2.2: Impact of Process Skew

11

d) Performance and Memory Scaling:

One important criterion for any collective primitive design is the amount of

memory consumed for a given performance margin. As the system scale increases,

this issue gains high prominence as the application may allocate significant chunks

of memory for communication straining available resources. This adversely affects

the performance of the application. A best example of such scenario is the alltoall

collective where each process communicates with all the other processes leading to

a potential O(n) usage of communication resources. The underlying message trans-

port protocols play a key role in determining the resource consumption behavior.

In order to enable good scaling, it is important that efficient transport methods

be used. Moreover, the memory usage needs to be studied in conjunction with

the performance obtained. Also, different collectives have varying communication

patterns stressing the communication subsystem in separate ways. Thus, it is im-

portant to understand, in detail, the requirements placed on the system resources

by a given collective primitive keeping into account the performance differences.

e) Collectives on Multicore Architectures:

Recently, owing to the physical limitations in speeding up clock rates there

has been a paradigm shift in computing technology. Instead of a high clocked

processing core, the trend is towards deploying several of them albeit with a lower

frequency clock. The key to efficiently use these new breed of processors is to

extract parallelism from the application. There are several flavors of multicore

architecture emerging in the computing arena. As described below, the architecture

of these machines can directly influence the performance of a collective operation.

12

CO
N

TR
O

LL
ER

NIC

M
EM

O
RY

M
EM

O
RY

M
EM

O
RY

NIC

a) Unified Architecture: Not Very Scalable b) Distributed Architecture: Scalable

CO
N

TR
O

LL
ER

CO
N

TR
O

LL
ER

L2

L2

L2

L2

L2

L2

Figure 2.3: Multicore Architecture

Figure 2.3 shows two broad strategies deployed in current multicore processors.

One of them exhibits a unified architecture which limits the scalability but is sim-

ple to design. But, a distributed approach is more scalable incurring increased

complexity for the design and fabrication. However, the trend is towards the latter

approach as more and more cores are added to a single chip or socket. Collective

communication within a node and across multiple processing cores usually com-

prises of multiple processes accessing shared data items in the memory. In such

scenarios, depending on the underlying architecture, hot-spots could arise in the

chip. These hot-spots could be either due to accessing the same cache/memory

block or due to contention in the communication links or the bus on the chip. An

in depth understanding of the multicore architecture is crucial to optimally design

and tune the collective algorithms.

13

2.1.3 Collective Algorithms

We now provide an overview of all the important collective algorithms referred

in this thesis. We also explain the basic limitations of these algorithms in meeting

the requirements stated earlier.

Standard Algorithms for MPI Collectives

In this section, we present the standard algorithms in literature that are used to

design MPI collectives. The details of this algorithms can be found in [42, 15, 8].

• Pair-wise, Hypercube: In this algorithm, the participating processes are ar-

ranged as the corners of an n dimensional hypercube where n = log(p), p is

the number of processes. The algorithm comprises of n steps where in step i

processes exchange data in dimension i. This algorithm is applied for doing

collective reductions. The data that is exchanged in ith step is obtained by

reducing the data of a process with that obtained from its neighbor in step

i − 1.

• Recursive Doubling, Hypercube: This algorithm is similar to the one discussed

above. It also performs log(p) steps but instead of reducing the data, it is

appended. In other words, the data that is exchanged in ith step is obtained

by appending the data of a process with that obtained from its neighbor in

step i− 1. This is used for doing an Allgather or AlltoAll broadcast of data.

• Dissemination Algorithm: This algorithm is used for barrier synchronization.

The basic idea is that process a sends a message to process b = (a +2i) mod

p in step i. It then waits for a message from process (a+p−2i) mod p. This

14

algorithm also takes dlog(p)e steps but the number of processes can be either

even or odd. The Hypercube algorithms require the processes to be even.

• Bruck’s Algorithm: This algorithm is similar to Hypercube algorithm and

comprises of n = log(p) steps. The data from a given process is routed along

n hops and incurs the cost of storing and forwarding the message. It is used

for doing Alltoall personalized communication for short messages.

• Pair-wise, Linear: For large messages, Alltoall personalized uses a linear

pair-wise exchange algorithm which consists of (n − 1) steps. In step i, the

process with rank r sends and receives data from process with rank r ⊕ i.

• Direct Algorithm: In this algorithm, each process directly sends messages

to all the other processes. This is used for medium messages in Alltoall

personalized communication. Messages are scattered so that not all messages

are directed towards a node to avoid congestion and hot-spot effects. A

simple rule could be for a process r to send the ith message to process whose

rank is (r + i)%p.

• Large Vector Algorithms: The basic idea in large vector algorithms is to

maximally utilize all the communication links in the network. For example,

a large message broadcast can be split into two phases. In the first phase,

the message can be scattered across all the processes. In the next phase,

the separate fragments are broadcast parallely. Similar approach is taken

for Reduce/Allreduce. A Reduce-scatter is first done followed by Gather in

Reduce and Allgather in Allreduce.

15

Limitations in current approaches

The algorithms described above are not enough to meet the requirements or

address the issues explained in the beginning of this chapter. The reasons are as

follows. All these algorithms are based on sending point-to-point messages i.e. at

any given step, only two processes send or receive messages from one another. Mod-

ern networks provide the capability of sending a message to multiple nodes in one

operation. This primitive called as multicast is supported in major interconnection

networks. This capability cannot be leveraged by the standard algorithms. Thus,

specialized approaches are necessary. Another reason why the above algorithms

are not efficient is because they assume each process to be running on separate

nodes. As described earlier, the evolution of multicores is enabling more cores

per node. The locality of the processes is an important parameter that cannot be

ignored while attempting to avoid the extraneous copying in a collective. Another

important reason to have specialized algorithms is because the standard algorithms

are oblivious to the transport protocols used by the network. This would result

in incorrectly ascertaining the resource requirements and performance trade-offs

for a given message transport. On a large scale cluster, this issue is of paramount

importance. Moreover, these algorithms do not consider into account the archi-

tecture of multicores. Since collectives are directly impacted by the underlying

architecture, new specialized algorithms are necessary. Finally, all the above algo-

rithms are designed assuming that there is very little process skew in the system.

These do not adapt well in varying skew conditions. Hence, there is a need for new

and improved designs for collective operations and algorithms.

16

2.2 Trends in Interconnect and Multicore Systems

In this section, we provide an overview of the InfiniBand Architecture and its

features. Specifically, we explain the different communication semantics provided

by IBA and the associated transports on which these are based on. Further, we

also provide an overview of Multicore architecture and the recent systems from

Intel and AMD.

2.2.1 InfiniBand Architecture Overview

InfiniBand Architecture (IBA) [18] is an industry standard that defines a Sys-

tem Area Network (SAN) to design clusters offering low latency and high band-

width. As shown in Figure 2.4, a typical IBA cluster consists of switched serial links

for interconnecting processing nodes and the I/O nodes. The processing nodes are

connected to the fabric by Host Channel Adapters(HCA). HCA’s semantic inter-

face to the consumers is specified in the form of IB Verbs. The interface presented

by Channel Adapters to consumers belongs to the transport layer. A queue-pair

based model is used in this interface. Each Queue Pair is a communication end-

point. This can be seen in Figure 2.5. A Queue Pair consists of a send queue and

a receive queue. Two QPs on different nodes can be connected to each other to

form a logical bi-directional communication channel. An application can have mul-

tiple QPs. Communication requests are initiated by posting descriptors (WQRs)

to these queues. InfiniBand supports different classes of transport services. These

are explained in the following section.

17

Figure 2.4: InfiniBand Architecture (Courtesy InfiniBand Trade Association)

18

Figure 2.5: InfiniBand Protocol Stack (Courtesy InfiniBand Trade Association)

19

2.2.2 InfiniBand Transport Services

IBA provides for five transport services:

• Reliable Connection (RC)

• Unreliable Connection (UC)

• Reliable Datagram (RD)

• Unreliable Datagram (UD)

• Raw Datagram

Except for RD, the current generation IBA adapters provide the support for all

the other transport services. We now provide brief overview of the two relevant

transports used in our study: Reliable Connection and Unreliable Datagram.

Connection-Oriented Reliable Connection (RC): IBA specifies the RC

transport layer as a reliable communication layer. In this transport layer a con-

nection needs to be established between two QPs, one on each node, before the

data transmission. After connection establishment, the communication packets are

completely managed by the RC transport layer. A message to be sent is broken

down into required number of network MTUs and each of the packet is sent across

the network. Further, the RC transport manages the reliability and ordering of

all the network packets and delivers the message by combining all the packets at

the remote end. However, the number of connections and thus the number of QPs

required grows quadratically with the number of participating processes.

Connection-Less Unreliable Datagram (UD): The basic communication

is achieved in the UD layer by exchanging network MTU sized datagrams. These

20

datagrams can be sent to a UD QP by any other UD QP in the network. An

explicit connection between the two QP’s is not needed. Messages larger than

the MTU size need to be broken down into multiple MTU sized messages before

they can be sent over the network using an UD QP. The reliability and order of

delivery of these datagrams is not guaranteed by IBA and needs to be managed

by the application. But, compared to RC, only one QP is enough for all processes

to communicate with each other.

Communication Context Caching at the NIC: To achieve good efficiency,

critical data pertaining to the communication context is often cached at the NIC.

The amount of data that needs to be cached is dependent on the type of transport

used. For the connection-oriented transport, the NIC maintained cache called as

ICM is used to store the queue pair context and completion queue information. It

is also used to cache the latest address translation information of the buffers used.

In the case of connection-less transport, the demand on the cache resources is much

less as one queue pair is enough to communicate with any process in the network

unlike the connection-oriented case which needs a QP for each pair of nodes.

2.2.3 Send/Recv and RDMA

IBA supports two types of communication primitives: Send/Recv with Channel

Semantics and RDMA with Memory Semantics.

In channel semantics, each send request has a corresponding receive request at

the remote end. Thus, there is a one-to-one correspondence between every send

and receive operation. Receive operations require buffers posted on each of the

communicating QP, which amount to a large number. In order to allow sharing

21

of communication buffers, IBA allows the use of Shared Receive Queues (SRQ).

SRQs allow multiple QPs to have a common Receive Queue.

In memory semantics, Remote Direct Memory Access (RDMA) operations are

used. These operations do not require a receive descriptor at the remote end and

are transparent to it. For RDMA, the send request itself contains the virtual

addresses for both the local transmit buffer and the receive buffer on the remote

end. The RDMA operations are available with the RC Transport. IBA also defines

an additional operation: RDMA write with immediate data. In this operation, a

sender can send a limited amount of immediate data alone with a regular RDMA

operation.

Figure 2.6 shows the basic working of both the RDMA and the Send/Recv

models. The main steps involved are labeled with sequence numbers. The main

difference between the two is the requirement of posting a receive descriptor for

the send/recv model. It is to be noted that the current IBA specification supports

channel semantics for RC and UD. However, RDMA is not provided over UD but

supported in RC.

QP
WQEs

QP

PORT

QP
WQEs

QP

PORT

1

IB − FABRIC

DATA

HCA

DATA

HCA

CPU CPU

MEMORYMEMORY

2

3

QP
WQEs

QP

PORT

QP
WQEs

QP

PORT

IB − FABRIC

DATA

HCA

DATA

HCA

CPU CPU

MEMORYMEMORY

1

2

Figure 2.6: InfiniBand Transport Models (a) Send/Recv Model, (b) RDMA Model

22

Figure 2.7: InfiniBand Hardware Multicast (Courtesy InfiniBand Trade Associa-
tion)

2.2.4 Hardware Multicast in InfiniBand

One of the notable features provided by the InfiniBand Architecture is hardware

supported multicast (H/W Multicast). It provides the ability to send a single

message to a specific multicast address and have it delivered to multiple processes

which may be on different end nodes. Although the same effect can be achieved by

using multiple point-to-point communication operations, H/W Multicast provides

the following benefits:

23

• Since only one send operation is needed to initiate the multicast, it greatly

reduces host overhead at the sender. By reducing this overhead, multicast

latency as seen by each receiver is also reduced.

• With H/W Multicast, packets are duplicated by the switches only when

necessary. Therefore, network traffic is reduced by eliminating the cases that

multiple identical packets travel through the same physical link.

• Since the multicast is handled by hardware, it has very good scalability.

However, in InfiniBand H/W Multicast operation is available only under the

Unreliable Datagram (UD) transport service. In UD, a connectionless communi-

cation model is used. Messages can be dropped or they can arrive out of order.

IBA Subnet Manager/Subnet Administrator: In InfiniBand, before mul-

ticast operations can be used, a multicast group which is identified by a multi-

cast address must be created. Creating and joining multicast groups is achieved

through the help of InfiniBand Subnet Manager (SM)/Subnet Administrator (SA).

The combined functionality of Subnet Manager and Subnet Administrator is re-

sponsible for computing the multicast forward tables for a given multicast group.

Communication to the SM/SA occurs via Management Datagrams called as MADs.

The nodes willing to be included in the multicast groups send MADs to the SM/SA

specifying the address of the group and other attributes like data rate and some

specialized keys. After receiving the MADs, the SM/SA compute the multicast

spanning tree and populate the relevant switches/routers in the fabric with routing

information.

24

2.2.5 Multicore Architecture

In this section, we provide an overview of Intel Clovertown and AMD Opteron

multicore platforms.

Intel Clovertown Architecture: We describe some of the important details

of Intel Clovertown multicore architecture [19] in this section. These chipsets

consist of dual sockets with quad cores in each of the sockets and a pair of adjacent

cores share a common L2 level cache of size 4MB. The cache coherency across

different L2 level caches is handled using bus based snooping MESI protocol [30].

Also, each of the socket has its own Front Side Bus (FSB) with a bus based snooping

protocol to handle cache coherency. To achieve scalability in terms of memory

bandwidth, Fully Buffered DIMM technology is used to design the memory system.

We provide a detailed evaluation of this architecture in the following sections of

the paper.

AMD Opteron Architecture: AMD multicore Opterons [2] are based on

NUMA architecture with each of the sockets sharing independent memories. The

number of cores in each of the sockets can vary from one to four with the lat-

est Barcelona systems. All of the cores have independent L2 caches. Point-to-

point HyperTransport links provide the required bandwidth scalability between

the cores. Further, these links are connected by a 2-D mesh topology providing

for scalable and less congestion-prone on-chip interconnection network.

25

CHAPTER 3

PROBLEM STATEMENT

MPI offers various collective routines with different functionality and communi-

cation patterns. It is important that these primitives provide optimal performance

and scale to hundreds or thousands of cores. InfiniBand, on the other hand, pro-

vides advanced communication primitives with varying semantics which are in turn

supported over different underlying transport protocols. Moreover, the emergence

of multicore technology has fueled the number of cores that can be deployed on a

single node. In this dissertation, we address the problem of designing MPI Collec-

tives for these high-end multicore clusters connected by InfiniBand. Specifically,

the objective of this dissertation is:

“How to design a Scalable and High Performance Collective Communication

Subsystem for MPI by: a) leveraging directly the advanced network primitives of

IBA together with their associated transports and b) taking into consideration the

architectural attributes of emerging multicores?”

Illustrated in Figure 3.1 are the different issues and requirements of MPI Col-

lective communication. As seen earlier, each of these components presents unique

challenges. Also, the advanced network features of InfiniBand together with sys-

tem capabilities provide good design opportunities to efficiently meet the stated

26

requirements. In this context, we describe the specific problems focused in this

dissertation.

Reliable
Multicast

Fast Data
Transfer

Tolerance to
Process Skew

Multicore
Optimizations

Performance and
Resource Scaling

MPI Collectives:

DESIGNS & OPTIMIZATIONS

H/W Multicast

Modes
IBA Transport

Management
IBA Subnet

RDMA

Issues in

Requirements and

Collective Communication

AMD and Intel
Multicore

Network Features & System

Characteristics

Figure 3.1: Broad Theme

The dissertation addresses the following questions:

(a) What new communication protocols are needed to provide Reliable

Multicast over IBA’s H/W Multicast?

IBA H/W Multicast offers a scalable and highly efficient mechanism of replicating

and delivering an MTU of data from a source process to a given set of destination

processes. This primitive can be leveraged to design efficient algorithms for col-

lective operations such as MPI Allreduce, MPI Barrier and MPI Bcast. However,

27

as described earlier, H/W Multicast poses its own suite of problems. Firstly, since

H/W Multicast is over UD, it is unreliable and supports only one MTU of data de-

livery at a time. Secondly, H/W Multicast occurs over multicast groups spanning

different nodes in the cluster. This leads to several issues involved in intelligently

managing the multicast groups in MPI. This is particularly important for MPI

which conceptually groups sets of participating processes in the collective into

communicator objects. Thus, to successfully deploy H/W Multicast, a reliable

multicast framework is essential requiring new communication protocols. These

protocols need to handle reliability, large message transport and also efficiently

manage H/W Multicast groups and MPI communicators.

(b) How can efficient Data Transfer Mechanisms eliminating extraneous

copy overhead be designed using RDMA and/or System features?

As explained earlier, the overhead of copy in collectives is owing to the following

major reasons: a) Extra set of buffers used to stage the data, b) Multiple transfer

methods using different set of buffers for the same data and c) Choice of collective

algorithm. RDMA provides the capability to directly access the application’s data

buffer. This provides ample scope for designing Zero-copy protocols. However,

Zero-copy is also possible using IBA’s Send/Receive. Thus, the advantages of using

RDMA need clear study and analysis. Also, RDMA together with System’s Shared

Memory abstraction can potentially avoid using multiple buffers streamlining data

transfers. Integrating these features to design a unified collective substrate presents

a challenge. Moreover, matching the underlying algorithms used in the above

components to the semantics of the collective greatly enhances the performance of

the operation and needs detailed investigation.

28

(c) What mechanisms can be provided to tolerate Process Skew lever-

aging Reliable Multicast and RDMA?

Apart from providing good scalability and performance, Reliable Multicast and

RDMA can also be used to design skew-tolerant algorithms. As mentioned earlier,

collective operations are typically prone to skew when the participating process

arrives out of step in a collective operation. Process skew hampers performance

especially when the intermediate nodes participating in the algorithm arrives late.

In such circumstances, the forwarding of the data is delayed until the particu-

lar process arrives at the collective. On the other hand, H/W multicast enables

efficient delivery of data MTUs without the involvement of host processes. The

challenging task is to effectively leverage this capability to design collective algo-

rithms that can tolerate process skew and also provide high performance using

RDMA. The problem poses issues such as how to capture the skew, how to adapt

dynamically to changing skew and how to deal with possible race conditions.

(d) What are the benefits of using the existing IBA network primi-

tives together with their associated transports for obtaining good per-

formance vis-a-vis amount of resources consumed and are better IBA

primitives required?

Collective operations differ in terms of their communication patterns. This directly

relates to the demand placed on the underlying network resources. For example, in

MPI AlltoAll each process communicates directly to all the other processes. This

would involve setting up connections to each process if RC transport is used, thus

consuming O(n) amount of memory. On the other hand, UD transport consumes

only O(1) memory, thus being highly efficient when memory usage is considered.

29

However, the performance of UD needs to be evaluated with respect to RC as the

latter is a connection-oriented transport while the former being connection-less.

Hence, it is imperative to carry out an in-depth evaluation of all the different

combinations and choose the optimal transport methods and primitives. However,

this is not straight forward, as in some cases performance may be penalized trying

to optimize memory consumption. Further, certain primitives may be supported

only by specific transport modes. This raises the question as to what kind of

algorithms need to be designed taking the above issues into consideration and are

new IBA primitives required which can provide scalability with good performance?

(e) What Architecture driven optimizations be proposed for emerging

clusters featuring Intel and AMD Multicore processors?

Recent designs of multicore processors feature various architectural attributes re-

sulting in several interesting ramifications. One such architectural feature is the

design of multi-level cache hierarchies. The two broad strategies deployed in the

current day multicores exist in processors from Intel and AMD. Intel processors

provide for a shared L2 cache where as AMD multicores deploy HyperTransport

links for quick data transfers. However, irrespective of these different hierarchies,

both the systems enable very fast sharing of data across the cores. Further, to scale

the bandwidth available to the coherency traffic, the cores are either connected via

multiple buses as in Intel or by 2-D mesh HyperTransport links. Apart from pro-

viding good data movement capabilities across the processing cores, the caching

hierarchies are useful in reducing the pressure on the memory bandwidth. This is

especially true for scenarios when concurrent network transactions and intra-node

communications occur. The effects of these multicore specific characteristics have

30

to be thoroughly understood in order to design optimal collective algorithms and

provide good application level performance.

31

CHAPTER 4

METHODOLOGY

In this chapter, we first explain the broad approaches used to solve the problems

mentioned above. We then provide an overview of MVAPICH software architecture

to understand the process of incorporating, evaluating and enhancing the designs

considered.

4.1 Research Approaches

We now explain the methodology used in the dissertation. Figure 4.1 explains

the basic framework for design and optimizing collective communication on In-

finiBand multicore clusters. In the following parts of this section, we provide an

overview of the research approaches pursued for each of the questions raised in the

earlier chapter.

Designing new communication protocols to provide Reliable Multicast:-

Reliability mechanisms can be designed by employing either Acks or Nack-

based approaches. In the Ack-based scheme, the receivers of a multicast message

send Acks to designated roots. These Acks are then processed and possible re-

transmissions dealt with. The Ack based scheme is useful for early detection

and re-transmission in case of packet losses. This feature is desirable in cluster

32

Send/Recv

Unreliable Datagram (UD)
(Connection−Less)

Reliable Connection (RC)
(Connection−Oriented)

H/W Multicast RDMA

(Emulated Memory Semantics)
RDMA over UDReliable Multicast

New Network Primitives

Hybrid
Transport
Algorithms

Collective Communication

Scheduling
Operations

Proposed Algorithms

Algorithms
Skew Tolerant

Algorithms
RDMA−based

Shared Memory
Algorithms

Multi−core and

AMD OpteronIntel Woodcrest

Optimizations
Architecture−Driven

InfiniBand Transport Mechanisms

Large Scale Applications

Integrated Inter− and Intra−node

Intra−Node CollectivesInter−Node Collectives

Figure 4.1: Broad Overview

33

computing where performance is heavily dependent on communication latencies.

The main issues which arise in the design are dealing with Ack-implosion and hot-

spot effects at the designated roots. Our approach to deal with this problem is to

deploy multiple “Co-Roots” aiding the main “Root” in reliability.

The second protocol for doing the H/W Multicast group management can be

accomplished by using a dedicated set of clients interacting with IBA Subnet Man-

ager (SM)/Subnet Administrator (SA). As seen from earlier section 2.2, the SM/SA

is responsible for calculating the multicast routing information and configuring the

routing tables in the fabric appropriately. The H/W multicast can proceed only if

these activities are successfully completed. To take into consideration delays due

to SM/SA, non-blocking mechanisms of group construction can be employed. In

such mechanisms, the creation of multicast groups can be initiated and appropriate

checks for the completion of the task can be performed at regular intervals.

The new communication protocols are discussed in detail in Chapter 5.

Providing Fast Data Transfer methods using RDMA and/or System

Features:-

RDMA provides mechanisms for a process to directly write into remote pro-

cess’s memory enabling Zero-copy protocols. Further, RDMA capabilities match

well with semantics of important collectives such as MPI AlltoAll leading to im-

proved performance. However, zero copy is also possible using the Send/Recv

mode of transport. This can be accomplished by employing separate channels for

every message source and preposting the receive descriptor pointing to the correct

destination buffer. There are two major drawbacks of using this approach. Firstly,

34

having separate communication channels leads to O(n) utilization of resources lim-

iting the scalability of the system. Mechanisms of having a single reception point

for the incoming messages (such as Shared receive Queue Support of IBA) are

needed to cater to meet the scalability requirements. However, this imposes or-

dering for the messages at the receiver due to the preposting of the descriptors.

Using RDMA overcomes all these limitations. However, separate synchronization

and exchange of application buffers’ addresses are needed to design collectives over

RDMA.

As the number of cores in each node rises steadily, it becomes particularly im-

portant to take into account shared memory as a means of communication within

a node. Several design challenges emerge while coupling shared memory based

intra-node communication with those of the network primitives discussed above

like RDMA and H/W Multicast. Two broad methods of integrating inter- and

intra-node collective communications can be investigated. The first method would

involve selection of multi-level collective algorithms targeting inter-node commu-

nication at the first level followed by memory sharing at the next level and in the

multi-core clusters, a third level comprising of cache sharing. The second method

would be a more tightly coupled subsystem possible by making the network buffers

shareable across the different processes.

Chapter 6 discusses the efficient data transfer techniques utlizing RDMA, H/W

Multicast and Shared Memory.

Designing Skew Tolerent Algorithms:-

An effective strategy to minimize the impact of process skew is to make the

topology used in the algorithm adapt to the skew pattern. The decision on which

35

topology to choose should be such that the nodes which arrive early do useful

work to absorb as much as possible the skew present in the system. Ideally, by

the time the last node arrives, most of the collective should have been done and

very less time is spent between the last node’s arrival and the release of all the

nodes. Please refer to Figure 2.2(a) which explains the problem with the current

approaches. This topology change can be dynamic where all the required steps to

change the topology are performed in one single barrier call as it progresses. Or

it could be semi-dynamic where the topology used in one collective is based on

the previous one. One drawback of the semi-dynamic scheme is that it assumes

that the skew pattern is fixed across the barriers. If this is not the case, it fails

to give good performance. The totally dynamic scheme does not rely on any such

assumption and is optimal in varying skew conditions. The dynamic change in

topologies can be applied to MPI Barrier, MPI Allreduce, MPI Bcast, etc.

As an example, a totally dynamic scheme for MPI Barrier can be designed

using a token-based combining tree approach. The idea of using the token is that

it can be progressively passed to the last arriving process in the tree. This process

holding the token becomes the root of the new combining tree and can release

all the nodes completing the barrier. This approach breaks the dependency on

the intermediate node arriving late. The efficiency of such approach needs to be

investigated for different scenarios with varying skew patterns.

The new design for skew tolerant collectives utilizing H/W Multicast and

RDMA is explained in detail in Chapter 7.

36

Understanding the benefits of current IBA mechanisms and investigat-

ing better primitives:-

As discussed earlier, IBA provides for connection-oriented and connection-

less transports. The connection-oriented transport can provide higher bandwidth

since the hardware handles message segmentation/re-assembly leading to improved

pipelining benefits. The connection-less transport on the other hand lacks in these

benefits. However, these transports need to maintain O(1) state compared to

connection-oriented transports. This affects the caching achievable at the NIC

influencing the performance of the collective operations. All these issues need

thorough analysis and careful study. The collective MPI AlltoAll can be bench-

marked keeping in mind all the scenarios discussed above. Also, as a trade-off

between performance and memory, a hybrid approach can be taken utilizing both

the transports. In these approaches, the amount of connections can be tuned so

as to bound the memory consumed. However, in these cases the performance can

be penalized.

As discussed in earlier sections, RDMA communication semantics can poten-

tially benefit collective operations. Further, collective operations such as AlltoAll

can be “broken down” into a series of one-sided operations to obtain overlap of

computation with communication. However, the use of RDMA is restricted by the

transport over which it is supported. connection-less UD transport can provide

good scalability compared to the connection-oriented RC but lacks in RDMA ca-

pabilities. In these scenarios, it becomes important to study the benefits of having

RDMA semantics over UD. Since the current specification of IBA does not allow

for RDMA over UD, RDMA emulation over UD is necessary to evaluate the merits

37

and demerits of such an approach. The software approach of emulating RDMA

over UD can potentially introduce additional overheads. Thus, supporting RDMA

over UD in hardware presents a promising scenario.

We present the complete analysis of the different trade-offs involved in using

different IBA transport mechanisms in Chapter 8. Further, we also describe the

new “RDMA over UD” primitive desired to provide performance and also ensure

good resource scalability.

Optimizing Collectives on Multicore platforms:-

As discussed earlier, multicore architecture presents several opportunities and

challenges in designing collective operations. Different architectures differ in the

manner in which individual cores communicate with each other. Thus, it becomes

important to understand these distinctions in detail and optimize the collectives

accordingly. The two mainstream multicore platforms are from Intel and AMD.

AMD deploys point-to-point Hyper-Transport technology for inter-core communi-

cation where as current generation Intel uses Bus-based approaches. Collective

algorithms differ in the way optimizations are carried out on these platforms.

For example, on the AMD nodes, more distributed approaches perform better

because of more data parallelism available unlike Intel. This affects collectives

such as MPI Allreduce which involve both computation and communication and

MPI Alltoall, which performs data transfers. Further, it is interesting to study the

interplay of cache-to-memory and memory-to-network data transfers in the context

of collective operations.

Chapter 9 discusses all the multicore optimizations for different collectives such

as MPI Allreduce, MPI Bcast, MPI Allgather and MPI Alltoall.

38

4.2 Collectives in MVAPICH

We now provide a high-level design overview of Point-to-Point and Collective

Communication support in the MVAPICH stack. MVAPICH is a popular MPI

over InfiniBand used worldwide. As shown in Figure 4.2, the software stack is

composed of three main components: a. Point-to-Point operations, b. Point-to-

Point based Collective operations and c. Optimized Collective Operations. These

are explained briefly below.

Memory
System SharedInfiniBand Primitives

Inter−node Intra−node
Communication

Optimized Collective

Communication
Point−to−Point based Collective

Point−to−Point Communication

Figure 4.2: MVAPICH Design Overview

Point-to-Point MPI operations in MVAPICH: The two main protocols

used for MPI point-to-point primitives are the eager and rendezvous protocols. In

the eager protocol, the message is copied into communication buffers at the sender

and destination process before it is copied into the user buffer. These copies are not

present if rendezvous protocol is used. However, in this case an extra handshake

is required to exchange user buffer information for zero-copy of the message.

39

For intra-node communication, a separate shared memory channel is used for

communication. In MVAPICH, the shared memory channel involves each MPI

process on a local node attaching itself to a shared memory region at the initial-

ization phase. This shared memory region can then be used amongst the local

processes to exchange messages and other control information. Each pair of the

local processes has its own send and receive queues. Small and medium messages

are sent eagerly, where as a packetization approach is used for large messages.

Point-to-Point based Collective operations: In MVAPICH, all the col-

lective algorithms discussed above in Section 2.1.3 are implemented over Point-to-

Point operations. Most of these implementations are not optimal as the algorithms

do not leverage any benefits of group communication. For example, combining and

processing of data from the different processes participating in the same collective

call can lead to extraneous performance overheads. This is because of the extra

amount of copying involved as the Point-to-Point operations are not aware of the

collective communication. Also, the network primitives such as H/W Multicast

cannot be exposed to the upper layer using Point-to-Point operations.

Optimized Collective Operations: As discussed above, Collective opera-

tions implemented directly over IBA and system shared memory can lead to sig-

nificant performance gains. Some of the collectives already implemented in this

fashion are MPI AlltoAll, MPI Allgather and MPI Barrier. The focus of this dis-

sertation is to leverage mechanisms of RDMA, H/W Multicast and system shared

memory for optimized collective communication support in MVAPICH.

40

CHAPTER 5

RELIABLE MULTICAST

In this chapter, we focus on new communication protocols required to design Reli-

able Multicast. Reliable Multicast can be used directly by MPI Bcast or as build-

ing blocks for other collective operations such as MPI Allreduce and MPI Barrier.

We first explain how reliability can be provided over the Unreliable H/W Multi-

cast primitive. We then propose mechanisms for efficiently managing the H/W

Multicast groups by interacting with the IBA Subnet Manager/Administrator.

5.1 Reliability protocol for IBA’s H/W Multicast

There have been many studies about multicast and reliable multicast in the

networking area [17, 14, 23]. A majority of the work done in this area focuses on

networks based on TCP/IP protocol. Our thesis deals with implementing reliable

multicast in InfiniBand. Compared with a general TCP/IP network, InfiniBand

offers much higher communication performance and hardware supported multicast.

Also, group membership in MPI is much more static than that in the dynamic

environment of a TCP/IP network.

In the following, we propose several designs used for providing reliability. We

first describe a basic design which is easy to understand and also straightforward

41

to implement. Then we present several new designs which deal with performance

and scalability issues of the basic design. We have chosen ACK based approaches,

in which delivery is confirmed by acknowledgments and message loss is handled by

timeout/retransmission.

5.1.1 Basic Design

In the basic design, the root node of reliable multicast sends out a message

using multicast and other nodes wait for this message. If the message is received,

an ACK is sent back to the root node. The root blocks and waits for all ACKs to

be received. If not all ACKs arrive within a certain period of time, it times out

and retransmits the message using reliable point-to-point communication (using

the RC service, as defined by the InfiniBand standard).

The basic design uses ACKs and timeout/retransmission to provide reliability.

Two different broadcast messages from the same root are guaranteed to arrive

in-order because the root node blocks for ACKs of the first message before it can

send out the second one.

However, there are several major problems in this basic design. First, making

the root block for all the ACKs significantly increases the overhead of the reliable

multicast call at the root. Second, since all other nodes send back ACKs to a

single root node, a hot spot is created at the root, which becomes a performance

bottleneck when the total number of nodes in a system is large. This problem

is also referred to as ACK implosion [34]. In the following subsections, we will

address these problems.

42

5.1.2 Sliding-Window Based Design

Our basic design leads to poor performance because the root has to wait for all

the ACKs to be received. In order to alleviate this problem, we propose a solution

which makes a copy of the user buffer. After the multicast operation is initiated,

we can immediately return without waiting for all the ACKs to be received. To

handle multiple outstanding reliable multicasts initiated from a single root, we use

a number of pre-allocated buffers at each root. These buffers are organized as a

ring. A sliding-window based approach is used to manage these buffers, as shown

in Figure 5.1. A buffer is consumed for each new reliable multicast operation.

When all ACKs for this operation have arrived, this buffer can be freed and reused

for other reliable multicast operations.

tail head

0 5 6 7 82 3 41

0

tail head

1 2 3 4 5 6 7 8

After receiving acks for 2 to 4

tail head

2 4 5 6 7 8310

After sending messages 2 to 4

After sending 5

Figure 5.1: Sliding Window Buffer Management

Compared with the basic design, the sliding-window based design decouples

ACK processing from the multicast. In other words, ACK processing is no longer

done in the critical path of multicast, but carried out in the “background”. If the

window size is sufficiently large such that all ACKs can arrive and be processed in

43

time, reliable multicast will not block due to running out of buffers. As a result,

the performance of reliable multicast can be significantly improved.

The window based design also has its drawbacks. First, the data in user buffers

has to be copied to buffers in the window, which increases processing overhead.

Fortunately, the typical size of reliable multicast is small and the copying overhead

is negligible. Another problem is that it consumes more buffer than the basic

design. We can control the buffer space used by changing the total window size.

The third issue is that this design does not solve the ACK implosion problem.

Although ACK processing is now done in the background, it still happens that all

ACKs arrive at the same root node. Therefore, the root can become a performance

bottleneck in this design for large scale systems.

5.1.3 Avoiding ACK Implosion

To solve the ACK implosion problem, we should not let all the receivers send

ACKs to a single root node. The basic idea to deal with this problem is to use

a hierarchical structure for ACK collection and distribute the load to a number

of nodes. One solution is to use a tree based structure to collect ACKs. In this

approach, all nodes form a tree structure, with the root node being the root of the

tree. Intermediate nodes are responsible for collecting ACKs for its children. After

all ACKs have come from its children, an intermediate node sends an ACK to its

parent node. The root node only needs to collect ACKs from its direct children

instead of all other nodes.

44

The drawback of the tree based ACK collection is that it depends on interme-

diate nodes for ACK processing. Thus, ACK collection time depends on the com-

munication progress of intermediate nodes. (A similar problem has been discussed

in [10].) In a polling based MPI implementation such as MPICH, communication

progress is only made within MPI function calls. Therefore, if an intermediate node

is doing lengthy computation, ACK processing and forwarding could be delayed.

The problem becomes even more serious when the tree has multiple levels. As a

result, it is very hard to determine the timeout value for retransmission at the root.

When ACK processing at intermediate nodes are delayed, the tree based ACK col-

lection is prone to false retransmission, which is triggered by delayed ACKs instead

of real message loss. To make matters worse, a single delayed ACK will result in

the root node retransmitting the message to everyone in the same sub-tree, which

can generate a lot of network traffic and increase the overhead of the root node.

To solve the ACK implosion problem and also to address problems with the

tree based scheme, we propose a new ACK collection scheme called the co-root

scheme. In this scheme, in addition to the root node, we select a subset of other

nodes as co-roots. The remaining nodes are called leaf nodes. Each of the root and

the co-roots is responsible for a group of leaf nodes. The basic idea is to guarantee

that co-roots can get messages reliably and use them to help ACK processing. The

co-root scheme is illustrated in Figure 5.2 and it consists of the following steps:

1. The root uses multicast to transfer the message to every other node.

2. The root does a small scale “broadcast” to all co-roots. The broadcast is

done using reliable point-to-point communication. A tree based algorithm

can be used, just like that in current MPI implementations.

45

3. Each of the root and the co-roots collects ACKs from all other nodes in its

sub-group. If timeout happens, the root or the appropriate co-root will do

the retransmission.

Ack Transmission to respective coroots

Multicast to All the nodes

Unicast to coroots

0 4 8 12

0 4 8 12

,

Figure 5.2: Co-Root Scheme

Similar to the tree based ACK collection, the co-root scheme also uses a hier-

archical structure to delegate ACK collection and processing to other nodes. They

both aim to solve the ACK implosion problem. However, there are also major

differences between them. The co-root scheme is a two-level hierarchy. After the

message is delivered to a co-root, the co-root essentially plays the same role as the

root and ACK processing for its sub-group is completely decoupled from the root.

In a tree based scheme, intermediate nodes are responsible for ACK collection and

forwarding, while the root is responsible for ACK collection and retransmission.

The ACK processing is not completely decoupled from the root because it has to

handle all the retransmissions.

The co-root scheme has several advantages over a tree based scheme. Since

co-roots now help with both ACK collection and retransmission, the load is more

46

evenly distributed. The co-root scheme does not depend on the progress of inter-

mediate nodes. As a result, it is easier to determine the timeout value for a given

system size. The co-root scheme also results in fewer false retransmissions. (Note

that false retransmission can still happen if an ACK from a leaf to its co-root

is delayed.) Another advantage of the co-root scheme is that each co-root keeps

information of all the leaf nodes in its sub-group. When an ACK is not received,

retransmission is done only to that particular node. In a tree based scheme, the

root can only track other nodes at the level of sub-trees. Therefore, retransmission

must be done for all nodes in that sub-tree, which increases overhead and network

traffic.

The co-root scheme also has its disadvantages. First, delivering the message

reliably to every co-root introduces extra root processing overhead and network

traffic. However, it should be noted that usually the co-root scheme does not

increase latency of the reliable multicast. At any co-root, the reliable multicast can

be completed when it receives either the H/W multicast message or the “reliable

broadcast” message. It does not have to wait for both messages. The second

problem of the co-root scheme is that a copy of the message is duplicated at all

co-roots. Therefore, it consumes more buffer space compared with a tree-based

scheme. Another issue for co-root scheme is that we must carefully determine the

number of co-roots (or the sub-group size).

5.1.4 Benefits and Usage

Reliable Multicast can be used to design various collective operations. The im-

portant operations being MPI Bcast, MPI Allreduce, MPI Barrier and MPI Allgather.

47

Designing a low latency and scalalable MPI Bcast using H/W Multicast is already

discussed in [24]. It uses the Reliable Multicast protocol in its underlying design.

The paper also discusses the effects of the various parameters in the design of

MPI Bcast, for e.g. the number of co-roots etc. Moreover, one important benefit

of using H/W Multicast is tolerance to process skew. Also, as discussed in the

paper [24], using Reliable Multicast protocol makes collective resilient to process

skews. As we show in the subsequent chapters, Reliable Multicast can be used to

design skew tolerant collective algorithms for MPI Allreduce and MPI Barrier.

5.2 Managing MPI Communicators and H/W Multicast

Groups

In this section, we explain the approach taken for managing multiple MPI

communicators and H/W multicast groups. We first explain the steps needed

for creating communicators over H/W multicast groups. Then, we describe our

approaches of doing these tasks efficiently.

5.2.1 Communicator Creation Mechanism

Though there are two types of communicators intra and inter defined in MPI,

we focus on intra communicators. We have implemented all our designs using the

MPI Comm create function. The inputs to this function are an already existing

communicator object, a process group object comprising of a new subset of pro-

cesses and the final communicator object. MPI Comm create is a collective call

invoked by all the processes in the existing communicator. In the following dis-

cussions, we focus on the communicator creation in the context of mapping these

to the hardware multicast groups. All the other steps like the assignment of a

48

unique context and the local ranks have already been done by the time we start

constructing the multicast group.

G_RANK = 5

P 0G_RANK = 1

G_RANK = 3

G_RANK = 4

L_RANK = 3

L_RANK = 2

L_RANK = 1

G_RANK = 2

MULTICAST GROUP

COMMUNICATOR

P 4

N 0

N 1

N 3

N 2

PORT: 0

PORT:1

PORT:2

PORT: 3

SWITCH
(4−PORT)

P 2 P 3

P 1

Figure 5.3: Mapping between IBA
Multicast Groups and MPI Communi-
cators

L_RANK = 1

L_RANK = 0 L_RANK = 2

P 1 P 2

P 0 P 3

PORT: 1

PORT: 4PORT:2

PORT:3

MANAGEMENT ENTITY

1

2

2

3

Figure 5.4: Multicast Group Setup Op-
erations

5.2.2 Basic Protocol for H/W Multicast Group Manage-
ment

The following steps are involved in the basic communicator construction. The

mapping between IBA Multicast Groups and MPI Communicators is shown in

Figure 5.3. Below, we describe the steps involved in setting up this mapping. All

of these are illustrated in Figure 5.4.

Multicast create and join: In this step, the process whose local rank is zero

issues a create request to the multicast management entity specifying the Multicast

Group IDentifier (MGID)(step 1 in Figure 5.4). The remaining processes then issue

join requests to the multicast management entity using the same MGID (step 2 in

Figure 5.4). All these requests carry the port identifiers so that the management

49

entity knows which all ports would like to join a multicast group. The multicast

management entity after receiving and validating the requests computes a logical

spanning tree containing the ports specified in the requests. It then updates all

the routing tables of the participating switches in the fabric (step 3 in Figure 5.4).

At this point of time, the set up of hardware multicast group is complete.

However, the participating processes have no knowledge of this information.

One approach to accomplish this would be to let the multicast management entity

notify the MPI application after updating the routing tables. Another approach

would be to let the MPI application discover about the completion independently.

We have taken the latter approach in all our designs as it does not depend on any

particular implementation of the multicast management entity. We refer to this

approach as multicast testing.

Multicast testing: In this approach, the following algorithm is implemented

by all the processes after they finish issuing the requests. Process with rank zero

who is the root, posts a multicast ping message to the new hardware multicast

group and waits for Acks from all the other processes. If the routing has been

done, the message is received by all the processes and these processes soon post

the Acks to the root. On the other hand, if routing is not complete then the

message may not arrive at some of the processes. These processes block waiting

for the ping message. Meanwhile, the root retransmits the ping message after a

certain time-out interval. This process repeats until everyone has received the ping

message.

50

5.2.3 Lazy Approach for improved overlap

Although the Basic design is good for its simplicity, it is blocking in nature.

The application has to wait for the multicast management entity to process the

requests and update the routing tables. Until then, all the processes block in the

multicast testing. Depending on the size of the cluster and the multicast group this

can take a considerable amount of time. Instead of doing the multicast testing in an

eager fashion within the communicator creation call, we do this in a lazy manner

by calling this routine every time a collective call is made. We do this until the

multicast testing phase is over. We accomplish this by making the multicast testing

as a non-blocking routine.

Asynchronous return: The new multicast testing is implemented in the fol-

lowing manner. The root process posts the ping message and checks for the arrival

of the Acks from the rest of the processes. It does not block for the Acks to ar-

rive. In the subsequent collective calls to this routine, it repeatedly checks for the

progress of the Acks. It reposts the ping message only if the timeout is exceeded.

The root keeps an estimate of the time elapsed by recording the time-stamps in

the communicator object. The remaining processes behave in a similar fashion.

They check for the ping messages in a non-blocking fashion and post the Acks soon

after discovering the ping message.

Point-to-Point fall back: One important issue requiring detailed attention

is the progress of the collective communication call before the communicator is

ready for hardware multicast. In our approach, all the collective communication

traffic is transmitted via point-to-point messaging until the root discovers that the

routing has been done.

51

This approach overcomes the drawbacks of the Basic design. Due to the asyn-

chronous nature of the multicast testing routine, overlap of computation as well as

communication is easily achievable.

5.2.4 Multicast Group Pool Based Design

Though the Lazy approach can effectively hide the overhead of hardware mul-

ticast group construction in the MPI application, it still has some drawbacks. The

benefits of hardware multicast in an application is reduced if the set-up time of the

multicast groups is high and the collective communication follows the setting up

of these communicators. Using our earlier design, the communication traffic falls

back to point-to-point if the multicast groups are not set up. But, this does not

improve the performance of the application.

Multicast Group Pool: We overcome the drawback mentioned above using

a complementary approach of setting up communicators explained as follows. The

basic idea in this design is to have a certain pre-defined pool of multicast groups

already constructed. These groups contain all the processes to begin with. In

the communicator construction routine, instead of participating nodes joining the

multicast group, the non-participating nodes leave a multicast group chosen from

the pool. There are several advantages of using this approach. First of all, since

the multicast groups are already set-up the routing tables in the fabric are in

place. So, when the application calls communicator creation function we can use

the multicast group directly and we avoid the overhead of the multicast testing

phase. This approach considerably improves the utility of the hardware multicast

groups in an application. Secondly, the multicast pool can be maintained easily as

52

most of the overhead is due to the multicast management entity and can be done

in the background. We now explain the steps involved in this design.

When a call to the communicator creation is made, first a multicast group

is chosen from the available list of multicast groups already constructed. If this

pool is empty we fall back to the Lazy approach explained in the previous section.

Once an available multicast group is obtained, the non-participating processes issue

leave requests to the management entity. The list of non-participating process

can be easily obtained by subtracting the set of the processes involved in the

communicator from the global set involving all the processes. This global set is the

MPI GROUP WORLD process group in MPI. Once a multicast group is consumed

from the pool, it is immediately replenished by making all the processes issue

requests for group construction. We also need to check for multicast testing before

including the group in the pool. However, this check is done in the background

by the application. The initial pool can be either constructed by the management

entity or by the MPI application in the initialization phase. We have taken the

latter approach in our implementation.

5.2.5 Performance Evaluation

Each node in our experimental testbed has dual Intel Xeon 2.66 GHz pro-

cessors, 512 KB L2 cache, and PCI-X 64-bit 133 MHz bus. They are equipped

with MT23108 InfiniBand HCAs with PCI-X interfaces. An InfiniScale MTS14400

switch is used to connect all the nodes. OpenSM, version 1.7.0, is the multicast

management entity used in our tests.

53

 0

 50

 100

 150

 200

 250

 10 15 20 25 30 35 40 45 50

L
a
te

n
cy

 (
m

s)

transaction timeout (ms)

MADs: max
MADs: 500

MADs: 1

Figure 5.5: Tuning of Multicast Test-
ing

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30

L
a
te

n
cy

 (
m

s)

nodes

create
join

leave
multicast testing

Figure 5.6: Overhead of Basic Multi-
cast Group Operations

Basic Hardware Group Setup Latencies: OpenSM has two parameters

which affect the performance of multicast group creation. These are: 1) timeout

which is the time for transaction timeouts in milliseconds and 2) maxMADs which

is the number of MADs that can be outstanding on the wire at any given point of

time. We measure multicast testing to tune these parameters as this reflects the

time taken by OpenSM to configure routing tables. Figure 5.5 shows these results.

From these we have chosen 10 ms for timeout and the number of outstanding

MADs is set to maximum for OpenSM to deliver best performance.

Figure 5.6 indicates the results of the basic multicast group operations like

create, join and leave. We also present the multicast testing time for varying

number of nodes. As the figure indicates, multicast testing overhead is very high

compared to the latencies of issuing create, join or leave requests. This is because as

explained in the previous sections, after the requests are issued the management

entity has to compute the spanning tree and update routing information of the

switches in the fabric.

54

Effective Latency of Suggested Schemes: To compare the different schemes

suggested in the thesis we have measured the effective latency which is the latency

of MPI Bcast operation together with the communicator creation time. We have

chosen the size of the message to be 1024 bytes in all our tests. The benchmark

is constructed by calling communicator creation followed by the communication

calls as many as the number of iterations specified. This is done for communicator

sizes of 16 and 32 respectively.

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900 1000

L
a
te

n
cy

 (
u
s)

iterations

Original
Pool
Lazy

Basic

Figure 5.7: Effective Latency with Col-
lectives 16 processes

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900 1000

L
a
te

n
cy

 (
u
s)

iterations

Original
Pool
Lazy

Basic

Figure 5.8: Effective Latency with Col-
lectives 32 processes

In Figure 5.7, we measure the effective latencies for varying number of iterations

for all the three schemes: Basic, Lazy and Pool. We have also taken the tradi-

tional point-to-point collectives as the reference. We refer to this as the Original

design in the figures. As shown in the figure, the Pool based design outperforms

all the rest. This is because multicast testing phase can be fully overlapped with

the communicator creation operations and also the multicast group is immediately

available. For the Lazy approach, we see the benefits of hardware multicast with

the increasing number of iterations. This is because of the increasing percentage

55

of communication using hardware multicast rather than point-to-point. The ba-

sic design performs poorly compared to all the designs. This is due to the high

overhead associated with the multicast testing which is not overlapped with com-

munication. Figure 5.8 shows the same trend for communicator size of 32. Note

that the latencies of Pool and Lazy are almost the same for 16 and 32 for higher

number of iterations. This is due to the scalability of hardware multicast.

To understand the overlap with computation we have introduced some compu-

tation between the communicator creation and the communication in the bench-

mark used for the above experiments. Figures 5.9 and 5.10 show the trend with

increasing computation for sizes 16 and 32 respectively. The Lazy approach due

to its asynchronous nature can overlap communicator creation with computation

where as the Basic cannot. The Pool based design on the other hand can im-

mediately take the benefits of hardware multicast. However, the initial latencies

for size 32 are higher than for size 16 due to the increased overhead of creating

larger hardware multicast group. As Figure 5.10 indicates, the Pool based design

and the Lazy approaches improve the effective latency by a factor of 4.9 and 3.8,

respectively.

5.3 Relation to Existing Work

There have been many studies about multicast and reliable multicast in the

networking area [17, 14]. A majority of the work done in this area focuses on net-

works based on TCP/IP protocol. Our work in this paper deals with implementing

MPI Bcast in InfiniBand. Compared with a general TCP/IP network, InfiniBand

offers much higher communication performance and hardware supported multicast.

56

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35

L
a
te

n
cy

 (
u
s)

computation time (ms)

Original
Pool
Lazy

Basic

Figure 5.9: Effective Latency with
Computation and Collectives 16 pro-
cesses

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35

L
a
te

n
cy

 (
u
s)

computation time (ms)

Original
Pool
Lazy

Basic

Figure 5.10: Effective Latency with
Computation and Collectives 32 pro-
cesses

Also, group membership in MPI is much more static than that in the dynamic en-

vironment of a TCP/IP network. Recently, different collective operations in MPI

have been studied on high speed interconnects such as Virtual Interface Architec-

ture (VIA) [16], Quadrics [32], Myrinet [54] and IBM SP [46]. Compared with

these interconnects, InfiniBand provides new challenges and opportunities for im-

plementing MPI collective operations.

Various aspects of subnet management like subnet discovery, routing and set-

ting up of forwarding tables have been studied using simulation techniques by

the authors in [5] [6] [37]. Paper [11] deals with implementing MPI collective

operations using IP multicast over Fast Ethernet. In [55], the authors propose

different designs for constructing IP multicast groups. Also, collectives have been

implemented using hardware multicast and NACK-based schemes in [1]. Our work

differs from these as we provide dynamic schemes of hardware multicast group con-

struction in the context of InfiniBand and we overlap these with the application

progress.

57

5.4 Summary

In this chapter, we described how to take advantage of hardware multicast

in InfiniBand to implement Reliable Multicast operation in MPI. We proposed

a Reliability Mechanism that overcomes the problem of dropping packets by the

network. To improve performance of Reliable Multicast, we use sliding window

based design which removes much of the processing from communication critical

path. To further balance and reduce processing overhead, we proposed techniques

such as the co-root scheme and delayed ACK.

Further, we proposed efficient schemes of dynamically constructing communi-

cators with hardware multicast support in InfiniBand. The basic idea behind the

schemes is to overlap the group construction with the progress of the application.

The Multicast Pool and the Lazy approaches proposed move most of the overhead

of multicast group creation out of the critical path of the application execution.

We have evaluated these schemes together with the Basic scheme and found that

the Multicast Pool performs the best of all the three followed by the Lazy scheme.

Multicast Pool and Lazy schemes improve the Effective Latency by a factor of 4.9

and 3.8 respectively.

58

CHAPTER 6

EFFICIENT DATA TRANSFER MECHANISMS

In this Chapter, we first present the benefits of using RDMA for collective

operations such as MPI Alltoall. We then describe a combined RDMA and Shared

memory algorithm for MPI Allgather which removes extraneous copy-overhead and

improves data transfers via pipelining. Finally, we explain an integrated approach

of using H/W Multicast across the nodes and Shared memory within a node for

MPI Bcast.

6.1 High Concurrency RDMA-based AlltoAll

We now present the design and performance benefits of employing RDMA for

personalized collective operations such as Alltoall.

6.1.1 Detailed Design

AlltoAll, as described in Section 2.1.3 uses a direct algorithm where each pro-

cess issues simultaneous non-blocking send operations to all the other processes.

The current implementations use copy based approaches over Send/Recv for im-

plementing these. These copy costs become significant as the system size increases.

This is because the total message size exchanged in Alltoall grows linearly in

59

proportion to the number of participating processes. Thus, we need zero-copy

approaches to remove this overhead. There are two alternatives of achieving zero-

copy: (i) using Channel semantics or Send/Recv and (ii) using Memory semantics

or RDMA.

QP0 QP1

Node 0 Node 0

Node 1 Node 2
Node 1 Node 2

RTS

RTR
DATA

RTS

RTR

DATA

QP1QP0

QP0 QP1QP0 QP1
QP0 QP1QP0 QP1

step 1
step 2

step 3 step 1
step 4

step 5

Figure 6.1: Zero Copy over Channel Semantics

Zero-Copy over Channel Semantics:

A zero-copy protocol using channel semantics is outlined in Figure 6.1. The

basic idea is to use a handshake to make sure that the remote side has preposted

the descriptor pointing to destination buffer. As outlined in the figure, the sender

registers its buffer and sends the RTS message to the remote side. The receiver

upon receiving the message, pins its buffer and sends the address information in

the RTR message to the sender. The sender upon receipt of this message posts

the send descriptor. This mechanism applies well when a single pair of process

60

is communicating. However, if more than one process is sending messages to the

same destination node, serialization of the messages occurs if a single receive queue

is used for the incoming data messages. This is the case with the Shared Receive

Queue of IBA. This is because until the message from one process is received, the

destination node cannot send RTR message to the other process. This is indicated

in Figure 6.1. Though the RTS messages have been concurrently issued by both

the processes in the first step, the RTR message arrives only in the fourth step

after the data delivery of the previous message is completed.

As illustrated above, achieving zero-copy over Send/Recv leads to serialization

of network transactions and our results indicate that copy-based approaches per-

form better. RDMA on the other hand provides benefits of zero-copy. Utilizing

RDMA allows the direct transfer of data from the source buffer to the destination

buffer with the ordering taken care of automatically by the network. Most impor-

tantly, this also holds true irrespective of the global order in which the messages

are injected into the network. This plays a significant role in the AlltoAll per-

sonalized operation where messages are sent directly in a non-blocking manner to

all the processes. We now present important issues for doing direct AlltoAll over

RDMA.

Zero Copy over Memory Semantics:

The main idea in our approach is to expose the registered receiver buffer to

all the processes participating in the collective operation. Doing so enables direct

transfer of data from a given process send buffer to the target buffer as shown

in Figure 6.2. This would also require pinning of the send buffers of the AlltoAll.

Once the framework for zero-copy is ready, the processes issue non-blocking RDMA

61

(SEND) (RECV)

(SEND) (RECV)

(SEND)(RECV)

PROCESS: 0

PROCESS: 1 PROCESS: 2

Figure 6.2: High-concurrency AlltoAll

write operations according to the direct algorithm as discussed in Section 2.1.3.

All these operations place data directly into the receive buffers thus ensuring zero-

copy. The unpinning of the memory buffers can be done in a lazy manner as done

in MVAPICH. This cuts down the overhead of pinning and un-pinning when the

application re-uses the same buffers.

However, one salient observation to be made in this approach is the need for

explicit synchronization before the AlltoAll begins. This is because a given process

can access a remote process’s receive buffer only after the remote process called

the AlltoAll. Issuing a write operation before that causes incorrect behavior due

to two reasons. Firstly, the framework for zero-copy might not be ready for the

write to succeed. Secondly, even if the framework is ready the application might

still be using the receive buffer. In this case, writing into this buffer is clearly not

admissible.

Address Exchange and Completion Semantics: Address exchange is a

primary requirement for zero-copy RDMA-based protocol. In our approach, we

exchange addresses along with the synchronization phase. This would be similar

62

to the allgather operation of MPI. However, if the application uses the same re-

ceive buffer, then this address can be cached so that the address exchange can be

eliminated. The decision to use the cached copy or not can be taken during the

synchronization phase. If the process needs to use a different buffer, it explicitly

notifies this to the other processes during synchronization. We have used a log(n)

algorithm similar to the one used in Barrier and Allgather, mentioned in Section

2.1.3.

For tracking completions, we have used RDMA with Immediate of IBA so that

a completion entry is generated whenever a RDMA write finishes. All the processes

poll for (n − 1) completions where n is total number of participating processes.

The work requests for using the Immediate mode of RDMA can be preposted on

the SRQ.

Relation to existing RDMA-based designs: Collective Algorithms have

been studied well in the past. Thakur et al have optimized various collective algo-

rithms over MPICH over Myrinet and IBM SP [42]. However, the focus of our work

is on efficient collective and one-sided support over InfiniBand. RDMA collectives

like MPI Alltoall have also been studied over MVAPICH [40, 29]. Our approach

is different from these as we focus on high concurrency collective patterns. In this

context, the semantics of RDMA match well with direct MPI Alltoall algorithm.

6.1.2 Performance Evaluation

In this section, we explain the tests conducted and the analysis of the results.

We first briefly describe our experimental testbed.

63

Each node of our testbed has two 3.6 GHz Intel processor and 2 GB main

memory. The CPUs support the EM64T technology and run in 64 bit mode.

The nodes are equipped with MT25208 HCAs with PCI Express interfaces. A

Flextronics 144-port DDR switch is used to connect all the nodes. The operating

system used was RedHat Linux AS4.

We now demonstrate that zero-copy techniques for high-concurrent network

transactions over Send/Recv with SRQ is not a good idea. We then present the

performance benefits of RDMA compared to the copy-based approach.

Concurrent vs Serial: In this test, several nodes send messages to the root

node. The benchmark is implemented in two different ways, with and without copy.

The zero copy test follows the protocol explained in Section 6.1.1 and imposes

serialization. With copy, the root copies the messages from pinned buffers to the

receive buffer but there is concurrency in network operations. As can be seen from

Figure 6.3(a), using copy-based or concurrent transactions performs considerably

better than zero-copy or “serial” as in the figure.

AlltoAll over RDMA vs Send/Rec: The performance comparison of the

zero copy RDMA-based AlltoAll vs Copy-based approach is shown in Figure 6.3(b).

As can be seen from the figure, the zero-copy AlltoAll performs about 38% bet-

ter for the 32 nodes. Also, for more number of nodes, the performance gains are

over 33% for small to medium messages. This demonstrates the impact of using

memory semantics vs channel semantics for doing zero-copy high-concurrency col-

lective operations. The copy-based AlltoAll is based on SRQ channel semantics

incorporated into MVAPICH.

64

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4 16 64 256 1024 4096 16384 65536

La
te

nc
y

(u
s)

Message size(bytes)

serial
concurrent

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 4 16 64 256 1024 4096 16384

La
te

nc
y

(u
s)

msg size

rdma-atoa
srq-atoa

rdma-atoa
srq-atoa

Figure 6.3: (a) Concurrent vs Serial (b) RDMA vs Send/Recv

6.2 RDMA and Shared Memory based Collectives

In this section, we describe our method of using RDMA and Shared Mem-

ory for designing efficient collective algorithms. Particularly, we have shown how

performance of MPI Allgather can be improved using this technique.

6.2.1 Design and Implementation

The basic idea used in our approach is to use a common memory segment both

for intra and network communication. This memory segment is shared across all

the processes local to the node. Further, this segment is pinned so that it can be

accessed directly by the NIC for the network operation. We now outline the main

steps involved in our approach.

Our Approach: We extend the recursive doubling algorithm discussed earlier

to be performed across the nodes rather than across the processes. In this fashion, a

single message is exchanged per a pair of nodes irrespective of how many processes

are scheduled on a node. This is accomplished by making all the local processes

write their data into the shared memory segment in the initial step. This is the

65

step 0 as shown in the Figure 6.4. Once all the processes have written the data

into this buffer, the data exchange starts over the network. In the first step, node

pairs 0, 1 and 2, 3 exchange the data. Note that the data exchanged in this step

is one fourth the size of the total data. After this step, the second step as shown

in the Figure 6.5 begins. The size of the data exchanged in this step is doubled

as seen from the figure. The pairs which are involved in this exchange are now

0, 2 and 1, 3. Once this step is completed, each node has the data from all the

processes. In the final step, which is the step four, the data is copied out of the

shared memory segment.

As can be seen from the above example, in our approach the data is exchanged

across the nodes in a recursive pair-wise fashion with a single data transfer oper-

ation between each pair of nodes. The number of steps would be equal to log(n)

where n is the number of nodes involved in the operation. In the example consid-

ered, the number of steps is log(4) which is two. Note that by providing a common

set of buffers for both network and intra-node data transfers, we eliminate the

extra copying that would otherwise occur.

Overlap benefits: The main benefits of having a shared buffer is the potential

of overlap between the network operations and the memory copy operations. By

referring to the same Figures 6.4 and 6.5, it can be observed that the data arrived

in step 1 of the operation can be copied to the processes’ buffers concurrently with

network operation in step 2. Thus, we need not wait till all the network operations

are completed before the data is copied out of the shared memory segment. For a

large scale cluster, this benefit is significant as both the size of the data involved

is large and also there are more steps involved in the algorithm.

66

STEP 0STEP 0

(Shared Memory copy)
STEP 0 STEP 0

STEP 1
(Network Channel)

STEP 1
(Network Channel)

Node 1

Node 2
Node 3

(Shared Memory copy)

Node 0

Figure 6.4: Steps 0,1

STEP 3 STEP 3

STEP 2

(Network Channel)

STEP 2

(Network Channel)

(Shared Memory copy)
STEP 3 STEP 3

(Shared Memory copy)

Node 0
Node 1

Node 2 Node 3

Figure 6.5: Steps 2,3

Implementation Details: The initial implementation step in our approach

is creating a shared memory segment per node. This is done by making all the

processes local to a node do a mmap of a shared file. After this step, this shared

segment is pinned so that data can be accessed directly by the NIC for the network

operation. In our design, the shared buffer is pinned by all the processes. This

enables all the processes to issue network operations from this memory segment.

RDMA is used for network data transfers as it is proven to be an efficient method

for inter-node communication. In our implementation, we let one given process

issue the network operations from a node. This can be easily accomplished as

the processes have local ranks ranging from 0 to p-1 where p is the total number

of processes per node. We choose the process with local rank 0 to issue network

operations. Note that the addresses of this memory segment are exchanged before

the Allgather is initiated. The data notification is done by doing a RDMA write

of a one byte flag. These flags are also shared within a node and thus all the

processes local to the node can poll for data arrival. This is useful for achieving

67

overlap between network and shared memory copy operations. For synchronizing

between the processes within a node another separate set of flags are used.

Differences with existing approaches: Utilizing shared memory for imple-

menting collective communication has been a well studied problem in the past.

In [44], the authors proposed to use remote memory operations across the cluster

and shared memory within the cluster to develop efficient collective operations.

They apply their solutions to Reduce, Bcast and Allreduce operations on IBM SP

systems. In our approach we consider a different collective: Allgather which has

different communication pattern and present the results on commodity clusters.

In [7], the authors implement collective operations over Sun systems. In [52], the

authors improve the performance of send and recv operations over shared mem-

ory and also apply the techniques for group data movement. Moroever, RDMA

collectives have also been studied in MVAPICH e.g. MPI Barrier, MPI AlltoAll,

MPI Allgather [20] [36] [40] [39]. These designs are not applicable for the problem

discussed in the chapter, as these optimize collectives with one process running

per node.

6.2.2 Performance Evaluation

In this section, we compare the performance of the new scheme proposed in the

chapter with the already existing approach. The comparison is made by measuring

the Allgather latency for the two schemes across different message sizes and for two

different cluster configurations. The test was conducted for 1000 iterations for each

message size. The abbreviations used for the comparison are as follows:

68

• new: The new shared-memory and RDMA based solution proposed in the

chapter.

• original: The original algorithm using MPI point-to-point operations.

Experimental Testbed: We have carried tests on two different clusters:

1) Cluster A: Each node in this testbed has dual Opteron 2.4 GHz processors,

1024 KB L2 cache. They are equipped with MT25204 InfiniBand HCAs with

PCI-Express interfaces.

2) Cluster B: Each node in this cluster is a Xeon 2.66 GHz processor with 512

KB L2 cache. Each node is connected with MT23108 InfiniBand HCA with PCI-X

interface.

Latency of MPI Allgather: As the results indicate, our approach outper-

forms the original approach for the different cluster configurations considered. For

Cluster A, we observe benefits upto a factor of 1.47 and 1.39 for 32 and 64 pro-

cesses as indicated by Figures 6.6 and 6.7 respectively. On cluster B, we observe

an improvement by a factor of 1.97 and 1.82 for the considered configurations,

16x2, 32x2. These are shown in Figures 6.8 and 6.9 respectively.

We have also measured the impact of overlap of network operations and shared

memory communication on these clusters. The non-overlap approach is imple-

mented by making the processes copy the data from the shared buffers at the end

after the network operations are completed. But, for the overlap case the processes

copy the data as soon as it arrives and concurrently issue network operations. This

is the approach taken in this chapter. With the shared buffer RDMA design pro-

posed the overlap improves the performance of the collective upto 30% for Cluster

A and 43% for Cluster B as shown in the Figures 6.10 and 6.11.

69

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 16 64 256 1024 4096 16384

L
a
te

n
cy

 (
u
s)

msg size

Original
New

Figure 6.6: Cluster A:(16x2)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 4 16 64 256 1024 4096 16384

L
a
te

n
cy

 (
u
s)

msg size

Original
New

Figure 6.7: Cluster A:(32x2)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 4 16 64 256 1024 4096 16384

L
a
te

n
cy

 (
u
s)

msg size

Original
New

Figure 6.8: Cluster B:(16x2)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 4 16 64 256 1024 4096 16384

L
a
te

n
cy

 (
u
s)

msg size

Original
New

Figure 6.9: Cluster B:(32x2)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1024 2048 4096 8192 16384

L
a
te

n
cy

 (
u
s)

msg size

Overlap
No-Overlap

Figure 6.10: Cluster A:(32x2)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 1024 2048 4096 8192 16384

L
a
te

n
cy

 (
u
s)

msg size

Overlap
No-Overlap

Figure 6.11: Cluster B:(32x2)

70

6.3 H/W Multicast with Shared Memory

In this section, we present the shared memory collective optimiziations for

important collectives like MPI Bcast. We first present the motivation for using

shared memory together with H/W Multicast for designing efficient MPI Bcast.

6.3.1 Why Hardware Multicast is not enough?

As illustrated in Figure 6.12, when a multicast packet arrives at the NIC, it has

to be forwarded to the processes attached to the multicast group specified in the

packet header. This process comprises of three steps. First, the NIC has to look

up the queue-pairs of the processes which are attached to the multicast group. It

then replicates the packets and in the final step DMAs the data to each process’s

buffer. This cost increases with the increase in the number of processes attached

to the multicast group because these DMA operations are sequentialized.

P0 P2 P3P1

NIC0 NIC1

NODE 0 NODE 1

INFINIBAND FABRIC

MULTICAST PKT

MULTICAST PKT

(ATTACH) (ATTACH) (ATTACH)

MULTICAST PKT

Figure 6.12: Operational principle of IBA Hardware Multicast

Figure 6.13, compares the latency of the MPI Bcast over hardware multicast

for two configurations, 4x2 (meaning two processes per node across four nodes) and

71

8x1. As shown in the figure, the latency of the former case is significantly higher

than the latter. This is because as explained above, in the 4x2 case the DMA

of the multicast packets is sequentialized at the NIC resulting in higher latencies.

This demonstrates that we need a mechanism to handle multicast based collective

efficiently over multi-processor nodes.

Figure 6.14, illustrates the difference between the latency of point-to-point

inter-node communication vs the latency of intra-node communication via shared

memory channel. As indicated in the figure, the latencies of intra-node channels

is an order of magnitude smaller than the inter-node latencies.

These observations motivate us to propose an efficient approach to leverage

the shared memory channel for intra-node messages and hardware multicast for

inter-node messages to implement MPI Bcast operation.

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 8192

La
te

nc
y

(u
s)

size

Latency

mcst_8x1
mcst_4x2

Figure 6.13: MPI Bcast Latency with IBA hardware multicast on two system
configurations of 8 nodes

72

 0

 5

 10

 15

 20

 25

 30

 1 4 16 64 256 1024 8192
La

te
nc

y
(u

s)

size

Latency

inter_node
intra_node

Figure 6.14: Comparison between inter-node and intra-node Point to Point La-
tency

6.3.2 Shared Memory based MPI Bcast

There are two important design alternatives for implementing collectives uti-

lizing both shared memory channel and hardware multicast.

• Direct multicast to shared memory: In this approach, the multicast packets

can be received directly into the shared memory regions across the nodes.

After detecting the multicast message arrival, the local processes can copy the

message into its own buffer. Though this approach looks promising, detecting

the arrival of the multicast packet is a tricky and complex operation. This

is because the arrival of the message is notified only to the processes which

are attached to the multicast group. As discussed in the earlier section, this

approach does not scale well. Another approach would be to write a separate

flag following the message. This solution also does not guarantee correctness

73

as there is no ordering guarantee between the UD-based multicast messages

and UD or RC based point-to-point flag messages.

• Leader-based Approach: In this approach, a designated process receives hard-

ware multicast messages. It can then distribute the message to the remaining

nodes.

We have taken the latter approach in the chapter which is described in the

following section.

Leader-based Approach:

In this approach, as indicated in Figure 6.15, the broadcast operation occurs

in a hierarchical two-step manner:

1. The Root process posts a multicast message to the multicast group. A set

of Leader processes is identified, one Leader per node which receives the

multicast packets. These leaders have to be attached to the multicast group

at the NIC to receive the packet.

2. The Root after posting the multicast message delivers the message to the

participating local processes via shared memory channel. The Leaders on

each node do the same after receiving the multicast packet from the Root.

The leaders are identified using the local IDs which are initialized during the

initialization of the shared memory channel. In our implementation, the process

with local ID zero is chosen as the Leader which receives the hardware multicast

packets. It forwards the packets to the other processes by indexing into the local-

to-global rank mapping table to determine the other local processes running on

74

SHARED−MEM SHARED−MEM SHARED−MEM

H/W MULTICAST

H/W MULTICAST

NODE 0 NODE 2NODE 1

LEADER LEADER ROOT

Figure 6.15: Leader-based design

the node. This table is also set up during the initialization phase of the shared

memory channel.

It is to be noted that hardware multicast is unreliable in InfiniBand. In [25]

we have already proposed Ack based reliability schemes to address the problem.

In these schemes, the processes have to send Acks to confirm the receipt of the

message. In the approach described here, only the Leaders are required to send

the Acks as the other processes receive intra-node messages over shared memory

channel.

Dynamic Attach Policy:

The basic design indicated above does not always deliver good performance.

This situation occurs when both the hardware multicast packet and a non-Leader

process have arrived at the collective call but the Leader process did not arrive.

In this case, the non-Leader process has to wait for the Leader to forward the

message. This can hamper the performance of the application especially if the

chosen Leader always arrive late.

In this section, we describe a Dynamic Attach policy wherein a non-Leader

process attaches to the multicast group based on certain conditions. The non-

Leader process uses the average wait-time computed across different broadcasts to

75

t−packet t−leadert−other

twait−other=non−zero twait−leader=0

t−other t−leader t−packet

twait−leader=non−zero

twait−other=non−zero

t−leader t−packet t−other

twait−leader=non−zero
twait−other=0

twait−leader=

t−leader t−othert−packet

twait−other=0twait−leader=0

case a:

case b: case d:

case c:

Figure 6.16: Dynamic Attach Policy

make a decision. The average wait-time after a certain number of broadcasts is the

total wait-time accumulated so far divided by the number of broadcast operations

completed. The wait-time can be easily computed by computing the difference

between the time when the message is received and the time when the broadcast

is invoked.

Figure 6.16 illustrates the possible cases of the arrival of the packet, the Leader

and the other process which is not the leader. We make an assumption that the

wait times are much higher than the intra-node latencies. Under this condition,

the wait-times for both the Leader and the other process are zero when the packet

is unexpected (i.e. arrives before the receiver) as shown in case a. The wait time

for the non-Leader process is zero or less than that of the Leader in case d. The

only cases for which it has a wait time greater than that of the Leader is in cases

b and c.

76

If we can discount case c, then we can safely say that if the average wait times of

the non-Leader process are higher than the Leader process, then case b is the most

frequently happening case. In this case, the non-Leader process can attach itself

to the multicast group rather than waiting for the Leader process to forward the

messages. However, if case c happens more frequently then this assumption would

not hold true as in this case both the leader and the other process are waiting for

the packet to arrive.

We can overcome the above problem by making the non-Leader process com-

pute the average only when the packet is expected to the Leader, as is the case b.

This can be easily implemented by the Leader setting a flag in the shared memory

buffer. The average wait time of the Leader process is also stored in a shared

memory region. The non-Leader process computes the wait time by starting the

timer when it enters the collective and stopping it after receiving the packet. It

recomputes the average wait time when the flag is set. It chooses to attach to the

multicast group when the difference between its average wait time and that of the

Leader’s wait time crosses a threshold value. Conversely, if this difference decreases

below the threshold, these non-Leader processes detach from the multicast group.

To avoid repeated attach and detach overhead, the non-Leader processes detach

in a lazy manner i.e. they wait for some number of iterations before detaching.

Also, the proposed policy comes into effect only after the number of broadcasts

executed cross a threshold. This is to decrease error margins which can occur if

the average wait time is based on too few broadcasts.

77

6.3.3 Performance Evaluation

In this section, we compare the performance of the new scheme proposed in the

chapter with the already existing approaches. The comparison is made by running

the broadcast latency micro-benchmark for all the schemes across different message

sizes. To show the benefits of the dynamic attach policy, we have modified the

broadcast latency micro-benchmark to add skew within the node.

All the different schemes considered and their abbreviations are as follows:

• smp mcst: The new SMP-Aware solution proposed in the chapter.

• nosmp mcst: The original solution employing hardware multicast but no

shared memory channel as proposed in [25].

• ori bcst: The point-to-point implementation utilizing network for inter-node

communication and shared memory for intra-node communication.

To compare the benefits of the dynamic attach policy, we have run the modified

broadcast latency program explained above with and without the dynamic attach

support.

Another important consideration while running the multiple processes per node

is how they are distributed across the nodes in a cluster. In the cyclic distribution,

consecutive processes are assigned different processors while in block distribution

they are not assigned different processors until the node has reached its capacity

with repect to number of processors.

78

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 8192

La
te

nc
y

(u
s)

size (bytes)

nosmp_mcst_4x2
smp_mcst_4x2

ori_bcst_4x2

 0

 20

 40

 60

 80

 100

 120

 140

 1 4 16 64 256 1024 8192

La
te

nc
y

(u
s)

size (bytes)

nosmp_mcst_8x2
smp_mcst_8x2

ori_bcst_8x2

 0

 50

 100

 150

 200

 1 4 16 64 256 1024 8192

La
te

nc
y

(u
s)

size(bytes)

nosmp_mcst_16x2
smp_mcst_16x2

ori_bcst_16x2

Figure 6.17: Broadcast Latency, Cluster A: (a) 4x2 (b) 8x2 (c) 16x2

 0

 20

 40

 60

 80

 100

 120

 1 4 16 64 256 1024 8192

La
te

nc
y

(u
s)

size (bytes)

smp_mcst_8x2_block
smp_mcst_8x2_cyclic

ori_bcst_8x2_block
ori_bcst_8x2_cyclic

 0

 50

 100

 150

 200

 1 4 16 64 256 1024 8192

La
te

nc
y

(u
s)

size (bytes)

smp_mcst_16x2_block
smp_mcst_16x2_cyclic

ori_bcst_16x2_block
ori_bcst_16x2_cyclic

Figure 6.18: Broadcast Latency, Cluster A: (a) 8x2 (b) 16x2

79

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 4 16 64 256 1024 8192

La
te

nc
y

(u
s)

size (bytes)

nosmp_mcst_8x2
smp_mcst_8x2

ori_bcst_8x2

 0

 20

 40

 60

 80

 100

 120

 1 4 16 64 256 1024 8192

La
te

nc
y

(u
s)

size (bytes)

smp_mcst_8x2_block
smp_mcst_8x2_cyclic

ori_bcst_8x2_block
ori_bcst_8x2_cyclic

Figure 6.19: Broadcast Latency, Cluster B: (a) 8x2 (b) 16 processes

 0

 50

 100

 150

 200

 250

 300

 4 16 64 256 1024

La
te

nc
y

(u
s)

size

Latency

10,attach
10,noattach

50,attach
50,noattach
100,attach

100,noattach

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 4 16 64 256 1024

La
te

nc
y

(u
s)

size

Latency

200,attach
200,noattach

400,attach
400,noattach

800,attach
800,noattach

Figure 6.20: Impact of Dynamic Attach on Broadcast Latency when Leaders ar-
rives late

80

Experimental Testbed:

Cluster A: Testbed cluster consists of 16 SuperMicro SUPER X5DL8-GG nodes

with ServerWorks GC LE chipsets. Eight of these are Intel Xeon 3.0 GHz proces-

sors and the other are Intel Xeon 2.4 Ghz with 512 KB L2 cache, and PCI-X

64-bit 133 MHz bus. We have used InfiniHost MT23108 DualPort 4x HCAs from

Mellanox. All nodes are connected to a single Mellanox InfiniScale 24 port switch

MTS 2400, which supports all 24 ports running at full 4x speed. The kernel version

we used is Linux 2.6. The Front Side Bus (FSB) of each node runs at 533MHz.

The compilers we used were GNU GCC.

Cluster B: Testbed cluster consisting of 8 dual Intel Xeon 3.2GHz EM64T

systems. Each node is equipped with 512MB of DDR memory and PCI-Express

Interface. These nodes have MT25128 Mellanox HCAs with firmware version 5.1.0.

The nodes are connected by an 8-port Mellanox InfiniBand switch.

Broadcast Latency:

Broadcast latency is the time taken for a broadcast message to reach every

receiver. The test consists of a loop, in which an MPI Bcast is issued from a

root node and the receivers take turns to send back an acknowledgment using

MPI Send. The broadcast latency is derived from time to finish each iteration and

the MPI point-to-point latency.

Figure 6.17(a), Figure 6.17(b) and Figure 6.17(c) show the latency of the broad-

cast operation for 8, 16 and 32 processes, respectively. The number of processes

per node is equal to two and we use a block distribution to scatter the processes.

The cyclic distribution is considered separately. As indicated in the figure, the

81

performance of nosmp mcst is worse than the ori bcst for 8 processes and compa-

rable to ori bcst for 16 and 32 processes. However, in both cases the smp mcst

performs well delivering performance improvement by a factor of 2.18 and 1.8 when

compared to ori bcst and nosmp mcst respectively for 32 processes. Similar trends

are also observed on Cluster B, Figure 6.19(a).

In Figure 6.18(a) and Figure 6.18(b), we compare the broadcast latency for

the cyclic and block distributions. The new design proposed in the chapter does

equally well both with cyclic and block distributions. However, the ori bcst scheme

performs better in the block distribution vs cyclic distribution. This is because

though the messages within a node are transferred over shared memory, the MPI

implementation has no global knowledge of local and remote processes. As a result,

in the cyclic distribution case the intra-node messages are first delivered and then

the inter-node messages. This weakens the hierarchical design which is essential

for maximum overlap between the inter and intra node communication. The same

results are also obtained on Cluster B, as indicated in Figure 6.19(b).

In the final tests, we have added skew to the broadcast latency test by delaying

the leaders by variable amounts. We compare the new design proposed in the

chapter together with the Dynamic Attach enhancement. The threshold selected

was equal to 500 us which is the result of multiplying processors per node and the

attach latency which was measured to be around 250 us. As shown in Figure 6.20(a)

and Figure 6.20(b), the latency of the operation increases as the delay is being

added to the leader. The legend indicates the delay added followed by the scheme

selected. As the delay is increased, the original scheme with no dynamic attach

82

keeps incurring the cost but where as the scheme with dynamic attach drops down

after crossing the threshold. This occurs for the delay value of 800 us for the leader.

6.4 Summary

In this chapter, we first investigated the semantic advantages of mapping col-

lectives memory semantics of RDMA. We have shown that using RDMA is better

compared to using channel semantics of IBA. We have taken AlltoAll as a case

study to demonstrate the benefits of RDMA over Send/Recv. We have shown that

using RDMA zero-copy can be achieved and it performs about 38% better for the

32 nodes. Also, for more number of nodes, the performance gains are over 33% for

small to medium messages

We then described a RDMA and Shared Memory algorithm for MPI Allgather.

MPI Allgather is an important collective operation which is used in applications

such as matrix multiplication and in basic linear algebra operations. The next

generation systems feature multi-core architecture enabling a high process count

per node. The traditional implementations of Allgather use two separate channels,

namely network channel for communication across the nodes and shared memory

channel for intra-node communication. Since there is no buffer sharing across these

channels, the performance achieved is sub-optimal due to the extra copying of data

within a node. This is true especially for a collective involving large number of

processes with a high process density per node. In the approach proposed in this

chapter, we eliminate the extra copy costs by sharing the communication buffers

for both intra and inter node communication. Also, we optimize the performance

by allowing overlap of network operations with intra-node shared memory copies.

83

On a 32, 2-way node cluster, we observe an improvement upto a factor of two for

MPI Allgather compared to the original implementation. We also observe overlap

benefits upto 43% for 32x2 process configuration.

Finally, we have designed an efficient integrated mechanism of using IBA’s H/W

Multicast together with Shared Memory. We proposed a Leader-based mechanism

to couple InfiniBand’s hardware multicast communication with the shared memory

channel to deliver optimal performance to the MPI collectives. This is especially

true for the modern systems which feature multi-way SMPs allowing more than

one process to run on a single node. Our results show that the scheme proposed

in the chapter delivers a performance improvement by a factor of as much as 2.3

and 1.8 when compared to the point-to-point and original solution employing only

hardware multicast. Also, on a 4-way NUMA system we observed a performance

gain of 1.7 with our designs. We also propose a Dynamic Attach policy to alleviate

the performance bottlenecks caused due to process skew.

84

CHAPTER 7

SKEW TOLERANT ALGORITHMS

In this chapter, we describe how certain collective operations can tolerate pro-

cess skew present in the application. We describe algorithms that can detect skew

behavior and adopt accordingly. The ideas discussed are applied to important

collective operations such as MPI Allreduce and MPI Barrier.

7.1 Design of the Adaptive Algorithm

In this section we discuss in detail the various design issues involved in the

adaptive scheme.

7.1.1 Basic Idea

In the standard gather-broadcast algorithm, the topology of the combining

tree used is fixed. As previously discussed, the problem with using a static tree

topology is that though the root arrived very early, it has to wait for acks from all

of its children. Consider example 1, Figure 7.1 where all the nodes have arrived

except for the last node. Further, all the nodes have sent acks to the root and are

waiting for the release message from the root. The release message is posted only

when the root has received the acks from both of its children. As shown in the

85

figure, it takes two more steps after the last node arrives before the root releases

all the nodes.

Now take example 2 of the same figure. The root node now has an extra token

which it keeps with itself until one of its children arrived. Soon after receiving the

ack from node 1, the root passes on the token to its other child, node 2. Since

node 2 has got hold of the token it is the new root and the tree topology changes

as shown in Figure 7.1(e) of the figure. As node 5 has already sent its ack, the

token now moves on to the last node which has not arrived yet. As soon as this

node arrives, it finds out that it has the token and releases everybody. Note that

when the last node arrives, the tree looks as shown in f.

Using a token we were able to cut down the synchronization delay by two hops.

Consider a cluster with large number of nodes where there are multiple levels.

In this case, we would cut down the delay by the number of hops equal to the

height of the tree. We use hardware multicast of InfiniBand for sending the release

message. This enables us to achieve constant synchronization delay for clusters

with different node sizes.

The only difference between our scheme and the standard scheme is the use

of an extra token apart from the usual acks. However, unlike the earlier scheme

where there is a fixed root, the node holding the token becomes the root of the tree

in our approach. In the example we have assumed a binary tree topology. We can

easily extend this idea to any kind of tree topology. Also, it is possible that any

node, irrespective of its position in the tree, can become the owner of the token

and hence the root of the tree.

86

d e f

ba
c

2. changing root

1. fixed root

0

1 2

3 4 5 6

0

1 2

3 4 5 6

2

0 5 6

1

3 4

6

2

50

1

3 4

Figure 7.1: Adaptive vs Nonadaptive algorithm

7.1.2 Deciding the root of the tree

We now explain how the token is passed from the current node holding the

token to one of its children. The current owner of the token after entering the

collective starts polling for all its children. If all of them arrive, then all that it has

to do is to post a release message. If one of them has not arrived, then it passes

the token to the child who has not arrived yet. To begin with, the token is present

with node 0 which is the root of the tree. Note that the token is always passed

from the node at a higher level to one of its children in the lower level. In the case

of barrier, the token is an opaque object while in the case of allreduce, it carries

data. We talk more about the detailed design issues in the following subsections.

The nodes that are not involved in the token transfer behave the same way

as in the standard combining tree algorithm. They ack the root as soon as they

87

arrive. The intermediary nodes do the same once they collect the acks from the

children. However, all these nodes have to wait for a token or a release message.

Other issues to be resolved are: how does the node know that it holds the

token and how is it passed from one node to the other. Another problem faced

by this scheme is that of race conditions. Consider this scenario where both the

node holding the token and the last of its children have arrived at the same time.

In this case, the token from the parent and the ack from the child are exchanged

simultaneously. This leads to race conditions which have to be avoided to make

the implementation foolproof. Another issue to be discussed is that the hardware

multicast in InfiniBand is unreliable. The release message may not reach some of

the nodes in which case they are kept waiting. We discuss all these issues in the

following detailed design section.

7.1.3 RDMA approach to handle the Token and Acks

We use the remote direct memory access (RDMA) operation of InfiniBand to

do the token transfer. In our approach, we have used a one byte flag for both the

token and ack in the case of barrier. For allreduce, the token as well as the ack

additionally carry a data vector apart from the flag.

By using the RDMA operation the transfer of the token becomes straight for-

ward. All we have to do is to RDMA write into an appropriate location in the

remote memory buffer when we want to transfer the token or an ack. But prior

to this, we have to exchange the necessary information about the buffers among

all the participating nodes. Each node polls on the local memory to check for the

token or the acks.

88

In the allreduce case, each node apart from the leaves has to do some computa-

tion before it can pass along the token or the ack. The leaf only includes its data

vector in the ack and passes it to its parent. However, if an intermediary node has

to pass an ack to its parent or a token to its child, it first computes a data vector

from the acks received from the children. It then includes it in an ack or token

and passes it to the appropriate node.

7.1.4 Avoiding Race conditions

Race conditions are possible in the implementation of the token-based ap-

proach. This is because many combinations of the token-ack transfers are possible

based on the skew of the system. Take for example a simple case where both the

node holding the token and its last child have arrived at the same time. In this

case, the parent passes the token to its child and similarly the child acks the par-

ent. If the child arrived a little late, it would have got the token and it need not

have acked the root. The same is the case with the parent.

We take care of this race condition by using a simple technique. We make the

child poll both for the token and the release message at the same time even though

it has passed its ack to its parent. The parent on the other hand ignores the ack

from its child and waits only for the release message. The child after it finds out

that it has the token posts a release message immediately.

7.1.5 Reliability

Reliability is another issue which has to be dealt with as we are using hardware

multicast of InfiniBand to post the release message in our implementation. We

89

cannot be sure that all the nodes have received the message unless we add some

mechanism to make the multicast reliable.

Reliability can be added by making use of a timeout and retransmission mech-

anism. The root stores all the posted release messages indexed by the count of the

barrier or allreduce operation. It stores them until it receives an ack from all the

other nodes. A sliding window mechanism can be employed at the root so that it

doesn’t block waiting for the acks. For more details, please refer to chapter 5.

7.1.6 Flow control

Since we use RDMA based approach to transfer the acks and the token, we

need not post any extra descriptors on the remote node in this case. However

hardware multicast requires that descriptors be preposted on all the nodes for the

message to be received.

The way we do this is initially we post a certain number of descriptors. After

every barrier operation we post an extra descriptor to make sure that there are

sufficient number of descriptors available always.

7.1.7 Related Work

Work in [13] deals with designing software barriers when there is skew in the

system caused by the load imbalances. It explains why such load imbalances occur

in a system and how it leads to processes being skewed. In this paper, the authors

have come up with a semi-adaptive approach where the nodes which arrive late

are placed closer to the root. This approach is different from our design which is

totally dynamic. In their approach they use a prediction based scheme based on the

recent history of the barriers done. This scheme has certain drawbacks as it works

90

well when the skew pattern remains the same across the barriers. The approach

we have taken in this thesis is to use a dynamic tree topology which adjusts itself

to the skew. Changing the topology of the tree has also been discussed in [27].

But they have used a counter based combining trees for SMP systems. The scheme

discussed in this chapter is targeted for large scale clusters which use InfiniBand as

the interconnect. The standard algorithms like pair-wise exchange are explained in

[21]. Other algorithms like the gather-broadcast and dissemination are explained

in [20]. We have shown in this chapter the limitations of using such algorithms in

systems having lot of skew. More details about the hardware multicast are found at

[18],[26]. Other interconnects like Quadrics provide hardware multicast[31]. In [53]

this feature is used to implement broadcast. NIC-level multicast in Myrinet/GM

is studied in [54]. This is different from the hardware multicast of InfiniBand. In

NIC-level multicast, the broadcast operation is handled by the NIC instead of the

host.

7.2 Performance Evaluation

In this section, we evaluate the different designs of doing barrier and allreduce.

We compare the results of our adaptive scheme with the existing approaches for

barrier and allreduce. We have used synchronization delay as an important metric

in most of our micro-benchmark tests.

The different schemes considered for barrier are as follows:

• adaptive: Our implementation of an adaptive barrier using a combining tree

of degree 8. Please refer to the Figure 7.2.

• nonadaptive: a nonadaptive barrier using a combining tree of degree 8.

91

b. 8 node topology for barrier
 and allreduce
a. 4 node topology for barrier c. 8 node topology for allreduce

e. 16 node topology for allreduced.16 node topology for barrier

Figure 7.2: Combining trees for barrier and allreduce

• dissemination: a dissemination based barrier.

The different schemes considered for allreduce are as follows:

• adaptive: Our implementation of an adaptive allreduce. The exact topology

used is as shown in the Figure 7.2.

• nonadaptive: a nonadaptive using the same combining tree as above.

• pair-wise: allreduce based on the pair-wise exchange algorithm.

Experimental Testbed: Our testbed cluster consists of 16 SuperMicro SU-

PER X5DL8-GG nodes with ServerWorks GC LE chipsets.Eight of these are Intel

Xeon 3.0 GHz processors and the other are Intel Xeon 2.4 Ghz with 512 KB L2

cache and PCI-X 64-bit 133 MHz bus. We have used InfiniHost MT23108 DualPort

4x HCAs from Mellanox. All nodes are connected to a single Mellanox InfiniScale

24 port switch MTS 2400, which supports all 24 ports running at full 4x speed.

The kernel version we used is Linux 2.4.22smp. The InfiniHost SDK version is

92

3.0.1 and HCA firmware version is 3.0.1. The Front Side Bus (FSB) of each node

runs at 533MHz. The physical memory is 1 GB of PC2100 DDR-SDRAM. The

compilers we used were GNU GCC 2.96 and GNU FORTRAN 0.5.26.

In the first subsection we use the standard micro-benchmark, Average latency

to compare the different schemes used to implement the collective operation. Note

that measuring the average latency of a collective is meaningful in situations where

the skew is negligible. In the following subsection we use the Synchronization

Delay as a metric to evaluate the above schemes in the presence of varying skew

conditions.

Average latency for Barrier and Allreduce: To obtain the average latency

of a barrier operation we measure the time taken for each node to perform barrier

for a large number of iterations. We compute the average across all the nodes and

iterations to obtain the average barrier latency. Average latency of allreduce is

computed in the same manner.

In the latency test for the dissemination and pair-wise exchange cases, we can

safely assume that all the nodes call barrier or allreduce at same time and also exit

the collective call at the same time. However in the tree-based schemes, there is

one node which exits earlier than the rest. This could result in skew, but on large

clusters this is very small since the latency is averaged across all the nodes.

Figure 7.3(a) shows the average latency results for the barrier operation. As

seen from the figure, the adaptive scheme latencies are slightly higher than non-

adaptive ones though both schemes use the same tree topology. This is because

we pay a penalty of one extra rdma write operation for some iterations. This case

happens if the root node has passed the token to the last arriving child but it

93

receives its ack immediately after. This results in one extra hop towards the child

before it posts the release message. But, on large number of nodes, this penalty

will be too small to be observed.

Though the tree based schemes perform badly for small system sizes, they

perform better as the size increases. The reason is the use of a higher degree fan-in

for the combining tree and use of hardware multicast which scales very well over

large number of nodes.

0

5

10

15

20

25

30

35

4 8 16

T
im

e
(u

s)

nodes

adaptive
nonadaptive

dissemination

0

10

20

30

40

50

60

70

4 8 16

A
vg

 L
at

en
cy

 (
us

)

nodes

adaptive
nonadaptive

pair-wise

Figure 7.3: Average Latency: (a) MPI Barrier (b) MPI Allreduce

Figure 7.3(b) shows the average latency results for allreduce.

Notice that for node sizes of four and 16, the adaptive scheme gives higher

latencies. This is because for these topologies, the tree is totally balanced unlike

the case with size eight. In balanced tree topologies, it is usually the case that we

pay one extra hop of the token as the penalty. This is not the usual case in the

unbalanced topology with eight nodes.

Notice that for large number of nodes, both the tree based algorithms perform

better or comparably to the pair-wise algorithm in allreduce and dissemination in

94

the case of barrier. More importantly, in the case of barrier, the adaptive scheme

performs comparably to the nonadaptive one. In the case of allreduce, for an

unbalanced topology the adaptive allreduce fares better.

Synchronization Delay: In this section, we focus on the evaluation of dif-

ferent schemes where unlike the previous case, all the nodes do not arrive at the

same time. We artificially delay some of the nodes by making these target nodes

loop for the specified amount of time. We outline below our approach of measuring

Synchronization Delay which we use to benchmark different schemes. Following

that we present the results of different test cases showing the performance of the

schemes under the presence of skew.

Measuring Synchronization Delay Synchronization delay is the time difference

between the last node entering the collective to the last node leaving the collective.

The test to measure this delay consists of a loop where each of the nodes take turns

to send back an acknowledgment using MPI Send to the node arriving last. Each

of the nodes can determine who is the last arriving node from the input parameters

given to the test program. The last node starts a timer before calling the operation

and stops it as soon as it receives the ack. It computes this time for all the nodes

and computes the maximum. This maximum minus the latency of the MPI Send

gives the Synchronization delay for the test.

We now give an outline of the different kinds of tests considered in this section.

In the first test, we show the scalability of adaptive design compared to the other

approaches. In the second test, we consider the scenario where one node always

arrived late at the collective. In the third test, we extend this to multiple nodes

arriving late. In the fourth and final test, we show instances of skew where the

95

adaptive design does not give optimal performance and explain the approach to

solve the problem.

Scalability study: To show the scalability of the adaptive design, we choose

one node to be the target node and delay this node by the amount equal to twice

the average latency of the collective considered. We perform this test for different

system sizes. Also, we have chosen the highest rank node as the target node.

Figure 7.4(a) shows the results for barrier. From the figure we observe that the

synchronization delay is constant across different node sizes for adaptive scheme.

For nonadaptive case we see every extra level added to the tree increases this delay

by one hop. This is because in the former scheme, the token arrives at the target

node by the time it called barrier. The combining of acks would have been done

and the node only has to post the release message. Since we are using hardware

multicast, this phase of the barrier is a fast and scalable operation. In the case

of barrier with dissemination, the synchronization delay is proportional to log(n)

where n is the number of nodes involved in the barrier.

Figure 7.4(b) is the graph for allreduce. The same reason described for the

barrier applies to allreduce as well. However, the synchronization delay, though

remaining constant is higher. This is because, the release message now carries the

final result vector of the allreduce operation and hence is greater in size. Moreover,

the synchronization delay also includes costs of copying and the computation of

the final data vector. We have used a vector of size 128 and of type MPI DOUBLE

in all our test cases. The operator used was MPI PROD.

Single node arriving late: In this test, the target node is delayed by different

amounts and the synchronization delay is calculated. All the tests are run on

96

0

5

10

15

20

25

30

35

40

4 8 16

T
im

e
(u

s)

nodes

adaptive
nonadaptive

dissemination

0

10

20

30

40

50

60

70

4 8 16

T
im

e
(u

s)

nodes

adaptive
nonadaptive

pair-wise

Figure 7.4: Synchronization Delay: (a) MPI Barrier (b) MPI Allreduce

16 nodes. Once again we choose rank 15 as the target node. This helps us to

understand the behavior of adaptive scheme better.

Figure 7.5(a) shows the results for Barrier. In the adaptive case, as the delay

is increased, we obtain smaller synchronization delays up to a point after which

it remains constant. This is because initially, the token is not reaching the last

node as the delay is not sufficiently high. However, we perform better than the

nonadaptive based scheme even in such cases. This is because, in the adaptive

design an intermediate node receives both the token from its parent and acks from

its children. Thus, less time is spent by the ack of the target node to reach the

node holding token unlike the nonadaptive design, where it has to travel all the

way to the top. For larger delay we observe that the other schemes have the

synchronization delay equal to the average latency. For the adaptive design, it is

equal to the latency of hardware multicast.

Figure 7.5(b) shows the results for allreduce. The same trend is also observed

in the case of allreduce too. However, the values we obtain are higher than in the

97

case of barrier. We have already explained this observation in the previous test

case.

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

S
yn

ch
 D

el
ay

 (
us

)

delay

adaptive
nonadaptive

dissemination

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

S
yn

ch
 D

el
ay

 (
us

)

delay

adaptive
nonadaptive

pair-wise

Figure 7.5: Single node arrives late: (a) MPI Barrier (b) MPI Allreduce

Multiple nodes arrive late: In this section, we concentrate on evaluating

the different schemes when we use multiple target nodes. For a cluster of large size,

there are many combinations of target nodes possible. Also, even after fixing the

target nodes, these nodes may arrive in any order. It is not feasible to evaluate

the schemes for all possible cases. However, in the case of barrier on 16 nodes we

come with three representative cases which include all the skew patterns possible.

Observe that all the children under a given root are identical. That is, no

matter what the pattern of arrival of these children is, the passing of the token

is dependent upon the last two arriving children. The skew between these nodes

decides who gets hold of the token irrespective of the arrival pattern of the other

nodes. Thus we can choose two target nodes which are the last and second last

arriving nodes.

98

In the topology used in barrier (Figure 7.2) we have two subtrees. Thus, we

have three cases to consider. Both the target nodes belong to the upper subtree,

both belong to the lower subtree, one belongs to upper subtree and the other to

the lower subtree.

Figure 7.5(a) can be used to demonstrate the second and the third cases. The

way we obtained the results earlier was by skewing only one target node where as

all the others arrived at the same time. The second target node can be assumed

to be any one of these other nodes. However, in this case the second target node

always arrives early. We consider the possibility of the second target node arriving

early separately. From the figure, we conclude that if there is a reasonable amount

of difference between the arrival times of the two target nodes, the adaptive barrier

does significantly better than the other schemes.

Now, we consider Figure 7.7 to show the case where both the target nodes

belong to the upper subtree. This also includes the missed case explained above.

Note that in this case, the margin of improvement between the nonadaptive based

scheme and the adaptive scheme has reduced. This is because the target nodes are

now closer to the root than the earlier case.

The allreduce case is more complicated as there are more subtrees to be consid-

ered. In this thesis, we show only one set of combinations which we can conclude

from Figure 7.5(b). It is the combination in which one of the target nodes is a

bottom node and the secondary node is any of the nodes in the tree.

99

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

S
yn

ch
 D

el
ay

 (
us

)

Delay

adaptive
nonadaptive

dissemination

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

S
yn

ch
 D

el
ay

 (
us

)

Delay

adaptive
nonadaptive

pair-wise

Figure 7.6: Two nodes arrives late: (a) MPI Barrier (b) MPI Allreduce

0
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50 60 70 80 90 100

S
yn

ch
 D

el
ay

 (
us

)

Delay

adaptive
nonadaptive

dissemination

Figure 7.7: Single node arrives late, Barrier

100

Two nodes arriving equally late:

We have taken this as a special case to show that the adaptive scheme does

not give optimal performance under this situation. We also show how this can be

improved.

Figure 7.6(a) shows the results obtained for the barrier where the two nodes

come late by the same amount of time. Also, the two nodes are the bottom most

ones of the tree and belong to separate subtrees under the main root. We used

nodes with ranks 1 and 15 as the target nodes for this case. The x axis shows the

delay of both nodes. As shown in the figure, the synchronization delay remains the

same in spite of the increase in the delays of these nodes unlike the earlier figures

where it drops down to the hardware multicast latency. The similar behavior is

observed in allreduce case (Figure 7.6(b)).

This behavior is because the token is immobile at the root when two of the

nodes are arriving late. The root cannot decide to which branch it should pass

along the token unless the second last child arrives. But in this case considered, the

second last child arrives at the same time as the last child. So, the root is unable to

make that decision. We can overcome this problem in our design, by introducing

an extra token. Now the root can pass two tokens, one to the second last child

and the other to the last child. This idea can be generalized to include multiple

tokens. However, introducing too many tokens increases both the complexity of

the design and adds more traffic into the system.

101

7.3 Summary

The standard algorithms like pair-wise exchange, dissemination and gather

broadcast do not perform optimally when there is skew in the system. This is

because the nodes participating in these algorithms are tightly coupled with each

other in all the steps of the algorithms. The design presented in this chapter

removes this limitation by making the tree topology adapt dynamically to the

changing skew scenarios. We have used an adaptive root mechanism where the

last arriving node becomes the root of the tree if the skew is sufficiently large.

We have used hardware multicast in the release phase of our algorithm. From

the results we have shown that the design presented in this chapter scales very

well as the number of nodes increases. We obtained a synchronization delay of 12

us in the case of Barrier which is close to the hardware multicast latency. This

number is constant for varying system sizes. Using our scheme we reduce the

synchronization delay by a factor of 2.28 for Barrier and by a factor of 2.18 for

allreduce. We also show that the adaptive design performs comparably when there

is no skew. Different skew scenarios were discussed in the chapter and we show

that our adaptive design either performs better or comparable to the existing skew

conditions.

102

CHAPTER 8

PERFORMANCE AND MEMORY SCALING

In this chapter, we explain the benefits and drawbacks of using the different

transport methods of IBA. To elucidate these distinctions, we use MPI Alltoall

as the case study. We describe the different approaches of implementing Alltoall

over IBA transports and use these designs to benchmark performance and memory

usage. Subsequently, we illustrate why a new IBA primitive is desired and explain

its benefits.

8.1 Designing Alltoall over UD

As explained in Section 2.2, RC and UD transports exhibit different perfor-

mance and scalability trends. To completely evaluate the trade-offs between these

two modes of transport, we choose AlltoAll as the benchmark to reflect the bene-

fits of choosing RC vs UD. AlltoAll over RC is already integrated into MVAPICH

[29]. We now present two new designs of AlltoAll over UD. The first one is the

direct algorithm as explained in Section 2.1. This algorithm exclusively uses UD

for communication. The second one explained below uses both forms of transport

RC and UD for data transfer.

103

Hybrid algorithm This algorithm is the variant of the pair-wise exchange

algorithm which is used for large messages. As discussed in Section 2.1, this

algorithm consists of (n-1) steps where in each step a given process exchanges

messages with a different peer process. This algorithm can be modified such that

from a given number of steps, k steps can use RC transport for messaging and the

remaining (n-1-k) steps use UD. In our implementation, the parameter k is the

same across all the processes to ensure homogeneity.

We now outline the implementation issues common to both the algorithms.

Communication over UD: As explained in earlier sections, UD allows for

MTU-size packet transfer between any two processes. All the information the

processes need to know are the QP specific information such as QP numbers, Qkeys

and Address-vectors for routing. The first step required in the communication of

a message is the fragmentation into MTU-sized chunks. These chunks are then

posted to the UD-QP after filling in the descriptors with the address information

of the destination process. To receive the message the reverse process is required,

assembling of the chunks of the data into the receive buffer. Also, note that since

UD does not guarantee order of delivery of the data, each packet is marked with

a sequence number so that the data is placed in the correct manner.

Reliability mechanism: Since UD is unreliable, we need host-level reliability

to ensure retransmission if any packet loss is encountered. We use a Nack based

approach to tackle the issue. A Nack based approach is used because the probabil-

ity of packet drop in a cluster is relatively very low. Infact, we observed no packet

drop in our experiments. However, we need to buffer the packets in case the packet

loss is experienced. Owing to the property of AlltoAll that at any given time only

104

two operations can be outstanding, reliability protocol is simplified. Thus, at any

point a maximum of two messages are buffered.

8.2 Evaluating Performance and Memory Trade-offs

In this section, we explain the tests conducted and the analysis of the results.

We first briefly describe our experimental testbed.

Each node of our testbed has two 3.6 GHz Intel processor and 2 GB main

memory. The CPUs support the EM64T technology and run in 64 bit mode.

The nodes are equipped with MT25208 HCAs with PCI Express interfaces. A

Flextronics 144-port DDR switch is used to connect all the nodes. The operating

system used was RedHat Linux AS4.

Performance and Memory Trade-Offs: We now present the benchmark-

level evaluation and analysis of the various designs and performance trade-offs

studied.

 0

 5

 10

 15

 20

 25

 4 16 64 256 1024 4096 16384

La
te

nc
y

(u
s)

msg size

RDMA Write
RDMA Read

Send/Recv
UD Send/Recv

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

256k64k16k4k1k25664164

B
an

dw
id

th

msg size

RDMA Write
RDMA Read

Send/Recv
UD Send/Recv

Figure 8.1: Basic Performance (a) Latency (b) Bandwidth

105

256M

64M

16M

4M

1M

256K

 1 4 16 64 256 1024 4096

M
em

or
y

R
eq

ui
re

m
en

t

number of qps

RDMA Write

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 16 64 256 1024 4096

La
te

nc
y

(u
s)

number of qps

4 bytes
16 bytes
64 bytes

256 bytes
1024 bytes

Figure 8.2: (a) Queue Pair Memory requirements, (b) RC Multiple QPs

We first do a micro-benchmark evaluation and then choose AlltoAll as the

Benchmark to compare RC and UD.

Micro-Benchmark Level Evaluation:

Basic Evaluation of IBA Transports: Figures 8.1 (a) and (b) illustrate the

performance of RC and UD in latency and bandwidth. As indicated in the figures,

RC performs better than UD, both in latency and bandwidth. However, for MTU

messages, both perform almost equally well for send/recv case. But, for large

messages, UD performance drops compared to RC. This can be seen in the latencies

of messages over MTU and in the bandwidth numbers. This can be attributed to

the per-MTU overhead and lack of efficient pipelining.

Memory Scaling of RC: Figure 8.2(b) explains the principal drawback of using

RC i.e. growing memory requirements with increase in number of connections

(QPs). As can be seen from the figure, there is an upward linear trend of memory

usage with the number of connections. We assign one QP per connection.

NIC caching effects: To explain the caching effects, we constructed a simple

ping-pong latency benchmark with multiple connections present between the two

106

nodes. Messages are exchanged in a round-robin manner and their latencies mea-

sured. As indicated in Figure 8.2(b), the latency of messages start increasing from

number of connections (QPs) equal to 32. This is because the NIC has to DMA

the QP context information every time this is flushed from the cache.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 65536 131072 262144 524288

La
te

nc
y

(u
s)

msg size

rc-limit:2
rc-limit:4
rc-limit:8

rc-limit:16
rc-limit:31

Figure 8.3: (a)Hybrid algorithm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(u
s)

msg size

bruck (32)
direct-srq(32)
direct-ud(32)

bruck(61)
direct-srq(61)
direct-ud(61)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2048 4096 8192 16384

La
te

nc
y

(u
s)

msg size

bruck (32)
direct-srq(32)
direct-ud(32)

bruck(61)
direct-srq(61)
direct-ud(61)

Figure 8.4: UD Collectives (a) Small messages (b) Medium messages

107

Benchmark Level Evaluation (AlltoAll): In this section, we first evaluate

the performance of the AlltoAll latency for three different algorithms : AlltoAll

over UD as discussed in this chapter, AlltoAll over SRQ in MVAPICH, AlltoAll

using Bruck’s Algorithm in MVAPICH. The legends in the graph being direct-UD,

direct-SRQ and Bruck respectively. We then show the trade-offs in performance

vs resource utilization using the hybrid algorithm proposed in this chapter.

Comparison of RC and UD: As shown in Figure 8.4 for short messages UD

performs better than RC. This is in tune with the micro-benchmark evaluation

above. However, as the message size increases, the performance of RC is better

than UD. This is because of the better bandwidth capabilities of RC. Also, UD

performs better 37% better than Bruck’s which is the currently used algorithm for

AlltoAll short messages.

Also, as seen from the figures the latency of small messages of direct-UD is

almost double than that of direct-SRQ for both 32 and 61 processes. This can

be mainly attributed to the NIC caching overhead. As Figure 8.2 indicates, the

caching overhead comes into play after 16 connections have been established. Since

every message incurs this overhead, the total overhead increases linearly with the

size of the process group. Thus, if 1 us overhead is incurred per message, for 61

processes it would be around 60 us. For UD, this overhead is not present because

only one QP is used which can be easily cached. Further, our approach performs

better by around 36% compared to Bruck.

Hybrid Algorithm - Choosing Performance ’vs’ Memory: We now present the

results from hybrid algorithm proposed in this chapter which allows choosing vary-

ing number of connections for the AlltoAll operation. The important point to note

108

is that using this algorithm the upper layer can configure the maximum number of

connections to use depending on the resource availability on the system. Figure 8.3

which shows the performance of AlltoAll with varying number of RC connections

used and UD. The “rc-limit” corresponds to the number of RC connections used

in the algorithm. As shown in the graph, increasing the number of RC connections

betters performance but increases resources as shown in Figure 8.2 (a).

8.3 New IBA primitives

As described in earlier Chapter 6, RDMA semantics closely match with that

of many collective operations, especially MPI Alltoall. Also, RDMA is required

to support one-sided operations. But, RDMA support is provided for IBA: RC,

UC and IBA: RD. No support is provided for UD transport. This makes scal-

ing RDMA impractical on ultra-scale clusters. Moreover, implementing RD is a

very hard problem and no vendor has provided support for it in the current im-

plementations. Moreover, the semantics of RD restricting that only one message

can be outstanding between two end points is not suitable for MPI. Therefore, we

need RDMA support over UD. In this section, we first describe how such support

can be added via software. We demonstrate that though this approach provides

the necessary functionality, better performance can be obtained by supported this

primitive in hardware.

8.3.1 RDMA Emulation over UD

There are two broad design choices of emulating RDMA over UD, using zero-

copy or copy-based. However, using zero-copy over UD becomes difficult to ac-

complish as UD does not guarantee in-order delivery of packets. Also, as shown in

109

earlier sections, zero-copy over channel semantics serializes network transactions.

Due to these two reasons, we follow a copy based approach for our emulation.

However, a major drawback of this approach is cache pollution which is absent in

zero-copy protocols.

RDMA READ REQ.

DATA

POST DATA

EVENT
(READ)

RDMA WRITE REQ
 & DATA

COMPLETION
POLL

COPY DATA

(WRITE)

COMPLETION
POLL

COPY DATA

Figure 8.5: Emulating RDMA over UD

We now describe the protocols used for copy-based RDMA over UD emulation.

RDMA Read emulation over UD: As Figure 8.5 indicates, designing RDMA

Read requires three steps. In the first step, the issuer sends the RDMA Read Re-

quest together with the address of the remote buffer. Once the remote side receives

the request, it posts the data corresponding to the address back to the process is-

suing the request. The issuing process receives the data and copies into the correct

destination buffer.

There are two important issues with this basic protocol. The first one pertains

to the asynchronous progress of the operation. A RDMA Read request arriving

at the remote end necessitates the early service of this request to achieve lowest

latency possible. In the case of the native RDMA support over RC, this is taken

110

care of by a dedicated processor on the NIC. To achieve this over UD, we need a

separate host-level service thread which manages these tasks. The service thread

can either poll for the incoming requests or block until a request arrives. The

polling mode is not suitable because the service thread would contend with the

application threads for cpu. To make the communication progress least obtrusive

to the application’s computation, we need to use the blocking mode.

Another issue is that the service thread can execute in the user address space

or as a part of the kernel in the form of kernel-level thread. However, in either

cases, blocking mode needs to be used to avoid contention of CPU resources.

Our implementation is based on the user-level implementation. The application is

responsible for spawning its own service thread.

IBA allows for the blocking mode or the event notification mechanism. The

RDMA request message has a special bit set. This bit called as the solicitation flag

triggers a completion notification event once the message arrives at the other end.

After the notification is generated, the service thread is woken which follows-up on

the remaining procedure. In our case, this would be posting the data corresponding

to the address specified in the request packet. If the address region is not-pinned, a

registration operation is required on the appropriate buffers before the descriptor

is posted. Also, note that a UD operation supports transfer of only one MTU

of data per descriptor. Thus, a chain of descriptors is required in case the data

exceeds one MTU size. As explained in the next section, the event notification

overhead can be avoided for RDMA Write operations.

RDMA Write emulation over UD: We now consider the operation of a

Write over UD. As shown in the Figure, in the first step the issuing process posts

111

the RDMA write request to the remote process. The request in this case carries

both the remote address and also the data payload. Once the request reaches the

remote end, the remote process copies the data into the address specified by the

issuer.

Please note that another important issue which needs to be addressed in detail

is that of security. The integrity of the process memory has to be carefully safe-

guarded so that only authorized processes can access the memory window. Since

our focus is on the performance aspects of the emulation, we assume security as

not an issue in our study. As opposed to a Read operation, Write operation can

be optimized not to have an event generated. This is because the host process

can do a lazy copy of the data into its memory window whenever it checks for the

completion of the operation. In our case, an operation is complete if the associated

IBA completion entries have been successfully polled from the completion queue.

RDMA and One-sided operations in other Protocol stacks: Using

RDMA for One-sided operations have been studied in depth. Various designs

for one-sided operations have been proposed in [50, 51, 35, 47]. However, these

operations have been designed over RC support of IBA which poses scalability

problem for large cluster sizes. Yelick et al have studied one-sided operations in

the context of UPC and Titanium [45, 48, 12, 49]. In [4], the authors propose

techniques to achieve overlap of computation and communication using one-sided

operations. However, our focus is on addressing the scalability issues of RDMA

one-sided network primitives for clusters comprising of large number of nodes. The

benefits of RDMA over UD have been explored in [43]. The authors explore the

potential of using RDMA over UD for increased performance, reduction in hot-spot

112

effects and caching problems. Our focus is on studying the benefits of emulating

RDMA over UD for one-sided operations.

8.3.2 Performance Evaluation

In this section, we explain the tests conducted and the analysis of the results.

We first briefly describe our experimental testbed.

Each node of our testbed has two 3.6 GHz Intel processor and 2 GB main

memory. The CPUs support the EM64T technology and run in 64 bit mode.

The nodes are equipped with MT25208 HCAs with PCI Express interfaces. A

Flextronics 144-port DDR switch is used to connect all the nodes. The operating

system used was RedHat Linux AS4.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 4 8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(u
s)

msg size

events, not_cached
events, cached
polling, cached

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 2048 4096 8192 16384 32768 65536 131072 262144 524288

ba
nd

w
id

th
 (

M
B

/s
ec

)

msg size

events, not_cached
events, cached
polling, cached

Figure 8.6: Emulating RDMA Read over UD (a) Latency (b) Bandwidth

RDMA Emulation over UD: We now present the results of the emulated

Read and Write operations over UD. Figure 8.6 explains the results of the Read

latency tests. We explore three cases, when the destination buffer is in the cache,

out of the cache and when polling is used instead of events. Our motivation of

113

 4

 5

 6

 7

 8

 9

 10

 4 8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(u
s)

msg size

polling, not_cached
polling, cached

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 2048 4096 8192 16384 32768 65536 131072 262144 524288

ba
nd

w
id

th
 (

M
B

/s
ec

)

msg size

polling, not_cached
polling, cached

Figure 8.7: Emulating RDMA Write over UD (a) Latency (b) Bandwidth

taking into caching is because the objective of one-sided operations is to over-

lap computation and communication. In such scenarios it is very likely that the

communication buffer might not be cached while the application is computing on

a different chunk of data. As the results indicate caching determines the perfor-

mance of both the latency and also bandwidth. For applications which have buffers

un-cached most of the time, this would lead to performance degradation and most

importantly cache pollution. Also, as the figure indicates there is around 8-9 us of

event overhead compared to polling. Write operations, as indicated in Figure 8.7,

are relatively less costly as there is no event overhead. But, like Read operations,

caching plays a dominant role.

Also compared to RC performance (Figure 8.1), RDMA emulation performs

poorly. This is especially true for one MTU message, RDMA Read which has a

factor of more than three performance degradation. In the light of above observa-

tions, we conclude that emulating RDMA over UD poses performance limitations

and the native support of RDMA over UD is desired.

114

8.4 Summary

As clusters increase in size, the performance and scalability of the communi-

cation subsystem becomes the key requirement for achieving overall scalability

of the system. In this context, the efficiency of collective operations is espe-

cially important as they are the widely used communication operations in dif-

ferent programming models like UPC, MPI-2, etc. Thus, they have to be designed

harnessing the capabilities and features exposed by the underlying networks. In

some cases, there is a direct match between the semantics of the operations and

the underlying network primitives. InfiniBand provides two transport modes: (i)

Connection-oriented Reliable connection (RC) supporting Memory and Channel

semantics and (ii) Connection-less Unreliable Datagram (UD) supporting Channel

semantics. Achieving good performance and scalability needs careful analysis and

designing of communication operations based on these options.

In this chapter, we evaluated the scalability and performance trade-offs between

RC and UD transport modes. We have taken AlltoAll as a case study to demon-

strate the benefits of RDMA over Send/Recv and shown the performance/memory

trade-offs over IB transports. Our experimental results show that the UD-based

AlltoAll performs 38% better than Bruck’s algorithm for short messages and up

to two times better than the direct AlltoAll over RC. Since IBA does not provide

RDMA over UD in hardware, we emulated the same in our study. Our results show

a performance dip of up to a factor of three for emulated RDMA Read latency as

compared to RC, highlighting the need for hardware based RDMA operations over

UD. We thus emphasize the need for extending the IBA specification to allow for

support of RDMA over UD.

115

CHAPTER 9

ARCHITECTURE DRIVEN OPTIMIZATIONS

In this chapter, we focus on designing/optimizing collective primitives on the

Multicore architectures. The collectives focused in this chapter are MPI Allgather,

MPI Bcast, MPI Allreduce and MPI Alltoall. The main objective is to understand

the effects of the multicore specific characteristics in different collective operations

and use the insights obtained to guide the design process for achieving optimal

performance.

9.1 Communication in Multicores

The advent of multicore processors presents several opportunities and chal-

lenges for designing efficient collective operations. For efficient design of these

operations, it is important to first understand the communication trends over the

multicores. In this section, we conduct different experiments involving both inter-

and intra-node communication followed by those involving intra-node communi-

cation. Our rationale to focus also on intra-node optimizations is that the core

count is expected to increase rapidly in the coming years. Thus, depending on

the applications’ characteristics, significant amount of communication time can be

116

spent in exchanges messages within the node. Our first test measures the impact

of L2 cache sharing in Intel Clovertown architecture.

Socket 0

Socket 1 Socket 1

Socket 0

Buffer(Shared)Buffer (Shared)

Figure 9.1: (a)Send-Recv latency test

L2 cache sharing in Intel Clovertown: To elucidate the impact of L2 cache

sharing, we perform a simple micro-benchmark evaluation. In this test, a message

of size 16384 bytes is exchanged between a set of nodes as shown in Figure 9.1(a).

The message buffers on each node are shared across all the cores. In this way,

one process per node initiates the message transfer and all the other processes

on the nodes copy data directly from this buffer. The test is run by varying the

number of processes on each node to a maximum of eight processes per node. The

results of this benchmark are shown in Figure 9.2(a). As seen from the graph,

latency remains constant for processes upto four on each node and then steps to

a higher level. This corresponds to core count of eight in the Figure. In our test

all the four processes are scheduled on the same socket. This is clearly due to

the impact of L2 cache sharing and faster cache-coherency protocol within each

117

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 8 16

la
te

nc
y

(u
s)

#cores

latency-16384

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 4096 8192 16384 32768 65536 131072

la
te

nc
y

(u
s)

size (bytes)

shmem-default
pair-wise
red-scat

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 8192 16384 32768 65536 131072 262144 524288

la
te

nc
y

(u
s)

size (bytes)

nonblocking
blocking, opposite

blocking, same

Figure 9.2: (a)Effects of L2 cache sharing (b)Intra-node Reductions (c)Scheduling
communication over HyperTransport

118

socket of the Clovertown platform. This attribute potentially benefits MPI level

broadcast operations where the same data is sent to multiple processes.

Reduction operations within a node: One of the primary methods of do-

ing reduction within a node has been to use shared memory segments to copy

the data into and do the necessary arithmetic. For example, in MPI Allreduce

all the processes copy the data into a shared buffer, followed by reduction by one

of the process. After the reduction, the data is copied back into the respective

receive buffers. Though this technique is optimal for short messages, it does not

scale for large messages. This is shown in the Figure 9.2(b) where a more dis-

tributed approach of point-to-point reduce-scatter followed by allgather performs

the best. This approach fares better than the pair-wise exchange and the basic

shared memory method though there are extra memory copies involved. Thus,

more optimized shared memory approaches need to be investigated. Further, the

cache and memory hierarchies play a crucial role in determining the optimality of

these approaches.

Scheduling data movement over HyperTransport: In this test, we con-

duct different tests across two pairs of communicating processes. Two of the pro-

cesses are running on one socket while the other two are on a different socket. Each

process in a pair sends and receives message from the other process separated by

one hop distance over the HyperTransport. However, there are three different

methods of exchanging these messages. The first method is to use non-blocking

send/receive functions provided in MPI. The other method is to use the blocking

modes of these function. Even with this case, the sends can be issued by both the

pairs in one direction over HyperTransport followed by those from other direction.

119

Or, to utilize the full bidirectional bandwidth of HyperTransport, sends can be is-

sued in opposite directions. We test all these cases and notice that the last method

which utilizes the full bidirectional bandwidth performs the best, Figure 9.2(c).

In the remaining sections of the chapter, we explore all these issues and use the

insights obtained to optimize different collective operations such as MPI Bcast,

MPI Allgather, MPI Allreduce and MPI Alltoall.

9.2 Multicore Optimizations

In this section, we discuss our proposed optimizations for collective functions:

MPI Bcast, MPI Allgather, MPI Allreduce and MPI Alltoall. For these collective

operations, we focus on large message optimizations in this chapter.

9.2.1 Optimized MPI Bcast and MPI Allgather

As discussed in earlier sections, the multicore clusters provide for faster sharing

of data within a node. Further, data transfer operations can be overlapped within

a node and across the nodes. These useful insights can be channeled to develop

efficient MPI Bcast and MPI Allgather collective operations.

From section 2.1, the default algorithm used to design MPI Bcast for large

messages is a scatter operation followed by an all-to-all broadcast or MPI Allgather

of the data. This algorithm performs optimally for clusters having one process

per node. However, when multiple processes are launched on the same node this

algorithm needs to be modified.

The basic building block of our re-designed broadcast algorithm is the shared

memory based all-to-all broadcast of the data using a ring topology. In this de-

sign, we allow for a single process per node to perform all the inter-node collective

120

communication while the remaining processes are involved in intra-node commu-

nication. The process which does all the inter-node communication is called the

leader. In the new design for MPI Bcast, the collective communication can be

broken down into three steps. In the first step the root process copies the message

to the shared buffer and the leader of the node scatters the message to all the

other leaders. A binomial recursive halving algorithm is used to scatter the data.

In the second step all the leaders are involved in inter-node ring communication

as shown in Figure 9.3. This step corresponds to the MPI Allgather of the data.

The number of steps involved would be n-1 where n is the number of leaders. The

third step involves a copy of the data from the network buffer to the user buffers.

This step can be done after the entire network communication is done or can be

overlapped. We have taken the latter approach by overlapping network transfers

with shared memory copying of data. In our approach the network buffers are

shared across all the processes to facilitate direct copy of data.

Figure 9.3: Broadcast

121

Impact of L2 cache sharing of Intel Clovertown: In this section, we try to

understand the behavior of the above mentioned algorithm on an Intel Clovertown

multicore cluster. As discussed above, after each communication step of the ring,

the local processes copy the data from the shared buffer to the respective receive

buffers. Since the processes share L2 Caches and they copy the same chunk of data

from shared memory after each step, several interesting observations can be made

about the behavior of the collective algorithm. Firstly, the intra-node communica-

tion overhead would be greatly reduced due to the high bandwidth of L2 caches,

provided the communication buffers are appropriately cached. Secondly, with the

increase in the number of cores participating in the collective, we do not expect

the latency of the collective to change till the intra-node copy time exceeds the

inter-node latency. For example, if the extra cores participating in the operation

belong to the same socket, the latency should marginally increase as the caches

with in the socket are efficiently shared. Only when the cores added are derived

from two different sockets do we expect an appreciable jump to occur in the laten-

cies. Thus, we observe that the shared L2 Cache architecture effectively reduces

the contention on the memory especially when concurrent network transactions oc-

cur together with intra-node message copying. We experimentally evaluate these

effects in the performance evaluation section of the chapter.

9.2.2 Optimized MPI Allreduce

In the default shared memory algorithm for allreduce, only a single core does the

reduce, while other cores are idle during that time. In this section, we propose two

algorithms for allreduce collective that utilize the computational power of multiple

122

cores inside a node. The first algorithm is a very basic approach of parallelizing

the computation. In the second algorithm, we propose mechanisms to improve the

performance even further by leveraging the architecture of multicores.

In the basic approach of doing MPI Allreduce, the computation is delegated

to all the cores in a straight forward manner. We illustrate this with an example

consisting of four processes within a node, Figure 9.4. As described in the figure,

each process copies its data into different blocks of the shared memory region based

on their respective ranks(step 0 of the figure). Please note that after this step the

respective data blocks will be located closer to the process either in the cache in

the case of Intel Clovertown and AMD Opteron or also in memory as in the case

with NUMA Opterons. In the next step, each block of shared memory is divided

into four sub-blocks corresponding to the number of processes. Now, every process

operates on one sub-block from every block of the shared region. For example

process 0 reduces sub-blocks 0a, 0b, 0c and 0d to the memory space of 0a and the

result is sub-block 0R. Similarly process 1 reduces sub-blocks 1a, 1b, 1c and 1d

resulting in sub-block 1R and so on. In step 3, each process copies the entire zero

block, containing sub-blocks 0R, 1R, 2R, 3R, to their own local memories.

Now, a close observation leads to the fact that the last algorithm can suffer from

cache/memory access contention. This is because all the processes follow the same

order of accessing the blocks in the shared memory region. Thus, we design another

allreduce algorithm that keeps the parallelism of the previous one, but in addition

utilizes a cyclic approach to eliminate the drawback of the previous algorithm.

In this approach, steps 0 and 1 are same as above except that the reduction and

gathering of the data is done in a cyclical manner. In the example considered,

123

process 0 reduces in order 0a, 0b, 0c, 0d whereas process 1 reduces in order 1b, 1c,

1d, 1a. Similarly, in step 3, each process copies the sub-blocks of the result into

its local memory in a cyclic fashion. This important optimization is expected to

yield significant benefits in modern multicore machines having distributed cache

and memory hierarchies.

0R 1R

2a1a0a 3a 0b 1b 2b 3b 0c 1c 2c 3c 0d 1d 2d 3d

2R 3R

(STEP 1)

(STEP 3 for parallel allreduce) 2 310

10 2 3

0R 3R2R1R

0 1 2 3(STEP 3 for cyclic−allreduce)

(STEP 0)0 1 2 3

Figure 9.4: Optimized shared memory allreduce schemes

9.2.3 Optimized Shared Memory MPI Alltoall

In this section, we explain the scheduling of the operations for MPI Alltoall

over the HyperTransport links of Opteron multicore architecture. The basic idea

behind our approach is to completely utilize the bidirectional bandwidth of the

links interconnecting the different cache and memory modules of the Opteron ar-

chitecture.

124

As explained in the earlier section 9.1, we convert all the non-blocking oper-

ations into their blocking counterparts. Since MPI Alltoall uses a pair-wise algo-

rithm with every process talking to every other process, there would be n(n − 1)

pairs in total. For each of the pairs, communication schedule is constructed in such

a manner that the data transfer happens in both directions at any given point in

time. This schedule would keep the links busy through out the whole operation.

9.2.4 Related Work

Utilizing shared memory for implementing collective communication has been a

well studied problem in the past. In [44], the authors propose using remote mem-

ory operations across the cluster and shared memory within the cluster to develop

efficient collective operations. They apply their solutions to Reduce, Bcast and

Allreduce operation. The authors evaluate their approach on IBM-SP systems.

In this chapter, we evaluated the SMP-based collectives taking into account the

multicore aspect of the clusters. Specifically, we developed algorithms and gained

insights into their performance on the latest platforms from Intel and AMD. Op-

timizing collectives on hierarchical architectures have also been studied by Bull [9]

in the context of Itanium based NUMA machines. In our work, we focused on the

Intel and AMD based multicore systems.

In [7, 38], the authors implement collective operations over Sun systems. How-

ever, in their design and evaluation they do not take into account any cache effects.

Instead, their designs focus on optimal utilization of memory bandwidth by taking

advantage of multiple memory banks. In [52], the authors improve the performance

125

of send and recv operations over shared memory and also apply the techniques for

group data movement.

9.3 Performance Evaluation

In this section, we compare the performance of the new designs of MPI Bcast,

MPI Allgather, MPI Allreduce and MPI Alltoall. We first explain the testbed

used in our evaluations.

We have conducted our tests on an Intel cluster of 64 nodes for inter- and intra-

node collectives. Each node is a dual Intel Xeon Clovertown processor with quad

core possessing a shared 4MB cache for two cores. The nodes are interconnected

by MT25208 HCAs in DDR mode. The operating system used is Redhat Linux

AS4. For opteron, we did not have access to a large scale cluster. For intra-node

collectives, we evaluated our designs on a quad-socket, dual core opteron. Each

of the cores contains a 1MB L2 cache. We have evaluated our designs on varying

configurations such as 32X4 (i.e. 32 nodes with 4 process on each node), 32X8,

64X4 and 64X8.

9.3.1 MPI Bcast Latency

We measure the MPI Bcast Latencies and the results are as shown in Fig-

ures 9.5(a) and 9.5(b) for 64 nodes of the cluster. In each of the graph we compare

our new design with the original design. As discussed earlier the original design

employs a point-to-point reduce-scatter followed by allgather without taking into

account the locality of the processes. The results for original design show different

performance when the processes are scheduled in a block and cyclic fashion. As

can be seen the new design proposed in this paper gives better performance for

126

any distribution of processes. We obtain speed-ups of upto 1.78 and 1.90 for the

two configurations.

In the second experiment, we measure MPI Bcast latency on four Intel nodes

by gradually increasing the cores participating in MPI Bcast from each node. We

go from one to eight processes per node since each node has 8 cores. The results

can be seen in the figure 9.5(c). In each of the configuration, two experiments were

conducted with processes being scheduled in a node in socket-block or socket-

cyclic manner. As can be seen from the figure 9.5(c), initially for 4X1 both the

tests show the same latency since both the configurations are same. As we increase

the processes to 4X2 the socket-cyclic method of scheduling causes greater latency

than socket-block. This is because in socket-block method the processes share L2

Cache and hence the copy time is negligible which is not the case in socket-cyclic.

This continues till 4X4 configuration and then after that both the methods produce

the same latency as both the methods have processes on each of the sockets. Please

note that in figure 9.5(a), the new scheme performs poorly for message less than

1 MB. This is because by default the processes are distributed in socket-cyclic

manner in our test cases.

9.3.2 MPI Allgather Latency

Figure 9.7 shows the results for MPI Allgather latency on 64 node Intel Clover-

town cluster. Depending on the message size, the new design outperforms the

current one by a factor of by a factor of upto four on 64x8 configurations.

The benefits of MPI Allgather can also be seen from the Matrix Multiplication

Kernel which uses MPI Allgather collective communication. The application is

127

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

4M1M256K64K

La
te

nc
y

(u
se

c)

Message size (Bytes)

original block
original cyclic

new

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

4M1M256K64K

La
te

nc
y

(u
se

c)

Message size (Bytes)

original block
original cyclic

new

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

87654321

La
te

nc
y

(u
se

c)

Process per node (ppn)

block
cyclic

Figure 9.5: Bcast Latency:(a) 64X4 (b) 64X8 (c) Effect of Cache on 4 nodes

 0

 100

 200

 300

 400

 500

 600

 700

 4096 8192 16384 32768 65536 131072

la
te

nc
y

(u
s)

size (bytes)

red-scat
shmem-parallel

shmem-cyclic

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4096 8192 16384 32768 65536 131072

la
te

nc
y

(u
s)

size (bytes)

red-scat
shmem-parallel

shmem-cyclic

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 32768 65536 131072 262144 524288

la
te

nc
y

(u
s)

size (bytes)

Alltoall latency

new
old

Figure 9.6: (a)Allreduce:Opteron, NUMA (b)Allreduce:Intel Clovertown
(c)Scheduling in Alltoall

128

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

256641641
La

te
nc

y
(u

se
c)

Message size (Bytes)

original block
original cyclic

new

Figure 9.7: Allgather Latency

run with different matrix sizes (double data type matrix elements) starting from

16x16 and upto 512x512. Figure 9.8 shows the performance gain with increasing

message sizes. For 512x512 sizes, we improve the performance by as much as three

times compared to the default implementation.

9.3.3 MPI Allreduce Latency

We have evaluated the performance of the newly proposed parallel algorithms

with the existing allreduce algorithms for the two different multicore architectures.

Figures 9.6(a) and 9.6(b) show the performance of existing and the two new allre-

duce algorithms for the AMD Opteron and Intel Clovertown architecture respec-

tively. The legend “shmem-parallel” corresponds to the basic algorithm where all

processes accesses different blocks in the same order. The “shmem-cyclic” legend

refers to the optimized parallel algorithm where the processes access the different

blocks in a cyclical manner. From the figures it can be seen that the shmem-cyclic

129

�������������

�������������

�������������

�������������

�������������

	�
 �
�� �����

�

�������������

�������������

�������������

��������� ��������� � ������� ������������� ������������� �������������

��� �

Figure 9.8: Matrix Multiplication

performs the best of all the three. We improve the performance by 23% on NUMA

opteron and by 32% on Intel Clovertown. One interesting observation to make is

that on Intel Clovertown, both shmem-cyclic and shmem-parallel perform identi-

cally where as on NUMA Opteron, shmem-cyclic performs the best. Owing to the

NUMA and the different HyperTransport links connecting the different cache and

memory modules, AMD Opteron fares better due to increased level of parallelism

and lower contention.

9.3.4 MPI Alltoall Latency

In this section, we compare the proposed optimization of scheduling the send/receive

operations over the bi-directional HyperTransport links connecting different sock-

ets in AMD Opteron. The results are described in Figure 9.6(c). As shown in the

figure, the new optimization improves the latency of MPI Alltoall by around 15%

compared to the original scheme. We expect to see much higher performance gains

as the core counts increase per socket.

130

9.4 Summary

Optimizing MPI collective communication on emerging multicore clusters is

the key to obtaining good performance speed-ups for many parallel applications.

However, designing these operations on the modern multicores is a non-trivial task.

On the other hand, modern multicores such as Intel’s Clovertown and AMD’s

Opteron feature various architectural attributes resulting in interesting ramifica-

tions. For example, Clovertown deploys shared L2 caches for a pair of cores where

as in Opteron, L2 caches are exclusive to a core. Understanding the impact of

these architectures on communication performance is crucial to designing efficient

collective algorithms. In this chapter, we have systematically evaluated these ar-

chitectures and used the insights to develop efficient collective operations such as

MPI Bcast, MPI Allgather, MPI Allreduce and MPI Alltoall. Further, we charac-

terized the behavior of these collective algorithms on multicores especially when

concurrent network and intra-node communications occur. We also evaluated the

benefits of multicore Opteron’s architecture for intra-node MPI Allreduce com-

pared to Intel’s Clovertown. The optimizations proposed in this chapter reduced

the latency of MPI Bcast and MPI Allgather by 1.9 and 2.5 times respectively. For

MPI Allreduce, our optimizations improve the performance by as much as 33% on

the multicores. Further, we see performance gains upto three times for the matrix

multiplication benchmark on 512 cores.

131

CHAPTER 10

OPEN SOURCE SOFTWARE RELEASE AND ITS
IMPACT

Our work described in the dissertation has been incorporated into several re-

leases of MVAPICH1 and MVAPICH2 distribution. Since its first public open

source release in 2002, more than 680 organizations have downloaded the software.

The current version of MVAPICH1/MVAPICH2 is 1.0.

MVAPICH supports a wide class of collective algorithms over different inter-

faces such as OpenFabrics Gen2, uDAPL. It supports both InfiniBand and RDMA

interconnects such as iWARP. The support for InfiniBand includes multiple ven-

dors: Mellanox, Qlogic. Recently, it has successfully scaled to over 30,000 cores

on Ranger Cluster at Texas Advanced Centre for Computation in Austin. It cur-

rently powers the third fastest supercomputer at the SGI/New Mexico Computing

Applications Center (NMCAC).

132

CHAPTER 11

CONCLUSIONS AND FUTURE WORK

In this thesis, we addressed the problem of providing a Scalable and High

Performance Communication Subsystem for MPI Collectives over InfiniBand Mul-

ticore Clusters. Several key issues addressed in the proposal were a) Communica-

tion Protocols, b) Data Transfer Methods, c) Skew Tolerance, d) Performance and

Memory Scaling and e) Multicore Optimizations. The basic approach to resolve

and handle these issues was to understand the capabilities of InfiniBand Net-

work and gain insights into Multicore architectures. InfiniBand provides advanced

network primitives such as H/W Multicast and RDMA over different Transport

Methods. The designs proposed in this thesis leverage these primitives to provide

efficient communication mechanisms. Moreover, collective optimizations proposed

in the thesis take into account the underlying architecture of the current/future

generation Multicores. The summary of the research contributions is explained in

the following sections of the chapter.

133

11.1 Research Summary

The research conducted in this dissertation is summarized below.

11.1.1 New Communication Protocols

In Chapter 5, we described how to take advantage of hardware multicast in

InfiniBand to implement Reliable Multicast operation in MPI. We proposed a

Reliability Mechanism that overcomes the problem of dropping packets by the

network. To improve performance of Reliable Multicast, we have used a sliding

window based design removing much of the processing from communication critical

path. To further balance and reduce processing overhead, we proposed techniques

such as the co-root scheme and delayed ACK.

The chapter also discusses efficient schemes of dynamically constructing com-

municators with hardware multicast support in InfiniBand. The basic idea used in

the schemes is to overlap the group construction with the progress of the applica-

tion. The Multicast Pool and the Lazy approaches proposed in the chapter move

most of the overhead of multicast group creation out of the critical path of the

application execution. We have evaluated these schemes together with the Basic

scheme and found that the Multicast Pool performs the best of all the three fol-

lowed by the Lazy scheme. Multicast Pool and Lazy schemes improve the Effective

Latency by a factor of 4.9 and 3.8 respectively.

11.1.2 Efficient Data Transfer Methods

Chapter 6 investigated the semantic advantages of mapping collectives memory

semantics of RDMA. We have shown that using RDMA is better compared to using

134

channel semantics of IBA. AlltoAll is taken as a case study to demonstrate the

benefits of RDMA over Send/Recv. We have shown that RDMA can achieve zero-

copy and it performs about 38% better for the 32 nodes. Also, for more number

of nodes, the performance gains are over 33% for small to medium messages.

The chapter also describes a RDMA and Shared Memory algorithm for

MPI Allgather. The traditional implementations of Allgather use two separate

channels, namely network channel for communication across the nodes and shared

memory channel for intra-node communication. Since there is no buffer sharing

across these channels, the performance achieved is sub-optimal due to the extra

copying of data within a node. This is true especially for a collective involving

large number of processes with a high process density per node. In the approach

proposed in the chapter, the extra copy costs are eliminated by sharing the com-

munication buffers for both intra and inter node communication. Also, further

optimizations are done by allowing overlap of network operations with intra-node

shared memory copies. On a 32, 2-way node cluster, we observe an improvement

upto a factor of two for MPI Allgather compared to the original implementation.

We also observe overlap benefits upto 43% for 32x2 process configuration.

In Chapter 6, efficient integrated mechanism of using IBA’s H/W Multicast to-

gether with Shared Memory is described. We proposed a Leader-based mechanism

to couple InfiniBand’s hardware multicast communication with the shared memory

channel to deliver optimal performance to the MPI collectives. Our results show

that the scheme proposed in the chapter delivers a performance improvement by a

factor of as much as 2.3 and 1.8 when compared to the point-to-point and original

solution employing only hardware multicast. Also, on a 4-way NUMA system we

135

observed a performance gain of 1.7 with our designs. We also propose a Dynamic

Attach policy to alleviate the performance bottlenecks caused due to process skew.

11.1.3 Achieving Skew Tolerance

The standard algorithms like pair-wise exchange, dissemination and gather

broadcast do not perform optimally when there is skew in the system. This is

because the nodes participating in these algorithms are tightly coupled with each

other in all the steps of the algorithms. The designs presented in Chapter 7 removes

this limitation by making the tree topology adapt dynamically to the changing

skew scenarios. We have used an adaptive root mechanism where the last arriving

node becomes the root of the tree if the skew is sufficiently large. The algorithm

uses hardware multicast in the release phase of our algorithm. From the results we

have shown that the design presented in this chapter scales very well as the number

of nodes increases. We obtained a synchronization delay of 12 us in the case of

Barrier which is close to the hardware multicast latency. This number is constant

for varying system sizes. The proposed scheme reduces the synchronization delay

by a factor of 2.28 for Barrier and by a factor of 2.18 for allreduce. We also show

that the adaptive design performs comparably when there is no skew. Different

skew scenarios were discussed in the chapter and we show that our adaptive design

either performs better or comparable to the existing skew conditions.

11.1.4 Issues in Performance and Memory Scaling

In Chapter 8, we evaluated the scalability and performance trade-offs between

RC and UD transport modes. We have taken AlltoAll as a case study to demon-

strate the benefits of RDMA over Send/Recv and shown the performance/memory

136

trade-offs over IB transports. Our experimental results show that the UD-based

AlltoAll performs 38% better than Bruck’s algorithm for short messages and up

to two times better than the direct AlltoAll over RC. Since IBA does not provide

RDMA over UD in hardware, we emulated the same in our study. Our results show

a performance dip of up to a factor of three for emulated RDMA Read latency as

compared to RC, highlighting the need for hardware based RDMA operations over

UD. We thus emphasize the need for extending the IBA specification to allow for

support of RDMA over UD.

11.1.5 Architecture Driven Optimizations for Multicores

Modern multicores such as Intel’s Clovertown and AMD’s Opteron feature var-

ious architectural attributes resulting in interesting ramifications. For example,

Clovertown deploys shared L2 caches for a pair of cores where as in Opteron, L2

caches are exclusive to a core. Understanding the impact of these architectures on

communication performance is crucial to designing efficient collective algorithms.

In Chapter 9, we have systematically evaluated these architectures and used the in-

sights to develop efficient collective operations such as MPI Bcast, MPI Allgather,

MPI Allreduce and MPI Alltoall. Further, we characterized the behavior of these

collective algorithms on multicores especially when concurrent network and intra-

node communications occur. We also evaluated the benefits of multicore Opteron’s

architecture for intra-node MPI Allreduce compared to Intel’s Clovertown. The

optimizations proposed reduced the latency of MPI Bcast and MPI Allgather by

1.9 and 2.5 times respectively. For MPI Allreduce, our optimizations improve the

137

performance by as much as 33% on the multicores. Further, we see performance

gains upto three times for the matrix multiplication benchmark on 512 cores.

11.2 Future Work

The following are some of the future ideas that can be pursued along the re-

search presented in this thesis.

• Multicore based Collectives: The research presented in this thesis along

Multicore optimizations is a starting point. With the increasing core count on

a node, future Multicore architectures present several challenges. Especially,

the topics of interest would be optimizing collective communication over on-

chip interconnection fabric. Since, the architectural trend is shifting towards

using point-to-point links rather than shared buses, several shared memory

collective algorithms need to be re-visited and optimized accordingly.

• Asynchronous Progress for Collectives: We plan to evaluate the impact

of skew in applications and propose mechanisms to alleviate such effects. One

strategy would to use one of the cores for collective offload. This srategy is

effective for single root collectives such as MPI Bcast, MPI Reduce.

• Non-Blocking Collectives: With the increasing scale of the next gener-

ation clusters, process skew is a critical factor affecting the performance of

parallel applications. Strategies proposed in this thesis address the problem

while using Blocking collectives. However, efficient schemes can be designed

by changing the semantics of MPI Collectives to Non-Blocking. Apart from

138

changing the present day algorithms, this would entail modifying the appli-

cations to leverage the new semantics.

• Framework for Tuning and Optimization: As discussed in this thesis,

designing a collective algorithm over a given architecture is a non-trivial

problem. An equally challenging task is to automatically choose the correct

algorithm for the provided platform. Automatic tuning and optimization of

collective algorithms is an open area of research.

• Integrated Evaluation: The emerging clusters pose several challenges

with respect to varying communication topologies, differing network archi-

tectures etc. This opens up research avenues along conducting comprehen-

sive evaluation of applications over these cluster architectures. Applica-

tions such as POP [22], an ocean modelling application, extensively uses

the MPI Allreduce operations. Another application of interest is the FFT

kernel [3]. FFT uses MPI Alltoall for carrying out transpose operations.

139

BIBLIOGRAPHY

[1] Multicast collectives. http://vmi.ncsa.uiuc.edu.

[2] AMD. http://www.AMD.com/opteron.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,

H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel
benchmarks. volume 5, pages 63–73, Fall 1991.

[4] Christian Bell, Dan Bonachea, Rajesh Nishtala, and Katherine Yelick. Op-

timizing Bandwidth Limited Problems Using One-Sided Communication and
Overlap Support. In IPDPS, 2006.

[5] A. Bermudez, R. Casado, F. J. Quiles, T. M. Pinkston, and J. Duato. Eval-
uation of a Subnet Management Mechanism for InfiniBand Networks. In

Proceedings of ICPP, 2003.

[6] A. Bermudez, R. Casado, F. J. Quiles, T. M. Pinkston, and J. Duato. On the

InfiniBand Subnet Discovery Process. In Proceedings of Cluster Computing,
2003.

[7] M Bernaschi and G Richelli. Mpi collective communication operations on
large shared memory systems. In Parallel and Distributed Processing, 2001.

Proceedings. Ninth Euromicro Workshop, 2001.

[8] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient Al-

gorithms for All-to-All Communications in Multiport Message-Passing Sys-

tems. IEEE Transactions in Parallel and Distributed Systems, 8(11):1143–
1156, November 1997.

[9] BULL. http://www.bull.com/hpc/.

[10] D. Buntinas, D. K. Panda, and R. Brightwell. Application-bypass broadcast

in mpich over gm. In International Symposium on Cluster Computing and the
Grid (CCGRID ’03), May 2003.

140

[11] H. A. Chen, Y. O. Carrasco, and A. W. Apon. MPI Collective Operations
over IP Multicast. In Workshop PC-NOW 2000, 2000.

[12] Costin Iancu and Parry Husbands and Paul Hargrove. Hunting the overlap.
In 14th International Conference on Parallel Architectures and Compilation

Techniques (PACT), 2005, 2005.

[13] Alexandre E. Eichenberger and Santosh G. Abraham. Impact of load imbal-

ance on the design of software barriers. In Proceedings of ICPP, pages 63–72,
1995.

[14] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia
Zhang. A reliable multicast framework for light-weight sessions and applica-

tion level framing. IEEE/ACM Transactions on Networking, 5(6):784–803,

1997.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable

Implementation of the MPI Message Passing Interface Standard. Parallel
Computing, 22(6):789–828, 1996.

[16] Rinku Gupta, Vinod Tipparaju, Jarek Nieplocha, and Dhabaleswar K. Panda.
Efficient Barrier using Remote Memory Operations on VIA-Based Clusters.

In Proceedings of the IEEE International Conference on Cluster Computing,
2002.

[17] H. Eriksson. Mbone: the multicast backbone. Communications of the ACM,
August 1994.

[18] InfiniBand Trade Association. InfiniBand Architecture Specification, Release

1.1. http://www.infinibandta.org, November 2002.

[19] Intel. http://www.intel.com.

[20] Sushmitha P. Kini, Jiuxing Liu, Jiesheng Wu, Pete Wyckoff, and Dha-
baleswar K. Panda. Fast and Scalable Barrier using RDMA and Multicast

Mechanisms for InfiniBand-Based Clusters. In EuroPVM/MPI, Oct. 2003.

[21] Vipin Kumar, Ananth Grama, Anshul Gupta, and George karypis.

[22] LANL. The Parallel Ocean Program (POP).
http://climate.lanl.gov/Models/POP.

[23] John C. Lin and Sanjoy Paul. RMTP: A reliable multicast transport protocol.
In INFOCOM, pages 1414–1424, San Francisco, CA, March 1996.

141

[24] J. Liu, A. Mamidala, and D. K. Panda. Fast and Scalable MPI-Level Broad-
cast using InfiniBand’s Hardware Multicast Support. In Int’l Parallel and

Distributed Processing Symposium (IPDPS ’03), April 2004.

[25] Jiuxing Liu, Amith R.Mamidala, and Dhabaleswar K. panda. Fast and Scal-

able MPI-Level Broadcast using InfiniBand’s Hardware Multicast Support. In
Proceedings of IPDPS, 2004.

[26] Mellanox Technologies. Mellanox InfiniBand InfiniHost MT23108 Adapters.
http://www.mellanox.com, July 2002.

[27] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM ToCS, 9(1):21–65,

1991.

[28] NASA. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/.

[29] Network-Based Computing Laboratory. MVAPICH: MPI for InfiniBand on

VAPI Layer. http://nowlab.cis.ohio-state.edu/projects/mpi-iba/index.html,
January 2003.

[30] M. Papamarcos and J. Patel. A Low Overhead Coherence Solution for Mul-
tiprocessors with Private Cache Memories. In Int’l Symposium on Computer

Architecture(ISCA ’84), 1984.

[31] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics

Network: High-Performance Clustering Technology. IEEE Micro, 22(1):46–
57, 2002.

[32] Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg, and Adolfy Hoisie.

Hardware- and Software-Based Collective Communication on the Quadrics
Network. In IEEE International Symposium on Network Computing and Ap-

plications 2001 (NCA 2001), Boston, MA, February 2002.

[33] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The Case of the

Missing Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q. In Proceedings of the 2003 ACM/IEEE conference

on Supercomputin, 2003.

[34] Sridhar Pingali, Don Towsley, and James F. Kurose. A Comparison of Sender-

Initiated and Receiver-Initiated Reliable Multicast Protocols. In Proceedings
of the Sigmetrics Conference on Measurement and Modeling of Computer Sys-

tems, pages 221–230, New York, NY, USA, 1994. ACM Press.

142

[35] Rajeev Thakur and William Gropp and Brian Toonen. Minimizing synchro-
nization overhead in the implementation of mpi one-sided communication.

In Proceedings of the 11th European PVM/MPI Users’ Group Meeting (Euro
PVM/MPI 2004), 2004.

[36] Amith R.Mamidala, Jiuxing Liu, and Dhabaleswar K. panda. Efficient Barrier

and Allreduce InfiniBand Clusters using Hardware Multicast and Adaptive
Algorithms . In Proceedings of Cluster Computing, 2004.

[37] J. C. Sancho, A. Robles, and J. Duato. Effective Strategy to Compute For-

warding Tables for InfiniBand Networks. In Proceedings of ICPP, 2001.

[38] S. Sistare, R. vandeVaart, and E. Loh. Optimization of MPI Collectives on
Clusters of Large-scale SMP’s. In Proceedings of the 1999 ACM/IEEE con-

ference on Supercomputing, 1999.

[39] S. Sur, U.K.R. Bondhugula, A.R. Mamidala, H.-W. Jin, and D. K. Panda.
High performance RDMA based All-to-All Broadcast for InfiniBand Clusters.

In (HiPC), 2005.

[40] S. Sur, H.-W. Jin, and D. K. Panda. Efficient and Scalable All-to-All Ex-

change for InfiniBand-based Clusters. In International Conference on Parallel
Processing (ICPP), 2004.

[41] TACC. http://www.tacc.utexas.edu/resources/hpcsystems/.

[42] Rajeev Thakur and William Gropp. Improving the Performance of Collective

Operations in MPICH. In Euro PVM/MPI, 2003.

[43] Breaking the connection: RDMA deconstructed. Rajeev Sivaram and Govin-
daraju, R.K. and Hochschild, P. and Blackmore, R. and Piyush Chaudhary.

In HOTI, 2005.

[44] V Tipparaju, J Nieplocha, and D K Panda. Fast collective operations using
shared and remote memory access protocols on clusters. In International

Parallel and Distributed Processing Symposium, 2003, 2003.

[45] UC Berkeley/LBNL. Berkeley upc - unified parallel c. http://upc.lbl.gov/.

[46] V. Tipparaju, J. Nieplocha, D.K. Panda. Fast Collective Operations Using
Shared and Remote Memory Access Protocols on Clusters. In Int’l Parallel

and Distributed Processing Symposium (IPDPS ’03), April 2003.

[47] A. Vishnu, G. Santhanaraman, W. Huang, H.-W. Jin, and D. K. Panda. Sup-
porting MPI-2 One Sided Communication on Multi-Rail InfiniBand Clusters:

Design Challenges and Performance Benefits. In HiPC, 2005.

143

[48] Wei-Yu Chen and Costin Iancu and Katherine Yelick. Communication opti-
mizations for fine-grained upc applications. In 14th International Conference

on Parallel Architectures and Compilation Techniques (PACT), 2005, 2005.

[49] Wei-Yu Chen and Dan Bonachea and Jason Duell and Parry Husbands and

Costin Iancu and Katherine Yelick. A performance analysis of the berkeley
upc compiler. In 17th Annual International Conference on Supercomputing

(ICS), 2003.

[50] Weihang Jiang and Jiuxing Liu and Hyun-Wook Jin and Dhabaleswar K.

Panda and Darius Buntinas and Rajeev Thakur and William Gropp. Efficient
implementation of mpi-2 passive one-sided communication on infiniband clus-

ters. In Proceedings of the 11th European PVM/MPI Users’ Group Meeting

(Euro PVM/MPI 2004), 2004.

[51] Weihang Jiang and Jiuxing Liu and Hyun-Wook Jin and Dhabaleswar K.

Panda and Darius Buntinas and Rajeev Thakur and William Gropp. High
performance mpi-2 one-sided communication over infiniband. In Proceedings

of the 4th IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid 2004), 2004.

[52] Meng-Shiou Wu, R A Kendall, and K Wright. Optimizing collective commu-
nications on smp clusters. In ICPP 2005, 2005.

[53] W.Yu, S.Sur, D.K.Panda, R.T.Aulwes, and R.L.Graham. High Performance
Broadcast Support in LA-MPI over Quadrics. In Las Alamos Computer Sci-

ence Institure Symposiun,(LACSI‘03), Oct 2003.

[54] Weikuan Yu, Darius Buntinas, and Dhabaleswar K. Panda. High Performance

and Reliable NIC-Based Multicast over Myrinet/GM-2. In Int’l Conference

on Parallel Processing, (ICPP 2003), Kaohsiung, Taiwan, October 2003.

[55] X. Yuan, S. Daniels, A. Faraj, and A. Karwande. Group Management Schemes

for Implementing MPI Collective Communication over IP-Multicast. In The
6th International Conference on Computer Science and Informatics, Durham,

NC, March 8-14 2002.

144

