Design Alternatives and Performance Trade-offs
for Implementing MPI-2 over InfiniBand *

Wei Huang, Gopalakrishnan Santhanaraman,
Hyun-Wook Jin, and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University
{huanwei,santhana, jinhy,panda}@cse.ohio-state.edu

Abstract. MPICH2 provides a layered architecture to achieve both
portability and performance. For implementations of MPI-2 over Infini-
Band, it provides the flexibility for researchers at the RDMA channel,
CHS3 or ADI3 layer. In this paper we analyze the performance and com-
plexity trade-offs associated with implementations at these layers. We
describe our designs and implementations, as well as optimizations at
each layer. To show the performance impacts of these design schemes
and optimizations, we evaluate our implementations with different micro-
benchmarks, HPCC and NAS test suite. Our experiments show that al-
though the ADI3 layers adds complexity in implementation, the benefits
achieved through optimizations justify moving to the ADI layer to ex-
tract the best performance.

keywords: MPI-2, InfiniBand, RDMA channel, CH3, ADI3

1 Introduction

In the last decade, MPI (message passing interface) has become the de facto
standard for programming parallel applications. MPI-1 standard [12] was pro-
posed by the MPI forum to provide a uniform standard for MPI developers. As
a follow-up, MPI-2 [9] standard aims to extend MPI-1 in the areas of one sided
communication, I/O and dynamic process management.

MPICH?2 [10] from Argonne National Laboratory is one popular implemen-
tation of the MPI-2 standard. It aims to combine performance with portability
over different interconnects. It tries to achieve this by maximal sharing of plat-
form independent code like MPI datatypes, groups, and communicators, etc.,
and calls the Abstract Device Interface (ADI3) for platform dependent code.
The porting to different interconnects is achieved by having a separate ADI im-
plementation for each interconnect. To further ease the porting, the ADI itself
is also layered and can be implemented in terms of lower level interfaces.

In the field of High Performance Computing, InfiniBand [5] is emerging as
a strong player. InfiniBand supports several advanced hardware features includ-
ing RDMA capability. To implement MPI-2 on InfiniBand, MPICH2 provides

* This research is supported in part by Department of Energy’s Grant #DE-FC02-
01ER25506, National Science Foundation’s grants #CNS-0204429, and #CUR-
0311542, and a grant from Intel.

the flexibility to implement the ADI3, or its lower level interfaces like CH3 and
RDMA channel layers. Understanding the benefits and limitations of implement-
ing at each layer (ADI3, CH3, and RDMA channel) is very important to come
up with an efficient design. The lower layer interfaces are easier to port at the
cost of some performance penalties. This is rather expected, but it would be of
more interest to quantitatively understand the performance impact and try to
come up with different levels of optimizations at each layer. To the best of our
knowledge, there is no literature that does an in-depth study on this topic.

In this paper, we attempt to do an detailed analysis of the performance and
complexity trade-offs for implementing MPI-2 over InfiniBand at the RDMA
channel, CH3, and ADI3 layer. We focus on the point to point and one sided
operations in the current work. For fair comparison, we provide our design and
implementation at each of these layers. In the rest of the paper, Section 2 intro-
duces the background of our work. Section 3 describes and analyzes our design
choices and optimizations. In Section 4 we conduct performance evaluations.
Conclusions and future work are presented in Section 5.

2 Background
2.1 InfiniBand Architecture

The InfiniBand Architecture (IBA) [5] defines a System Area Network (SAN)
to interconnect processing nodes and I/O nodes. In addition to send/receive
semantics it also provides RDMA semantics which can be used to directly ac-
cess/modify the contents of the remote memory. RDMA operations are one sided
and do not incur software overhead on remote side. Further, InfiniBand verbs
provide scatter /gather features to handle non contiguity. InfiniBand verbs spec-
ification also provides useful features like atomic operations and multi-cast, etc.

2.2 Layered Design of MPICH2 and MVAPICH2

MPICH?2 supports both point to point
and one sided operations. Figure 1 de-
scribes the layered approach provided

1: ADI3 level Design
2: CH3 Level Design|
3: RDMA Channel

LR PEE by MPICH2 for designing MPI-2 over
RDMA capable networks like Infini-
"1 Band. Implementation of MPI-2 on In-
‘T(gﬁﬁl‘fﬂ S H‘ ghDam' finiBand can be done at one of the

_____ - three layers in the current MPICH2
— I stack: RDMA channel, CH3 or ADIS3.
One of the objectives of such kind of
design is to get a better balance be-
tween performance and complexity.
RDMA channel is at the bottom
most position in the hierarchical structure. All communication operations that
MPICH2 supports are mapped to just five functions at this layer. Among them
only two (put and read) are communication functions, thus the porting overhead
is minimized. The interface needs to conform to stream semantics. It is especially

SysV
‘ SHMEM H‘SharedMemorﬂ

Fig. 1. Layered Design of MPICH2

designed for the architectures with RDMA capabilities, which directly fits with
the InfiniBand’s RDMA semantics.

The CH3 provides a channel device that consists of a dozen functions. It
accepts the communication requests from the upper layer and informs the upper
layer once the communication has completed. It is responsible to make commu-
nication progress, which is the added complexity associated with the implemen-
tations at this layer. From a performance perspective, it has more flexibility to
improve the performance since it can access more performance oriented features
than the RDMA channel layer. Argonne National Lab[10] and the University of
Chemnitz[3] have both developed their CH3 devices for Infiniband.

The ADI3 is a full featured, abstract device interface used in MPICH2. It is
the highest portable layer in MPICH2 hierarchy. A large number of functions
must be implemented to bring out an ADI3 design, but meanwhile it provides
flexibility for many optimizations, which are hidden from lower layers.

MVAPICH2 is a high performance implementation of MPI-2 over InfiniBand
[6] from the Ohio State University. The latest release version implements the
point to point communication at the RDMA channel layer [8] and also optimizes
the one sided communication at the ADI3 level [7,4]. The continuous research
progress of this project has further motivated us to carry out the proposed in-
depth study of design alternatives and performance trade-offs.

3 Designs and Implementations at Different Layers

For an implementation over InfiniBand, MPICH2 design provides choices at
three different layers. In this sense, understanding the exact trade-offs of the
performance constraints and implementation complexity at each layer will be
critical to have an efficient design. To study these issues and to carry out a fair
comparison, we have designed and implemented MPI2 over InfiniBand at each
of the MPICH2 hierarchy: RDMA channel, CH3 and ADI3, respectively. We
present our strategies in the following subsections.

3.1 RDMA Channel Level Design and Implementation

At RDMA channel, as mentioned in Section 2.2, all architecture dependent com-
munication functionalities are encapsulated into a small set of interfaces. The
interface needs to provide only stream semantics and the communication progress
of MPT messages are left to the upper layers.

Our design is purely based on the RDMA capability of InfiniBand [8]. Fig. 2
illustrates the design issues at this layer. For short messages, the eager protocol
is used to achieve good latency. It copies messages to pre-registered buffers and
sends them through RDMA write. For large messages, using the eager protocol
will introduce high copy overhead, so a zero-copy rendezvous protocol is used.
User buffer is registered on the fly and sent through RDMA. Registration cache
[13] is implemented to reduce the registration overhead.

The RDMA channel receives the communication requests from the CH3 layer
above it. In the current stack, the CH3 layer makes only one outstanding request
to the RDMA channel and will not issue the next request until the previous one
has completed. This results in the serialization of the communication requests,

which causes inefficient utilization of the network. For small messages, an opti-
mization would be to copy the message to the pre-registered buffer and imme-
diately report completion to the CH3 layer. By this early completion method,
the CH3 layer can issue the next communication request so that multiple re-
quests can be issued to the RDMA layer. But for large messages which are sent
through the rendezvous protocol, we can only report completion after the whole
rendezvous process finishes since we need to hold the user buffer for zero-copy
send, making it difficult to obtain higher bandwidth for medium-large messages
at the RDMA layer. We show this performance impact in Section 4.

(ADI3)

: RDMA CHANNEL INTERFACE :
‘(Read_data v j(Put_data v j‘

' H : CH3 CHANNEL IMPLEMENTATION
: RDMA CHANNEL IMPLEMENTATION i | (Pogesengne) (Daaype(veioy)

(_Bufer Manegement) (_Rendezvous Prolocdl) (" Buffer Management) (Rendezvous Protocol)
(__Registraion Cahe) (Flow Contrdl) (_ Regigtration Cache) (" Flow Control)

(IBA- VAPI) (IBA - VAPI)

Fig.2. RDMA Channel level design Fig.3. CH3 level design and imple-
and implementation mentation

3.2 CHS3 Level Design and Implementation

Fig. 3 shows the basic function blocks in our CH3 level design. Messages can
be sent through eager or rendezvous protocols similar to the approach taken by
the RDMA channel implementation. Hence functionalities such as buffer man-
agement, registration cache, etc., need to be also implemented at the CH3 layer.

The need to implement progress engine is a significant difference between
the CH3 level and the RDMA channel design. The CH3 layer must keep track
of all the communication requests coming from the ADI3 layer, finish them and
report completions. ADI3 can keep sending requests but the underlying network
resources are limited. So we implement a queue to buffer the requests which
cannot be finished immediately due to the lack of network resources. Requests
in the queue will be retried when resources become available again. The benefit of
implementing the progress engine is obvious. We can get access to all the requests
at the sender side. Now for large messages we can start multiple rendezvous
progresses at the same time so that the throughput is expected to be greatly
improved as compared to the RDMA channel level design.

Datatype communication can also be optimized at this layer. ADI3 flattens
the datatype and provides the datatype information to the CH3 layer as a vector
list. With this information, a CH3 level design can have a global picture of all the
buffer vectors that need to be sent in a particular MPI message. So optimizations
such as zero-copy datatype [11,14] can be applied at this level.

3.3 ADI3 level Design and Implementation

Compared to the CH3 and RDMA channel, the ADI3 interface is full-featured.
This allows the implementations to take opportunities for more efficient commu-

nication. To re-implement the whole ADI3 is very complicated, so we decided to
reuse most of the CH3 level implementation described in Section 3.2 and perform
several optimizations at the ADI3 layer, shown in Fig 4. These optimizations are
possible at the ADI3 layer since it is allowed direct access to several global data
structures which are abstracted out for the lower layers.

Header caching is an optimization
o ADIS that can be implemented at the ADI3
to reduce the small message latency.
The basic idea is to cache some fields
of the MPT header for each connection
at the receiver side. So that if the next

Extended CH3 Interface
For One Sided Operations

!| (Communication Progress) |
: Buffer Management :
3 Flow Control H

Implementation

| | - :
i\ (Regeraintache) ; message between this connection has
(IBA - VAPI) the same header information in those

cached fields, we can reduce the size of

Fig. 4. Optimizations at ADI3 layer ~ MPI header being sent. If these fields

differ, there is a copy overhead at the receiver for the header caching, which

is quite negligible according to our experience. It is be noted that MPI header

caching cannot be performed at lower layers since only ADI3 is supposed to
know the contents in a MPI header.

Another significant optimization is in the area of one-sided communication.
Originally in MPICH2, one sided operations are implemented by the point to
point interfaces provided by CH3. Our previous work [7] has shown that by di-
rectly using the RDMA features provided by InfiniBand instead of going through
the point to point path, the performance for the one-sided operations can be
greatly enhanced. We can also schedule one sided operations to achieve much
better latency and throughput. The scheduling schemes are described in detail
in [4]. These optimizations are done by extending the CH3 interface [7]. At the
CHa3 layer we cannot distinguish between data for two sided and one sided opera-
tions and hence cannot perform such optimizations. The latest MPICH2 also has
extended the CH3 one sided interface for shared memory architectures, which
reflects the potential to optimize one sided operations at the ADI3 layer.

4 Performance Evaluation

In this section we evaluate our implementations at RDMA channel, CH3 and
ADI3 layers by a set of micro-benchmarks, HPC Challenge Benchmark [2] and
NAS test suite [1]. Tests are conducted on on two different clusters. The first
cluster (Cluster A) consists of computing nodes with dual Intel Xeon 3.0 GHz
processors, 2GB memory, and MT23108 PCI-X HCAs. They are connected by
an InfiniScale MTS2400 switch. The second cluster (Cluster B) is equipped with
dual Intel Xeon 2.66 GHz processors, 2GB memory, and MT23108 PCI-X HCAs,
connected through an InfiniScale MTS14400 switch.

4.1 Point to Point Communication
Point to point communication test are conducted on Cluster A. Fig. 5 shows the

uni-directional bandwidth test results for our implementation at RDMA channel,
CH3 and ADI3 layers. For medium-large messages, the bandwidth is significantly
improved by up to 28% by moving from RDMA channel to CH3 layer, because

CH3 handles multiple send requests simultaneously. ADI3 layer shows similar
numbers as CH3 layer. It is to be noted that all bandwidth numbers in this
paper are reported in MillionBytes/Sec (MB/s).

Fig. 6 shows the ping-pong latency. By getting rid of the stack overhead,
the one byte message latency drops from 5.6us at RDMA layer to 5.3us at CH3
layer. By performing header caching at ADI3 layer, the number drops further to
4.9us. Header caching technique is applied to messages smaller than 256 bytes.
So for this range the ADI3 level numbers consistently outperform CH3 numbers.

900 T+ e

RDMA Channel” —— e 14 [RDMA'Channel —+——
800 - CH3 —x E 1 CH3 e
ADI-3 ox e

700
600 -
500
400 -
300
200 -
100 r

o

Bandwidth (MB/s)
Latency (us)

1 4 16 64 256 1k 4k 16k 64k256k 1M

Message Size (Bytes) Message Size (Bytes)
Fig. 5. Unidirectional bandwidth Fig. 6. Point to point latency
20 1000
RDMA Channel ——

RDMA Channel ——
CH3

CH3 -oems

800 -
15 ¢

g TR *" % 600
g 10} o <

5 ORI 2 ol
3 <
]
5r o

200

o] 0
1 4 16 64 256 1k 4k 1 4 16 64 256 1k 4k 16k 64k256k 1M
Message Size (Bytes) Message Size (Bytes)
Fig. 7. MPI_Put latency Fig. 8. One sided throughput test

4.2 One Sided Operations

Evaluation with one sided operations are also conducted on Cluster A. The
results for MPI Put test are shown in Fig. 7. The test times the ping-pong
latency for performing the put operation followed by synchronization. For the
CH3 and the RDMA Channel level design, one sided operations are implemented
based on point to point communication. Their numbers are similar, with the CH3
level design performing slightly better because point to point communication is
optimized. By optimizing one sided operation at ADI3, we observe 30% reduction
in MPI Put latency as compared to the CH3 level design.

We also measure the throughput of one sided communication. Here the origin
process issues 16 MPI_Put and 16 MPI_Get operations of the same size. The tar-
get process just starts an exposure epoch. We measure the maximum throughput
we can achieve (MillionBytes/sec) for multiple iterations of the above sequence.
Fig. 8 shows the results. The improvement on point to point bandwidth makes
the CH3 level design outperform the RDMA channel level design by up to 49%.
And with one sided scheduling at the ADI3 layer, the peak throughput can
reach around 920MB/s, which is another 8.1% higher than the CH3 level design
numbers.

®

Hll RDMA Channel Hll RDMA Channel
[CcH3 [CH3
1 ADI-3 1 ADI-3

2

Latency (us)

O P N W » OO N O
T T T T T T T T

N
T

Execution time (seconds)
N

o
PP-min PP-avg PP-max NOR ROR 1S.B.8 IS.C.8 1IS.B.16 IS.C.16

Fig. 9. HPCC 8 bytes latency. PP-min: Fig.10. NAS (IS) results on Cluster B
minimum ping-pong latency; PP-avg: av-

erage ping-pong latency; PP-max: max-

imum ping-pong latency; NOR: Natural

ordered ring access latency; ROR: ran-

dom ordered ring access latency

4.3 HPC Challenge (HPCC) Suite

The HPCC suite [2] contains tests which evaluate the latency for different types
of communication patterns. It performs the ping-pong tests between all possible
different pairs of processors. It also uses two different ring types of communica-
tion patterns to evaluate latency: Naturally Ordered Ring and Randomly Or-
dered Ring. HPCC tests were performed on 16 nodes of Cluster B and we report
8 bytes latency numbers. As shown in Fig. 9, we clearly observe an performance
improvement up to 7% for the CH3 level design over the RDMA Channel level
design; and the benefit from header caching at the ADI3 layer enhances the
performance by up to another 6%.

4.4 NAS Integer Sort

In this section we show the performance evaluation for the NAS-IS benchmark
[1]. IS is an integer sort benchmark kernel that stresses the communication aspect
of the network. The experiments were conducted for classes B and C on 8 nodes
and 16 nodes of Cluster B. The results are shown in Fig. 10. The ADI3 level
implementation here shows up to 7% improvement comparing with the RDMA
channel level design. The ADI3 level optimizations does not directly help the
communication pattern that is observed in NAS-IS. Hence the performance seen
at the CH3 level is the same as that of the ADI3 level.

5 Conclusions and Future Work
In this paper we have analyzed the trade-offs associated with implementing MPI-
2 over InfiniBand at the RDMA channel, CH3 and ADI3 layer of MPICH2. We
have also described the various optimizations that are possible at each level.
With respect to design complexity, a CH3 level design needs to implement the
progress engine, which is the main cause of added complexity. A fully featured
ADI3 level design is very complicated but optimizations like header caching, one
sided communication scheduling can be done at this level.
With respect to performance, the CH3 and ADI3 level design can increase
the bandwidth significantly, up to 28% for bandwidth test comparing with the

RDMA channel level design. Header caching at the ADI3 can lower the small
message latency to 4.9 us, a 12.5% improvement comparing with 5.6 us achieved
by the RDMA channel level design. One sided scheduling at the ADI3 level also
greatly improves the performance. We see an enhancement up to 30% in MPI_Put
latency and 8.1% in throughput test compared with the CH3 level design, which
in turn shows 49% improvement on throughput over the RDMA channel level
design. Effects of these optimizations also show benefits at the application level
evaluation of HPCC and NAS suite. As a conclusion, although the ADI3 layers
adds complexity in implementation, the benefits achieved through optimizations
justify moving to the ADI layer to extract the best performance.

As a part of future work we would like to come up with a full fledged MPI-
2 design over InfiniBand at the ADI3 layer to deliver good performance. We
are planning to support communication through shared memory, and optimize
collective operations using InfiniBand’s RDMA and multi-cast features.

References

1. D. H. Bailey, E. Barszcz, L. Dagum, and H.D. Simon. NAS Parallel Benchmark
Results. Technical Report 94-006, RNR, 1994.

2. HPC Challenge Benchmark. http://icl.cs.utk.edu/hpcc/.

3. R. Grabner, F. Mietke, and W. Rehm. An MPICH2 Channel Device Implemen-
tation over VAPI on InfiniBand. In Proceedings of the International Parallel and
Distributed Processing Symposium, 2004.

4. W. Huang, G. Santhanaraman, H. W. Jin, and D. K. Panda. Scheduling of MPI-2
One Sided Operations over InfiniBand. Workshop On Communication Architecture
on Clusters (CAC), in conjunction with IPDPS’05, April 2005.

5. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.2.

6. Network Based Computing Laboratory. http://nowlab.cis.ohio-state.edu/.

7. J. Liu, W. Jiang, H. W. Jin, D. K. Panda, W. Gropp, and R. Thakur. High Per-
formance MPI-2 One-Sided Communication over InfiniBand. International Sym-
posium on Cluster Computing and the Grid (CCGrid 04), April 2004.

8. J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and
B. Toonen. Design and Implementation of MPICH2 over InfiniBand with RDMA
Support. In Proceedings of the International Parallel and Distributed Processing
Symposium, 2004.

9. Message Passing Interface Forum. MPI-2: A Message Passing Interface Standard.
High Performance Computing Applications, 12(1-2):1-299, 1998.

10. MPICH2. http://www-unix.mcs.anl.gov/mpi/mpich2/.

11. G. Santhanaraman, J. Wu, and D. K. Panda. Zero-Copy MPI Derived Datatype
Communication over InfiniBand. EuroPVM-MPI 2004, September 2004.

12. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Com-
plete Reference. Volume 1 - The MPI-1 Core, 2nd edition. The MIT Press, 1998.

13. H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache: A virtual
memory management technique for zero-copy communication. In Proceedings of
the 12th International Parallel Processing Symposium, 1998.

14. J. Wu, P. Wyckoff, and D. K. Panda. High Performance Implementation of MPI
Datatype Communication over InfiniBand. In Proceedings of the International
Parallel and Distributed Processing Symposium, 2004.

