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ABSTRACT

With the increasing size and complexity of modern computing systems, a bal-

ance between performance and manageability is becoming critical to achieve high

performance as well as high productivity computing. Virtual Machine (VM) technol-

ogy provides various features that help management issues on large-scale computing

systems; however, performance concerns have largely blocked the deployment of VM-

based computing, especially in the High-Performance Computing (HPC) area.

This dissertation aims at reducing the virtualization overhead and achieving the

co-existence of performance and manageability through VM technologies. We focus

on I/O virtualization, designing an experimental VM-based computing framework,

and addressing performance issues at different levels of the system software stack.

We design VMM-bypass I/O, which achieves native I/O performance in VMs by

taking advantage of the OS-bypass interconnects. Also with the OS-bypass inter-

connects, we propose high performance VM migration with Remote Direct Memory

Access (RDMA), which drastically reduces the VM management cost. To further

improve the communication efficiency on multi-core systems, we design Inter-VM

Communication (IVC), a VM-aware communication library to allow efficient shared

memory communication among VMs on the same physical host. Finally, we design

MVAPICH2-ivc, an MPI library that is aware of VM-based environments and can

transparently benefit HPC applications with our proposed designs.
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The dissertation concludes that performance should no longer be a barrier to

deploying VM-based computing, which enhances productivity by achieving much im-

proved manageability with very little sacrifice in performance.
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CHAPTER 1

INTRODUCTION

With ever-increasing computing power being demanded by modern applications,

today’s ultra-scale data centers and High Performance Computing (HPC) systems

are being deployed with increasing size and complexity. These large scale systems

require significant system management effort, including maintenance, reconfiguration,

fault tolerance, and administration, which are not necessarily the concerns of earlier

small scale systems. As a result, system manageability is widely considered a critical

requirement for modern computing environments.

Recent Virtual Machine (VM) technology emphasizes ease of system management

and administration. Through a Virtual Machine Monitor (VMM or hypervisor),

which is implemented directly on hardware, this technology allows running multiple

guest VMs on a single physical node, with each guest VM possibly running a different

Operating System (OS) instance. VM technology separates hardware and software

management and provides useful features including performance isolation, server con-

solidation and live migration [10]. VMs provide secure and portable environments to

meet the demanding resource requirements of modern computing systems and have

been widely adopted in industry computing environments, especially data centers.
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The benefits of VMs are at the penalty of performance degradation, however,

by adding a virtualization layer between the OS instances and the native hardware

resources. To reduce performance overhead, modern VMMs such as Xen [12] and

VMware [67] allow guest VMs to access hardware resources directly whenever pos-

sible. For example, a guest VM can execute all non-privileged instructions natively

in hardware without intervention of the VMM. Since many CPU intensive workloads

seldom use privileged operations, the CPU virtualization overhead can be extremely

low. Unfortunately, such direct access optimizations are not always possible. I/O

virtualization is an example. Because I/O devices are usually shared among all VMs

in a physical machine, the VMM has to make sure that accesses to them are valid and

consistent. Currently, this requires VMM intervention on every I/O access from guest

VMs, which leads to longer I/O latency and higher CPU overhead due to the context

switches between the guest VMs and the VMM. In some cases, this I/O virtualization

overhead weighs heavily against the wider adoption of VM technology, especially in

the area of High Performance Computing (HPC).

Modern computing systems, featured with multi-core architecture and high perfor-

mance networks, bring both opportunities and challenges to VM technology. On one

side, the intelligent modern high speed interconnects connecting parallel systems, such

as InfiniBand [21], typically allow OS-bypass [5, 44, 49, 61, 62] accesses. OS-bypass

carries time-critical operations directly from user space applications to hardware while

still maintaining system integrity and isolation. Based on OS-bypass, we can design

VMM-bypass I/O virtualization, removing the bottleneck of going through the VMM

or a separate VM for many I/O operations, and significantly improving communica-

tion and I/O performance. This potentially eliminates the performance barrier that
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prevents performance-critical applications from taking advantage of various features

available through VM technology. On the other hand, OS-bypass networks pose addi-

tional challenges to VM migration because not all I/O operations can be intercepted

by the VMM. Multi-core architecture also increases the level of server consolidation,

requiring much more efficient inter-VM communication.

This dissertation aims at designing an efficient I/O virtualization framework for

current and next-generation computing systems with high speed interconnects and

multi-core architecture. We mainly target HPC environments, where VM deploy-

ments are severely limited because of the performance concerns while the features of

VMs are welcomed to help the management issues on increasingly larger systems. We

focus on network I/O operations, and propose a high performance VMM-bypass I/O

virtualization technique that achieves native-level performance in VM-based environ-

ments. We design efficient middleware to benefit applications and VM management

through our proposed techniques. More specifically, we have addressed the following

questions:

• How can we reduce the network I/O virtualization overhead in modern com-

puting systems featuring high speed interconnects and multi-core architecture?

• How can we reduce the cost of inter-VM communication on the same physical

host, which is especially important for multi-core architecture?

• How can we design efficient middleware so that applications running in VM-

based environments can benefit transparently from our research?

• How can we further reduce the management overhead for VM-based computing

environments by taking advantage of modern high speed interconnects?
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The rest of this dissertation is organized as follows. In Chapter 2, we discuss the

existing technologies which provide background information of our work, including

VM technology, InfiniBand architecture and MPI. In Chapter 3, we define the prob-

lems that we are addressing in this dissertation. Chapters 4 - 8 discuss our detailed

approaches and results. We introduce the open source software packages derived from

our work in Chapter 9. Finally in Chapter 10, we conclude and discuss some future

research directions.
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CHAPTER 2

OVERVIEW OF VIRTUALIZATION AND HIGH
PERFORMANCE NETWORKING TECHNOLOGIES

In this chapter, we discuss several important technologies that are related to our

research, including VMs, OS-bypass I/O, InfiniBand and iWARP/10GibE architec-

ture, and Message Passing Interface (MPI). This will provide appropriate background

information for this dissertation.

2.1 Virtual Machines

First we introduce VM technology using Xen as an example. Xen [12] is a popular

high performance virtual machine monitor originally developed at the University of

Cambridge. We start with a brief overview of the Xen architecture. We then describe

how I/O is virtualized through the Xen split device driver model. Finally we discuss

how Xen performs VM migration.

2.1.1 Xen Architecture

Xen adopts para-virtualization [70], in which host operating systems need to be

explicitly ported to the Xen architecture. This architecture is similar to native hard-

ware such as x86 architecture, with only slight modifications to support efficient
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virtualization. Since Xen does not require changes to the application binary interface

(ABI), existing applications can run without any modifications.

Device Manager
and Control
Software

(Domain0)
VM0

Unmodified
User

Software

Unmodified
User

Software

VM1 VM2
(Guest Domain) (Guest Domain)

Safe HW IF Control IF Event Channel Virtual CPU Virtual MMU

Hardware (SMP, MMU, Physical Memory, Ehternet, SCSI/IDE)

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Back−end driver

native 
Device
Driver

Xen Hypervisor

front−end driverfront−end driver

Figure 2.1: The Xen architecture (courtesy [48])

Figure 2.1 illustrates a physical machine running the Xen hypervisor. The Xen

hypervisor is at the lowest level and has direct access to the hardware. Xen needs

to ensure that the hypervisor, instead of the guest operating systems, is running in

the most privileged processor-level. The x86 privilege levels are described by “rings”,

from ring 0 (the most privileged) to ring 3 (the least privileged). The hypervisor

is running in ring 0. It provides basic control interfaces needed to perform complex

policy decisions in Xen architecture. Above the hypervisor are the Xen domains

(VMs). There can be many domains running simultaneously. Each domain hosts a

guest operating system. Instead of running in ring 0, Guest OSes are modified to

run in ring 1, which prevents them from directly executing the privileged processor

instructions. Guest applications, like on normal x86 machines, run in ring 3 (the least
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privileged level). Only domain0 (dom0), which is created at boot time, is allowed to

access the control interface provided by the hypervisor. The guest OS on dom0

hosts the application-level management software and performs the tasks to create,

terminate or migrate other domains through the control interface provided by the

hypervisor.

There is no guarantee that a domain will get a continuous stretch of physical mem-

ory to run a guest OS. So Xen makes a distinction between machine memory and

pseudo-physical memory. Machine memory refers to the physical memory installed in

the machine. On the other hand, pseudo-physical memory is a per-domain abstrac-

tion, allowing a guest OS to treat its memory as consisting of a contiguous range of

physical pages. Xen maintains the mapping between the machine memory (machine

frame number or mfn) and the pseudo physical memory (physical frame number or

pfn). Only certain specialized parts of the operating system need to understand the

difference between these two abstractions. Guest OSes allocate and manage their

own hardware page tables, with minimal involvement of the Xen hypervisor to ensure

safety and isolation. To achieve efficient memory accesses in each domain, guest OSes

allocate and manage their own hardware page tables. A read from a page table does

not need to involve the Xen hypervisor, and thus introduces no overhead. However,

all updates to the page tables must be verified by Xen to ensure safety and isolation.

There are several restrictions for updating the page tables: a guest OS may only map

pages that it owns, and page-table pages may only be mapped as read only, etc.

In Xen, domains communicate with each other through event channels. Event

channels provide an asynchronous notification mechanism between Xen domains.

Each domain has a set of end-points (or ports) which may be bounded to an event
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source (e.g. a physical Interrupt Request (IRQ), a virtual IRQ, or a port in another

domain) [58]. When a pair of end-points in two different domains are bound together,

a “send” operation on one side will cause an event to be received by the destination

domain. Event channels are only intended for sending notifications between domains.

So if one domain wants to send data to another one, the typical scheme is for a source

domain to grant access to local memory pages to the destination domain. Then, these

shared pages are used to transfer data.

2.1.2 Xen Device Access Models

VMs in Xen usually do not have direct access to hardware. Because most existing

device drivers assume they have complete control of the device, there cannot be

multiple instantiations of such drivers in different domains for a single device. To

ensure manageability and safe access, device virtualization in Xen follows a split

device driver model [14]. Each device driver is expected to run in an isolated device

domain (IDD), which also hosts a back-end driver, running as a daemon and serving

the access requests from guest domains. Each guest OS uses a front-end driver to

communicate with the back-end. The front-end and back-end drivers communicate

through the shared memory page and the event channel mechanism described above.

This split driver organization provides security: misbehaving code in a guest domain

will not result in failures of other guest domains. To improve the throughput for

devices that need large data transfer such as network I/O, only the request descriptors

can be passed to the IDD. The actual data payload may be directly DMAed (Direct

Memory Access) from the guest domain to the device. Since the split device driver
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model requires the development of front-end and back-end drivers for each individual

device, not all devices are supported in guest domains right now.

2.1.3 Virtual Machine Migration

Migration is one of the most important features provided by modern VM technol-

ogy. It allows system administrators to move an OS instance to another physical node

without interrupting any hosted services on the migrating OS. It is an extremely pow-

erful cluster administration tool and serves as a basis for many modern administration

frameworks which aim to provide efficient online system maintenance, reconfiguration,

load balancing and proactive fault tolerance in clusters and data centers [7, 38, 55, 74].

In such management frameworks, it is desirable that VM migration be carried out in

a very efficient manner, with both short migration times and low impacts on hosted

applications.

When migrating a guest OS1, Xen first enters the pre-copy stage, where all the

memory pages used by the guest OS are transferred from the source to pre-allocated

memory regions on the destination host. This is done by user level migration helper

processes in Dom0s of both hosts. All memory pages of the migrating OS instance

(VM) are mapped to the address space of the helper processes. After that the memory

pages are sent to the destination host over TCP/IP sockets. Memory pages contain-

ing page tables need special attention that all machine dependent addresses (mfn)

are translated to machine independent addresses (pfn) before the pages are sent.

The addresses will be translated back to mfn at the destination host. This ensures

transparency since guest OSes reference memory by pfn. Once all memory pages are

1For Xen, each domain (VM) hosts only one operating system. Thus, we do not distinguish
among migrating a VM, a domain, and an OS instance in this dissertation.
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transferred, the guest VM on the source machine is discarded, and the execution will

resume on the destination host.

Xen also adopts live migration [10], where the pre-copy stage involves multiple

iterations. The first iteration sends all the memory pages, and the subsequent itera-

tions copy only those pages dirtied during the previous transfer phase. The pre-copy

stage terminates when the page dirty rate exceeds the page transfer rate or when the

number of iterations exceeds a pre-defined value. One of the benefits of live migration

is that the guest OS is still active during the pre-copy stage, thus the actual downtime

will be short. The only observed downtime is at the last iteration of pre-copy, when

the VM is shut down to prevent any further modification to the memory pages.

2.2 OS-bypass I/O and InfiniBand Architecture

In this section we describe OS-bypass networks, InfiniBand, and iWARP/10GibE

architecture.

2.2.1 OS-bypass I/O

Traditionally, device I/O accesses are carried out inside the OS kernel on behalf

of application processes. However, this approach imposes several problems such as

overhead caused by context switches between user processes and OS kernels and extra

data copies which degrade I/O performance [4]. It can also result in QoS crosstalk [17]

due to lacking of proper accounting for costs of I/O accesses carried out by the kernel

on behalf of applications.

To address these problems, a concept called user-level communication was intro-

duced by the research community. One of the notable features of user-level commu-

nication is OS-bypass, with which I/O (communication) operations can be achieved
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directly by user processes without involving OS kernels. OS-bypass was later adopted

by commercial products, many of which have become popular in areas such as high

performance computing where low latency is vital to applications. It should be noted

that OS-bypass does not mean all I/O operations bypass the OS kernel. Usually,

devices allow OS-bypass for frequent and time-critical operations while other opera-

tions, such as setup and management operations, can go through OS kernels and are

handled by a privileged module, as illustrated in Figure 2.2.

Privileged Access
OS−Bypass Access

Device

Privileged
ModuleOS

Application Application

Figure 2.2: OS-Bypass Communication and I/O

The key challenge in implementing OS-bypass I/O is to enable safe access to

a device shared by many different applications. To achieve this, OS-bypass capable

devices usually require more intelligence in the hardware than traditional I/O devices.

Typically, an OS-bypass capable device is able to present virtual access points to

different user applications. Hardware data structures for virtual access points can be

encapsulated into different I/O pages. With the help of an OS kernel, the I/O pages

can be mapped into the virtual address spaces of different user processes. Thus,
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different processes can access their own virtual access points safely, thanks to the

protection provided by the virtual memory mechanism. Although the idea of user-

level communication and OS-bypass was developed for traditional, non-virtualized

systems, the intelligence and self-virtualizing characteristic of OS-bypass devices land

themselves nicely to a virtualized environment, as we will see later.

2.2.2 InfiniBand

InfiniBand [21] is a typical OS-bypass interconnect offering high performance. Fig-

ure 2.3 illustrates the InfiniBand architecture. The InfiniBand communication stack

consists of many layers. The interface presented by Channel adapters to consumers

belongs to the transport layer. A queue-based model is used in this interface. A

Queue Pair (QP) in InfiniBand Architecture consists of a send queue and a receive

queue. The send queue holds instructions to transmit data and the receive queue

holds instructions that describe where received data is to be placed. Communication

instructions are described in Work Queue Requests (WQR), or descriptors, and are

submitted to the work queue. Once submitted, a WQR becomes a Work Queue El-

ement (WQE), and are executed by Channel Adapters. The completion of WQEs

is reported through Completion Queues (CQs). Once a WQE is finished, a Comple-

tion Queue Entry (CQE) is placed in the associated CQ. A kernel application can

subscribe for notifications from InfiniBand Network Interface Card (NIC, or Host

Channel Adapter, HCA) and register a callback handler with a CQ. A CQ can also

be accessed through polling to reduce latency.

Initiating data transfer (posting work requests) and completion of work requests

notification (poll for completion) are time-critical tasks that need to be performed by
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Figure 2.3: InfiniBand Architecture (Courtesy InfiniBand Specifications)

the application. In the Mellanox [30] approach, which represents a typical implemen-

tation of InfiniBand specification, these operations are done by ringing a doorbell.

Doorbells are rung by writing to the registers that form the User Access Region

(UAR). UAR is memory-mapped directly from a physical address space that is pro-

vided by Host Channel Adapter (HCA). It allows access to HCA resources from

privileged as well as unprivileged mode. Each UAR is a 4k page. Mellanox HCAs

replicate the UARs up to 16M times. Each process using the HCA, whether in kernel

space or user space, is allocated one UAR, which is remapped to the process’s vir-

tual address space. Posting a work request includes putting the descriptors (WQR)

in QP buffer and writing the doorbell to the UAR. This process can be completed

without the involvement of the operating system, so it is very fast. CQ buffers, where

the CQEs are located, can also be directly accessed from the process virtual address

space. These OS-bypass features make it possible for InfiniBand to provide very low

communication latency.
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Mellanox HCAs require all buffers involved in communication be registered before

they can be used in data transfers. The purpose of registration is two-fold: first

an HCA needs to keep an entry in the Translation and Protection Table (TPT) so

that it can perform virtual-to-physical translation and protection checks during data

transfer; second the memory buffer needs to be pinned in memory so that HCA can

DMA directly into the target buffer. Upon the success of registration, a local key and

a remote key are returned. They will be used later for local and remote (RDMA)

accesses. The QP and CQ buffers described above are just normal buffers that are

directly allocated from process virtual memory space and registered with HCA.

OS−bypass

User−level Application

User−level HCA Driver

InfiniBand HCA

Kernel
User−space

User −level Infiniband Service

Core Infiniband Modules

HCA Driver

Figure 2.4: Architectural overview of OpenFabrics driver stack

OpenFabrics [42] is the most popularly used InfiniBand driver stack currently.

Figure 2.4 presents its architecture.

2.2.3 iWARP/10GibE

iWARP stands for Internet Wide Area RDMA Protocol. It defines Remote Direct

Memory Access (RDMA) operations over Ethernet networks [51]. Basically, iWARP
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allows for zero-copy data transfer over the legacy TCP/IP communication stacks. It

bringing the benefits of OS-bypass to the Internet community, including significantly

higher communication performance and low CPU overhead. Applications use the

verbs API which provides RDMA support instead of traditional Socket API. As spec-

ified in [51], the basic message transport for iWARP is undertaken by the TCP layer.

Since TCP itself is a stream protocol and does not respect message boundaries, an

additional MPA layer is introduced to enforce this, as illustrated in Figure 2.5. The

actual zero-copy capability is enabled by the Direct Data Placement (DDP) Layer.

The RDMA features provided by DDP are exported to the upper level protocol by

the RDMAP layer. Though iWARP can be implemented with either software [11]

or hardware, it is intended to be implemented in hardware to achieve a significant

performance improvement over the traditional TCP/IP stacks.

Application
w/ Verbs API

Transport
(TCP)

Network (IP)

Data Link

Physical

Application

Transport
(TCP)

Network (IP)

Data Link

Physical

DDP
MPA

RDMAP
RDMAP: RDMA Protocol

DDP: Direct Data
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MPA: Marker PDU Aligned
         framing layer

w/ Socket API

Figure 2.5: Compare iWARP with traditional TCP/IP layers (Courtesy [11])
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The Chelsio [9] 10GibE adapter supports a hardware implementation of iWARP

protocol. It supports both a private programming interface as well as the aforemen-

tioned OpenFabrics interface. We focus on the OpenFabrics interface in our research.

From the iWARP perspective, the exposed software interface by OpenFabrics stack

(verbs) to interact with hardware is very similar to the interface for Mellanox HCA,

except for different layouts in the UARs or QP/CQ buffers etc. Thus, we will not

provide additional details here.

2.3 Message Passing Interface (MPI), MPICH2 and MVA-
PICH2

MPI is currently the de facto standard for parallel programming. MPI-2 is the

latest MPI standard and supports both point to point and one sided operations

which are also referred to as Remote Memory Access (RMA) operations. MPICH2

is a portable implementation of MPI-2 from Argonne National Lab[2]. Figure 2.6

describes the layered approach provided by MPICH2 for designing MPI-2 over RDMA

capable networks like InfiniBand.

Implementation of MPICH2 on InfiniBand can be done at one of the three layers in

the current MPICH2 stack: RDMA channel, CH3 and ADI3. The decision is usually

based on the trade-offs between communication performance and ease of porting.

RDMA channel is at the lowest position in the hierarchical structure of MPICH2.

All the communication operations that MPICH2 supports are mapped to just five

functions at this layer. In the five-function-interface only two (put and read) are

communication functions, thus providing the least porting overhead. The interface

needs to conform to stream semantics, which deliver data in FIFO order, and inform

the upper layer of the number of bytes successfully sent. It is especially designed for
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Figure 2.6: Layered design of MPICH2

architectures with RDMA capabilities, which directly fit with InfiniBand’s RDMA

semantics.

The CH3 layer provides a channel device that consists of a dozen functions. It

accepts the communication requests from the upper layer and informs the upper layer

once the communication has completed. The CH3 layer is responsible for making

communication progress, which is the added complexity associated with implementing

MPI-2 at this layer. But meanwhile, it can also access more performance oriented

features than the RDMA channel layer. Thus, at this layer, we have more flexibility

to optimize the performance.

The ADI3 is a full-featured, abstract device interface used in MPICH2. It is the

highest layer in MPICH2 hierarchy. A large number of functions must be implemented

to bring out a ADI3 design, but it can also provide flexibility for many optimizations,

which are hidden from lower layers.
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MVAPICH2 is a high performance implementation of MPI-2 over InfiniBand[69]

from the Network Based Computing Laboratory at the Ohio State University. This

software was originally designed based on the RDMA channel in MPICH2 [36], which

is reflected in an earlier public released version MVAPICH2-0.6.5. In that design,

we use eager and rendezvous schemes to support the communication interfaces of the

RDMA channel. For small messages, we use the eager protocol. It copies messages

to pre-registered buffers and sends them through RDMA write operations, which

achieves good latency. And for large messages, a zero-copy rendezvous protocol is

used, because using pre-registered buffers introduces high copy overhead. The user

buffer is registered on the fly and sent directly through RDMA.
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CHAPTER 3

MOTIVATION AND PROBLEM STATEMENT

In this chapter, we first motivate our research by discussing both the benefits

and the performance limitations with current VM technology. Then we present the

general research framework conducted in this dissertation.

3.1 Benefits of VM-based Computing Environments

System management capabilities are increased for a VM-based environment –

including allowing special configurations and online maintenance. To demonstrate

this, Figure 3.1 illustrates a possible VM-based deployment. Each computing node in

the physical server pool is running a hypervisor that hosts one or more VMs2. A set

of VMs across the cluster form a virtual cluster, on which users can host their multi-

tier data centers or parallel applications. There can be a management console which

performs all management activities, including launching, checkpointing, or migrating

VMs across the cluster. To prepare a virtual cluster with a special configuration,

all that is required is to choose a set of physical servers and launch VMs with the

desired configurations on those servers. This avoids the lengthy procedure of resetting

2For performance-critical deployments such as HPC, each active VM runs on one or more dedi-
cated cores, while more VMs can be consolidated on a single core for date centers.
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all the physical hosts. More importantly, this does not affect other users using the

same physical servers. Online maintenance is also simplified. To apply patches or

update a physical node, system administrators no longer need to wait for application

termination before taking them off-line. VMs on those servers can be migrated to

other available physical nodes, reducing the administrative burden.

Guest VMs

Computing node
Migrate

VMM VMMVMM

Physical server pool

Management
console Storage Servers

Figure 3.1: A possible deployment of HPC with virtual machines

Besides manageability, under certain circumstances VM environments can also

lead to performance benefits. For example, with easy re-configuration it becomes

much more practical to host HPC applications using customized, light-weight OSes.

This concept of a customized OS has proven to be desirable for achieving increased

performance in HPC [3, 13, 26, 34, 35]. VM migration can also help improve commu-

nication performance. For example, a parallel application may initially be scheduled

onto several physical nodes far from each other in network topology due to node

availability. But whenever possible, it is desirable to schedule the processes onto

physical nodes near each other, which improves communication efficiency. Through

VM migration, it is also possible to alleviate resource contention and thus achieve
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better resource utilization. For instance, VMs hosting computing jobs with a high

volume of network I/O can be relocated with other VMs hosting more CPU intensive

applications with less I/O requirements.

VM technology is also beneficial in many other aspects, including security, pro-

ductivity, or debugging. Mergen et al. [34] have discussed in more detail the value of

a VM-based HPC environment.

3.2 Performance Limitations of Current I/O Virtualization

While VM technology has shown its potential to relieve the manageability issues

on large scale computing systems, concerns about performance block the community

from embracing VM technologies in certain environments such as HPC. As we have

discussed in Section 2.1, network I/O can incur high latency and high CPU utilization

because of the VMM intervention. We find such overhead clearly observable in some

cases.

Figure 3.2: NAS Parallel Benchmarks
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Figure 3.2 shows the performance of the NAS [39] Parallel Benchmark suite on 4

processes with MPICH [2] over TCP/IP. The processes are on 4 Xen DomUs, which

are hosted on 4 physical machines. We compare the relative execution time with

the same test on 4 nodes with native environment. For communication intensive

benchmarks such as IS and CG, applications running in virtualized environments

perform 12% and 17% worse, respectively. The EP benchmark, however, which is

computation intensive with only a few barrier synchronizations, maintains the native

level of performance. Table 3.1 illustrates the distribution of execution times collected

by Xenoprof [33]. We find that for CG and IS, around 30% of the execution time is

consumed by the isolated device domain (Dom0 in our case) and the Xen VMM for

processing the network I/O operations. On the other hand, for the EP benchmark,

99% of the execution time is spent natively in the guest domain (DomU) due to a

very low volume of communication. It should be noted that in this example, each

physical node hosts only one DomU with one processor, even though the node is

equipped with dual CPUs. If we run two DomUs per node to utilize both the CPUs,

Dom0 starts competing for CPU resources with user domains when processing I/O

requests, which leads to an even larger performance degradation as compared to the

native case.

This example identifies I/O virtualization as the main bottleneck for virtualiza-

tion, which leads to the observation that I/O virtualization with near-native perfor-

mance would allow us to achieve application performance in VMs that rivals native

environments.

22



Table 3.1: Distribution of execution time for NAS
Dom0 Xen DomU

CG 16.6% 10.7% 72.7%
IS 18.1% 13.1% 68.8%

EP 00.6% 00.3% 99.0%
BT 06.1% 04.0% 89.9%
SP 09.7% 06.5% 83.8%

3.3 Proposed High Performance I/O Virtualization Frame-
work

The main objective of our research is to reduce the overhead of network I/O in

VM environments. We mainly focus on HPC systems, where performance is one of

the most critical demands.

Figure 3.3 shows the various components of the proposed research framework. In

general, we work on the shaded boxes. The un-shaded ones represents the system

components that need not be changed (End-user Application), or are being studied

by other related research and industrial efforts (VM System Management [38, 55, 60]),

which will not be the focus of our study. As can be seen, we work on multiple aspects

of the I/O subsystems. At the device virtualization layer, we propose VMM-bypass

I/O, which leverages the OS-bypass nature of modern high speed interconnects and

achieves close-to-native level network I/O performance. The migration support for

VMM-bypass I/O is carried out at the system level. Also at system level, we propose

high performance inter-VM communication, which is especially important since multi-

core systems are becoming ubiquitous. We also optimize the VM migration through

RDMA, significantly reducing the management cost. On top of the system level, we
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work on high level services so that High End Computing (HEC) applications can

transparently benefit from our research. We design a VM-aware MPI, which hides all

the complexities of our research work from the end applications.

VM Migration
Inter−VM

communication
Migration support for

OS−bypass networks
RDMA−based

System−level support for virtualization

VM−aware MPI

High−level services and Computing Libraries

End−user Applications

Device virtualization

(Fault tolerance, load balancing ...)
VM system management

InfiniBand iWARP/10GiGE
VMM−bypass I/O

Figure 3.3: Proposed research framework

More specifically, we aim to address the following questions with this dissertation:

• How can we reduce the network I/O virtualization overhead in mod-

ern computing systems featuring high speed interconnects?

To reduce the network I/O performance, we use a technique dubbed Virtual

Machine Monitor bypass (VMM-bypass) I/O. VMM-bypass I/O extends the

idea of OS-bypass I/O (as described in Section 2.2) in the context of VM en-

vironments. The key idea is that a guest module residing in the VM takes

care of all the privileged accesses, such as creating the virtual access points

(e.g. UAR for InfiniBand) and mapping them into the address space of the user

24



processes. Thus a backend module provides such accesses for guest modules.

This backend module can either reside in the device domain (such as Xen) or

in the virtual machine monitor for other VM environments like VMware ESX

server. The communication between the guest modules and the backend module

is achieved through the inter-VM communication schemes provided by the VM

environment. After the initial setup process, communication operations can be

initiated directly from the user process. By removing the VMM from the criti-

cal path of communication, VMM-bypass I/O is able to achieve near-native I/O

performance in VM environments. We will discuss VMM-bypass I/O in more

details in Chapter 4.

• How can we migrate network resources with VMM-bypass I/O capa-

bility?

The VMM-bypass I/O technique itself brings additional challenges. For exam-

ple, migration is becoming difficult in such scenarios compared with VMs using

traditional network devices such as Ethernet. First, the intelligent OS-bypass

capable NICs manage large amounts of location-dependent resources which are

kept transparent to both applications and operating systems and cannot be

migrated with the VMs. This makes the existing solutions for current VM tech-

nologies, which target TCP/IP networks, less applicable. Further, applications

in cluster environments using specialized interfaces of high speed interconnects

typically expect reliable services at the NIC level. Thus, it is important to make

migration transparent to applications and to avoid packet drops or out-of-order
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delivery during migration. We achieve migration of OS-bypass NICs by names-

pace virtualization and peer coordination, which will be described in detail in

Chapter 5.

• How can we reduce the cost of inter-VM communication on the same

physical host, which is especially important for multi-core architec-

tures?

Efficient inter-VM communication is another key issue for reducing the I/O

virtualization overhead especially when multi-core architecture is leading to a

high degree of server consolidation. In VM environments, management activ-

ities such as migration occur at the level of entire VMs. Thus, all processes

running in the same VM must be managed together. To achieve fine-grained

process-level control, each computing process has to be hosted in a separate

VM, and therefore, in a separate OS. This presents a problem, because pro-

cesses in distinct OSes can no longer communicate via shared memory [8], even

if they share a physical host. This restriction is undesirable because commu-

nication via shared memory is typically considered to be more efficient than

network loopback and is being used in most MPI implementations [8, 43]. This

inefficiency is magnified with the emergence of modern multi-core systems. We

present efficient inter-VM communication, which allows shared memory com-

munication even for computing processes in different VMs, in Chapter 6. A

further enhancement to inter-VM communication via one-copy shared memory

will be presented in Chapter 7.
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• How can we design efficient middleware so that applications running

in VM-based environments can benefit transparently from our re-

search?

One philosophy for today’s high performance virtualization techniques is para-

virtualization, which allows certain changes to systems running in VM. Para-

virtualization sacrifices transparency for performance. While it is always desir-

able to keep all design complexities away from end-user applications, application

transparency is not always easy to achieve. For example, we propose our own

APIs for the above-mentioned inter-VM communication. But in practice it is

almost impossible to ask end applications to be modified to take advantage of

it. As a result, our proposed techniques can be severely limited if we cannot

make them transparent to end applications. Fortunately, most of today’s HPC

applications are written with a certain programming model. For parallel pro-

gramming, MPI is the de facto standard. Most of the parallel HPC applications

are written using MPI for communication among peer computing processes. As

a result, by delivering an efficient MPI library which integrates our research,

most applications can benefit while remaining unmodified. To achieve this goal,

we design MVAPICH2, a high performance MPI2 library based by MPICH2 by

extending the ADI3 layer. The goal of our design is to take advantage of the

available communication methods on a cluster to achieve the best performance,

such as shared memory for intra-node communication and InfiniBand for inter-

node communication. We describe our design in Section 6.2.1.

MVAPICH2 can also run in VM environments, however, its default shared mem-

ory communication channel can no longer be used if computing processes are
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hosted on different VMs. Thus, we design MVAPICH2-ivc, which is able to use

inter-VM communication in VM-based environments. We present our design in

detail in Section 6.2.2.

• How can we further reduce the management overhead for VM-based

computing environments by taking advantage of modern high speed

interconnects?

To address this issue, we focus on VM migration in this dissertation, the basis for

many management tasks in VM-based environments. We propose to use RDMA

as the transfer mechanism for VM migration. RDMA can benefit VM migration

in various aspects. First, with the extremely high throughput offered by high

speed interconnects and RDMA, the time needed to transfer the memory pages

can be reduced significantly, which leads to an immediate save on total VM

migration time. Further, data communication over OS-bypass and RDMA does

not need to involve CPUs, caches, or context switches. This allows migration

to be carried out with minimum impact on guest operating systems and hosted

applications. We discuss RDMA-based VM migration in Chapter 8.
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CHAPTER 4

LOW OVERHEAD NETWORK I/O IN VIRTUAL
MACHINES

In this chapter, we focus on reducing the network I/O virtualization overhead in

VM environments, as well as its migration support. More specifically, we work on the

highlighted part in Figure 4.1 of our proposed research framework.

RDMA−based
VM Migration

Migration support for
OS−bypass networks

Inter−VM
communication

Device virtualization

VMM−bypass accessprevileged access
VMM−bypass I/O

VM−aware MPI

High−level services and Computing Libraries

End−user Applications

(Fault tolerance, load balancing ...)
VM system management

System−level support for virtualization

Figure 4.1: Network I/O in proposed research framework

We propose VMM-bypass I/O in Section 4.1, which achieves native-level network

I/O by taking advantage of the OS-bypass features available on most modern high
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speed interconnects. We then discuss XenIB in Sections 4.2 and 4.3, which imple-

ments VMM-bypass I/O in Xen over InfiniBand. Finally, we carry out a performance

evaluation in Section 4.4.

4.1 VMM-bypass I/O

VMM-bypass I/O can be viewed as an extension of the idea of OS-bypass I/O

in the context of VM environments. In this section, we describe the basic design of

VMM-bypass I/O. Two key ideas in our design are para-virtualization and high-level

virtualization.

In some VM environments, I/O devices are virtualized at hardware level [57]. Each

I/O instruction to access a device is virtualized by the VMM. With this approach,

existing device drivers can be used in guest VMs without any modification. However,

it significantly increases the complexity of virtualizing devices. For example, one

popular InfiniBand HCA (MT23108 from Mellanox [32]) presents itself as a PCI-X

device to the system. After initialization, it can be accessed by OS using memory

mapped I/O. Virtualizing this device at hardware level would require us not only

understand all hardware commands issued through memory mapped I/O, but also

implement virtual PCI-X bus in guest VMs. Another problem with this approach is

performance. Since existing physical devices are typically not designed to run in a

virtualized environment, the interfaces presented at the hardware level may exhibit

significant performance degradation when they are virtualized.

Our VMM-bypass I/O virtualization design is based on the idea of para-virtualization,

similar to [12] and [71]. We do not preserve hardware interfaces of existing devices. To

virtualize a device in a guest VM, we implement a device driver called a guest module
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in guest OS. The guest module is responsible for handling all privileged accesses to

the device. In order to achieve VMM-bypass device access, the guest module also

needs to set things up properly so that I/O operations can be carried out directly in

the guest VM. This means that the guest module must be able to create virtual access

points on behalf of the guest OS and map them into the addresses of user processes.

Since the guest module does not have direct access to the device hardware, we need to

introduce another software component called backend module, which provides device

hardware access for different guest modules. If devices are accessed inside the VMM,

the backend module can be implemented as part of the VMM. It is possible to let

the backend module talk to the device directly. However, we can greatly simplify its

design by reusing the original privilege module of the OS-bypass device driver. In

addition to serving as a proxy for device hardware access, the backend module also

coordinates accesses among different VMs so that system integrity can be maintained.

The VMM-bypass I/O design is illustrated in Figure 4.2.
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Figure 4.2: VMM-bypass (I/O Handled by
VMM Directly)
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Figure 4.3: VMM-bypass (I/O Handled by
Another VM)
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If device accesses are provided by another VM (device driver VM), the backend

module can be implemented within the device driver VM. The communication be-

tween guest modules and the backend module can be achieved through the inter-VM

communication mechanism provided by the VM environment. This approach is shown

in Figure 4.3.

Para-virtualization can lead to compatibility problems because a para-virtualized

device does not conform to any existing hardware interfaces. However, in our design,

these problems can be addressed by maintaining existing interfaces which are at a

higher level than the hardware interface (a technique we dubbed high-level virtualiza-

tion). Modern interconnects such as InfiniBand have their own standardized access

interfaces. For example, InfiniBand specification defines a VERBS interface for a host

to talk to an InfiniBand device. The VERBS interface is usually implemented in the

form of an API set through a combination of software and hardware. Our high-level

virtualization approach maintains the same VERBS interface within a guest VM.

Therefore, existing kernel drivers and applications that use InfiniBand will be able

to run without any modification. Although in theory a driver or an application can

bypass the VERBS interface and talk to InfiniBand devices directly, this seldom hap-

pens because it leads to poor portability due to the fact that different InfiniBand

devices may have different hardware interfaces.

4.2 XenIB: Prototype Design and Implementation

Now we introduce the design and implementation of Xen-IB, our InfiniBand vir-

tualization driver for Xen. We describe details of the design and how we enable

accessing InfiniBand HCAs from guest domains directly for time-critical tasks.
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4.2.1 Overview

Like many other device drivers, InfiniBand drivers cannot have multiple instanti-

ations for a single HCA. Thus, a split driver model approach is required to share a

single HCA among multiple Xen domains.

Figure 4.4 illustrates a basic design of our Xen-IB driver. The backend runs

as a kernel daemon on top of the native InfiniBand driver in the isolated device

domain (IDD), which is domain0 is our current implementation. It waits for incoming

requests from the frontend drivers in the guest domains. The frontend driver, which

corresponds to the guest module mentioned in the last section, replaces the kernel

HCA driver in OpenIB Gen2 stack. Once the frontend is loaded, it establishes two

event channels with the backend daemon. The first channel, together with shared

memory pages, forms a device channel [15] which is used to process requests initiated

from the guest domain. The second channel is used for sending InfiniBand CQ and

QP events to the guest domain and will be discussed in detail later.

Device Channel

Event Channel

User−level Application

User −level 
 Infiniband Service

User−level HCA Driver

User−level Application

HCA DriverNative

Xen Hypervisor

Mellanox HCA

User−
space
Kernel

 Infiniband Service
User −level 

Infiniband
Modules

Core

Driver
end
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User−level HCA Driver

Core Infiniband Modules

Front−end Driver

IDD Guest Domain

Figure 4.4: The Xen-IB driver structure with the split driver model
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The Xen-IB frontend driver provides the same set of interfaces as a normal Gen2

stack for kernel modules. It is a relatively thin layer whose tasks include packing a

request together with necessary parameters and sending it to the backend through

the device channel. The backend driver reconstructs the commands, performs the

operation using the native kernel HCA driver on behalf of the guest domain, and

returns the result to the frontend driver.

The split device driver model in Xen poses difficulties for user-level direct HCA

access in Xen guest domains. To enable VMM-bypass, we need to let guest domains

have direct access to certain HCA resources such as the UARs and the QP/CQ buffers.

4.2.2 InfiniBand Privileged Accesses

In the following, we discuss in general how we support all privileged InfiniBand

operations, including initialization, InfiniBand resource management, memory regis-

tration and event handling.

Initialization and resource management:

Before applications can communicate using InfiniBand, it must finish several

preparation steps including opening HCA, creating CQ, creating QP, and modify-

ing QP status, etc. Those operations are usually not in the time-critical path and

can be implemented in a straightforward way. Basically, the guest domains forward

these commands to the device driver domain (IDD) and wait for the acknowledg-

ments after the operations are completed. All resources are managed in backend and

frontends refer to these resources by handles. Validation checks must be conducted

in IDD to ensure that all references are legal.
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Memory Registration

The InfiniBand specification requires all the memory regions involved in data

transfers to be registered with the HCA. With Xen’s para-virtualization approach, real

machine addresses are directly visible to user domains. (Note that access control is

still achieved because Xen makes sure a user domain cannot arbitrarily map a machine

page.) Thus, a domain can easily figure out the DMA addresses of buffers and there

is no extra need for address translation (assuming that no IOMMU is used). The

information needed by memory registration is a list of DMA addresses that describes

the physical locations of the buffers, access flags and the virtual address that the

application will use when accessing the buffers. Again, the registration happens in

the device domain. The frontend driver sends the above information to the backend

driver and gets back the local and remote keys.

For security reasons, the backend driver can verify if the frontend driver offers

valid DMA addresses belonging to the specific domain in which it is running. This

check makes sure that all later communication activities of guest domains are within

the valid address spaces.

Event Handling

InfiniBand supports several kinds of CQ and QP events. The most commonly

used is the completion event. Event handlers are associated with CQs or QPs when

they are created. An application can subscribe for event notification by writing a

command to the UAR page. When those subscribed events happen, the HCA driver

will first be notified by the HCA and then dispatch the event to different CQs or QPs
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according to the event type. Then the application/driver that owns the CQ/QP will

get a callback on the event handler.

For Xen-IB, events are generated to the device domain, where all QPs and CQs are

actually created. But the device domain cannot directly give a callback on the event

handlers in the guest domains. To address this issue, we create a dedicated event

channel between a frontend and the backend driver. The backend driver associates

a special event handler to each CQ/QP created due to requests from guest domains.

Each time the HCA generates an event to these CQs/QPs, this special event han-

dler gets executed and forwards information such as the event type and the CQ/QP

identifier to the guest domain through the event channel. The frontend driver binds

an event dispatcher as a callback handler to one end of the event channel after the

channel is created. The event handlers given by the applications are associated to the

CQs or QPs after they are successfully created. The frontend driver also maintains

a translation table between the CQ/QP identifiers and the actual CQ/QPs. Once

the event dispatcher gets an event notification from the backend driver, it checks the

identifier and gives the corresponding CQ/QP a callback on the associated handler.

4.2.3 VMM-Bypass Accesses

In InfiniBand, QP accesses (posting descriptors) include writing WQEs to the

QP buffers and ringing the doorbells (writing to UAR pages) to notify the HCA.

Then the HCA can use DMA to transfer the WQEs to internal HCA memory and

perform the send/receive or RDMA operations. Once a work request is completed,

the HCA will put a completion entry (CQE) in the CQ buffer. In InfiniBand, QP

access functions are used for initiating communication. To detect the completion of
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communication, CQ polling can be used. QP access and CQ polling functions are

typically used in the critical path of communication. Therefore, it is very important

to optimize their performance by using VMM-bypass. The basic architecture of this

VMM-bypass design is shown in Figure 4.5.
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Supporting VMM-bypass for QP access and CQ polling imposes two requirements

on our design of Xen-IB: first, UAR pages must be accessible from a guest domain;

second, both QP and CQ buffers should be directly visible in the guest domain.

When a frontend driver is loaded, the backend driver allocates a UAR page and

returns its page frame number (machine address) to the frontend. The frontend

driver then remaps this page to its own address space so that it can directly access

the UAR in the guest domain to serve requests from the kernel drivers. (We have

applied a small patch to Xen to enable access to I/O pages in guest domains.) In the

same way, when a user application starts, the frontend driver applies for a UAR page

from the backend and remaps the page to the application’s virtual memory address
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space, which can be later accessed directly from the user space. Since all UARs are

managed in a centralized manner in the IDD, there will be no conflicts between UARs

in different guest domains.

To make QP and CQ buffers accessible to guest domains, creating CQs/QPs has

to go through two stages. In the first stage, QP or CQ buffers are allocated in the

guest domains and registered through the IDD. During the second stage, the frontend

sends the CQ/QP creation commands to the IDD along with the keys returned from

the registration stage to complete the creation process. Address translations are

indexed by keys, so in later operations the HCA can directly read WQRs from and

write the CQEs back to the buffers (using DMA) located in the guest domains.

Since we also allocate UARs to user space applications in guest domains, the user

level InfiniBand library now keeps its OS-bypass feature. The VMM-bypass IB-Xen

workflow is illustrated in Figure 4.6.

It should be noted that since VMM-bypass accesses directly interact with HCAs,

they are usually hardware dependent and frontends need to know how to deal with

different types of InfiniBand HCAs. However, existing InfiniBand drivers and user-

level libraries already include code for direct access and it can be reused without

spending new development efforts.

4.2.4 Virtualizing InfiniBand Management Operations

In an InfiniBand network, management and administrative tasks are achieved

through the use of Management Datagrams (MADs). MADs are sent and received

just like normal InfiniBand communication, except that they must use two well-

known queue-pairs: QP0 and QP1. Since there is only one set of such queue pairs in
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every HCA, their access must be virtualized for accessing from many different VMs,

which means we must treat them differently than normal queue-pairs. However, since

queue-pair accesses can be done directly in guest VMs in our VMM-bypass approach,

it would be very difficult to track each queue-pair access and take different actions

based on whether it is a management queue-pair or a normal one.

To address this difficulty, we use an approach dubbed high-level virtualization.

This is based on the fact that although MAD is the basic mechanism for InfiniBand

management, applications and kernel drivers seldom use it directly. Instead, differ-

ent management tasks are achieved through more user-friendly and standard API

sets which are implemented on top of MADs. For example, the kernel IPoIB proto-

col makes use of the subnet administration (SA) services, which are offered through

a high-level, standardized SA API. Therefore, instead of tracking each queue-pair

access, we virtualize management functions at the API level by providing our own

implementation for guest VMs. Most functions can be implemented in a similar man-

ner as privileged InfiniBand operations, which typically includes sending a request to

the backend driver, executing the request (backend), and getting a reply. Since man-

agement functions are rarely in time-critical paths, the implementation will not bring

any significant performance degradation. However, it does require us to implement

every function provided by all the different management interfaces. Fortunately, there

are only a couple of such interfaces and the implementation effort is not significant.

4.3 XenIB over iWARP/10GibE

To further demonstrate the concept of VMM-bypass I/O, we develop XenIB

over iWARP/10GibE as well. Our implementation is based on the Chelsio 10GibE
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adapter [9]. Since the Chelsio adapter can run on the OpenFabrics stack, the stack on

which we develop the InfiniBand support, most concepts that we used for InfiniBand

are the same here, including QPs, CQs, UAR pages, etc. As a result, we use very

similar design as for InfiniBand virtualization.

The additional complexity lies in management operations. The Chelsio 10GibE

adapter does not use special QPs to send MADs. Instead, it sends raw packets

over hardware to support a higher level OpenFabrics connection management service,

called RDMA Connection Management Agent (RDMA-CMA). We use high-level vir-

tualization, similar to the description in Section 4.2.4, to handle all the RDMA-CMA

management requests to the Chelsio hardware in dom0.

4.4 Evaluation of VMM-bypass I/O

In this section, we first evaluate the performance of our Xen-IB prototype using a

set of InfiniBand layer micro-benchmarks. Then, we present performance results for

the IPoIB protocol based on Xen-IB. We also provide performance numbers of MPI

on Xen-IB at both micro-benchmark and application levels. Finally, we look at the

performance of Xen-IB over iWARP/10GibE.

4.4.1 Experimental Setup

Our experiments were conducted on two separate systems for InfiniBand and

iWARP /10GibE. For InfiniBand related experiments, our testbed is a cluster with

each node equipped with dual Intel Xeon 3.0GHz CPUs, 2 GB memory and a Mellanox

MT23108 PCI-X InfiniBand HCA. The PCI-X buses on the systems are 64 bit and

run at 133 MHz. The systems are connected with an InfiniScale InfiniBand switch.

The operating systems are RedHat AS4 with the Linux 2.6.12 kernel. Xen 3.0 is used
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for all our experiments, with each guest domain running with single virtual CPU and

512 MB memory. We use MVAPICH-0.9.9 [37] to conduct the MPI level performance.

For iWARP/10GibE experiments, we use two systems, each equipped with quad-core

Intel Xeon 2.33GHz CPUs, 4GB memory, and a Chelsio cxgb3 10GibE adapter. Xen

3.1 is installed on these systems. And MVAPICH2-1.0 [37], which supports Chelsio

Adapters through the iWARP interface, is used to get the MPI level performance.

4.4.2 InfiniBand Latency and Bandwidth

We first compare user-level latency and bandwidth performance between Xen-

IB and native InfiniBand. Xen-IB results were obtained from two guest domains

on two different physical machines. Polling was used for detecting completion of

communication.

The latency tests were carried out in a ping-pong fashion. They were repeated

many times and the average half round-trip time was reported as one-way latency.

Figures 4.7 and 4.8 show the latency for InfiniBand RDMA write and send/receive

operations, respectively. There is very little performance difference between Xen-IB

and native InfiniBand. This is because in the tests, InfiniBand communication was

carried out by directly accessing the HCA from the guest domains with VMM-bypass.

The lowest latency achieved by both was around 4.2 µs for RDMA write and 6.6 µs

for send/receive.

In the bandwidth tests, a sender sent a number of messages to a receiver and then

waited for an acknowledgment. The bandwidth was obtained by dividing the number

of bytes transferred from the sender by the elapsed time of the test. From Figures 4.9

and 4.10, we again see virtually no difference between Xen-IB and native InfiniBand.
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Figure 4.7: InfiniBand RDMA write la-
tency
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Figure 4.8: InfiniBand send/receive la-
tency

Both of them were able to achieve bandwidth up to 880 MByte/s, which was limited

by the bandwidth of the PCI-X bus.
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Figure 4.9: InfiniBand RDMA write
bandwidth
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Figure 4.10: InfiniBand send/receive
bandwidth

4.4.3 Event/Interrupt Handling Overhead

The latency numbers we showed in the previous subsection were based on polling

schemes. In this section, we characterize the overhead of event/interrupt handling in
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Figure 4.12: Send/Receive
Latency Using Blocking
VERBS Functions
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Figure 4.13: Memory Regis-
tration Time

Xen-IB by showing send/receive latency results with blocking InfiniBand user-level

VERBS functions.

Compared with native InfiniBand event/interrupt processing, Xen-IB introduces

extra overhead because it requires forwarding an event from domain0 to a guest do-

main, which involves Xen inter-domain communication. In Figure 4.11, we show

performance of Xen inter-domain communication. We can see that the overhead in-

creases with the amount of data transferred. However, even with very small messages,

there is an overhead of about 10 µs.

Figure 4.12 shows the send/receive one-way latency using blocking VERBS. The

test is almost the same as the send/receive latency test using polling. The difference

is that a process will block and wait for a completion event instead of being busy

polling on the completion queue. From the figure, we see that Xen-IB has higher

latency due to overhead caused by inter-domain communication. For each message,

Xen-IB needs to use inter-domain communication twice, one for send completion and

one for receive completion. For large messages, we observe that the difference between

Xen-IB and native InfiniBand is around 18–20 µs, which is roughly twice the inter-

domain communication latency. However, for small messages, the difference is much
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less. For example, native InfiniBand latency is only 3 µs better for 1 byte messages.

This difference gradually increases with message sizes until it reaches around 20 µs.

Our profiling reveals that this is due to “event batching”. For small messages, the

inter-domain latency is much higher than InfiniBand latency. Thus, when a send

completion event is delivered to a guest domain, a reply may have already come back

from the other side. Therefore, the guest domain can process two completions with

a single inter-domain communication operation, which results in reduced latency.

For small messages, event batching happens very often. As message size increases,

it becomes less and less frequent and the difference between Xen-IB and native IB

increases.

4.4.4 Memory Registration

Memory registration is generally a costly operation in InfiniBand. Figure 4.13

shows the registration time of Xen-IB and native InfiniBand. The benchmark registers

and unregisters a trunk of user buffers multiple times and measures the average time

for each registration.

As we can see from the graph, Xen-IB adds consistently around 25%-35% overhead

to the registration cost. The overhead increases with the number of pages involved

in registration. This is because Xen-IB needs to use inter-domain communication to

send a message which contains machine addresses of all the pages. The more pages we

register, the bigger the size of message we need to send to the device domain through

the inter-domain device channel. This observation indicates that if the registration

is a time critical operation of an application, we need to use techniques such as an

efficient implementation of registration cache [16] to reduce costs.
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4.4.5 IPoIB Performance

IPoIB allows one to run TCP/IP protocol suites over InfiniBand. In this subsec-

tion, we compared IPoIB performance between Xen-IB and native InfiniBand using

Netperf [1]. For Xen-IB performance, the netperf server is hosted in a guest domain

with Xen-IB while the client process is running with native InfiniBand.

Figure 4.14 illustrates the bulk data transfer rates over TCP stream using the

following commands:

netperf -H $host -l 60 -- -s$size -S$size

Due to the increased cost of interrupt/event processing, we cannot achieve the

same throughput while the server is hosted with Xen-IB compared with native Infini-

Band. However, Xen-IB is still able to reach more than 90% of the native InfiniBand

performance for large messages.

We notice that IPoIB achieved much less bandwidth compared with raw Infini-

Band. This is for two reasons. First, IPoIB uses InfiniBand unreliable datagram ser-

vice, which has significantly lower bandwidth than the more frequently used reliable

connection service due to the current implementation of Mellanox HCAs. Second, in

IPoIB, due to the limit of MTU, large messages are divided into small packets, which

can cause a large number of interrupts and degrade performance.

Figure 4.15 shows the request/response performance measured by Netperf (trans-

actions/second) using:

netperf -l 60 -H $host -tTCP RR -- -r $size,$size

Again, Xen-IB performs worse than native InfiniBand, especially for small mes-

sages where interrupt/event cost plays a dominant role for performance. Xen-IB

performs more comparably to native InfiniBand for large messages.
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Figure 4.14: IPoIB Netperf Throughput
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Figure 4.15: Netperf Transaction Test

4.4.6 MPI Performance

MPI is a communication protocol used in high performance computing. For tests

in this subsection, we have used MVAPICH [37], which is a popular MPI implemen-

tation over InfiniBand developed by our research group.

Here we compare MPI-level micro-benchmark performance between the Xen-based

cluster and the native InfiniBand cluster. Tests were conducted between two user

domains running on two different physical machines with Xen or between two different

nodes in native environments.

The latency test repeated ping-pong communication many times and the average

half round-trip time is reported as one-way latency. As shown in Figure 4.16, there is

very little difference between the Xen and the native environment, with both achieving

4.9µs for 1 byte messages. This shows the benefit of VMM-bypass I/O, where all

communication operations in Xen are completed by directly accessing the HCAs from

the user domains.

In the bandwidth tests, a sender sent a number of messages to a receiver using

MPI non-blocking communication primitives. It then waited for an acknowledgment
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Figure 4.16: MPI latency test
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Figure 4.17: MPI bandwidth test

and reported bandwidth by dividing number of bytes transferred by the elapsed time.

We again see almost no difference between Xen and native environments. As shown

in Figure 4.17, in both cases we achieved 880MB/sec. 3

We now evaluate the Xen-based computing environment with actual HPC appli-

cations. We instantiate two DomUs on each physical machine and run one process

per DomU for the Xen case. (Each DomU runs a uni-processor kernel.) And for

native environment, we run two processes per physical node.

We evaluate both NAS parallel benchmarks and High Performance Linpack (HPL).

HPL is the parallel implementation of Linpack [45] and the performance measure for

ranking the computer systems of the Top 500 supercomputer list.

The execution time for NAS has been normalized based on the native environment

in Figure 4.18. We observed that the Xen-based environment performs comparably

with the native environment. For NAS applications CG and FT, where the native

environment performs around 4% better, the gap is due to the ability of MVAPICH

to utilize shared memory communication for processes on the same node in the native

3Please note that all bandwidth numbers in this dissertation are reported in millions of bytes per
second.
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Figure 4.18: NAS Parallel Benchmarks
(16 processes, class B)

Figure 4.19: HPL on 2, 4, 8 and 16 pro-
cesses

Table 4.1: Distribution of execution time for NAS
Dom0 Xen DomUs

IS 3.6 1.9 94.5
SP 0.3 0.1 99.6
BT 0.4 0.2 99.4
EP 0.6 0.3 99.3
CG 0.6 0.3 99.0
LU 0.6 0.3 99.0
FT 1.6 0.5 97.9
MG 1.8 1.0 97.3

environment. Our prototype implementation of VM-based computing currently does

not have this feature. However, high speed communication between Xen domains

on the same physical node can be added by taking advantage of the page-sharing

mechanism provided by Xen.

We also report the Gflops achieved in HPL on 2, 4, 8 and 16 processes in Fig-

ure 4.19. We observe very close performance here with the native environment out-

performing by at most 1%.
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Table 4.1 shows the distribution of the execution times among Dom0, Xen hyper-

visor, and two DomUs (sum) for NAS benchmarks. As we can see, due to VMM-

bypass approach, most of the instructions are executed locally in user domains, which

achieves highly efficient computing. For IS, the time taken by Dom0 and the Xen

hypervisor is slightly higher. This is because IS has a very short running time and the

Dom0/hypervisor is mainly involved during application startup/finalize, where all the

connections need to be set up and communication buffers need to be pre-registered.

4.4.7 iWARP/10GibE Performance

Here we take a look at iWARP/10GibE performance with VMM-bypass virtual-

ization.
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Figure 4.20: RDMA level latency test
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Figure 4.21: RDMA level bandwidth test

Figures 4.20 and 4.21 present the latency and bandwidth at the RDMA level.

We compare the results of hosting testing processes on two Xen domUs on different

physical hosts and between two native OSes. As on InfiniBand, the differences here

are also negligible. In both cases, we are able to achieve 6.8µs latency and 1234MB/s
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bandwidth. Similarly, as shown in Figures 4.22 and 4.23, MPI level latency and

bandwidth are practically the same at 7.3µs and 1233MB/s.
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Figure 4.22: MPI level latency test
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Figure 4.23: MPI level bandwidth test

Figure 4.24 shows the performance of typical MPI level collective operations using

Intel MPI Benchmarks. These tests are conducted using 2 nodes with 4 cores each

(in total 8 processes). We show performance is for small (16 bytes), medium (16KB),

and large (256KB) size operations. Since the current Chelsio 10GibE adapter has

limitations in setting up connections within one adapter, the processes on the same

physical node are hosted in one domU for the Xen case. Communication among

processes in the same domU is through shared memory instead of through network.

This comparison is fair since shared memory communication is also used in native case

when the processes are in the same OS. We observe that in most cases the performance

numbers are close except for collectives involving reduce operations. We believe this

is because reduce operations require allocating and access temporary buffers, where

Xen memory management could induce some overhead.

We finally show the evaluation with NAS Parallel Benchmarks (class A) on 4

MPI processes in Figure 4.25. The results are normalized based on the performance
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Figure 4.24: MPI collective operations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

CG BT SP LU EP MG FT

No
rm

al
ize

d 
Ti

m
e

Data Set

Xen
Native

Figure 4.25: NAS Parallel Benchmarks (class A)

achieved in the native environment. Again, as shown, the performances are very close

here.

In summary, our experiments with iWARP/10GibE together with the experiments

on InfiniBand conclude that VMM-bypass I/O is an effective way to virtualize network

interconnects with OS-bypass capabilities.
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CHAPTER 5

NOMAD: MIGRATION OF VMM-BYPASS I/O

NETWORKS

In this chapter we work on the highlighted part in Figure 5.1. VMM-bypass I/O,

as discussed in the last chapter, is able to significantly reduce the I/O virtualization

overhead. However, it also poses more challenges on VM migration. In the rest of this

chapter, we first take a closer look at the challenges of migrating OS-bypass intercon-

nects. Then we propose Nomad, a software framework to migrate OS-bypass networks

and its implementation on XenIB. Finally we present the performance evaluation of

Nomad.

5.1 Challenges for Migrating VMM-bypass Networks

Compared with traditional network devices such as Ethernet, migration of mod-

ern OS-bypass interconnects (thus virtualized through VMM-bypass I/O) have been

studied less. There are multiple challenges in migrating VMM-bypass I/O in VMs:

5.1.1 Location-Dependent Resources

Many network resources associated with OS-bypass interconnects are location de-

pendent, making them very difficult to migrate with the migrating OS instance with

application transparency.
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Figure 5.1: Network I/O in proposed research framework

First, as mentioned in Section 2.2 of Chapter 2, to allow user-level communication

and remote memory access, the HCAs of modern interconnects will often manage

some data structures in hardware. Software can use opaque handles to access HCA

resources but cannot manage them directly. Once a VM is migrated to another

physical machine with a different HCA, the opaque handles are no longer valid. One

approach is to attempt to reallocate the resources on the new host using the same

handle values. This method requires changes to the device firmware which assigns

the handles. Even with that additional complexity, we will have a problem if multiple

VMs are sharing the HCA, because the handles may have already been assigned to

other VMs.

Further, InfiniBand port addresses (local ID or LID) are associated with each

port, and only one LID can be associated with each port. The mapping between

the LIDs and the physical ports is managed by external subnet management tools,

making it difficult to make changes during migration. Also, since the LIDs can be
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used by other VMs sharing the same HCA, in many cases it is not feasible to change

them during migration. In contrast, both IP and MAC addresses used in Ethernet are

device-transparent and can be associated with any Ethernet device. Multiple MAC

and IP addresses can also be associated with one device, which offers flexibility in

migrating and sharing the network devices in the VM environment. For example,

each Xen domain has its own IP and MAC address, which can be easily migrated

with domains, and can be re-associated to the new hardware.

5.1.2 User-Level Communication

User level communication makes migration more difficult from at least two aspects:

First, besides kernel drivers, applications can also cache multiple opaque handles

to reference the HCA resources. If those handles are changed after migration we

cannot update those cached copies at the user-level. Also, RDMA needs some handles

(remote memory keys) to be cached at remote peers, which makes the problem even

more difficult. In contrast, applications for traditional networks generally use the

sockets interface, where all complexities are hidden inside the kernel and can be

changed transparently after migration.

Second, with direct access to the hardware device from the user-level it is diffi-

cult to suspend the communication during migration. For traditional networks with

socket programming, the kernel intercepts every I/O request, making it much easier

to suspend and resume the communication during migration.

5.1.3 Hardware Managed Connection State Information

To achieve high performance and RDMA, OS-bypass interconnects typically store

connection state information in hardware. This information is also used to provide
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hardware-level reliable service, e.g., Reliable Connection (RC) service, which auto-

matically performs packet ordering, re-transmission, etc. With hardware managed

connection states, the operating system avoids the stack processing overhead and can

devote more CPU resources to computation. This presents a problem for migration,

however, since there is no easy way to migrate connection states between the network

devices. Given this, the hardware cannot recover any dropped packets during migra-

tion. Meanwhile, any dropped or out-of-order packets may cause a fatal error to be

returned to an application since there is no software recovery mechanism.

In contrast, migration is easier for a traditional TCP stack on Ethernet. The

connection states are managed by the operating system. Thus, it is usually sufficient

to save the main memory during migration and all connection states will be migrated

with the virtual OS. For example, Xen does not make a special effort to recover any

lost or out-of-order IP packet during migration; such IP level errors are recovered by

the OS at the TCP layer.

5.2 Detailed Design Issues of Nomad

We now present some of the design choices made for Nomad to address the afore-

mentioned challenges. We use namespace virtualization to virtualize the location-

dependent resources and a handshake protocol to coordinate among VMs to make

the connection state deterministic during migration.

We use Xen and InfiniBand throughout our discussion. However, most of the

issues discussed are common to other VMMs and OS-bypass network devices.
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5.2.1 Location-Dependent Resources

As we have discussed, software can only use opaque handles to refer to HCA

resources. All details of connection-level states are managed by HCAs and cannot be

directly accessed or modified. Thus, we need to free the location-dependent resources

before the migration starts and re-allocate them after the migration. The major

complexity comes from the location-dependent opaque handles. These handles are

assigned by the firmware and can only be used to access local HCA resources. It

means that they must be changed after the resources are re-allocated on the new

host. However, they can be cached by user applications to access the HCA resources.

How to approach these cached opaque handles is a challenging task. For example, a

typical parallel application using InfiniBand caches the following opaque handles:

• LIDs (port addresses) - These are exchanged among the processes involved after

the application starts to address the remote peers.

• Queue Pair numbers (QPN) after the QPs are created - To establish a reliable

connection, each QP has to know both the LID and the QP number of the

remote side.

• Local and remote memory keys after registration - The same keys must be used

to reference the communication buffer for either local communication operations

or remote access (RDMA).

All above handles may be changed upon migration. In order to maintain applica-

tion transparency, we must ensure that the application can still use the re-allocated

resources with the old handles.
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To achieve application transparency, we introduce a virtualization layer between

the opaque handles that applications may use and the real handles associated with

HCA resources. To virtualize the LID, we assign a VM identification (VLID), which

is unique within a cluster, to each VM once it is instantiated. The VLID is returned

to the application as LID. Similarly, once a QP is created, a virtual QP number

(VQPN) is returned to the application instead of the actual QPN.

...

VLID2

VLID1

VLID3

LID1

VQPN1
VQPN2

......
QPN2
QPN1

LID1 and QPN1 is used when user
wants to set up connection to VLID1
and VQPN1

Figure 5.2: Destination mapping table

In order to determine the real LID and QPN when the application tries to set up

a connection, Nomad maintains a destination mapping table similar to Figure 5.2 at

the front-end driver. When an application tries to set up a connection to a remote

peer represented by VLID and VQPN, the front-end driver intercepts the connection

request and replaces the VLID and VQPN according to the content in the mapping

table. The driver may not be able to locate the entry in the table, which happens

the first time the connection is established. In that case it will send a lookup request

to the front-end driver on the VM denoted by VLID to “pull” the real LID and QPN

that should be used and create an entry in the mapping table.
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Once a connection is set up between two processes on different VMs we consider

those two VMs connected. When a VM is migrated, the same VQPN and VLID then

may correspond to a different QP number and LID. Nomad must make sure that

any changes are reflected in the destination mapping table on each of the connected

VMs. To achieve that, each VM maintains a registered list at the front-end driver

to keep track of the connected VMs. Once a VM receives a lookup request, it puts

the remote VM into the registered list. After migration, updates of new handles will

be sent to all the connected VMs in the registered list to “push” the updates, which

will be reflected in their mapping table. The connections can then be re-established

automatically between the VMs without notifying the application, using the latest

handles.

Once an application completes, the driver will determine all remote VMs to which

it no longer has connections. It then sends an “unregister” request to those VMs

to remove itself from their registered list. In this way, we avoid unnecessary updates

being sent among VMs.

5.2.2 User-Level Communication

With namespace virtualization, the applications can use the same handle to ac-

cess the HCA resources after migration. Even with this, we still need to suspend the

network activity during the migration. Unlike the traditional TCP/IP stack where

all communication goes through the kernel, the user-level communication leaves no

central control point from where we can suspend the communication. Fortunately,

practically no application accesses the hardware directly. The user-level communi-

cation is always carried out from a user communication library, which is maintained
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synchronously with the kernel driver. This allows us to intercept all send operations

in this communication library. Taking InfiniBand as an example, we generate an

event to the communication library to mark the QP suspended if we want to suspend

the communication on that specific QP. If the application attempts to send a message

to a suspended QP, we buffer the descriptors in the QP buffer, but do not ring the

doorbell so that the requests are not issued to HCA. When resuming the communi-

cation, we update every buffered descriptor with the latest memory keys and ring the

doorbell; the descriptors then will be processed on the new HCA. This delays com-

munication without compromising application transparency. Note that this scheme

does not require extra resources to buffer the descriptors, because the QP buffers are

already allocated.

5.2.3 Connection State Information

Since there is no easy way to manage the connection state information stored on

the HCA, we work around this problem by bringing the connection (QP) states to

a deterministic state. When the VM starts migrating, we not only mark all QPs

as suspended, but also wait for all the outstanding send operations to finish during

the suspension of communication. In this way, there will be no in-flight packets

originating from the migrating VM.

We must also avoid packets being sent to the migrating VM. Nomad achieves this

by sending a suspend request to all the connected VMs. Upon receiving a suspend

request, the connected VM will notify the user communication library to mark the

corresponding QP as suspended and wait for all outstanding send operations on that
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QP to finish. Note that communication on QPs to other VMs will not be affected.

The registered list can be used to identify all the connected VMs.

After all communication on all the migrating and the connected VMs is suspended

and all the outstanding sends finish, the connection states are deterministic and

thus need not be migrated. We simply need to resume the communication after the

migration is done.

5.2.4 Unreliable Datagram (UD) Services

Besides Reliable Connection (RC) service, most modern interconnects also provide

Unreliable Datagram (UD) service. UD service is easier to manage since we do not

need to suspend the remote communication, and lost packets during migration will be

recovered by the application itself. Only the UD address handles need to be updated

after migration; for InfiniBand these are the LID and QP number.

Updating the UD address can be done in a similar way as for RC services. For

example, InfiniBand requires a UD address handle to be created before any UD

communication takes place. Nomad checks with the destination VM, denoted by

VLID, for updates when creating the address handle. It is then registered with that

VM. When a VM is migrated, it will update all VMs in the registered list with the

new QP numbers and LIDs so the address handles will be re-created.

5.3 Nomad Architecture for XenIB

Figure 5.3 illustrates the overall architecture of Nomad, which consists of the

following major components:
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Figure 5.4: Protocol for migrating one VM

• Modified user communication library: major modifications compared with the

driver stack shown in Figure 2.4 include code to suspend/resume communica-

tion on QPs, and a lookup list for memory keys. Note that all changes are

transparent to the higher level InfiniBand services and applications.

• Modified InfiniBand driver in kernels of guest operating system: Major code

changes include the suspend/resume callback interfaces interacting with Xen-

Bus interfaces[73]; the interaction with the user library notifying it to sus-

pend/resume communication as necessary; the destination mapping tables as

described in Figure 5.2; re-allocation of opaque handles after migration; and

memory key mapping tables for all kernel communication.

• Management network: This includes a central server and management module

plug-ins at the privileged domain. All control messages (i.e. suspend or resume

requests) are forwarded by a management module in the privileged domain.

The central server keeps track of the physical host of each virtual machine so

that control messages addressed by VID can be sent to the correct management
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module. Though this forwarding is not absolutely necessary, this design has its

advantages. First, we can verify the correctness/validity of the control messages,

so a malicious guest domain (which may not belong to the same parallel job)

will not break the migration protocols. Further, the privileged domain will not

be migrated, so the management framework itself can be built on high speed

interconnects like InfiniBand. If the management network involves the VMs that

could be migrated, using InfiniBand may cause additional complexity. Note

that the central server does not necessarily affect system scalability on large

node clusters. It is only accessed to resolve the actual location of VMs. All

communication steps do not go through this central server.

Figure 5.4 illustrates the protocol of Nomad to migrate a VM. We use a two

stage protocol, following the model of migrating para-virtualized devices in Xen. The

front-end drivers go into a suspend stage after receiving a suspend callback from the

hypervisor to get ready for migration. It goes into a resume stage after receiving the

resume callback to restart communication on the new host. At the suspend stage,

the driver sends suspend requests to the connected VMs to suspend their communi-

cation. Local communication is then suspended in parallel. Once acknowledgments

have been received from all connected VMs, location dependent resources are freed

and the suspend stage is finished. In the resume stage, the driver will first re-allocate

all location dependent resources and then send update messages to all VMs in the

registered list. Upon receiving the update, connected VMs can re-establish the con-

nection and resume the communication. After all connected VMs have acknowledged,

the communication on the migrating VM will be resumed.
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In some cases users need to migrate a group of virtual machines to new hosts. In

this case, because of the existence of the central server as a coordinator, we simplify

the control message exchange among the migrating VMs. We assume that the central

server will know the set of VMs that the user wants to migrate simultaneously. Then

during the suspend stage, each migrating VM will query the server to get the list

of connected VMs which are also migrating. Suspension requests are not sent to

those VMs, because they will suspend their communication regardless. Instead, all

migrating VMs will send the suspend acknowledgments directly to each other. During

the resume stage, however, extra steps are needed to exchange the updated resource

handles among the migrating VMs before the connections between the QPs can be

re-established (before step 7 in Figure 5.4) with the correct resource handles.

5.4 Evaluation of Nomad

In this section, we evaluate the performance of our prototype implementation of

Nomad. We first evaluate the impact of VM migration on InfiniBand verbs layer

micro-benchmarks, then we move to application-level HPC benchmarks. We focus

on HPC benchmarks since they are typically more sensitive to the network commu-

nication performance and allow us to evaluate the performance of Nomad better.

Since there are few HPC benchmarks directly written with InfiniBand verbs, we use

benchmarks on top of MVAPICH for this evaluation.

5.4.1 Experimental Setup

The experiments are carried out on an InfiniBand cluster. Each system in the clus-

ter is equipped with dual Intel Xeon 2.66 GHz CPUs, 2 GB memory and a Mellanox

MT23108 PCI-X InfiniBand HCA. The systems are connected with an InfiniScale
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InfiniBand switch. Besides InfiniBand, the cluster is also connected with Gigabit

Ethernet as the control network. Xen-3.0 with the 2.6.16 kernel is used on all com-

puting nodes. Domain 0 (the device domain) is configured to use 512 MB and each

guest domain runs with a single virtual CPU and 256 MB memory. Because Xen mi-

gration transfers memory pages over TCP/IP networks, which requires heavy CPU

resources, we host one VM on each physical node. In this way, there is one spare

CPU to handle the memory page transfer, which separates the overhead of Nomad

from other migration costs. This allows us to better evaluate our implementation.

5.4.2 Micro-benchmark Evaluation

In this subsection, we evaluate the impact of Nomad on micro-benchmarks. We

use Perftest benchmarks provided with the OpenFabrics stack. They consist of a set of

InfiniBand verb layer benchmarks to evaluate the basic communication performance

between two processes. We ran the tests on two VMs, with each of them hosting one

process. We measure the performance reported by the benchmarks while migrating

the VMs, one at a time.

We first measure performance numbers with all the Perftest benchmarks without

migration. We observe no noticeable overhead caused by Nomad as compared to our

original VMM-bypass I/O in [28], on either latency or bandwidth. This means the

overhead of the namespace virtualization is negligibly small.

Next we measure the migration downtime using the RDMA latency test. It is a

ping-pong test that a process RDMA writes to the peer and the peer acknowledges

with another RDMA write. This process repeats one thousand times and the worst

and median half round-trip time are reported. We modify the benchmark to keep
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measuring the latency in loops. Figure 5.5 shows the RDMA latency reported in

each iteration. The worst latency is always higher than the typical latency due to

process skews at the first few ping-pongs. We also observe that during iterations that

we migrate the VMs, the worst latency increases to around 90 ms from under few

hundred micro-seconds. This approximates the migration cost when migrating simple

programs.
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5.4.3 HPC Benchmarks

In this subsection we examine the impact of migration on HPC benchmarks. We

use the NAS Parallel Benchmarks (NPB) [39] for evaluation, which are a set of com-

puting kernels widely used by various classes of scientific applications. Also, the

benchmarks have different communication patterns, from the ones hardly commu-

nicating (EP) to communication intensive ones like CG and FT. This allows us to

better evaluate the overhead of Nomad.
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We run the benchmarks on 8 processes with each VM hosting one computing

process. We then migrate VMs one at a time during the process to see the impact

of migration. Figure 5.6 compares the performance between running NAS on native

systems, with Nomad but no migration, migrating a VM once, and migrating a VM

twice. As we can see from the graph, Nomad causes only slight overhead if there is no

migration, which conforms to our earlier evaluation on XenIB [65]. Each migration

causes 0.5 to 3 seconds increase of total execution time, depending on the benchmark.

This overhead will be marginal for longer running applications.

We now take a closer look at the migration cost caused by Nomad. As we have

discussed, the migration process can be divided into suspend and resume stages. We

analyze the cost of both of these stages.

The overhead of the suspend stage can be broken down into two parts, time to

wait for local and remote peers to suspend communication and the time to free lo-

cal resources. Suspending local communication occurs in parallel with suspending

remote communication. Suspension of remote communication typically takes a rela-

tively larger amount of time since there is extra overhead to synchronize through the

management network. To estimate the overhead of synchronization, we also measure

the cost of suspending communication on the remote peers (remote suspension time).

Please note that the results are based on multiple runs.

We profile each of these stages, as in Figure 5.7. We observe that the remote

suspension times vary largely depending on the communication patterns. Table 5.1

characterizes the communication patterns observed on the MPI process hosted in the

migrating VM. As we can see, CG has the longest remote suspension time, because

it communicates frequently with relatively large messages, thus likely takes a long
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Table 5.1: NAS Communication patterns: number of total messages to the most fre-
quently communicated peer and the average message size to that peer

Num. of Msg. Avg. Size (KBytes)
BT 615 100.4
CG 6006 49.4
FT 48 3844.8
EP 5 0.024
LU 15763 3.8
SP 1214 74.9

time waiting for the outstanding communications. Following CG are LU and FT,

which have a large number of small messages and a small number of large messages,

respectively. EP has extremely low communication volume, and its remote suspension

time is almost unobservable in the figure. With additional synchronization time, the

migrating VM takes typically a few to tens of milliseconds waiting for communication

suspension.

Another major cost observed is the time to free local resources, which takes 22 to

57 ms based on the resources allocated. Because we fix the number of peers in the job,

we see a strong correlation between the time to free the resources and the amount of

memory registered. For instance, for NAS-BT, the VM has registered 7,540 pages of

memory by the time it is migrated, and it takes 57 ms to free the local resources. For

NAS-EP, where only 2,138 pages are registered by the time the VM is migrated, it

takes only around 22 ms to free all the resources. This suggests that a scheme which

delays the freeing of resources will potentially reduce the migration cost further: the

VM can be suspended without freeing HCA resources; and the privileged domain can

track the resources used by the VM and free them after VM migration.
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The cost at the resume stage mainly includes the time to re-allocate the HCA

resources and the time to resume the communication. As with our analysis of the

suspend stage, we also profile the time taken on the remote peers to resume the

communication. The time is measured from the resume request arrival to the sending

of the acknowledgment; this time includes updating the resource handle lookup list,

re-establishing the connections, and reposting the unposted descriptors during the

migration period. The time to resume local communication on the migrating VM has

very low overhead because there are no unposted descriptors.
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As shown in Figure 5.8, re-allocating the HCA resources is still a major cost of

the resume period. We see the same correlation between the amount of registered

memory and the time to re-allocate resources. The time varies from around 105ms

for NAS-FT to 22ms for NAS-EP in our studies. This suggests pre-registration of

memory pages can help reduce the migration cost too.

Our evaluation shows slightly more time to resume than to suspend the commu-

nication on remote peers. This difference is largely due to the process to update
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the lookup list and to re-establish the connections. Also, the total time spent in the

suspend and resume stages is smaller than the overhead we observed in Figure 5.6.

We believe that the extra overhead is the cost of live migration, e.g., the migrating

OS is running in a shadow mode, with extra cost to dirty a page.

5.4.4 Migrating Multiple VMs

We also measure the overhead of migrating multiple VMs simultaneously while

running the applications. We run the NAS benchmarks on 4 processes located on 4

different VMs. During the execution we migrate all 4 VMs simultaneously to distinct

nodes.

Figure 5.9 shows the comparison of the total execution time. We observe from

the graph that the average per checkpoint cost is not increased much as compared

to the case of migrating one VM. Since the applications have longer execution time

with four processes, the impact of migration looks much smaller. Despite this, we

observe larger variation of the results we collected. We believe that the skew between

processes is the major cause for the variation. The skew can be mainly due to two

reasons:

• Though we start migration of all 4 VMs at the same time, Xen may take a varied

amount of time to pre-copy the memory pages, thus the time each process enters

the Nomad suspend stage is different.

• Each VM may not take the same amount of time to suspend the local commu-

nication and to free the local resources. Similarly, the time to re-allocate the

resources on the new host and resume communication can also be different.
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Figure 5.10 shows a breakdown of suspend time spent on each of the migrating

VM. As we can see, VM1 takes a significantly shorter time to wait for remote commu-

nication suspension than other three VMs. It clearly indicates that VM1 enters the

suspend stage later than other three: all the other three VMs have already suspended

their traffic and are waiting to synchronize with VM1.
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CHAPTER 6

EFFICIENT VIRTUAL MACHINE AWARE
COMMUNICATION LIBRARIES

In this chapter we propose efficient VM-aware communication libraries. We de-

sign IVC, an Inter-VM Communication library that allows efficient shared memory

communication between VMs located on the same physical hosts. We also design

MPI library, which benefits unmodified MPI applications from our work. Finally,

we evaluate the designs in Section 6.3. More specifically, this chapter focuses on the

highlighted regions in our research framework shown as in Figure 6.1. We will discuss

further enhancement to inter-VM communication with a one-copy shared memory

mechanism in the next chapter.

6.1 IVC: Efficient Inter-VM Communication through Shared
Memory

In this section we present our inter-VM communication (IVC) library design,

which provides efficient shared memory communication between VMs on the same

physical host. It offers the flexibility to host computing processes on separate VMs

for fine-grained scheduling without sacrificing the efficiency of shared memory com-

munication.
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Figure 6.1: VM-aware communication libraries in the proposed research framework

Our design is based on page-sharing mechanisms through grant tables provided

by Xen, as described in Section 2.1. There are still many challenges that need to

be addressed, however. First, the initial purpose of a grant-table mechanism is for

sharing data between device drivers in kernel space. Thus, we need to carefully de-

sign protocols to set up shared memory regions for user space processes and provide

communication services through these shared regions. Second, we need to design an

easy-to-use API to allow applications to use IVC. Further, IVC only allows commu-

nication between VMs on the same host, which leads to additional concerns for VM

migration. We address these challenges in the following.
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6.1.1 Setting up Shared Memory Regions

In this section we describe the key component of IVC: How to set up shared

memory regions between two user processes when they are not hosted in the same

OS?

IVC sets up shared memory regions through Xen grant table mechanisms. Fig-

ure 6.2 provides a high level architectural overview of IVC and illustrates how IVC

sets up shared memory regions between two VMs. IVC consists of two parts: a user

space communication library and a kernel driver. We use a client-server model to set

up an IVC connection between two computing processes. One process (the client)

calls the IVC user library to initiate the connection setup (step 1 in Figure 6.2).

Internally, the IVC user library allocates a communication buffer, which consists of

several memory pages and will be used later as the shared region. The user library

then calls the kernel driver to grant the remote VM the right to access those pages

and returns the grant table reference handles from the Xen hypervisor (steps 2 and

3). The reference handles are sent to the IVC library on the destination VM (step

4). The IVC library on the destination VM then maps the communication buffer to

its own address space through the kernel driver (steps 5 and 6). Finally, IVC notifies

both computing processes that the IVC connection setup is finished, as in step 7 of

Figure 6.2.

6.1.2 Communication through Shared Memory Regions

After creating a shared buffer between two IVC libraries, we design primitives for

shared memory communication between computing processes. IVC provides a socket
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style read/write interface and conducts shared memory communication through clas-

sic producer-consumer algorithms. As shown in Figure 6.3, the buffer is divided into

send/receive rings containing multiple data segments and a pair of producer/consumer

pointers. A call to ivc write places the data on the producer segments and advances

the producer pointer. And a call to ivc read reads the data from the consumer seg-

ment and advances the consumer pointer. Both the sender and receiver check the

producer and consumer pointers to determine if the buffer is full or for data arrival.

Note that Figure 6.3 only shows the send ring for process 1 (receive ring for process

2). The total buffer size and the data segment size are tunable. In our implemen-

tation, each send/receive ring is 64KB and each data segment is 64 bytes. Thus,

an ivc write call can consume multiple segments. If there is not enough free data

segments, ivc write will simply return the number of bytes successfully sent, and

the computing process is responsible to retry later. Similarly, ivc read is also non-

blocking and returns the number of bytes received.
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/* Register with IVC */

/* Get all Peers on the same physical node */

/* We assume only one peer now (the server).
 * Connect to server (peers[0]).
 * channel.id will be SERVER_ID upon success. */

 * success. Otherwise, we will have to retry. */

/* Close connection */

ctx = ivc_register(MAGIC_ID, CLIENT_ID);

peers = ivc_get_hosts(ctx);

channel = ivc_connect(ctx, peers[0]);

bytes = ivc_write(channel, buffer, size);

ivc_close(channel);

/* Send data to server, bytes will be @size upon 

(a) Communication client

/* Register with IVC */

/* Block until an incomming connection.
 * Upon success, channel.id will be CLIENT_ID */

 * We will have to retry other wise. */

/* Close connection */

/* Receive data from client. */

ctx = ivc_register(MAGIC_ID, SERVER_ID);

channel = ivc_accept(ctx);

ivc_close(channel);

bytes = ivc_read(channel, buffer, size);

 * Upon success, bytes will be equal to @size.

(b) Communication server

Figure 6.4: A very brief client-server example for using IVC

Initialization of IVC also requires careful design. IVC sets up connections for

shared memory communication between VMs only after receiving a connection re-

quest from each of the hosted processes. Computing processes, however, cannot be

expected to know which peers share the same physical host. Such information is

hidden to the VMs and thus has to be provided by IVC. To address this issue, an

IVC backend driver is run in the privileged domain (Dom0). Each parallel job that

intends to use IVC should have a unique magic id across the cluster. When a com-

puting process initializes, it notifies the IVC library of the magic id for the parallel

job through an ivc init call. This process is then registered to the backend driver.

All registered processes with the same magic id form a local communication group,

in which processes can communicate through IVC. A computing process can obtain

all peers in the local communication group through ivc get hosts. It can then

connect to those peers through multiple ivc connect calls, which initialize the IVC

connection as mentioned above. Using a magic id allows multiple communication
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groups for different parallel jobs to co-exist within one physical node. Assignment of

this unique magic id across the cluster could be provided by batch schedulers such as

PBS [47], or other process manager such as MPD [2] or SLURM [54].

Figure 6.4 shows a brief example of how two processes communicate through IVC.

As we can see, IVC provides socket-style interfaces, and communication establishment

follows a client-server model.

6.1.3 Virtual Machine Migration

As a VM-aware communication library, an additional challenge faced by IVC is

handling VM migration. As a shared memory library, IVC can only be used to

communicate between processes on the same physical host. Subsequently, once a VM

migrates to another physical host, processes running on the migrating VM can no

longer communicate with the same peers through IVC. They may instead be able to

communicate through IVC with a new set of peers on the new physical host after

migration.

IVC provides callback interfaces to assist applications in handling VM migration.

Figure 6.5 illustrates the main flow of IVC in case of VM migration. First, the IVC

kernel driver gets a callback from the Xen hypervisor once the VM is about to migrate

(step 1). It notifies the IVC user library to stop writing data into the send ring to

prevent data loss during migration; this is achieved by returning 0 on every attempt

of ivc write. After that, the IVC kernel notifies all other VMs on the same host

through event channels that the VM is migrating. Correspondingly, the IVC libraries

running in other VMs will stop their send operations and acknowledge the migration

event (steps 2 and 3). IVC then gives the user programs a callback, indicating that
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the IVC channel is no longer available due to migration. Meanwhile, there may be

data remaining in the receive ring that has not been passed to the application. Thus,

IVC also provides applications a data buffer containing all data in the receive ring

that has not been read by the application through ivc read(step 4). Finally, IVC

unmaps the shared memory pages, frees local resources, and notifies the hypervisor

that the device has been successfully suspended and can be migrated safely (step 5).

After the VM is migrated to the remote host, the application will receive another

callback indicating arrival on a new host, allowing connections to be set up to a new

set of peers through similar steps as in Figure 6.4(a) (step 6).
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Figure 6.5: Migrating one VM (VM2) of a three-process parallel job hosted on three VMs

6.2 Virtual Machine Aware MPI-2 Library

In this section we present VM-aware MPI, which allows user applications ben-

efit from the aforementioned I/O virtualization techniques. We introduce our de-

sign in two steps. First in Section 6.2.1 we design MVAPICH2, a high performance
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MPI-2 library over InfiniBand. And based on that, we present MVAPICH2-ivc in Sec-

tion 6.2.2, which is VM-aware and is able to transparently take advantage of inter-VM

communication and VMM-bypass I/O.

6.2.1 MVAPICH2: High Performance MPI-2 Library over

InfiniBand

In this section we present the design of MVAPICH2. We are trying to achieve two

main objectives through this design:

• Modern clusters provide multiple low-level methods for communication, such as

intra-node communication through shared memory, and different programming

libraries for various interconnects etc. Our new design should be able to take

advantage of the available communication methods on a cluster to achieve the

best performance.

• For portability reasons, it is desirable to have a concise device abstraction for

each of these communication methods. And this abstraction should be well de-

signed so that we can have enough information to perform most of the hardware-

specific optimizations and enable the MPI library to achieve maximum perfor-

mance and scalability.

As illustrated in Figure 6.6, we follow the basic idea of the layering structure from

MPICH2. We start from an extension of the ADI3 layer in MPICH2. And below that

we have our own design of the multi-communication method (MCM) layer and the

device layer. The device layer provides abstractions of the communication methods
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on the cluster, which can be either an intra-node communication device or an inter-

node communication device. And the MCM layer aims to exploit the performance

benefits provided by these abstract devices.

Primitive Primitive Primitive Detection
Query Copy & Send Registration Zero−Copy

Primitive
Message

Query Protocol

Query Point to Point Header Caching One Sided Collectives

Other InterconnectsInfiniBand

Progress
Engine

Direct One Sided
Protocol

Rendezvous
Protocol

Eager

Inter−node Devices Intra−node Comm−
unication DeviceUDAPL

The Device Layer

ADI3

MPI−2

Multi−Communication Method

Gen2VAPI

Figure 6.6: Overall design of MVAPICH2
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The ADI3 layer, which extends from the original ADI3 layer in MPICH2, is the

highest level in our design. We inherit the other MPI functionality from MPICH2

implementation. The main responsibilities of our layer include selecting an appropri-

ate internal communication protocol, eager or rendezvous, for each point-to-point or

one-sided operation from the user application. Our extensions for the ADI3 layer are

mainly for high level optimizations along the following fronts:

• Query: Instead of choosing the rendezvous or eager protocols solely based on the

message size, as most of the current MPI implementations do, the ADI3 layer

makes decisions based on the preference of the MCM layer. Because the MCM

layer dynamically chooses from the available communication devices to send
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out the message and the optimal point to switch from the eager to rendezvous

protocol might be different for each device, this query process helps the ADI3

layer to select the most efficient communication protocol for a specific message.

• Point-to-Point operations: Point to point communication can take advantage of

header caching. The header caching feature caches the content of internal MPI

headers at the receiver side. As a result, if the next message to the receiver

contains the same cached fields in header, we reduce the message size, thus

reducing the small message communication latency. As discussed in more detail

in [63], header caching can only be put into this layer since only the ADI3 layer

is able to understand the content of the message.

• One Sided Operations: In previous work we have extended the ADI3 layer to

directly implement one sided operations based on InfiniBand RDMA operations

to achieve higher performance and less CPU utilization [66]. This piece of work

is also incorporated into the added functionality of the ADI3 layer based on the

direct one sided interface provided by the MCM layer.

The multi-communication method (MCM) layer implements the communication

protocols selected by the ADI3 layer using the communication primitives supported

by the device layer. It understands the performance features of each communication

device provided at the device layer and chooses the most suitable one to complete the

communication.

The device-selection component collects the performance characteristics from the

device layer through the device-query interfaces. It knows the message size and the

destination from the ADI3, so it is able to decide the most suitable device to complete
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this message and the preferred communication protocol. The information is passed

back to the ADI3 layer through the query interface.

Once the ADI3 layer decides the communication protocol, the actual communi-

cation is taken care of by the progress engine at the MCM layer. There are several

important components of the progress engine. The eager and rendezvous progress

components implement the eager and rendezvous communication protocols. The com-

munication requests will be processed through the communication device chosen by

the device-selection components. Typically for eager protocols, the messages will be

sent through the copy-and-send primitives provided by the device layer. And for ren-

dezvous protocol, the user buffers involved in the communication are first sent to the

device through the registration primitives for registration and then the data is sent

through the zero-copy primitives. In our design the progress engines are supposed to

mask the recoverable failures of the device level. For example, the ADI3 layer may

send an eager message too large for the device to send out at one time, so that the

message needs to be broken down into smaller sizes and sent out in multiple packets.

Also the device may fail to register the user buffer for zero-copy rendezvous protocols,

then large messages will also need to be broken down into pieces to be sent through

copy-and-send primitives.

The direct one sided progress component implements the direct one sided commu-

nication support for one sided operations. The detailed design and implementation

details are described in [66, 64].

The ordering component helps to keep the correct ordering of the messages sent

from different devices at the receiver side. The incoming message from a specific
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device is detected through the message detection interface provided by the device

layer.

The lowest device layer implements the basic network transfer primitives. The

paradigm of this layer allows us to hide the difference between various communica-

tion schemes provided by the system while exposing the maximum number of features

(such as zero-copy communication) to the MCM layer. The interfaces provided by

the device layer include copy-and-send primitives, zero-copy primitives, and the reg-

istration primitives which prepare for zero-copy communication.

Since there can be multiple devices existing at the same time, each device also

implements the query primitive to provide the device-selection component of the

MCM layer with the basic performance features. This enables the MCM layer to

select at runtime the most suitable device for a particular message.

The message-detection primitive is queried by the progress engine at the MCM

layer to detect the next incoming packet. The communication primitives at this

layer are directly implemented based on the programming libraries provided by the

communication systems.

6.2.2 MVAPICH2-ivc: Virtual Machine Aware MPI-2 Li-

brary

Now we present MVAPICH2-ivc, a VM-aware MPI library modified from MVA-

PICH2. MVAPICH2-ivc is able to communicate through IVC with peers on the same

physical host and over InfiniBand when communication is inter-node. MVAPICH2-

ivc is also able to intelligently switch between IVC and network communication as

VMs migrate. By using MVAPICH2-ivc in VM environments, MPI applications can

benefit from IVC without modification.
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Design Overview

MVAPICH2-ivc is modified from MVAPICH2. A simplified architecture for MVA-

PICH2 is shown Figure 6.8. There are two device level communication channels avail-

able in MVAPICH2: a shared memory communication channel for peers hosted in the

same operating system and a network channel over InfiniBand user verbs for other

peers.

Application

InfiniBand API

MPI Library

Native hardware
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MPI Layer

SMP channel Network channel

Device APIs
Communication

ADI3 Layer

MCM Layer

Figure 6.8: MVAPICH2 running in na-
tive environment
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Figure 6.9: MVAPICH2-ivc running in
VM environment

An unmodified MVAPICH2 can also run in VM environments, however, its default

shared memory communication channel can no longer be used if computing processes

are hosted on different VMs. By using IVC, MVAPICH2-ivc is able to communi-

cate via shared memory between processes on the same physical node, regardless of

whether they are in the same VM or not. Figure 6.9 illustrates the overall design

of MVAPICH2-ivc running in a VM environment. Compared with MVAPICH2 in a

native environment, there are three important changes. First, we replace the original

shared memory communication channel with an IVC channel, which performs shared

memory communication through IVC primitives. Second, the network channel is
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running on top of VMM-bypass I/O, which provides InfiniBand service in VM envi-

ronments (because VMM-bypass I/O provides the same InfiniBand verbs, no changes

to MVAPICH2 are needed). Third, we design a communication coordinator, which

extends the original MCM layer by the ability to dynamically create and and tear

down IVC connections as the VM migrates.

The communication coordinator keeps track of all the peers to which IVC com-

munication is available. To achieve this, it takes advantage of a data structure called

a Virtual Connection (VC). In MVAPICH2, there is a single VC between each pair of

computing processes, which encapsulates details about the available communication

methods between that specific pair of processes as well as other state information. As

shown in Figure 6.10, the communication coordinator maintains an IVC-active list,

which contains all VCs for peer processes on the same physical host. During the ini-

tialization stage, this IVC-active list is generated by the communication coordinator

according to the peer list returned by ivc get hosts. VCs on the list can be removed

or added to this list when the VM migrates.

Once the application issues an MPI send to a peer process, the data is sent through

IVC if the VC to that specific peer is on the IVC-active list. As described in Sec-

tion 6.1.2, IVC cannot guarantee all data will be sent (or received) by one ivc write

(or ivc read) call. To ensure in-order delivery, we must maintain queues of all out-

standing send and receive operations for each VC in the IVC-active list. Operations

on these queues are retried when possible.

Virtual Machine Migration

As discussed in Section 6.1.3, IVC issues application callbacks upon migration.

Correspondingly, applications are expected to stop communicating through IVC to
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peers on the original physical host and can start IVC communication to peers on

the new physical host. In MVAPICH2-ivc, the communication coordinator is re-

sponsible to adapt to such changes. The coordinator associates an ivc state to

each VC. As shown in Figure 6.11, there are four states possible: IVC CLOSED,

IVC ACTIVE, IVC CONNECTED and IVC SUSPENDING. At the initialization

stage, each VC is either in the IVC ACTIVE state if the IVC connection is set

up, or in the IVC CLOSED state, which indicates that IVC is not available and

communication to that peer has to go through the network.

When a VM migrates, IVC communication will no longer be available to peers

on the original host. As we have discussed, the communication coordinator will

be notified, along with a data buffer containing the contents of the receive ring

when an IVC connection is torn down. The coordinator then changes the state

to IVC SUSPENDING. In this state, all MPI-level send operations are temporarily

blocked until the coordinator transmits all outstanding requests in the IVC outstand-

ing send queue through the network channel. Also, all MPI-level receive operations

are fulfilled from the data buffer received from IVC until all data in the buffer is

consumed. Both of these steps are necessary to guarantee in-order delivery of MPI
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messages. Next, the coordinator changes the ivc state to IVC CLOSED and removes

the VC from the IVC active list. Communication between this pair of processes then

flows through the network channel.

Once migrated, IVC will be available to peers on the new host. The coordinator

will get a callback from IVC and set up IVC connections to eligible peers. IVC cannot

be immediately used, however, since there may be pending messages on the network

channel. To reach a consistent state, the communication coordinators on both sides of

the VC change the ivc state to IVC CONNECTED and send a flush message through

the network channel. Once the coordinator receives a flush message, no more messages

will arrive from the network channel. The ivc state is changed to IVC ACTIVE and

the VC is added to the IVC active list. Both sides can now communicate through the

IVC channel.

6.3 Evaluation of Inter-VM Communication

In this section we present an integrated evaluation of a VM-based HPC environ-

ment running MVAPICH2-ivc with each process in a separate VM. We first evaluate

the benefits achieved through IVC using a set of micro-benchmark and application-

level benchmarks. We show that on multi-core systems MVAPICH2-ivc shows clear

improvement compared with unmodified MVAPICH2, which cannot take advantage

of shared memory communication when processes are on distinct VMs. We demon-

strate that the performance of MVAPICH2-ivc is very close to that of MVAPICH2 in

a native (non-virtualized) environment. Evaluation on up to 128 processes shows that

a VM-based HPC environment can deliver very close application-level performance

compared to a native environment.
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6.3.1 Experimental Setup

The experiments were carried out on two testbeds. Testbed A consists of 64

computing nodes. There are 32 nodes with dual Opteron 254 (single core) processors

and 4GB of RAM each and 32 nodes with dual Intel 3.6 GHz Xeon processors and

2GB RAM each. Testbed B consists of computing nodes with dual Intel Clovertown

(quad-core) processors, for a total of 8 cores and 4GB of RAM. Both testbeds are

connected through PCI-Express DDR InfiniBand HCAs (20 Gbps). Xen-3.0.4 with

the 2.6.16.38 kernel is used on all computing nodes for VM-based environments. We

launch the same number of VMs as the number of processors (cores) on each physical

host, and host one computing process per VM.

We evaluate VM-based environments with MVAPICH2-ivc and unmodified MVA-

PICH2, each using VMM-bypass I/O. We also compare against the performance of

MVAPICH2 in native environments. More specifically, our evaluation is conducted

with the following three configurations:

• IVC - VM-based environment running MVAPICH2-ivc, which communicates

through IVC if the processes are hosted in VMs on the same physical host.

• No-IVC - VM-based environment running unmodified MVAPICH2, which al-

ways communicates through the network since each process is in a separate

VM.

• Native - Native environment running unmodified MVAPICH2, which uses

shared memory communication between processes on the same node.
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6.3.2 Micro-benchmark Evaluation

In this section, the performance of MVAPICH2-ivc is evaluated using a set of

micro-benchmarks. First a comparison was made of the basic latency and bandwidth

achieved by each of the three configurations, when the computing processes are on

the same physical host. Next, the performance of the collective operations using the

Intel MPI Benchmarks (IMB 3.0) [22] was measured.

Figure 6.12 illustrates the MPI-level latency reported for the OSU benchmarks [37].

For various message sizes, this test ‘ping-pongs’ messages between two processes for

a number of iterations and reports the average one-way latency observed. IVC com-

munication is able to achieve latency around 1.2µs for 4 byte messages, which, in

the worst case, is only about 0.2µs higher than MVAPICH2 communicating through

shared memory in a native environment. The IVC latency is slightly higher because

MVAPICH2 has recently incorporated several optimizations for shared memory com-

munication [8]. We plan to incorporate those optimizations in the future, as they

should be applicable to IVC as well. In both cases, the latency is much lower than

the no-IVC case, where communication via network loopback shows a 3.16µs latency

for 4 byte messages.

Figure 6.13 presents MPI-level uni-directional bandwidth. In this test, a process

sends a window of messages to its peer using non-blocking MPI sends and waits for

an acknowledgment. The total message volume sent divided by the total time is re-

ported as the bandwidth. Both IVC and native cases achieve much higher bandwidth

for medium-sized messages than in the no-IVC case. An interesting observation is

that IVC achieves higher bandwidth than the native case. This can be due to two

reasons: first, MVAPICH2’s optimized shared memory communication requires more
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complicated protocols for sending large messages, thus adding some overhead; second,

IVC uses only 16 pages as the shared memory region, but MVAPICH2 uses a few mil-

lion bytes. At a micro-benchmark level, a larger shared memory buffer can slightly

hurt performance due to cache effects. A smaller shared memory region, however,

holds less data, thus requiring the peer to receive data fast enough to maintain a high

throughput. This can lead to less efficient communication progress for applications

using large messages very frequently because processes are likely to be skewed. For

IVC, we find 16 pages as a good choice for the shared memory buffer size 4.
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Figures 6.14 and 6.15 illustrate the ability of MVAPICH2-ivc to automatically

select the best available communication method after VM migration. In Figure 6.14,

we kept running a latency test with 2KB messages. The test was first carried out

between two VMs on distinct physical hosts. At around iteration 400, we migrated

one VM so that both VMs were hosted on the same physical node. From the figure it

4We do not use larger number of pages because the current Xen-3.0.4 allows at most 1K pages
to be shared per VM. While this restriction can be fixed in the future, 16 page shared buffers will
allow us to support up to 60 VMs per physical node with the current implementation.

89



can be observed that the latency dropped from 9.2µs to 2.8µs because MVAPICH2-

ivc started to use IVC for communication. At about iteration 1100, the VMs were

again migrated to distinct physical hosts, which caused the latency to increase to

the original 9.2µs. The drastic increase in latency during migration was because

network communication freezes during VM migration, which is explained in more

detail in [18]. In Figure 6.15, the same trend for a bandwidth test is observed, which

reports bandwidth achieved for 2KB messages while the VM migrates. When two

VMs are located on the same host (iteration 1100 to iteration 2000), communication

through IVC increases the bandwidth from around 720MB/s to 1100MB/s.
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Next, the performance of collective operations using the Intel MPI Benchmarks

was evaluated. In Figure 6.16, several of the most commonly used collective operations

are compared using all three configurations. The tests were conducted on Testbed B,

using 2 nodes with 8 cores each (in total 16 processes). The collective performance

is reported for small (16 bytes), medium (16KB), and large (256KB) size operations,

with all results normalized to the Native configuration. Similar to the trends observed
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in the latency and bandwidth benchmarks, IVC significantly reduces the time needed

for each collective operation as compared with the no-IVC case. It is able to deliver

comparable performance as a native environment. Another important observation is

that even though the no-IVC case achieves almost the same bandwidth for 256KB

messages as IVC in Figure 6.13, it still performs significantly worse for some of the

collective operations. This is due to the effect of network contention. On multi-core

systems with 8 cores per node, the network performance can be largely degraded when

8 computing processes access the network simultaneously. Though the processes are

also competing for memory bandwidth when communicating through IVC, memory

bandwidth is typically much higher. This effect shows up in large message collectives,

which further demonstrates the importance of shared memory communication for

VM-based environments.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

AllgatherAllreduce Alltoall Bcast Reduce

No
rm

al
ize

d 
Ti

m
e

Collective

No IVC IVC Native

(a) 16 Bytes

 0

 0.5

 1

 1.5

 2

 2.5

 3

AllgatherAllreduce Alltoall Bcast Reduce

No
rm

al
ize

d 
Ti

m
e

Collective

No IVC IVC Native

(b) 16K Bytes

 0

 0.5

 1

 1.5

 2

AllgatherAllreduce Alltoall Bcast Reduce

No
rm

al
ize

d 
Ti

m
e

Collective

No IVC IVC Native

(c) 256K Bytes

Figure 6.16: Comparison of collective operations (2 nodes with 8 cores each)
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6.3.3 Application-level Benchmark Evaluation

In this section, several application-level benchmarks are used to evaluate the per-

formance of MVAPICH2-ivc. As in the micro-benchmarks evaluation, we evaluate

configurations of IVC (MVAPICH2-ivc in VM environment), No-IVC (unmodified

MVAPICH2 in a VM environment) and Native (MVAPICH2 in a native environ-

ment).

We use several applications in our evaluations. These applications have various

communication patterns, allowing a thorough performance comparison of our three

configurations. The applications used in the evaluation are:

• NAS Parallel Benchmark Suite - NAS [39] contains a set of benchmarks

which are derived from the computing kernels common in Computational Fluid

Dynamics (CFD) applications.

• LAMMPS - LAMMPS stands for Large-scale Atomic/

Molecular Massively Parallel Simulator [27]. It is a classical molecular dynamics

simulator from Sandia National Laboratory.

• NAMD - NAMD is a molecular dynamics program for high performance sim-

ulation of large biomolecular systems [46]. It is based on Charm++ parallel

objects, which is a machine independent parallel programming system. NAMD

can use various data sets as input files. We use one called apoa1, which models

a bloodstream lipoprotein particle.

• SMG2000 - SMG2000 [6] is a parallel semicoarsening multigrid solver for the

linear systems on distributed memory computers. It is written in C using MPI.
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• HPL - High Performance Linpack (HPL) is the parallel implementation of

Linpack [45] and the performance measure for ranking computer systems for

the Top 500 supercomputer list.

Figure 6.17 shows the evaluation results on Testbed B, with all results normalized

to performance achieved in the native environment. IVC is able to greatly close the

performance gap between the no-IVC and native cases. Compared with no-IVC, IVC

improves performance by up to 11% for the NAS Parallel Benchmarks – IS (11%) and

CG (9%). We observe 5.9%, 11.8%, and 3.4% improvements in LAMMPS, SMG2000

and NAMD, respectively.
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Figure 6.17: Application-level evaluation on Testbed B (2 nodes with 8 cores each)

We further analyze the communication patterns of these benchmarks. Figure 6.18(a)

introduces a communication rate metric, which is the total volume of messages sent

by each process divided by execution time. This represents an approximation of

how frequent the application communicates. As we can see, for several applications

which have a high communication rate, such as NAS-IS, NAS-CG, SMG2000 and

93



LAMMPS, IVC achieves performance improvement as compared with no-IVC. When

running on a larger number of computing nodes, some applications could benefit less

from IVC because a larger percentage of peers are not located on the same physical

host. However, Figure 6.18(b) suggests that IVC is still very important in many

cases. We analyze the percentage of data volume that will be sent through IVC on

clusters with 8 core computing nodes. We find that IVC communication is well above

average, especially for CG, MG, SMG2000 and LAMMPS, because the percentage

of IVC communication is higher than 50% even on a 64 core cluster5. This is be-

cause some applications tend to communicate frequently between neighbors, which

have high probability of being on the same host for multi-core systems. For those

applications, the benefits of IVC are expected to be observable.
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Figure 6.18: Communication patterns of the evaluated applications

We also observe that IVC achieves comparable performances with the native con-

figuration. The overhead is marginal (within 1.5%) in most cases. The only exception

5Data is collected through simulation on Testbed A, which has a larger number of processors.
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is NAS-FT, where a performance degradation of 6% is observed. This is due to the

main communication pattern of NAS-FT, an all-to-all personalized operation with

very large message sizes. In MVAPICH2 (and also MVAPICH2-ivc), all-to-all per-

sonalized operations are implemented on top of non-blocking send operations. As

noted earlier, IVC only uses a 16 page shared memory space, which takes multiple

iterations of the buffer space to send out a large message, hurting communication

progress. Meanwhile, MVAPICH2 incorporated an optimized shared memory com-

munication method proposed by Chai et al. [8], which leads to better performance

than IVC. Fortunately, FT is currently the only application we have noticed which

has such a communication pattern. Thus, in most cases we will not notice this per-

formance gap. Optimizing IVC for better performance under such communication

patterns is also planned, since optimizations used in MVAPICH2 are also possible for

IVC.

In order to examine the performance of MVAPICH2-ivc on a larger scale cluster,

a 64-node VM-based environment was set up on Testbed A. Figures 6.19 and 6.20

show the performance comparison of NAS Parallel Benchmarks and HPL on Testbed

A. Because systems of Testbed A are 2 processors per node with single-core only, the

percentage of IVC communication is small compared to inter-node communication

through the network. Thus, IVC and no-IVC configurations achieve almost the same

performance here and the no-IVC results are omitted for conciseness. Compared

with the Native configuration, we observe that the VM-based environment performs

comparably. In most cases the performance difference is around 1%, except for NAS-

FT, which degrades around 5% because of its large message all-to-all personalized

communication pattern.
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CHAPTER 7

EFFICIENT ONE-COPY SHARED MEMORY
COMMUNICATION

In this chapter, we continue the study conducted in the last chapter and present

an efficient one-copy shared memory communication scheme for MPI applications in

a VM environment. Instead of following the traditional approach used in most MPI

implementations, copying data in and out of a pre-allocated shared memory region,

our approach dynamically maps the user buffer of the sender between VMs, allowing

data to be directly copied to the destination buffer. We also propose a grant/mapping

cache to reduce the expensive mapping cost in a VM environment.

The rest of this chapter is organized as follows: we first describe our motivation

in Section 7.1. Then, we discuss the design of our one-copy shared memory commu-

nication protocol and the grant/mapping cache in Sections 7.2 and 7.3, respectively.

Finally, the performance evaluation is presented in Section 7.4.

7.1 Motivation

In the last chapter, we proposed inter-VM communication and its application

through an MPI implementation. A shared memory region is created between two

computing processes located in separate VMs via the page mapping mechanism from
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Xen. After the memory region is mapped to the address space of both communicating

processes, communication happens with no difference as in a native environment: To

send a message, the sender process copies the data into the shared region and the

receiver copies the data from the shared region to the user buffer.

This inter-VM shared memory communication eliminates the performance gap

with native computing environments caused by hosting computing processes in sep-

arate VMs. However, there is still room for further optimization. For example, the

size of the shared memory region is limited. Thus, it may take multiple copies to

send large messages, wasting CPU cycles to coordinate between sender and receiver.

It should be noted, however, that this problem exists not only for IVC, but for the

MPI shared memory communication in native environments as well. In native envi-

ronments, researchers remedy such limitations by proposing kernel-assisted one-copy

communication [24]. The basic idea is to dynamically map the user buffers to the

communicating peer’s address space so that the data copy can happen directly be-

tween the source and destination buffers. This requires only one memory copy to

send a message and eliminates the need for an intermediate shared memory region.

The same idea is also applicable to the VM environment. We can dynamically

establish shared mappings of user buffers to allow the receiver process to directly copy

data from the sender buffers. There are additional complexities, however. For exam-

ple, mapping pages between VMs is a costly operation. Furthermore, the number of

pages that can be mapped between VMs are limited based on the Xen implementa-

tion. Thus, we also propose an Inter-VM Grant/Mapping Cache (IGMC) framework

to reduce the mapping cost while using limited resources. We will introduce the

design of the basic protocol and the IGMC cache in the next two sections.
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7.2 One-copy Protocol for Inter-VM Shared Memory Com-
munication

In this section we present the one-copy protocol for efficient inter-VM shared

memory communication. The key idea of our design is to dynamically map the user

buffer of the sender to the address space of the receiver. With this mapping in place

the data can be directly copied into the user buffer of the receiver, saving one copy

from the traditional userspace memory copy (two-copy) approach described in the

last section.

Figure 7.1 shows an overview of the proposed protocol. It illustrates the process to

send an MPI message between two computing processes using the two-copy approach

proposed in [19] as well as our new one-copy approach. These two computing processes

are hosted in separate VMs on the same physical host. The two-copy approach, as

illustrated in Figure 7.1(a), exchanges the message through a pre-mapped shared

memory region. This shared memory region is created with the help of the IVC

kernel driver and the Xen VMM. The sender copies the data to the shared region

(step 1 and 2), the receiver detects the data through polling, and copies the data to

the receiver user buffer (step 3). After the copy completes, the receiver acknowledges

the message (step 4) so that the sender can re-use the shared memory region.

To reduce the number of copies, we directly map the sender user buffer to the

address space of the receiver. Detailed steps are labeled in Figure 7.1(b) and referred

to next. Once the MPI library gets a send request, it grants access to the memory

pages containing the sender user buffer through the IVC kernel driver (step 1). Unlike

the previous method, instead of copying the data to the shared memory region, it only

copies the aforementioned reference handles (step 2). The MPI library at the receiver
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Figure 7.1: Protocols to send MPI messages

side discovers the send requests (step 3) and maps the user buffer of the sender to its

own address space using the grant references from the sender (step 4 and 5). With

the mapping in place, the receiver directly copies the data to the destination user

buffer (step 6). Once the copy completes, the receiver unmaps the sender pages and

notifies the sender so that the sender can revoke the grant of the user buffers (step

7).

Granting page access to remote domains at the sender side and mapping user

buffers at the receiver side are both privileged operations that require the involvement

of guest kernels as well as VMM. Thus, they are computationally costly operations.

Given this startup overhead, we only use the one-copy protocol to send large messages,

with small messages still transferred using the traditional two-copy protocol described

in Figure 7.1(a).

To further hide the sender-side cost from the receiver we used a pipelined send

protocol. Instead of granting access to the entire sender buffer and then copying
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the reference handles to the shared memory region, the sender buffer is divided into

multiple chunks of memory pages. Each time access is granted, one chunk of memory

pages and the grant references are immediately sent to the receiver. The receiver

then can discover the message and begin the transfer sooner. In this way, the cost

of granting page accesses can be totally hidden except for the first chunk. Note that

grants do not need to be revoked immediately after the receiver finishes copying one

chunk, but can be delayed until the whole message is finished. This eliminates the

need to coordinate between sender and receiver while sending a message. Another

reason to use a pipeline mechanism is that the number of pages that can be mapped

from another domain is limited. Thus, if an application needs to send an exceptionally

large message, a pipelined send is the only option. It is to be noted that such case

happens rarely since this limit is at least tens of Megabytes.

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 32 64 128 256 512 1K 2K 4K
 0

 2000

 4000

 6000

 8000

 10000

 12000

Pe
r p

ag
e 

co
st

 (u
s)

Pe
r c

hu
nk

 c
os

t (
us

)

Chunk size (pages)
Per page granting cost
Per page mapping cost
Per chunk granting cost
Per chunk mapping cost

Figure 7.2: Cost of granting/mapping pages

101



The pipeline size (number of pages per chunk) must be carefully chosen. It is

inefficient to use too small of a chunk because there are high startup overheads to

grant page access at the sender side and map pages at the receiver side. Larger chunk

size allows us to amortize these costs. Figure 7.2 shows the cost to grant/map a

chunk of various numbers of pages and the per page cost. We observe that mapping

the pages at the receiver side is the most costly operation and a 16-page pipeline size

allows us to achieve a reasonable efficiency (grant/map cost per page) to map the

pages. This value can be adjusted for different platforms as needed.

Once the pipeline size is determined, we also force the start address of each chunk

to be aligned with the pipeline size (64KB aligned in our case) except for the first

chunk. As we will see in the next section, this greatly improves the grant/mapping

cache hit ratio.

7.3 IGMC: Inter-VM Grant/Mapping Cache

A pipelined send protocol can only hide the cost of granting page access at the

sender. At the receiver side, however, mapping pages and copying data are both

blocking operations and cannot be overlapped. Unfortunately, as we have observed

in Figure 7.2, the receiver mapping is a more costly operation due to heavier VMM

involvement than the sender page granting.

To address the high mapping cost, we propose an Inter-VM Grant/Mapping Cache

(IGMC). The objective is to keep page chunks mapped at the receiver as long as

possible. Then, if the sender user buffer is re-used later, it does not need to be

mapped again and the data can directly be copied. In the area of high performance

interconnects, similar ideas have been proposed to reduce the registration cost for

102



zero-copy network communication [16]. Despite the similarity, IGMC is much more

complicated due to two reasons:

• To keep a page mapping at the receiver, the sender must also keep the corre-

sponding page granted as well. Thus, IGMC consists of two separate caches: a

grant cache at the sender, which caches all the page chunks that are granted,

and a mapping cache at the receiver, which caches the mapping of those chunks.

• There are upper limits on both the number of pages that can be granted at

the sender as well as the number of pages that can be mapped at the receiver.

Thus, cache eviction may occur at either the sender or receiver side.

The caching logic complexity at both sides is hidden within the IGMC, simplifying

its use. After the IGMC receives a request to grant a chunk of pages at the sender

side, the grant cache is searched for entries that contain the requested page chunk as

identified by the start buffer address and the length of the chunk. Since a pipelined

send protocol is used, most entries will be of the pipeline chunk size, and the start

address of those chunks will be aligned. This allows us to achieve higher hit ratios

without complicated mechanisms to expand/merge cache entries. An additional com-

plexity is that the buffer addresses used to index the caches are user-space virtual

addresses, which can be backed up by different physical pages in different references,

causing false hits. We can use two approaches to address this issue. First, the mem-

ory pages are pinned within the OS by the sender until the grants are revoked, so

that they will not be swapped out while the receiver is copying the data. Second, we

can use mallopt6 to ensure that virtual addresses are not reused when the computing

6More advanced mechanisms including intercepting all memory management calls can be used
here to avoid false hits. We will not discuss these schemes since they are beyond the scope of our
study.
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process calls free and malloc operations. Thus, we can ensure that the same virtual

addresses always point to the same data during the application life time.

Each chunk of pages granted at the sender is assigned a unique key. At step 3 in

Figure 7.1(b), this key is sent along with the reference handles to the receiver. The

mapping cache at the receiver uses this key to determine if the corresponding chunk

is already mapped or not.

Using the described protocol the grant cache and the mapping cache will work

perfectly given unlimited resources to grant/map pages. Unfortunately, only a limited

number of pages can be granted or mapped at one time in Xen. Thus, before creating

any new entries in the grant or mapping caches, unused entries may need to be evicted

to free resources if the limit is being approached. While identifying unused entries can

be detected through reference counters, evicting cache entries requires coordination

from both the grant and mapping caches.

7.3.1 Evicting Cache Entries

We limit the number of entries in both the grant cache and the mapping cache7.

Since each entry corresponds to a chunk of up to the pipeline size, we also have a

limit on the maximum number of pages that can be granted/mapped at a single time.

IGMC behaves more elegantly in this way by avoiding granting/mapping failure at

the guest OS/VMM level. Limiting grant cache entries may not be needed in Xen,

because granting access to a page only consumes few bytes of bookkeeping information

in the Xen hypervisor. Thus, this is less of a concern compared to the limit on the

maximum allowed mapped pages. However, we do not want to limit ourselves to such

Xen-specific features; we instead design our protocol be applicable to other VMM

7This limit is set to be 8,192 pages in our implementation.
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implementations as well. An additional reason to limit the number of entries in the

grant cache (at the sender) is that if we run out of resources at the receiver and fail to

map the pages, the receiver will have to notify the sender to fall back to the two-copy

approach. It is much more efficient for the sender to detect imminent failure so the

two-copy approach can be directly selected.

Before evicting grant cache entries and revoking access to the corresponding mem-

ory page chunks, those page chunks must not be mapped at the receiver side. If the

chunk is still mapped, the sender has to notify the receiver to unmap it before revok-

ing the grant. Thus, at the sender side, we must be able to track which chunks are

still in the receiver mapping cache, as well as notify the receiver to unmap a specific

chunk. To achieve this, we allocate two bitmaps in the shared memory region, as

shown in Figure 7.3. Each of them contains the same number of bits as the maximum

number of allowed entries in the grant cache. The sender notifies the receiver to

unmap a chunk by setting the corresponding bit in the control bitmap. The receiver

will poll on the control bitmap in every library call. Once the receiver discovers the

ith bit in the control bitmap is set, it unmaps the entry with the key i. The second

bitmap, the mapping bitmap, is set/cleared by the receiver mapping cache. A set

bit in the mapping bitmap indicates that the receiver is still keeping the map of the

corresponding chunk.

At the receiver side, the mapping cache will evict entries when it is running out of

available resources to map new page chunks, or when it is advised by the sender to do

so. In either case, the corresponding bits in the mapping bitmap must be cleared to

notify the sender that it no longer is maintaining the mapping of the specified chunk.
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Figure 7.3: Exchanging control information through bitmaps

7.3.2 Improving the Cache Hit Ratio

Since it is very costly to map/unmap pages, optimizing the cache hit ratio will

be an important issue. We choose to use Least Recently Used (LRU) currently to

manage both the grant cache and the mapping cache, since it is relatively simple to

implement. Using simple LRU replacement, however, may result in poor hit ratios

in some cases. There are numerous studies in the literature to improve the cache hit

ratio, such as LRU/k [41], 2Q [25], LIRS [23], etc. We plan to implement 2Q as it

admits only re-visited cache entries into the main LRU queue, which can effectively

reduce the impact of cache entries that are only referred once. Since the grant cache

and the mapping cache can interfere with each other (i.e., before a entry can be

removed from the grant cache, the corresponding entry must be removed from the

mapping cache), other cache replacement algorithms which take more access history

information into account could be more effective. However, the actual impact of

different cache replacement algorithms is beyond the scope of our study.
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7.3.3 Fall-back Mechanism

No matter how hard we try to optimize the cache replacement algorithm, there

could always be a few applications having poor access patterns, which cause a low

cache hit ratio. This is true especially if the application working set (user buffers

involved in intra-node communication) is too large to fit in the cache. In this case,

instead of frequently mapping/unmapping memory pages, which hurts the perfor-

mance, it is more efficient to fall back to the original two-copy based shared memory

communication. The decision on falling back is made based on the hit ratio of the

more costly mapping cache at receivers. Each process will track the overall hit ratio

and the communication (receive) frequency to each sending peer. If the overall hit

ratio is under a certain threshold for a long period of time (i.e., several hundred mes-

sages), the process will identify the group of sending peers that communicate the least

often and start to use two-copy protocol with these senders. To notify the senders,

the process will raise a flag at the shared memory region so that the corresponding

sender will send messages using the traditional two-copy protocol. We treat each peer

differently since the communication pattern could be different among various peers.

It also allows the flexibility to fall back on some of the peers to reduce the applica-

tion working set. In this case, there is a good chance that the user buffers used in

communication to the rest of the peers can fit in the IGMC cache. It is to be noted

that the fall-back cases will not happen often, especially for larger scale applications,

where only part of the communication is intra-node.

The two-sided fall-back mechanism will also be used for handling non-contiguous

datatype communication. This is because “holes” in data buffers may cause ineffi-

ciency in granting/mapping all buffer pages. Additionally, the complexity of passing
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data layout information to the receiver may also overshadow the benefits of the one-

copy protocol.

7.4 Evaluation

In this section we evaluate our one-copy approach. We integrate the one-copy

protocol into MVAPICH2 [37], and compare with the two-copy based inter-VM shared

memory communication protocol discussed in the last chapter. We also compare with

unmodified MVAPICH2 running in a native Linux environment. We first demonstrate

the improvements on latency and bandwidth benchmarks. Then we present evaluation

results using the NAS Parallel Benchmark Suite [39].

7.4.1 Experimental Setup

The experiments were carried out on an Intel Clovertown system. The computing

node is equipped with a dual-socket quad-core Xeon E5345 2.33GHz and 6 GB of

memory. We run Xen-3.1 with the 2.6.18 kernel on the computing node for VM-

based environments. We launch up to eight VMs on the node. Each of VMs will

be assigned a dedicated core when running CPU intensive jobs. Each VM consumes

512MB of memory. Even though the modified MPI is certainly capable of running

multi-node applications, our experiment is within one node since the focus of this

paper is intra-node communication. As demonstrated by our study [8, 19], benefits

shown by single-node study can be effectively propagated to multi-node tasks due to

the importance of intra-node communication. For native environment evaluation, we

run RHEL 5 with the 2.6.18 kernel. We evaluate three configurations in this section:

• IVC-one-copy - Our new one-copy based scheme in a VM-based environment;
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• IVC-two-copy - Previous inter-VM shared memory communication in VM

environments, as proposed in the last chapter, using a two-copy method;

• Native - Unmodified MVAPICH2 running in the native environment, using a

two-copy method.

7.4.2 Micro-benchmarks Evaluation

Figures 7.4 and 7.5 are the MPI level latency and bandwidth. In our current

design, the new one-copy scheme is only used for messages larger than 64KB. Any

smaller messages will be sent using the old two-copy schemes (IVC-two-copy), so we

focus on messages larger than 64KB. Our benchmarks repeatedly send and receive

using the same user buffer. Thus, our one copy scheme can greatly benefit from the

grant/map cache. Also, with the mappings cached, the one-copy scheme simply copies

data between the same buffers when sending/receiving from the same position. The

performance, therefore, is significantly better due to CPU cache effects as compared

with two-copy schemes. Here the IVC-one-copy configuration is able to achieve up to

6.5GB/s bandwidth (in-cache copy) and reduce the latency by up to 75% compared

with the native environment.

The One-copy approach shows significant improvement when the same buffer is

used for communication. Unfortunately, real applications will not repeatedly send

data from the same location without even writing into the buffer. Thus, to remove

the CPU cache effects and evaluate the performance more accurately, we modify the

benchmarks to send and receive messages into a larger user buffer pool in a cyclic

pattern. After each iteration of send/receive, both sender and receiver increase the

user buffer address so that no two consecutive operations will use the same buffer.

109



 0

 1000

 2000

 3000

 4000

 5000

 6000

2k 8k 32k 128k 512k 2M

La
te

nc
y 

(u
s)

Message size (Bytes)

IVC one-copy
IVC two-copy

Native two-copy
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Figure 7.5: MPI bandwidth

Once they reach the end of the buffer pool, however, they will start again from the

head of the pool. Figures 7.6 and 7.7 show the latency and bandwidth using a 16MB

pool, which is much larger than the L2 cache on the system (4MB). Since the size

of the grant/map cache in our design is chosen to be 8K pages, the VM-one-copy

scheme will still benefit from it. In this case, the one-copy scheme is able to reduce

the latency by up to 35% and increase the bandwidth by up to 38% compared with

the native configuration.
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If we increase the size of the user buffer pool to 40MB, we will exceed the avail-

able entries in the grant/map cache, and it will be forced to evict entries. Those

entries, unfortunately, contain the granting/mapping of the user pages that will be

re-used later. In this case, the one-copy based scheme is penalized by the high cost

of granting/mapping pages in the VM environment. As we can see in Figures 7.8

and 7.9, the one-copy scheme gets up to 39% and 31% worse on latency and band-

width, respectively, compared with the native environment. This is expected due to

the mapping cost illustrated in Figure 7.2. This example demonstrates the impor-

tance of optimizing the cache hit ratio and dynamically falling back to the two-copy

scheme if too many grant/mapping cache misses are observed. If we fall back to the

two-copy based scheme, we will still have the native-level performance, delivered by

the IVC-two-copy configuration.
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Table 7.1: Communication pattern of NPB (Class A)
> 64KB > 64KB Comm.
(count) (volume) rate

IS 56.4% 99.9% 497.4 MB/s
CG 0.0% 0.0% 111.5 MB/s
LU 1.60% 67.2% 32.0 MB/s
MG 14.0% 78.5% 66.7 MB/s
BT 73.3% 90.7% 8.6 MB/s
SP 98.8% 100.0% 26.6 MB/s
FT 52.5% 100.0% 211.1 MB/s
EP 0.0% 0.0% 0.0 MB/s

7.4.3 NAS Parallel Benchmarks

In this section, we evaluate our one-copy approach on the NAS Parallel Bench-

marks (NPB) [39]. This is a popular parallel benchmarks suite containing computing

kernels typical of various fluid dynamics scientific applications.

NPB contains multiple benchmarks, each of which have different communication

patterns. Table 7.1 summarizes the communication characteristics of NPB assuming

it is running on eight processes (maximum for one dual-socket Quad-core system).

Here we show the communication intensity in terms of the volume of messages sent

per second, and the percentage of large MPI messages (64KB, the threshold above

which messages will be sent using the one-copy approach).

Figure 7.10 presents the performance comparison between the Native, VM-two-

copy and VM-one-copy configurations. As the figure shows, our one-copy approach

is able to meet or exceed the performance of both Native and VM-two-copy config-

urations for all benchmarks. In particular, for IS a 15% improvement over Native

and 20% improvement over VM-two-copy is achieved. Other benchmarks, including
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LU and MG also show a 8%/5% improvement and 6%/7% improvement, respectively

over Native and VM-two-copy.
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Both message sizes as well as message patterns affect the performance using the

different mechanisms. For IS, 56% of messages and 99% of message volume is for

messages greater than 64KB. SP shows a similar pattern, with over 98% of messages

greater than 64KB. Despite these similarities, the performance improvement for SP

using our one-copy design is minimal as compared to IS. LU and MG, with significant

large message transfer (67% and 79% of volume), but less than IS or SP, show higher

performance using the one-copy mechanism. This can be attributed to a pattern

where latency is of increased importance or better processor cache utilization since

a one-copy transfer does not pollute the sender cache as occurs with a traditional

two-sided copy technique.

Though our MPI is able to run across multiple nodes, the results are shown on a

single computing node since the focus of the paper is intra-node communication. On

a larger scale, where part of the communication will be inter-node, applications could
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benefit less as shown in Figure 7.10. However, simulation of communication patterns

on a larger cluster as shown in Figure 7.11 suggests that intra-node communication

is still very important even when applications span across multiple nodes - some ap-

plications tend to communicate more frequently between neighbors. We show the

percentage of intra-node communication for NPB on 16, 64, and 256 processes (as-

suming each computing node has 8 cores) and observe that intra-node communication

can be up to 40% even on 256 processes.
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CHAPTER 8

HIGH PERFORMANCE VIRTUAL MACHINE
MIGRATION OVER RDMA

In this chapter we present the design of high performance VM migration over

RDMA, as the highlighted part in Figure 8.1. We first take a closer look at the

potential benefits of migration over RDMA, which motivates our design. Then we

analyze several design challenges to fully exploit the benefits of RDMA and present

how we address those challenges. Finally, we present the performance results in

Section 8.4.
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Figure 8.1: High performance VM migration in proposed research framework
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8.1 Potential Benefits of RDMA based Migration

Besides the increase of bandwidth, RDMA can benefit virtual machine migration

mainly from two aspects.

First, RDMA allows the memory to be directly accessed by hardware I/O devices

without OS involvement. It indicates that with proper handling of memory buffer

registration, the memory pages of the migrating OS instance can be directly sent to

the remote host in a zero-copy manner. This avoids the TCP/IP stack processing

overhead. Also for virtual machine migration, it avoids excessive context switches

between the migrating VM and the privileged domain, which hosts the migration

helper process.

Second, the one sided nature of RDMA operations alleviates the burden on the

target side during data transfer. This further saving on the CPU cycles is espe-

cially important in some cases. For instance, one of the goals of VM technology is

server consolidation, where multiple OSes are hosted in one physical box to efficiently

utilize the resources. Thus, in many cases a physical server may not have enough

CPU resources to handle migration traffic without degrading the hosted application

performance.

Direct memory access and the one sided nature of RDMA can significantly reduce

the software involvement during migration. As a result, applications hosted will

experience much fewer context switches and cache misses, thus being less affected by

VM migrations.
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8.2 Design Challenges

Though RDMA has the potential to greatly improve the VM migration efficiency,

we need to address multiple challenges to fully exploit the benefits of RDMA. Now we

take a closer look at these challenges. Our description here focuses on Xen migration

and InfiniBand RDMA. However, the issues are common to other VM technologies

and RDMA-capable interconnects.

• Design of efficient migration protocols over RDMA: As we have men-

tioned in Section 2.1, there are two kinds of memory pages needed to be trans-

ferred during migration. Normal data pages can be directly transferred, but

page-table pages need to be pre-processed before being copied out. Our mi-

gration protocol should be carefully designed to efficiently handle both types

of memory pages. Also, RDMA write and RDMA read both can be utilized

for data transfer, but they have different impacts on the source or destination

hosts, depending on where the operations are initiated. How to minimize such

impact during migration needs careful consideration.

• Memory Registration: InfiniBand requires the data buffers to be registered

before they can be involved in data transfer. Research works on InfiniBand [29]

typically use two schemes to handle registration. Users either copy the data

into a pre-registered buffer and send, or register the data buffers on the fly.

However, in our case neither of these two schemes work well. Copying the data

into pre-registered buffers will consume CPU cycles and pollute data caches,

thus involving the same problems as TCP transfer. Registering the user buffers
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will fail because the involved memory pages do not belong to the migration

helper process, or the OS where the InfiniBand driver runs.

• Non-contiguous Transfer: Original Xen live migration transfers the memory

pages in page granularity. Each time the source host only sends one memory

page to the destination host. This may be fine for TCP/IP communication, but

it causes underutilization of network link bandwidth when transferring pages

over InfiniBand RDMA. It is more desirable to transfer multiple pages contigu-

ous in memory in one RDMA operation to fully utilize the link bandwidth.

• Network QoS: Though RDMA avoids most of the software overhead involved

in page transfer, the migration traffic contends with other applications for net-

work bandwidth. It is preferable to explore an intelligent way that minimizes

the contention on network bandwidth, while utilizing the network bandwidth

efficiently.

8.3 Detailed Design Issues and Solutions

We now describe how we address the aforementioned design challenges:

8.3.1 RDMA based Migration Protocols

As we have mentioned, there are two kinds of memory pages that need to be han-

dled during migration. Normal memory pages will be transferred to the destination

host directly, and the page table pages will have to be translated to use machine

independent pfn before being sent. Translating the page-table pages consumes CPU

cycles, while other pages can be directly sent using RDMA.
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Figure 8.2: Migration over RDMA

Both RDMA read and RDMA write operations can be used to transfer the memory

pages. We have designed protocols based on each of them. Figure 8.2 is a simplified

illustration of RDMA related traffic between the migration helper processes in one

iteration of the pre-copy stage. The actual design uses the same concept, but is more

complex due to other issues such as flow control. Our principle is to issue RDMA

operations to send normal memory pages as early as possible. While the transfer

is taking place, we start to process the page-table pages, which requires more CPU

cycles. In this way, we overlap the translation with data transfer, and achieve minimal

total migration time. We use send/receive operations instead of RDMA to send the

page-table pages for two reasons. First, the destination host needs to be notified when

the page-table pages have arrived, so that it can start translating the page tables.

Using send/receive does not require explicit flag messages to synchronize between the

source and destination hosts. Also, the number of page-table pages is small, so most

migration traffic is still transferred over RDMA.
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As can be seen, the RDMA read protocol requires that more work be done at

the destination host while the RDMA write protocol puts more burden on the source

host. Thus, we dynamically select the suitable protocol based on runtime server

workloads. At the beginning of the pre-copy stage, the source and destination hosts

exchange load information and the node with the lighter workload will initiate RDMA

operations.

8.3.2 Memory Registration

As indicated in Section 8.2, memory registration is a critical issue because none

of the existing approaches, either copy-based send or registration on the fly, works

well here. We use different techniques to handle this issue based on different types of

memory pages.

For page-table pages, the migration helper processes have to parse the pages

in order to translate between machine-dependent machine frame number (mfn) and

machine-independent physical frame number (pfn). Thus, there will be no additional

cost to use a copy-base approach. On the source host, the migration helper process

writes the translated pages directly to the pre-registered buffers and then the data

can be sent out to the corresponding pre-registered buffers on the destination. On the

destination host, the migration helper process reads the data from the pre-registered

buffers and writes the translation results into the new page table pages.

For other memory pages there will be an additional cost to use a copy-based ap-

proach. And the migration helper process cannot register the memory pages belonging

to the migrating VM directly. Fortunately, InfiniBand supports direct data transfer

using hardware addresses in kernel space, which allows memory pages addressed by
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hardware DMA addresses to be directly used in data transfer. The hardware ad-

dresses are known in our case, by directly reading the page-table pages (mfn). The

only remaining issue now is that the helper processes in Xen are user-level programs

and cannot utilize this kernel function. We make modifications to InfiniBand drivers

to extend this functionality to user-level processes and hence bypass the memory

registration issue. Note that this modification does not raise any security concerns

because we only export the interface to user processes in the control domain (Dom0),

where all programs running in this domain are trusted to be secure and reliable.

8.3.3 Page Clustering

Here we first analyze how Xen organizes the memory pages of a guest VM, and

then propose a “page-clustering” technique to address the issue of network under-

utilization caused by non-contiguous transfer. As shown in Figure 8.3, Xen main-

tains an address mapping table which maps machine-independent pfn to machine-

dependent mfn for each guest VM. This mapping can be arbitrary and the physical

layout of the memory pages used by a guest VM may not be contiguous. During

migration, a memory page is copied to a destination memory page corresponding to

the same pfn, which guarantees application transparency to migration. For example,

in Figure 8.3, physical page 1 is copied to physical page 2 on the destination host, be-

cause their corresponding pfn are both 3. Xen randomly decides the order to transfer

pages to better estimate the page dirty rate. The non-contiguous physical memory

layout together with such randomness makes it very unlikely that two consecutive

transfers involve contiguous memory pages so that they can be combined.
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Figure 8.3: Memory page management for a “tiny” OS with four pages

We propose page clustering to serve two purposes: first, to send as many pages

as possible in one RDMA operation to efficiently utilize the link bandwidth; second,

to keep a certain level of randomness in the transfer order for accurate estimation of

page dirty rate. Figure 8.4(a) illustrates the main idea of page clustering using RDMA

read. We first reorganize the mapping tables based on the order of mfn at the source

host. Now contiguous physical memory pages correspond to contiguous entries in

the re-organized mapping table. In order to keep randomness, we cluster the entries

of the re-organized mapping tables into multiple sets. Each set contains a number

of contiguous entries, which can be transferred in one RDMA operation under most

circumstances (We have to use multiple RDMA operations in case a set contains the

non-contiguous portion of physical memory pages used by the VM). Each time we

randomly pick a set of pages to transfer. As shown in the figure, with sets of size two

the whole memory can be transferred within two RDMA read operations. The size

of each set is chosen empirically. We use 32 in our actual implementation. Note that

the memory pages on the destination host need not be contiguous, since InfiniBand

supports RDMA read with scatter operation. The RDMA write protocol also uses
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the similar idea, except that we need to reorganize the mapping tables based on the

mfn at the destination host to take advantage of RDMA write with gather, as shown

in Figure 8.4(b).
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Figure 8.4: Re-organizing mapping tables for page clustering

8.3.4 Network Quality of Service

By using RDMA-based schemes we can achieve minimal software overhead dur-

ing migration. However, the migration traffic will unavoidably consume a certain

amount of network bandwidth, and thus may affect the performance of other hosted

communication-intensive applications during migration.

To minimize network contention, Xen uses a dynamic adaptive algorithm to limit

the transfer rate of the migration traffic. It always starts from a low transfer rate limit

at the first iteration of pre-copy. Then the rate limit is set to a constant increment

to the page dirty rate of the previous iteration, until it exceeds a high rate limit,

when Xen will terminate the pre-copy stage. Although the same scheme can be used
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for RDMA-based migration, we would like a more intelligent scheme because RDMA

provides much higher network bandwidth. If there is no other network traffic, limiting

the transfer rate unnecessarily prolongs the total migration time. We want the pre-

copy stage to be as short as possible if there is enough network bandwidth, but to

alleviate the network contention if other applications are using the network.

We modify the adaptive rate-limit algorithm used by Xen to meet our purpose. We

start from the highest rate limit by assuming there is no other application using the

network. After sending a batch of pages, we estimate the theoretical bandwidth the

migration traffic should achieve based on the average size of each RDMA operation.

If the actual bandwidth is smaller than that (the empirical threshold would be 80%

of the estimation), it probably means that there are other applications sharing the

network, either at the source or destination host. Then we reduce the rate of migration

traffic by controlling the issuance of RDMA operations. We control the transfer rate

under a pre-defined low rate limit, or a constant increment to the page dirty rate

of the previous round, whichever is higher. If this rate is lower than the high rate

limit, we try to raise the rate limit after sending a number of pages. If there is no

other application sharing the network at the time, we will be able to achieve a full

bandwidth. In this case, we will keep sending at the high rate limit. Otherwise,

we will remain at the low rate limit some more time before trying to raise the limit

again. Because RDMA transfers require very little CPU involvement, its throughput

depends mainly on the network utilization. Thus, our scheme works well to detect the

network contention, and is able to efficiently utilize the link bandwidth when there is

less contention on network resources.
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8.4 Evaluation of RDMA-based Virtual Machine Migration

Here we present the performance evaluation of RDMA-based migration. We first

evaluate the basic migration performance with respect to total migration time and

migration downtime. Then we examine the impact of migration on hosted applications

using SPEC CINT2000 [56] and NAS Parallel Benchmarks [39]. Finally we evaluate

the effect of our adaptive rate limit mechanism on network QoS.

8.4.1 Experimental Setup

We implement our RDMA-based migration design with InfiniBand OpenFabrics

verbs [42] and Xen-3.0.3 release [74]. We compare our implementation with the orig-

inal Xen migration over TCP. To show better performance with the TCP stack, all

TCP/IP related evaluations are carried over IP over InfiniBand (IPoIB [20]). Though

not shown here, we found that migration over IPoIB always achieves better perfor-

mance than using the GiGE control networks of the cluster.

The experiments are carried out on an InfiniBand cluster. Each system in the clus-

ter is equipped with dual Intel Xeon 2.66 GHz CPUs, 2 GB memory and a Mellanox

MT23108 PCI-X InfiniBand HCA. The systems are connected with an InfiniScale

InfiniBand switch. The cluster is also connected with Gigabit Ethernet as the control

network. Xen-3.0.3 with the 2.6.16.29 kernel is used on all computing nodes. Domain

0 is configured to use 512 MB of memory.
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8.4.2 Basic Migration Performance

In this section we take a look at the basic migration performance achieved through

RDMA operations. We first examine the effect of the page-clustering scheme proposed

in Section 8.3.

Figure 8.5 compares the total time to migrate VMs with different sizes of memory

configurations. We compare four different schemes: migration using RDMA read

or RDMA write, and with or without page-clustering. Because page-clustering tries

to send larger trunks of memory pages to utilize link bandwidth more efficiently,

we observe that it can constantly reduce the total migration time, up to 27% in

the case of migrating a 1GB VM using RDMA Read. For RDMA write, we do

not see as many benefits of page-clustering as RDMA read. This is because for

messages around 4KB, InfiniBand has more optimized RDMA write performance,

the bandwidth improvement from sending larger messages becomes smaller. Since

page-clustering constantly shows better performance, we use page-clustering in all

our later evaluations.

Next we compare the total migration time achieved over IPoIB, RDMA read

and RDMA write operations. Figure 8.6 shows the total migration time needed to

migrate a VM with varied memory configurations. As we can see, due to the increased

bandwidth provided by InfiniBand and RDMA, the total migration can be reduced

by up to 80% by using RDMA operations. RDMA read-based migration has slightly

higher migration time, this is because the InfiniBand RDMA write operation typically

provides a higher bandwidth.

Figure 8.7 shows a root-to-all style migration test. We first launch multiple virtual

machines on a source node, with each using 256 MB of memory. We then start
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migrating all of them to different hosts at the same time and measure the time to finish

all migrations. This emulates the requirements posed by proactive fault tolerance,

where all hosted VMs need to be migrated to other hosts as fast as possible upon

receiving a failure signal. We also show the migration time normalized to the case

of migrating one VM. For IPoIB, there is a sudden increase when the number of

migrating VMs reaches 3. This is because we have two CPUs on each physical host.

Handing the traffic of three migrations leads to contention on not only the network

bandwidth, but also the CPU resources. For migration over RDMA, we observe an

almost linear increase of the total migration time. RDMA read scales the best here

because it puts the least burden on the source physical host so that the contention on

the network is almost the only factor affecting the total migration time in this case.

Figure 8.5: Benefits of page-clustering Figure 8.6: Total migration time

We have been evaluating the total migration time that may be hidden from appli-

cations through live migration. With live migration, the application will only perceive

the migration downtime, which mainly depends on two factors: First is the applica-

tion hosted on the migrating VM; the faster an application dirties memory pages, the

more memory pages may need to be sent in the last iteration of the pre-copy stage,
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which prolongs the downtime. Second is the network bandwidth; a higher bandwidth

shortens the time spent in the last pre-copy iteration, resulting in shorter downtime.

To measure the migration downtime, we use a latency test. We start a ping-pong

latency test over a very accurate approximation of the migration downtime, because

a typical roundtrip over InfiniBand will take less than 10 µs.

We conduct the test while having a process continuously tainting a pool of memory

in the migrating VM. We vary the size of the pool to emulate applications dirtying the

memory pages at different rates. Only RDMA read results are shown here because

RDMA write performs very similarly. As shown in Figure 8.8, the downtimes of mi-

grating over RDMA or IPoIB hardly differ in the case of no memory tainting, because

the time to transfer the dirty pages in the last iteration is very small compared with

other migration overhead such as re-initializing the device drivers. While increasing

the size of the pool, we see a larger gap in the downtime, because it takes a longer

time to transfer the dirty memory pages in the last iteration of the pre-copy stage.

Due to the high bandwidth achieved through RDMA, the downtime can be reduced

drastically, up to 77% in the case of tainting a pool of 256MB memory.

In summary, due to increased bandwidth, RDMA operations can significantly

reduce the total migration time and the migration downtime in most cases. Low

software overhead also gives RDMA extra advantages while handling the traffic of

multiple migrations at the same time.

8.4.3 Impact of Migration on Hosted Applications

Now we evaluate the actual impact of migration on applications hosted in the

migrating VM. We use SPEC CPU2000 [56], which provides a comparative measure
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Figure 8.7: “Root-to-all” migration
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Figure 8.8: Migration downtime

of compute-intensive performance across a practical range of hardware. We run the

integer benchmarks (CINT) in a 512MB guest VM and migrate the VM back and

forth between two different physical hosts. Figure 8.9 shows the running time of

each CINT benchmark after migrating the host VM eight times. As we can see,

live migration is able to hide the majority of the total migration time to the hosted

applications. However, even in this case, the RDMA-based scheme is able to reduce

the migration overhead over IPoIB by an average of 54%.

For the results in Figure 8.9, we have 2 CPUs on each host, providing enough

resources to handle the migration traffic while the guest VM is using one CPU for

computing. As we mentioned in Section 8.1, in a real production virtual machine

environment, we may consolidate many servers onto one physical host, leaving very

few CPU resources to handle migration traffic. To emulate this case, we disable one

CPU on the physical hosts and conduct the same test, as shown in Figure 8.10. We

observe that migration over IPoIB incurs much more overhead in this case due to the

contention for CPU resources, while migration over RDMA does not have much more
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overhead than the 2 CPU case. Compared with migration over IPoIB, RDMA-based

migration reduces the impact on applications by up to 89%, by an average of 70%.

Figure 8.9: SPEC CINT 2000 (2 CPUs) Figure 8.10: SPEC CINT 2000 (1 CPU)

Migration will affect the application performance not only on the migrating VM,

but also on the other non-migrating VMs on the same physical host as well. We

evaluate this impact in Figure 8.11. We first launch a VM on a physical node, and

run SPEC CINT benchmarks in this VM. Then we migrate another VM to and

from that physical host at 30-second intervals to study the impact of migrations on

the total execution time. We use one CPU in this experiment. We observe the

same trend that migration over RDMA reduces the overhead by an average of 64%

compared with IPoIB. Here we also show the hybrid approach. Based on server

loads, the hybrid approach automatically chooses RDMA read when migrating VM

out of the host and RDMA write when migrating VM in. Table 8.1 shows the sample

counts of total instructions executed in the privileged domain, total L2 cache misses

and total TLB misses during each benchmark run. For RDMA-based migration we

show the percentage of reductions compared to IPoIB. All of these costs are directly

contributing to the overhead of migration. We observe that RDMA-based migration
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can reduce all the costs significantly, and the hybrid scheme reduces the overhead

further compared to RDMA read. The RDMA write scheme, by which the server

has less burden when migrating VMs in but more when migrating VMs out, shows

very similar numbers compared to RDMA read. Thus we omit RDMA write data for

conciseness.

In summary, RDMA-based migration can significantly reduce the migration over-

head observed by applications hosted on both the migrating VM and the non-migrating

VMs. This is especially true when the server is highly loaded and has less CPU re-

sources to handle the migration traffic.

Figure 8.11: Impact of migration on applications in a non-migrating VM

8.4.4 Impact of Migration on Parallel Applications

We also study the impact of migration on Parallel HPC applications. We con-

ducted an experiment using the NAS Parallel Benchmarks (NPB) [39], which are a

set of computing kernels widely used by various classes of scientific applications.
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Table 8.1: Sample instruction count, L2 cache misses and TLB misses (collected using
Xenoprof [33])

Profile bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

Inst. IPoIB 24178 9732 58999 12214 9908 16898 21434 28890 19590 47804 14688 23891
Count R-Read -62.7% -61.1% -62.5% -62.0% -58.4% -60.6% -61.8% -63.3% -62.5% -62.5% -62.40% -62.06%

Hybrid -64.3% -63.6% -65.4% -63.7% -59.6% -62.6% -63.4% -65.5% -63.7% -64.7% -64.37% -64.19%

L2 IPoIB 12372 1718 5714 3917 5359 2285 31554 8196 3523 27384 5567 16176
Cache R-Read -10.8% -36.9% -56.8% -15.4% -13.4% -43.6% -3.8% -21.7% -28.4% -12.6% -13.87% -10.10%
Miss Hybrid -11.1% -39.6% -58.8% -15.0% -15.7% -45.3% -4.0% -22.6% -28.5% -14.8% -14.03% -9.81%

TLB IPoIB 46784 153011 789042 27473 69309 33739 42116 59657 82135 216593 71239 67562
Miss R-Read -69.9% -10.2% -11.0% -61.9% -19.2% -68.1% -69.9% -66.1% -33.2% -31.1% -28.48% -49.78%

Hybrid -73.0% -10.5% -10.4% -64.5% -19.9% -70.4% -73.1% -68.4% -34.1% -32.0% -29.65% -51.78%

We use MVAPICH here. The benchmarks run with 8 or 9 processes on separate

VMs using 512MB on different physical hosts. We then migrate a VM once during the

execution to study the impact of migration on the total execution time, as shown in

Figure 8.12(a). Here RDMA read is used for migration, because the destination host

has a lower load than the source host. As we can see, the overhead caused by migration

is significantly reduced by RDMA, an average of 79% compared with migration over

IPoIB. We also mark out the total migration time in the figure. Because of live

migration, the total migration time is not directly reflected in the increase of total

execution time. We observe that IPoIB has a much longer migration time due to the

lower transfer rate and the contention on CPU resources. In HPC it is very unlikely

that people will spare one CPU for migration traffic. Thus we use only one CPU on

each host in this experiment. As a result, the migration overhead here for TCP/IPoIB

is significantly higher than reported by other relevant studies as in [38, 18].

Figure 8.12(b) further explains the gap we observed between migration over IPoIB

and RDMA. As we can see, while migrating over IPoIB, the migration helper process

in Dom0 uses up to 53% of the CPU resources but only achieves an effective migra-

tion throughput up to 49MB/s (calculated by dividing the memory footprint of the
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Figure 8.12: Impact of migration on NAS Parallel Benchmarks

migrating OS by the total migration time). Migrating over RDMA, in contrast, is

able to deliver up to 225MB/s while using a maximum of 14% of the CPU resources.

8.4.5 Impact of Adaptive Limit Control on Network QoS

In this section we demonstrate the effectiveness of our adaptive rate-limit mech-

anism described in Section 8.4.5. We set the upper limit of page transfer rate to be

300 MB/s and the lower limit to be 50 MB/s. As shown in Figure 8.13, we first

start a bi-directional bandwidth test between two physical hosts, where we observe

around 650MB/s throughput. At the 5th second, we start to migrate an 1GB VM

between these two hosts. As we can see, the migration process first tries to send

pages at the higher rate limit. However, because of the bi-directional bandwidth test,

it is only able to achieve around 200 MB/s, which is less than the threshold (80%).

The migration process then detects that network contention exists and starts to send

pages at the lower rate. Thus, from the bi-directional bandwidth test we observe an
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initial drop, but very quickly the throughput comes back to 600MB/s level. The mi-

gration process tries to get back to the higher rate several times between the 5th and

the 15th seconds, but immediately detects that there is still network contention and

remains at the lower rate. At the 15th second we stop the bandwidth test, after that

the migration traffic detects that it is able to achieve a reasonably high bandwidth

(around 267 MB/s), and thus keeps sending pages at the higher rate.
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CHAPTER 9

OPEN SOURCE SOFTWARE RELEASE AND ITS
IMPACT

The major portion of the work described in this dissertation has been incorporated

into open source software releases.

XenIB, the VMM-bypass I/O driver for InfiniBand in the Xen VM environment,

has been initially released through the IBM Linux Technology Center. It has immedi-

ately attracted the attention of the InfiniBand community. It has subsequently been

maintained through Novell, and is accessible from the OpenFabrics Alliance [42] and

Mellanox website [30] (a major InfiniBand vendor). The XenIB software release has

also motivated much academic research. The original papers described the XenIB de-

sign have been cited more than 70 times according to Google Scholars. And of those,

two [75, 52] are using XenIB software as important components of their studies.

The MVAPICH2 work described in Section 6.2.1 is the basis of our MVAPICH2

software package and is also distributed in an open-source manner. The duration of

the work in this dissertation has spanned several release versions from 0.6.0 to 1.2 (the

most current), and will continue to be used and improved in the upcoming releases.

Current MVAPICH2 software supports many software interfaces, including Open-

Fabrics [42], uDAPL [59], and VAPI( [31], to be obsolete in version 1.2). MVAPICH2

135



also supports 10GigE networks through iWARP support which is integrated in the

OpenFabrics software package. In addition, any network which implements the net-

work independent uDAPL interface may make use of MVAPICH2. Further, MVA-

PICH2 supports and has been tested on a wide variety of target architectures, such

IA32, EM64T, X86 64, IBM Power, and IA64. Besides its high performance and

scalable point-to-point message passing and collective implementation, MVAPICH2

also supports several other advanced features, including full Remote Memory Access

(RMA) operations defined in the MPI2 standard, applications-transparent Check-

point/Restart, and dynamic process management in the upcoming release.

MVAPICH/MVAPICH2 software was first released in 2002. Currently there are

more than 715 computing sites and organizations worldwide have downloaded this

software. In addition, nearly every InfiniBand vendor and the Open Source Open-

Fabrics stack includes our software in their packages. MVAPICH2 software has been

used on some of the most powerful computers, as ranked by Top 500 [53]. Examples

include the 62,976-core Sun Blade System (Ranger) cluster at the Texas Advanced

Computing Center/University of Texas (TACC), and the 9600 core Abe cluster at

the National Center for Supercomputing Applications/University of Illinois (NCSA).

136



CHAPTER 10

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This dissertation works towards high performance network I/O virtualization,

aiming to break the bottleneck on network I/O for VM technology. The success-

ful research reported in this dissertation eliminates a major barrier that blocks the

HPC community from embracing VMs, which are highly desired for manageability

reasons. Our work focuses on multiple aspects of the system software stack, and

has a significant impact on both industry and academia by contributing novel de-

signs and concepts. In this chapter, we first summarize the research contributions in

Section 10.1, and then discuss some possible future research directions in Section 10.2.

10.1 Summary of Research Contributions

There are multiple research contributions from this dissertation. Our research tar-

gets the areas of HPC and VM technology, and can benefit both areas. The technology

proposed in this dissertation, including VMM-bypass I/O, inter-VM communication

and RDMA-based VM migration, can be applied to VM-based environments for both

data centers and HPC. We open up this direction and propose VM-based platforms

as a possible solution to future large scale cluster computing, and prove its feasibility.
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This will have a large impact on HPC. We summarize our research contributions in

detail in the rest of this section.

10.1.1 VMM-bypass I/O to Remove Performance Bottleneck

in VMs

In Chapter 4, we presented the idea of VMM-bypass, which allows time-critical

I/O commands to be processed directly in guest VMs without involvement of a VMM

or a privileged VM. While I/O performance is still considered as one of the major

performance bottlenecks in VMs, VMM-bypass I/O significantly improves I/O perfor-

mance in VMs by completely eliminating context switching overhead between a VM

and the VMM or two different VMs caused by current I/O virtualization approaches.

We also developed Xen-IB, as a demonstration of VMM-bypass on InfiniBand in

the Xen VM environment. Xen-IB runs with current InfiniBand hardware and does

not require modification to applications or kernel drivers which use InfiniBand. Our

performance evaluations showed that Xen-IB can provide performance close to native

hardware under most circumstances, with expected degradation on event/interrupt

handling and privileged operations. We further support iWARP/10GibE with Xen-IB

and achieve similar results, which proves the effectiveness of the VMM-bypass I/O

approach.

While VMM-bypass I/O has its own restrictions that it has to be deployed on

OS-bypass capable networks, it is still very promising for HPC, the focus of our

research. For HPC systems, performance is critical and OS-bypass interconnects such

as InfiniBand are considered as standard hardware. Our research removes a major

performance bottleneck for VMs and makes them a feasible solution to manage HPC

clusters.
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The concept of VMM-bypass is also impacting other research efforts to optimize

non OS-bypass networks in VMs. Our paper has been cited in several major con-

ference papers including [72, 50], whose target is optimizing TCP/IP-compatible

networks in VMs using VMM-bypass concepts. Researchers in [75] and [52] have

deployed an InfiniBand cluster with Xen VMs using drivers based on Xen-IB.

10.1.2 Migration of OS-bypass Networks

Migrating network resources is one of the key problems that need to be addressed

in the VM migration process. Existing studies of VM migration have focused on

traditional I/O interfaces such as Ethernet. However, modern OS-bypass capable

interconnects with intelligent NICs pose significantly more challenges as they have

additional features including hardware-level reliable services and direct I/O accesses.

Especially with the deployment of VMM-bypass I/O, migration of OS-bypass net-

works becomes increasingly important.

We investigate the solution using a software-based approach. In Chapter 5, we

described Nomad, a design for migrating OS-bypass interconnects. We discussed in

detail the challenges of migrating modern interconnects due to hardware-level reliable

services and direct I/O accesses. We propose a possible solution based on namespace

virtualization and coordination protocols, and deliver a prototype implementation.

Our research has stimulated other investigations of this migration challenge. For

example, our paper is cited by [52], which proposes migration of InfiniBand resources

by applying the concept of coordination at middleware layer (ARMCI).
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10.1.3 Inter-VM Shared Memory Communication

In a VM environment, multiple VMs are consolidated onto one physical computing

node. There are cases, such as hosting a distributed job, that require these VMs

communicate with each other. In the traditional way, these VMs will not understand

that their communicating peers are on the same host so the communication will go

through network loopbacks. There are much more efficient communication schemes,

however, using copy-based approaches over shared memory regions.

We pointed this out in Chapter 6 and proposed IVC, an Inter-VM communication

library to support shared memory communication between distinct VMs on the same

physical host in a Xen environment. IVC has a general socket-style API and can

be used by parallel application in a VM environment. Our approach also takes VM

migration into proper consideration.

We further improve our solution by using a one-copy communication protocol

in Chapter 7. We dynamically map the sender user buffer to the address space of

the receiver. As compared with traditional two-copy approaches, which are most

commonly used, one-copy approaches save the cost of copying data from the sender

buffer to the shared memory space. Because granting/mapping operations in VM

environments are expensive, we also propose a grant/map cache to amortize this

cost.

Inter-VM communication is an important topic in VMs. Researchers [76] at IBM

propose similar solutions independently from our work. Our paper is also cited by [68],

which achieves TCP-compatible inter-VM communication.
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10.1.4 Evaluation with Micro-benchmarks and Real Appli-
cations

We have discussed the potentials of a VM-based environment for HPC. Other

related research [34, 38, 40] also suggest that VMs can bring benefits including man-

ageability, flexibility, adaptability, and fault tolerance. However, for the HPC com-

munity, performance remains a major concern with respect to VM technology.

At the end of every design chapter, we conducted a thorough performance evalua-

tion with both micro-benchmarks and applications-level benchmarks. The main con-

tributions of these evaluations are twofold: first, with micro-benchmarks we demon-

strate that virtualizing communication subsystems with VMM-bypass I/O and inter-

VM shared memory introduces negligible overhead. Second, the application-level

benchmarks we use are commonly related to real life applications: NAS Parallel

Benchmarks (NPB) are the computing kernels common on Computing Fluid Dynam-

ics (CFD) applications; High Performance Linpack (HPL) is the parallel implementa-

tion of Linpack [45] and the performance measure for ranking the computer systems

of the Top 500 supercomputer list; We also use LAMMPS, SMG2000, NAMD, which

are real world applications themselves. These applications have different memory

usage and communication patterns, and can be good indicators of how user applica-

tions will perform. By achieving native-level performance with these benchmarks, we

can prove to the community that performance overhead should no longer be a major

concern for VM-based HPC environments.
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10.1.5 VM Migration with RDMA

One of the most useful features provided by VM technologies is the ability to

migrate running OS instances across distinct physical nodes. As a basis for many

administration tools in modern clusters and data centers, VM migration is desired to

be extremely efficient in reducing both migration time and performance impact on

hosted applications.

Currently, most VM environments use the Socket interface and the TCP/IP pro-

tocol to transfer VM migration traffic. While migrating over the TCP socket ensures

that the solution can be applicable to the majority of industry computing environ-

ments, it can also lead to suboptimal performance due to the high protocol overhead,

heavy kernel involvement and extra synchronization requirements of the two-sided

operations. This overall overhead may overshadow the benefits of migration.

In Chapter 8, we proposed a high performance virtual machine migration de-

sign based on RDMA. We addressed several challenges to fully exploit the benefits

of RDMA, including efficient protocol designs, memory registration, non-contiguous

transfer and network QoS. Our design significantly improves the efficiency of virtual

machine migration, in terms of both total migration time and software overhead.

Our effort brings significantly more flexibility to the management of VM environ-

ment by making the migration cost much lower. This is especially important when

RDMA-capable networks are increasingly popular on industry computing systems.

10.2 Future Research Directions

In this dissertation, we look at improving VM technology from the perspective

of the communication subsystem, and point out that VM-based computing is very
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promising. While this dissertation has addressed several important issues at multi-

ple levels of the system software stack, there are still many possible future research

directions:

• A general framework for virtualizing OS-bypass networks: In this dis-

sertation we discussed the virtualization of InfiniBand and iWARP/10GibE.

However, the actual implementations are customized to Mellanox and Chelsio

NICs. There are multiple such kinds of OS-bypass NICs popular in the com-

munity. While developing VMM-bypass drivers for those HCAs is mainly an

implementation task, we find it especially important to design a general frame-

work for virtualizing OS-bypass networks. It is important to abstract out the

device-independent parts of the drivers for various popular OS-bypass HCAs,

which will minimize the effort to virtualize a new OS-bypass HCA.

• High performance virtualization for Non OS-bypass networks: While

OS-bypass networks dominate the HPC area, many enterprise environments,

such as data centers, are reluctant to abandon TCP/IP networks and are using

Ethernet family devices. Unfortunately, most Ethernet devices are traditional

PCI devices and do not have OS-bypass capabilities, thus cannot be virtualized

using VMM-bypass. In order to optimize the virtualization performance for

PCI devices, Xen supports a scheme called PCI pass-through, which currently

is a boot-time option and dedicates a PCI device to be exclusively used in a

specific guest VM. The PCI pass-through has limitations; a PCI device must

be statically assigned to a guest VM and cannot be adjusted according to the

runtime workloads of the host VMs. As a result, it will be interesting to explore

dynamic PCI pass-through techniques, which are able to dynamically assign a
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PCI device to the guest VM which has the heaviest network I/O, while other

VMs will access the network through the current split-device driver model. Such

designs compliment VMM-bypass I/O, providing a complete solution to high

performance network I/O in VM environments.

• Study of machine-level checkpointing and process-level checkpointing:

Many VM-based environments support checkpoint/restart (CR). CR happens

at the entire virtual machine level, which hides complexities compared with

process-level CR solutions. Unfortunately, such simplicity is usually penalized

by higher cost, such as larger amounts of memory content transferred to storage.

However, in the context of high performance storage systems connecting through

high speed interconnects, such added overhead can be minimal, which justifies

system-level fault tolerance solutions through VMs. A systematic evaluation of

VM-based CR framework compared with other process-level CR solutions will

also be an important future direction.

• Cluster management framework: While performance is an important fac-

tor for VM environments, it is the benefits for management that make VM

an attractive technology for HPC platforms. Most of the existing research ef-

forts, however, focus on managing data centers with VMs. Though many of the

techniques are common, there are special management issues on a VM-based

environment for HPC. For example, we have discussed using customized OSes

for applications. Customized OSes can potentially improve performance but

also lead to challenges for management: how can we quickly find the necessary

configuration needed for an application? How can we efficiently create an OS
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image based on such a configuration? Once the image is ready, how can we

distribute and deploy it over multiple nodes as fast as possible? Another ex-

ample is to study the failure patterns of clusters. We have mentioned that VM

migration can be used for proactive fault tolerance. But how can we precisely

decide when a physical computing node is about to fail? What kind of system

information do we need to constantly monitor in order to predict failures? Can

we do a better job with studies on the failure patterns of clusters? Performance

profiling/monitoring is another interesting topic in this direction. Precise but

lightweight performance monitoring can help system administrators to decide

when and where to migrate a VM.
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