Comput Sci Res Dev (2010) 25: 3-14
DOI 10.1007/s00450-010-0115-3

SPECIAL ISSUE PAPER

Designing truly one-sided MPI-2 RMA intra-node communication

on multi-core systems

Ping Lai - Sayantan Sur - Dhabaleswar K. Panda

Published online: 10 April 2010
© Springer-Verlag 2010

Abstract The increasing popularity of multi-core proces-
sors has made MPI intra-node communication, including
the intra-node RMA (Remote Memory Access) communi-
cation, a critical component in high performance comput-
ing. MPI-2 RMA model includes one-sided data transfer
and synchronization operations. Existing designs in popu-
larly used MPI stacks do not provide truly one-sided intra-
node RMA communication. They are built on top of two-
sided send-receive operations, therefore suffering from over-
heads of two-sided communication and dependency on the
remote side. In this paper, we enhance existing shared mem-
ory mechanisms to design truly one-sided synchronization.
In addition, we design truly one-sided intra-node data trans-
fer using two kernel based direct copy alternatives: basic
kernel-assisted approach and I/OAT-assisted approach. Our
new design eliminates the overhead of using two-sided oper-
ations and eliminates the involvement from the remote side.
We also propose a series of benchmarks to evaluate vari-
ous performance aspects over multi-core architectures (In-
tel Clovertown, Intel Nehalem and AMD Barcelona). The

This research is supported in part by DOE grants
#DE-FC02-06ER25749 and #DE-FC02-06ER25755; NSF grants
#CNS-0403342, #CCF-0702675, #CCF-0833169, #CCF-0916302 and
#0OCI-0926691; grants from Intel, Mellanox, Cisco systems, QLogic
and Sun Microsystems; and equipment donations from Intel,
Mellanox, AMD, Appro, Chelsio, Dell, Fujitsu, Fulcrum, Microway,
Obsidian, QLogic, and Sun Microsystems.

P. Lai (X)) - S. Sur - D.K. Panda

Computer Science and Engineering, Ohio State University,
Columbus, USA

e-mail: laipi @cse.ohio-state.edu

S. Sur
e-mail: surs @cse.ohio-state.edu

D.K. Panda
e-mail: panda@cse.ohio-state.edu

results show that the new design obtains up to 39% lower
latency for small and medium messages and demonstrates
29% improvement in large message bandwidth. Moreover,
it provides superior performance in terms of better scalabil-
ity, reduced cache misses, higher resilience to process skew
and increased computation and communication overlap. Fi-
nally, up to 10% performance benefits is demonstrated for a
real scientific application AWM-Olsen.

Keywords MPI-2 RMA - Intra-node communication -
Multi-core system

1 Introduction

Parallel scientific computing has been growing dramatically
over the past decade. It is driven by compute/communicate
intensive and data hungry applications. It has led to faster
development of new technologies, and massive deployment
of workstation clusters coupled with revolutionary changes
in programming models. Multi-core technology is an impor-
tant contributor to this trend. As it becomes mainstream,
more and more clusters are deploying multi-core proces-
sors. Quad-core and Hex-core processors are quickly gain-
ing ground in many applications. In fact, more than 87% of
the systems in the November 2009 ranking of the Top500 su-
percomputers belong to the multi-core processor family. In
this scenario, it is expected that considerable communication
will take place within each node. It suggests that intra-node
communication design of a programming model will play a
key role in overall performance of end applications.

In the last decade MPI (Message Passing Interface) [14]
has evolved as one of the most popular programming mod-
els for distributed memory systems. MPI-1 specification de-
fines message passing based on send-receive operations. It

@ Springer

mailto:laipi@cse.ohio-state.edu
mailto:surs@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

P. Lai

is generally referred to as two-sided communication model,
as both the sender and receiver are involved in communica-
tion. Subsequently, MPI-2 [21] standard introduced the one-
sided communication model also known as Remote Mem-
ory Access (RMA) model which includes data transfer and
synchronization operations. Ideally only one process par-
ticipates in the communication, so it has to specify all the
communication parameters including the parameters of re-
mote side. Synchronization is done explicitly to guarantee
the communication completion. Here the process initiating
the communication is called origin, and the remote process
is called target. MPI-2 currently supports three one-sided
data communication operations, i.e., MPI_Put, MPI_Get
and MPI_Accumulate, and two synchronization modes, i.e.,
active mode and passive mode.

There are different ways to design the one-sided model.
One way is to implement it on top of two-sided operations.
This approach has good portability, but has extra overheads.
For example, it has intermediate layer handover and two-
sided inherent overhead (e.g. tag matching and rendezvous
handshake etc.). Several popular MPI implementations such
as MPICH2 [3] and LAM/MPI [2] use this two-sided based
approach. The second approach is to utilize special features
such as RDMA operations to achieve truly one-sided com-
munication. MVAPICH2 [4] and OpenMPI [8] use this de-
sign for inter-node RMA communication. However, all of
these MPI stacks do not have truly one-sided design for
intra-node case. This could significantly degrade the over-
all performance due to increasing importance of intra-node
communication and higher overhead of the two-sided based
approach. Therefore, it is necessary to design truly one-
sided intra-node communication mechanisms.

In this paper we design and implement a truly one-sided
model for intra-node RMA communication, and carry out
comprehensive evaluations and analysis. We design truly
one-sided data transfer using two alternatives. One is based
on kernel-assisted direct copy and the other one utilizes
I/OAT [1] technology to offload this copy. MPI_Put and
MPI_Get are naturally mapped to direct copy with no inter-
ruption to target (support for MPI_Accumulate will be in-
vestigated in the future). This design eliminates two-sided
operation related overhead. More importantly, since the tar-
get is not involved, its progress does not block the commu-
nication. For synchronization, as the passive mode has been
investigated in [18, 22, 23], we only deal with the active
mode. Shared memory mechanism is utilized to realize truly
one-sided synchronization. We come up with several bench-
marks running on three multi-core architectures, i.e., Intel
Clovertown, Intel Nehalem and AMD Barcelona. From the
experimental results we observe that our new design pro-
vides much better performance in terms of latency and band-
width as compared to the existing two-sided based designs.
Particularly, the basic kernel-assisted approach improves the

@ Springer

latency for small and medium messages by 39%, and the
I/OAT based approach yields up to 29% improvement in
large message bandwidth. Furthermore, we see that the new
design achieves better scalability, fewer cache misses and
more computation and communication overlap. It is also
more tolerant to process skew and offers more benefits in
real applications.

The rest of this paper is organized as follows. In Sect. 2,
we provide the introduction on MPI-2 one-sided RMA com-
munication model and the common mechanisms for intra-
node communication. Then we analyze the drawbacks of the
existing designs in Sect. 3. In Sect. 4, we describe the pro-
posed design in detail. We present and analyze the experi-
mental results in Sect. 5, discuss the related work in Sect. 6,
and summarize conclusions and possible future work in
Sect. 7.

2 Background

In this section, we describe the required background knowl-
edge for this work.

2.1 MPI-2 RMA model

MPI-2 RMA model includes the data transfer and synchro-
nization operations. It defines that the origin can directly
access a memory area on the target process. This mem-
ory is called window which is defined by a collective call
MPI_Win_create. Ideally the origin specifies all the para-
meters including the target memory address, so the target is
unaware of the on-going communication.

MPI-2 defines three RMA data transfer operations. MPI_
Put and MPI_Get transfer the data to and from a tar-
get window. MPI_Accumulate combines the data move-
ment to target with a reduce operation. These operations
are not guaranteed to complete when the functions re-
turn. The completion must be ensured by explicit syn-
chronization. In other words, MPI-2 allows one-sided op-
erations only within an epoch which is the period be-
tween two synchronization events. Synchronization is clas-
sified as passive (no explicit participation from the tar-
get) and active (involving both origin and target). In the
passive mode, the origin process uses MPI_Win_lock and
MPI_Win_unlock to define an epoch. The active mode is
classified into two types: a) collective MPI_Win _fence on
the entire group; and b) collective on a smaller group, i.e.,
an origin uses MPI_Win_start and MPI_Win_complete to
specify access epoch for a group of targets, and a target
calls MPI_Win_post and MPI_Win_wait to specify expo-
sure epoch for a group of origins. The origin can issue RMA
operations only after the target window has been posted, and
the target can complete an epoch only when all the origins in

Designing truly one-sided MPI-2 RMA intra-node communication on multi-core systems 5

the group have finished accessing to its window. Normally
multiple RMA operations are issued in an epoch to amor-
tize the synchronization overhead. In this paper, we primar-
ily concentrate on active synchronization and use the post-
wait/start-complete mode as the example in the following
sections.

2.2 Mechanisms for intra-node communication

There are several common mechanisms for intra-node com-
munication. The easiest one is through user space shared
memory. Two processes sharing a buffer can communicate
with copy-in and copy-out operations. This approach usu-
ally provides benefits for small messages, while not good
for large messages due to the two copies overhead. MVA-
PICH2, MPICH2 [3] and OpenMPI all use this mechanism
for two-sided small message passing.

The second category of mechanisms take help from the
kernel to save one copy. In the kernel space, the data is
directly copied from the sender’s address space to the re-
ceiver’s address space. Some such kernel modules have been
developed for MPI two-sided large message communica-
tion. For example, LiMIC2 [19] is used in MVAPICH2 [4]
and KNEM [11] is used in MPICH2 and OpenMPI. Based
on this approach, another alternative is to further offload the
direct copy to DMA (Direct Memory Access) engine. Intel
I/OAT [1] is such a DMA engine which has multiple inde-
pendent DMA channels with direct access to main memory.
It copies the data asynchronously while releasing the CPU
for other work. KNEM [11] has I/OAT support for very large
messages. These two kernel-assisted direct copy approaches
both fit the one-sided model very well. As long as the origin
provides the kernel or I/OAT engine with the buffer informa-
tion about itself and target, the data can be directly copied
to the rarget window without interrupting it.

3 Detailed motivation

As illustrated in Fig. 1, various MPI stacks' design MPI-
2 RMA communication using two means, i.e., based on
two-sided send-receive operations> and truly one-sided ap-
proach. Truly one-sided approach bypasses the two-sided
operations to build the RMA communication directly over
the underlying remote memory access mechanisms (e.g.,
network RDMA mechanism, or node level RMA mech-
anisms). While the inter-node truly one-sided design has

IStrictly speaking Open-MX is not an MPI implementation, but it can
be ported to several MPI implementations.

ZPlease note that I/OAT support for two-sided communication is not in-
cluded in the current MVAPICH2 release. It will be available in future
releases.

MPI-2 One-sided Communication
I

!

Two-sided based design Truly ong-sided design
Inter-node Intra-node Inter- node Intra-node
(existing) (existing) (existing) (our contrilbution)

i | f
: ! 7 3 !
TCP RDMA ‘SHMEM | ’Kernel} ’ uoxﬂ
SeRKE MPICH2

MPICH2 MPICH2 MPICH2
MVAPICH2 g::ni:‘gl"z MVAPICH2 MVAPICH2 MVAPICH22
OpenMPI OpenMPl OpenMPI OpenMPI
Open-MX Open-MX Open-MX Open-MX

Fig. 1 MPI-2 RMA communication design in various MPI stacks

been implemented in some stacks (e.g., in MVAPICH2 and
OpenMPI), to the best of our knowledge there are no ex-
isting truly one-sided designs for intra-node communica-
tion.

Two-sided based design has several drawbacks. It is un-
avoidable to inherit the two-sided overhead. For instance,
short messages need copy-in and copy-out through the
shared memory. Large messages require sending buffer in-
formation (in MPICH2) or even rendezvous handshake (in
MVAPICH?2) before the data is actually transferred. It not
only adds latency, but also leads to the interactive depen-
dency between the origin and target processes, which is con-
trary to the goal of one-sided model. This approach also does
not provide any overlap between communication and com-
putation. This could result in very bad performance if the
origin and target processes are skewed. We experimented
this using the popular MPI stacks (MVAPICH2, OpenMPI
and MPICH?2) and demonstrated this effect. Please refer to
Sect. 5.2 for detailed results. All of these observations sug-
gest the demand on designing a truly one-sided intra-node
communication.

4 Proposed design and implementation

In this section, we describe the details of our design. In the
following, we use post, wait, start, complete, put and get as
the abbreviations for the corresponding MPI functions.

4.1 Design goals

In order to better understand the new design, first let us
see an example of the existing two-sided based design.
Figure 2(a) shows the approach [24] used in MPICH2
and MVAPICH?2 for intra-node one-sided communication.
The dotted lines represent synchronization steps and the
solid lines represent data communication steps. At ori-
gin, MPI_Win_start and the put’s/get’s return immediately.
The put’s/get’s are queued locally and will be issued in

@ Springer

P. Lai

Origin Process
User Program MPI Lib

Target Process
MPI Lib User Program

startQf-..__ N e postO)
o] ey SEEY et
a7
puol]
get epoch
put(Q enqueued | waito)
complete(}..__ la---="""
“T-~ MPI_Recv(post)
equeue & send
% Tecy (data)
return FIN 1l ey
- 'L T
a7 -return
=~ -

(a) Example of two-sided based design: de-
ferred approach

Fig. 2 Comparison of old design and new design

MPI_Win_complete after it checks that the target window
has been posted (by calling MPI_Recv which matches with
MPI_Send issued in MPI_Win_post by the target). The com-
pletion is marked by adding a special flag in the last put/get
packet. Even though this design has minimized synchroniza-
tion cost, it is not truly one-sided and has the drawbacks
mentioned in the last section.

Figure 2(b) shows our proposed new design. Basically
we aim to realize the truly one-sided nature for both syn-
chronization operations (post and complete) and the data
transfer operations (put and get), thereby removing the two-
sided related overhead and alleviating the impact of process
skew. “start” operation still returns without doing anything.
A “put/get” can be issued immediately if the “post” has been
there, or be issued in later functions as soon as “post” is de-
tected. As the communication is within a node, we utilize
the aforementioned (in Sect. 2.2) mechanisms as the basis
for our design.

Our design is implemented in MVAPICH?2 [4] which cur-
rently uses two-sided based approach as shown in Fig. 2(a).
We make changes on CH3 layer to design a customized in-
terface for intra-node truly one-sided communication.

4.2 Design of truly one-sided synchronization

As mentioned earlier, we use the post-wait/start-complete
synchronization as the example. At the beginning, the target
informs the origin that its window has been posted for ac-
cess, and at the end the origin notifies the target that all the
one-sided operations on the window have finished.

We utilize shared memory for truly one-sided design, as
illustrated in Fig. 3(a) using 4 processes for instance. Every
process creates two shared memory buffers used by others
to write “post” and “complete” notifications, respectively.

@ Springer

Origin Process Target Process

User Program MPI Lib MPI Lib User Program
start() re. o O a7 post()]
return. . wf\‘e&g?é‘ “1. return
a-= =77 [gmetl oo 17 -
-
put) ~——wn |

get() \%‘ epoch
put() \>_ _______ wait()

complete() [~--.__

-
return. . |~ ~ <2 Write(r;
la---"" - ~fi(fm)

(b) Proposed new design

Then each process attaches to the shared memory of other
processes within the same node. Shared memory creation,
information exchange and attachment operations take place
in MPI_Win_create which is not in the communication crit-
ical path. Also, since these buffers are actually bit vectors
whose size is very small, the scalability will not be an issue.
Using this structure, a target can directly write “post” into
the corresponding shared memory. When an origin starts an
epoch, it checks its post buffer and knows which processes
have posted their windows. Consequently, it can immedi-
ately initiate the put/get on those windows instead of queu-
ing them. Similarly, upon finishing all the operations, the
origin simply writes a “FIN” message to the completion
shared memory where the corresponding target checks for
the completion. It is to be noted that for the processes in
the group that do not end up being the real target, the ori-
gin still needs to notify the completion to them so that those
processes will not be blocked in this epoch.

The advantages of this design are two folds. First it does
not need send and receive for “post” step. The other is that
it is truly one-sided with no dependency on remote side’s
participation. Additionally, the put/get operations are not
deferred.

4.3 Design of truly one-sided data communication

Different from the synchronization operations, the one-sided
data communication (put/get) cannot make use of shared
memory mechanism, because the buffers where these oper-
ations perform are passed from user programs. Usually they
are not shared memory. Although MPI standard defines a
function MPI_Alloc_mem allowing users to allocate special
memory that is shared by other processes on a SMP node,

Designing truly one-sided MPI-2 RMA intra-node communication on multi-core systems 7

Process 3

Pnm: shared memory for process m to expose post to process n
Cnm: shared memory for process m to write completion to process n

(a) Truly one-sided synchronization

Fig. 3 Truly one-sided intra-node RMA design

we should not assume that the users always use it. Hence-
forth, we take advantage of the kernel-assisted means.

With the help of kernel, put or get operations can directly
transfer the data to or from the target window. Operations
are transparent to the target. Figure 3(b) presents our design.
Every process traps into kernel to extract the information
about its own window and maps this back to a user space
structure. Then all the intra-node processes exchange this
information. These two steps happen in MPI_Win_create.
When an origin tries to issue a get/put (e.g., process 1 is-
sues a put to process 0 in Fig. 3(b)), it only needs to retrieve
the target window information (w0), thereby providing both
this information and its local buffer information to the kernel
for performing data copy. Regarding the data copy, as men-
tioned in Sect. 2.2, there are two direct copy approaches, i.e.,
the basic kernel-assisted approach and the I/OAT-assisted
approach. We implement both the versions. It is to be noted
that in some of the existing designs, the data transfer uses
send-receive operations which also employ the basic kernel-
assisted one-copy method for large messages [11, 19], but
every time it has to go through rendezvous handshake prior
to copy.

4.4 Other design issues

We have to address several additional issues to obtain good
performance with kernel-assisted approach.

First, during the copy operation, the buffer pages should
be locked in main memory to avoid being swapped to disk.
This is mandatory for [/OAT based copy, because DMA en-
gine directly deals with physical addresses. Thus, both the
buffers at origin and the window at target are locked. While
for the basic kernel-assisted approach, only the target win-
dow buffer is locked. We use the kernel API get_user_pages
for this locking step.

user : kernel | . user kernel
e S
- T’%] copy(by kernel
: +| len
Pl ﬁ‘) % send buf or JOAT)
~ : :
4 H H
= A
w3 ™ ; ;
e
e
@) 1 Allgather ;L 19
get local exchange kernel-assisted
window info i window info } direct copy

wi []: structure to record information about a window on rank i

(b) Truly one-sided data communication

The high cost of locking pages may degrade the perfor-
mance if every time the buffers are locked before the copy. In
order to alleviate this, the locked pages are cached inside the
kernel module upon being added for the first time. Next time
the same buffer is not locked again. However, only the pages
of window memory are cached. The local sending or receiv-
ing buffer are not cached, because they usually change as
the application proceeds. For the memory allocated by mal-
loc(), the cached pages must be released before the memory
is freed, so we simply do not cache these pages.

Another issue about I/OAT is completion notification.
After issuing copy requests, I/OAT returns cookies that can
be polled for completion. Frequent polling is not desirable,
so polling is performed only when the origin needs to write
completion to the target after it issues all data transfer oper-
ations.

5 Experimental evaluation

In this section, we present comprehensive experimental
evaluations and analysis. In all of the results figures, “Orig-
inal” represents the existing design in MVAPICH2, “T1S-
kernel” and “T1S-i/oat” represent the basic kernel-assisted
version and the I/OAT-assisted version of our truly one-sided
design. We primarily compare the performance of these
three designs. In Sects. 5.1 and 5.2, we also show the results
of MPICH2 and OpenMPI for more comparative study.

Experimental test bed We use three types of multi-core
hosts. Type A is Intel Clovertown node with dual-socket
quad-core Xeon E5345 processor (2.33 GHz). It has shared
L2 cache between each pair of two cores. Type B is Intel Ne-
halem node with dual-socket quad-core Xeon E5530 proces-
sor (2.40 GHz) which has exclusive L2 cache for each core.
Type C is AMD Barcelona host with quad-socket quad-core

@ Springer

8 P. Lai
5t Original —=— 22 Original —&— 30000 Original —=—
T1S-kerne| - 40 T1S-kernel - 25000 | T1S-kernel - T
—~ 4! T1S-i/oat o h . T1S-i/oat o . T1S-i/oat o
@ MPICH2 - 2 35 MPICH2 et y 2 20000 | MPICH2 -t
< 3l OpenMPI = 30 OpenMPI = OpenMPI
> >
g 9 g o251 g 15000 |
L 5 L 20 2
s g st § 10000 |
1 101 5000 |
0 0) 0 — ‘
1 4 16 64 256 1K 4K 16K 64K 64K 256K M 4M 16M
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
(a) Latency of get: (al) small messages, (a2) medium messages and, (a3) large messages (Intra-socket)
= 6000 Original —&— = 6000 Original = 6000 Original —&—
Q | T1S-kernel ... ¥x o |T1S-kernel - Q |T1S-kernel -
§ 5000 T1S-iloat o % 5000 T1S-i/oat % 5000 T1S-i/oat ~o-i
2 4000 | MPICH2 - 2 4000 | MPICH2 --- 2 4000 | MPICH2 ---
@ OpenMPI @ OpenMPI @ OpenMPI
= 3000 | = 3000 | = 3000 |
£ £ £
3§7 2000 g 2000 'g 2000 OoOQiO ,O_fm(
2 1000 | 2 1000 2 1000 .
i) . 0 £ 0
0 BEsmenay - - - [0 - - - O emaaems . .
1 16 256 4K 64K 1M 1 16 256 4K 64K 1M 1 16 256 4K 64K 1M

Message Size (Bytes)

Message Size (Bytes)

Message Size (Bytes)

(b) Bandwidth of ger: (bl) inter-socket, (b2) intra-socket and, (b3) shared cache

Fig. 4 Basic performance on Intel Clovertown

Opteron 8350 processor having exclusive L2 cache. There
are different kinds of intra-node communication types. Type
A node has inter-socket (two processes are on different sock-
ets), intra-socket (two processes on the same socket with no
shared L2 cache) and shared-cache (two processes on the
same socket with shared L2 cache) communication. Nodes
of type B and C only have inter-socket and intra-socket com-
munication.

5.1 Improved latency and bandwidth

We use the RMA microbenchmarks in OMB [5] suite to
measure the intra-node latency and bandwidth. Note that this
benchmark uses aligned buffers for better performance. The
performance with latest MPICH2 trunk and OpenMPI trunk
is also measured for comparison. Please note that MVA-
PICH2, MPICH2 and OpenMPI all use two-sided based
design. MVAPICH2 uses LiMIC2 underneath. Similarly,
OpenMPI uses KNEM underneath. However, MPICH2 does
not have KNEM on its RMA communication path, although
uses it for the generic send-receive operations.

The ping-pong latency test measures the average one-
way latency of an epoch. We experiment with all aforemen-
tioned intra-node communication types. Figures 4(a) show
the results for intra-socket ger on an Intel Clovertown host.
Comparing with the existing designs, our kernel-assisted
design greatly reduces the latency for small and medium
messages by more than 39% and 30%, respectively. This is
because that our design removes the inter-dependency be-
tween origin and target, and saves one copy of synchro-

@ Springer

nization and data communication messages. However, for
large messages, the data communication dominates the la-
tency. Since MVAPICH2 and OpenMPI also use kernel-
assisted copy underneath (although in an indirect manner),
they have the similar performance as our design. MPICH2
shows worst performance starting from medium messages,
because it uses the two-copy shared memory mechanism.
On the other hand, our I/OAT-assisted design performs the
worst for small and medium messages due to the high start
up cost, but yields up to 38% better performance for very
large messages (beyond 1 MB). It is because that I/OAT
copies data in larger blocks, and has less CPU consump-
tion and less cache pollution. We see similar results for put
latency which is not presented here due to the space limit.
For inter-socket and shared-cache communication, the per-
formance trends remain the same. Please find more details
in our technical report [20].

Figures 4(b) shows the bandwidth of get (put presents
similar comparison) of different intra-node communication
types. In this test, the target calls post and wait, while the ori-
gin process calls start-get’s(put’s)-complete. 32 get’s/put’s
are issued back-to-back on non-overlapped locations of the
target window. Use the inter-socket case as an example
(Fig. 4(b1)). We see that the basic kernel-assisted design
improves the bandwidth dramatically for medium messages
where the I/OAT-assisted design performs badly. However,
beyond the message size of 256K, I/OAT-assisted design
performs the best with the improvement up to 29%. This
suggests us design a hybrid method which can switch be-
tween these two alternatives as a future work. MPICH2

Designing truly one-sided MPI-2 RMA intra-node communication on multi-core systems 9

8000 — —
Original —&—
L T1S-kernel % * ,
R 7000 MPICH2 --dpreene " * *
(o] & /.
8 6000 | OpenMPI .
% :
£ 5000
@
2 4000 |
=
e L
2 3000
©
S 2000 -
s}
1000
0 - ST

1 4 16 64 256 1K 4K 16K 64K256K 1M 4M
Message Size (Bytes)

7000 — ; T —%
Original —8— %o X x
T1S-kernel ¥ T
. 6000 r MPICH2 e -3
8 OpenMPI
© 5000
(%]
e
@ 4000
3
= 3000
9
3
2 2000
©
0
1000

16 64 256 1K 4K 16K 64K256K 1M 4M
Message Size (Bytes)

Fig. 5 Bandwidth of one-sided get of (a) Inter-socket and (b) Intra-socket (Intel Nehalem)

4500

Of'iginél = x

4000 Ti1S-kernel - A%]
R MPICH2 e ¥
§ 3500 OpenMPI H % 1
2 3000 f :
2500 |
=3
£ 2000 f
S
% 1500
3
& 1000 |

500

64 256 1K 4K 16K 64K256K 1M 4M
Message Size (Bytes)

4500

Original —8— ¥

4000 + T1S-kernel -¥--]
. MPICH2 oden * ¥
§ 3500 r OpenMPI 1
2 3000 '
& 2500
=
£ 2000
o
_g 1500
3
& 1000

500

Message Size (Bytes)

Fig. 6 Bandwidth of one-sided get of (a) Inter-socket and (b) Intra-socket (AMD Barcelona)

has very low bandwidth limited by the two-copy over-
head. We observe very similar comparison in the inter-
socket and shared-cache cases. However, in shared-cache
case, MPICH2 has similar bandwidth as the MVAPICH2
and OpenMPI, mainly due to the greatly reduced data copy
time within the cache.

To examine the impact of various multi-core architec-
tures, we also measured the performance on Type B and
C nodes. The chipsets on these two kinds of nodes do not
support I[/OAT, so I/OAT-assisted design is not shown. Here
we only present part of the results. Please refer to [20]
for details. Figures 5(a) and (b) show the get bandwidth in
inter-socket and intra-socket cases on Intel Nehalem host.
Similarly, Figs. 6(a) and (b) show the bandwidth on AMD
Barcelona node. We find that although the absolute band-
width varies with different multi-core processors and intra-
node communication types, the new design always performs
the best for a range of medium messages.

All of the above results demonstrate that our new design
can obtain significantly improved latency and bandwidth on

various multi-core architectures. We have seen that MPICH2
does not perform well and OpenMPI basically has the sim-
ilar design as the current MVAPICH2. Since our new de-
sign is implemented in MVAPICH2, we only compare our
new design (“T1S-kernel”, “T1S-i/oat”’) with the “Original”
MVAPICH2 design for the most part of the remaining re-
sults.

5.2 Reduced impact of process skew

In this benchmark, some amount of computation (in the
form of matrix multiplication) is inserted between post and
wait on the target to emulate the skew. The origin process
performs start, 16 back-to-back put operations and com-
plete. The time to finish these operations is measured. It is
essentially the latency before the origin can proceed with
other work. Please note that since we study the intra-node
communication, inserting computation on the target not only
introduces process skew but also adds background work-
load.

@ Springer

10 P. Lai
09 O D @@ 0.9 o o o

g o3 oo [g o8 ° | g Tposesase

g 07 T 07} = T

o o o o 0.8 |

g 0.6 o o 0.6 | g

= e = r ‘ = L

g oat” s ool . g 06

o . 3 4 ¢ 3

c 03 1 c 03}] 5 047

2 02 Original —&— | 2 02¢ Original —&— 1 o 02 Original —&—

O 01 T1S-kernel -m | S o1l T1S-kernel - | S e r T1S-kernel - 1
.0 _ . _T1S-j/oat o lO - _T1S-i/oat o 0 T1S-i/oat o

1K 4K 16K 64K 256K 1M 4M 02 04 06 08 1 12 14 16 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(a) Origin side overlap with varying message

sizes tation time

Fig. 7 Computation and communication overlap ratio

Table 1 Latency (usec) of 16 put with process skew

Matrix size 0x0 32x32 64x64 128 x 128 256 x 256
MVAPICH2 3404 3780 6126 27023 194467
MPICH2 4615 4675 4815 24906 192848
OpenMPI 3804 3898 6563 27381 194560
T1S-kernel 3365 3333 3398 3390 3572
T1S-i/oat 2291 2298 2310 2331 2389

As representative examples, we list the results for put
message of 256 KB in Table 1. The basic latency with min-
imum process skew (corresponding to the matrix size of
0 x 0) is also presented for reference. For the existing de-
signs in MVAPICH2, MPICH2 and OpenMPI, we see that
the latency shoots up as two processes become more skewed.
This is because of the dependency on the target. Contrar-
ily, our new design is more robust. The basic kernel-assisted
design only has small degradation, and the I/OAT-assisted
design has even less change. It means that the origin can
proceed with the followed work irrespective of whether the
target is busy or not. It is because our design is truly one-
sided in which the computation on the target does not block
the progress on the origin. Furthermore, I/OAT based design
offloads the data copy so that the background workload has
little impact. We also measure the time on the target [20]
which still shows that our design has better performance.

5.3 Increased computation and communication overlap

Latency hiding and computation/communication overlap are
one of the major goals in parallel computing. We investigate
this through a put/get bandwidth test. At the origin, some
computation is added after 16 back-to-back get/put opera-
tions for overlapping purpose. For a particular message size,
the latency of 16 put/get is first measured. This basic latency
is used as the reference for the inserted computation time.
For example, if the basic latency is Tcomm, the computation
time Tcomp should be equal or larger than Tcomm to achieve
good overlap. The actual total latency is reported as Ttotal.

@ Springer

Normalized Computation Time
(b) Origin side overlap with varying compu-

Message Size (Bytes)

(c) Target side overlap with varying message
sizes

We tested this on a type A host for example. The overlap is
defined as:

Overlap = (Tcomm + Tcomp — Ttotal)/Tcomm

If the computation and communication are completely
overlapped, the overlap should be 1 (because Tcomp=Ttotal
in this case). Generally, the smaller the value is, the less
overlap it has.

Figure 7(a) compares the origin side overlap with vary-
ing messages and Tcomp = 1.2xTcomm. It clearly shows
that the I/OAT based design provides close to 90% overlap,
but the original design and the basic kernel-assisted design
have no overlap at all. The reason is that I/OAT offloading
releases the CPU so that the computation and communica-
tion can be executed simultaneously. Figure 7(b) illustrates
the overlap change with increasing Tcomp for message of 1
MB. It conveys the same information that only I/OAT based
design provides the origin side overlap.

Similarly, to examine the target side overlap, computation
is inserted between post and wait just as we did in Sect. 5.2,
but here we measure the time on the target. The overlap
with Tcomp = 1.2«Tcomm is shown in Fig. 7(c). We find
that both versions of our new design can achieve almost full
overlap, while the original design has no overlap. This is ex-
pected as our design aims at truly one-sided where the target
can do its own computation while the communication is go-
ing on simultaneously.

5.4 Improved scalability

In some applications, multiple origin processes communi-
cate with one target process. It is very important for a de-
sign to provide scalable performance in this situation. We
use two experiments to evaluate this aspect.

The first experiment is to measure the synchronization
overhead. One target process creates different windows for
different origin processes and issues post and wait. Each
origin issues start and complete without any put/get in be-
tween. We measure the average synchronization time at tar-
get as presented in Fig. 8(a) (this is on one AMD Barcelona
host). Because the two versions of our new design have

Designing truly one-sided MPI-2 RMA intra-node communication on multi-core systems 11

o o
(0] (o]
5 16— 2 2
S 14l Original s & 18000 [Original —=— @ 3000 f Original —&—
El New design —— & 16000 | T1S-kernel - & o500 | T1S-kemel -ox
o 12 = 14000 | T1S-i/oat o o S T1S-i/oat o
£ ~ P ———— e =) o o o o
S 8 & 100000 7 2 1500 |]
T 6 2 8000 [¥ 2 X
2 & 6000 4 & 1000 t 1
S 4 T 4000 } {3
[0} Ji: [0] L
-‘Cé 2 T 2000 m; T 500
& o o 0 9 0
3 5 7 9 11 13 15 <g 1 2 3 4 5 6 7 <g 1 2 3 4 5 6 7

Number of Origin Processes

(a) Synchronization overhead with multiple
origin processes KB

Fig. 8 Scalability performance

the same synchronization mechanism, we use “new design”
to represent both. We see that the new design has much
lower synchronization overhead. The improvement consis-
tently remains about 50% with increasing number of origin
processes. The truly one-sided nature decouples the origin
and the target and reduces the work on the target, so it is
more capable of handling multiple processes. We observe
similar behavior using multiple targets and one origin.

The second experiment is similar, but now each origin
issues 16 put operations and the aggregated bandwidth is re-
ported. It is tested on a type A node. Figures in 8(b) ((L)
and (R)) illustrate the results for the message size of 64 KB
and 512 KB, respectively. We find that the existing design
actually has decreasing bandwidth as the number of origin
processes increases. It is because that both the synchroniza-
tion and data communication require the participation from
the target. As the number of origin processes increases, the
target becomes the bottleneck. On the contrary, the kernel-
assisted truly one-sided design provides increasing aggre-
gate bandwidth until it reaches the peak. After that, it also
tends to decrease because of the cache and memory con-
tention. The I/OAT based design has the consistently low
(for 64 KB) or high (for 512 KB) bandwidth. I/OAT copy
does not consume many CPU cycles and does not pollute
cache, so its performance is not disturbed by the number of
origin processes. In the same way, we experimented with
multiple targets and one origin in which the new design also
shows better scaling.

5.5 Decreased cache misses

Our work emphasizes on the intra-node communication, so
the cache effect also plays an important role. We used the
Linux oprofile tool (with sampling rate of 1:500) to measure
the L2 cache misses during the aggregated bandwidth test
used in the last section. The test has seven origin processes
and one target to occupy all the cores. Figure 9 compares
the L2 cache miss samples with varying put message sizes.

Number of Origin Processes

Number of Origin Processes

(b) Aggregated bandwidth of put with multiple origin processes for (L) 64 KB, and (R) 512

25000 ‘Originél ‘ ‘
T1S-kernel == (33839)
20000 | T1S-i/oat —— |
[%2]
[O]
3
s 15000 B 1
(0]
<
3
S 10000 1
[aV)
-
5000 1
0

32K 64K 128K 256K 512K 1M
Message Size (Bytes)

Fig. 9 L2 Cache misses

Obviously, the I[/OAT-assisted design has the least cache
misses, because it greatly reduces the cache pollution. The
basic kernel-assisted design reduces the copies in synchro-
nization, caches the locked pages and removes the inter-
dependent interaction between the origin and target, there-
fore it also has much less cache misses. Note that for | MB
messages, we use the label instead of a full bar for original
MVAPICH?2 design, as the number is too large.

5.6 Improved application performance

We use a real scientific application AWM-Olsen to evaluate
the design. AWM-Olsen is stencil-based earthquake simula-
tion from the Southern California Earthquake Center [13].
Processes are involved in nearest-neighbor communication
followed by a global sum and computation. They execute on
a three-dimensional data cube. AWM was originally written
in MPI send-receive. We modified it to use MPI-2 one-sided
semantics and arranged the computation and communica-
tion for higher overlap potential.

We run the application on Clovertown hosts with 8
processes on each node, and measure the execution time

@ Springer

50
Original
T1S-kernel == —
40 r T1S-i/oat —3 1
30 | 1

Excution Time (sec)

20 + H]
10 |]
S il |

7 DY

7. 7 Y
G, G, %, B, %, %
B R Wy %y %y %
Ty Ry Ry Ry TS, TS
® % % % o H

Cube Size

(a) Performance with varying data cube

Fig. 10 Performance of AWM-Olsen application

of the main step. Figure 10(a) shows the performance of
32 processes with varying data cube sizes. Our kernel-
assisted design outperforms the original design about 15%
for medium range of data cube, while the I/OAT-assisted
version provides around 10% benefits for very large data
cube. Figure 10(b) shows the weak scaling performance
with varying process counts. The data cube increases as the
processes increase such that the data grid per process re-
mains 128 x 128 x 128 elements. We see our new design
provides stable improvement as the system size increases.

6 Related work

Ever since RMA communication was introduced into MPI-2
standard, many implementations have incorporated the com-
plete or partial design. MPICH2 [24] and LAM/MPI [2] de-
signed the RMA communication on top of two-sided op-
erations. MVAPICH?2 has implemented a truly one-sided
design [17] with special optimization on passive synchro-
nization [18, 23], but it only applies to the inter-node com-
munication. In [22], a true one-sided passive synchroniza-
tion scheme is designed for multi-core based systems, but it
does not deal with active synchronization and data transfer
operations. OpenMPI also exploits alternate ways includ-
ing send-receive, buffered and RMA [8], but again it also
does not provide truly one-sided intra-node communication.
SUN MPI provides the SMP based one-sided communica-
tion [10], but it requires all the processes be on the same
node and use MPI_Alloc_mem. NEC-SX MPI [16] imple-
ments truly one-sided communication specially making use
of global shared memory over Giganet cluster. There are
some other works exploiting the truly RMA possibilities on
particular platforms [7, 9].

@ Springer

P. Lai
OriQinaI —
50 T1S-kernel === |
T1S-i/oat —
5 - n _
@, 40 _ 1
€
= 30 1
c
k]
3 20+ 1
x
|
10 1
0

8 16 32 64
Number of Processes

(b) Weak scaling performance

The papers [11, 12, 15, 19] present different approaches
including the kernel-assisted and I/OAT-assisted one copy
approaches to design two-sided intra-node communication.
It is to be noted that although KNEM is used in some two-
sided functions in MPICH2, those functions are not used for
implementing the one-sided communication.

Our work in this paper differentiates from these previous
works by focusing on designing intra-node truly one-sided
communication for both synchronization and data commu-
nication over the commodity multi-core architecture.

7 Conclusions and future work

In this paper, we proposed the design of truly one-sided
communication within a node. We first analyzed the inad-
equacy of the existing two-sided based design, based on
which, we designed and implemented truly one-sided data
communication using two alternatives (the basic kernel-
assisted and the I/OAT-assisted truly one-sided approach),
and enhanced existing shared memory mechanisms for truly
one-sided synchronization. The new design eliminates the
overhead related with two-sided operations. We evaluated
our design on three multi-core systems. The results show
that our new design greatly decreases the latency by over
39% for small and medium messages and increases the large
message bandwidth by up to 29%. We further designed a se-
ries of experiments to characterize the resilience to process
skew, computation and communication overlap, the scala-
bility, and the L2 cache effect. In all of these experiments,
our new design presents superior performance than the ex-
isting designs. Finally, we used a real scientific application
AWM-Olsen to demonstrate its application level benefits.
In the future we plan to investigate more efficient hy-
brid design (as mentioned in Sect. 5.1) and to study more

Designing truly one-sided MPI-2 RMA intra-node communication on multi-core systems 13

aspects of one-sided communication (i.e., truly one-sided
MPI_Accumulate). In addition, we plan to do evaluation and
analysis on other platforms and do large-scale evaluations.
We also plan to use other applications to carry out in-depth
studies on how the improvements in intra-node one-sided
communication can benefit the application performance. Fi-
nally, we would also like to examine the similarity and dif-
ference between MPI-2 one-sided communication and other
one-sided models such as UPC [6] languages.

Software distribution The proposed new design will be
available to community in the next MVAPICH?2 [4] release.

References

1. /OAT Acceleration Technology. http://www.intel.com/network/
connectivity/vtc_ioat.htm

2. LAM/MPI Parallel Computing. http://www.lam-mpi.org/

3. MPICH2: High Performance and Widely Portable MPI. http://
www.mcs.anl.gov/research/projects/mpich2/

4. MVAPICH2: MPI over InfiniBand and iWARP. http://mvapich.
cse.ohio-state.edu/

5. OSU Microbenchmarks.
http://mvapich.cse.ohio-state.edu/benchmarks/

6. Unified Parallel C. http://en.wikipedia.org/wiki/Unified_Parallel

C

7. Asai N, Kentemich T, Lagier P (1999) MPI-2 implementation on
Fujitsu generic message passing kernel. In: Proceedings of the
ACMI/IEEE conference on supercomputing (CDROM)

8. Barrett BW, Shipman GM, Lumsdaine A (2007) Analysis of im-
plementation options for MPI-2 one-sided. In: EuroPVM/MPI

9. Bertozzi M, Panella M, Reggiani M (2001) Design of a VIA based
communication protocol for LAM/MPI suite. In: Euromicro work-
shop on parallel and distributed processing

10. Booth S, Mourao E (2000) Single sided MPI implementations for
SUN MPIL. In: Proceedings of the 2000 ACM/IEEE conference on
supercomputing

11. Buntinas D, Goglin B, Goodell D, Mercier G, Moreaud S (2009)
Cache-efficient, intranode, large-message MPI communication
with MPICH2-Nemesis. In: International conference on parallel
processing (ICPP)

12. Chai L, Lai P, Jin H-W, Panda DK (2008) Designing an efficient
kernel-level and user-level hybrid approach for MPI intra-node
communication on multi-core systems. In: International confer-
ence on parallel processing (ICPP)

13. Cui Y, Moore R, Olsen K, Chourasia A, Maechling P, Minster
B, Day S, Hu Y, Zhu J, Jordan T Toward petascale earthquake
simulations. In: Special issue on geodynamic modeling, vol. 4,
July 2009

14. Forum M (1993) MPI: a message passing interface. In: Proceed-
ings of supercomputing

15. Goglin B (2009) High throughput intra-node MPI communica-
tion with Open-MX. In: Proceedings of the 17th Euromicro in-
ternational conference on parallel, distributed and network-based
processing (PDP)

16. Traff JL, Ritzdorf H, Hempel R (2000) The implementation of
MPI-2 one-sided communication for the NEC SX-5. In: Proceed-
ings of the 2000 ACM/IEEE conference on supercomputing

17. Jiang W, Liu J, Jin H, Panda DK, Gropp W, Thakur R (2004) High
performance MPI-2 one-sided communication over infiniband. In:
IEEE/ACM international symposium on cluster computing and
the grid (CCGrid 04)

18. Jiang W, Liu JX, Jin H-W, Panda DK, Buntinas D, Thakur R,
Gropp W (2004) Efficient implementation of MPI-2 passive one-
sided communication on infiniBand clusters. In: EuroPVM/MPI

19. Jin H-W, Sur S, Chai L, Panda DK (2008) Lightweight kernel-
level primitives for high-performance MPI intra-node communi-
cation over multi-core systems. In: IEEE international sympsoium
on cluster computing and the grid

20. Lai P, Panda DK (2009) Designing truly one-sided MPI-2 RMA
intra-node communication on multi-core systems. In: Technical
Report OSU-CISRC-9/09-TR46, Computer Science and Engi-
neering, The Ohio State University

21. Message Passing Interface Forum. MPI-2: extensions to the
message-passing interface, July 1997

22. Santhanaraman G, Balaji P, Gopalakrishnan K, Thakur R, Gropp
WD, Panda DK (2009) Natively supporting true one-sided com-
munication in MPI on multi-core systems with infiniband. In:
IEEE international sympsoium on cluster computing and the grid

23. Santhanaraman G, Narravula S, Panda DK (2008) Designing pas-
sive synchronization for MPI-2 one-sided communication to max-
imize overlap. In: Int’]l Parallel and Distributed Processing Sym-
posium (IPDPS)

24. Thakur R, Gropp W, Toonen B (2005) Optimizing the synchro-
nization operations in message passing interface one-sided com-
munication. Int J High Perform Comput Appl

Ping Lai is a Ph.D. candidate in
Computer Science & Engineering
Department at the Ohio State Uni-
versity. Her primary research inter-
ests include high performance com-
puting, communication protocols
and high performance data-centers.
She has published (including co-
| authored) about 10 papers in jour-
= nals and conferences related to these

research areas. She is a member
' of the Network-Based Computing
Laboratory lead by Professor D.K.
Panda.

Sayantan Sur is a Research Sci-
entist at the Department of Com-
puter Science at The Ohio State
University. His research interests
include high speed interconnection
networks, high performance com-
puting, fault tolerance and parallel
computer architecture. He has pub-
lished more than 18 papers in major
conferences and journals related to
these research areas. He is a mem-
ber of the Network-Based Comput-
ing Laboratory lead by Dr. D.K.
Panda. He is currently collaborating
with Natlonal Laboratories and leading InfiniBand and iWARP com-
panies on designing various subsystems of next generation high per-
formance computing platforms. He has contributed significantly to the
MVAPICH/MVAPICH?2 (High Performance MPI over InfiniBand and
10GigE/iWARP) open-source software packages. The software devel-
oped as a part of this effort is currently used by over 1075 organizations
in 56 countries. In the past, he has held the position of Post-doctoral re-
searcher at IBM T. J. Watson Research Center, Hawthorne and Member
Technical Staff at Sun Microsystems. Dr. Sur received his Ph.D. degree
from The Ohio State University in 2007.

@ Springer

http://www.intel.com/network/connectivity/vtc_ioat.htm
http://www.intel.com/network/connectivity/vtc_ioat.htm
http://www.lam-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://en.wikipedia.org/wiki/Unified_Parallel_C
http://en.wikipedia.org/wiki/Unified_Parallel_C

14

P. Lai

Dhabaleswar K. Panda is a Profes-
sor of Computer Science at the Ohio
State University. His research inter-
ests include parallel computer archi-
| tecture, high performance comput-
ing, communication protocols, files
systems, network-based computing,
Virtualization and Quality of Ser-
vice. He has published over 260 pa-
pers (including multiple Best Paper
Awards) in major journals and inter-
national conferences related to these
research areas. Dr. Panda and his

\ research group members have been
doing extensive research on modern networking technologies including
InfiniBand, 10GigE/iWARP and RDMA over Ethernet (RDMAOE).
His research group is currently collaborating with National Labo-

@ Springer

ratories and leading InfiniBand and iWARP companies on design-
ing various subsystems of next generation high-end systems. The
MVAPICH/MVAPICH2 (High Performance MPI over InfiniBand and
10GigE/iWARP) open-source software packages, developed by his re-
search group (http://mvapich.cse.ohio-state.edu), are currently being
used by more than 1075 organizations worldwide (in 56 countries).
This software has enabled several InfiniBand clusters (including Sth
ranked Tianhe-1 in China and 9th ranked TACC Ranger) to get into
the latest TOP500 ranking. These software packages are also available
with the Open Fabrics stack for network vendors (InfiniBand, iWARP
and RDMAOE), server vendors and Linux distributors. Dr. Panda’s re-
search is supported by funding from US National Science Foundation,
US Department of Energy, and several industry including Intel, Cisco,
SUN, Mellanox, and QLogic. Dr. Panda is an IEEE Fellow and a mem-
ber of ACM.

http://mvapich.cse.ohio-state.edu

	Designing truly one-sided MPI-2 RMA intra-node communication on multi-core systems
	Abstract
	Introduction
	Background
	MPI-2 RMA model
	Mechanisms for intra-node communication

	Detailed motivation
	Proposed design and implementation
	Design goals
	Design of truly one-sided synchronization
	Design of truly one-sided data communication
	Other design issues

	Experimental evaluation
	Experimental test bed
	Improved latency and bandwidth
	Reduced impact of process skew
	Increased computation and communication overlap
	Improved scalability
	Decreased cache misses
	Improved application performance

	Related work
	Conclusions and future work
	Software distribution

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

