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ABSTRACT

Simultaneous advances in processor, network and protocol technologies have made
clusters of workstations attractive vehicles for high performance computing. How-
ever, the requirements of emerging applications, and the need for efficient resource
utilization have necessitated Quality of Service (QoS) mechanisms in clusters. The
approaches to QoS in the wide-area networking context are not suitable for clusters
because of the high overheads. Also, these approaches do not address the issue of
contention between flows at the end-nodes.

In this thesis, we present a scheme for proportional bandwidth allocation in
Myrinet clusters that simultaneously handles network and end-node contention. This
scheme relies on the use of NIC-based “rate control" in conjunction with the global
knowledge of traffic patterns in the cluster. Our approach is particularly attractive
since it does not require hardware modifications, and can hence work with commodity
systems. Experimental results for our implementation over the Myrinet/GM system
demonstrate the efficacy and the efficiency of our scheme. Other advantages include
the ease of application development allowed by its integration with MPI, and support

for “best-effort” traffic.
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CHAPTER 1

INTRODUCTION

Network-based computing systems are becoming increasingly popular for high-
performance and high-throughput computing [1]. As illustrated in Figure 1.1, these
systems consist of clusters of workstations connected by System, Local, or Wide Area
Networks. Their cost-effectiveness and incremental scalability make them attractive
alternatives to traditional supercomputers.

Figure 1.2 illustrates the software and hardware layers of a network-based com-
puting system. Hardware components include processors, and high-performance in-
terconnection networks (Myrinet [2], HIPPI [4], SCRAMNet [3] etc.). These networks
feature peak bandwidths in the Gbps range, and one-way latencies as low as a few mi-
croseconds. Processor speeds too have been doubling every eighteen months, and the
cost-effectiveness of 2-way and 4-way symmetric multiprocessors (SMPs) has made
clusters of SMPs very popular.

The communication software layer seeks to deliver most of the raw network perfor-
mance to higher layers. Past research in this area has largely focused on minimizing
the software overhead associated with traditional network protocols like TCP/IP.
The so-called "User-Level Network Protocols" (AM [8], FM [25], U-Net [9], VIA [29]
and GM [14] etc.) do so by leveraging "smart" Network Interface Cards (NICs),
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Figure 1.1: A Network-Based Computing environment.

taking operating system involvement out of the critical path of communication and
eliminating extra message copies.

Another vital component of network-based computing systems is the programming
environment layer, which enables portable applications to be developed easily. The

responsibilities of this layer are:

e Communication services: It presents the raw communication services provided
by the underlying layer in the form of covenient programming models. Popular
models are message-passing (MPI [22] etc.), and shared-memory (TreadMarks

[17] etc.)
e Resource management: It manages resources such as processors and networks.

o Auxiliary services: It provides support for start-up, authentication etc.
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Figure 1.2: Components of Network-Based Computing Systems.

1.1 Cluster Usage Trends and their Implications

Simultaneous advancements in all these layers have triggered the widespread de-
ployment of clusters for compute-intensive applications. However, so far, clusters are
largely used in the single-application space-shared mode. This is wasteful, particu-
larly if the availability of multiple processors per SMP node is not taken advantage
of. Efficient resource utilization stipulates simultaneous use by multiple applications.

Further, in addition to conventional scientific computing applications, clusters are
increasingly being used for latency and bandwidth sensitive applications like interac-
tive simulations, scientific visualization and video-conferencing.

The implication of these two trends is that network traffic in clusters is composed
of independent, possibly non-cooperating, communication flows, and, additionally,

these flows are characterized by a variety of service requirements.
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Figure 1.3: End-node and network contention between communication flows.

Coexisting communication flows contend not only in the network, but also for
shared resources at end nodes. These shared resources include processors, I/O busses,
Network Interface Cards (NICs), their buffers and DMA engines. Figure 1.3 shows a
cluster of four nodes, connected by two cascaded switches. Flows 1 and 2 contend at
an end-node, while flows 2 and 3 contend for the same output port on the first switch.
Disorderly contention may affect performance in ways that may not be tolerated by
latency or bandwidth-sensitive applications. In the above example, if flow 2 has, say,
stringent bandwidth requirements, then contention with either of flows 1 and 3 will
hinder meeting these requirements. Predictable performance benefits not only such
latency or bandwidth-sensitive applications, but also best-effort parallel applications
[21].

This motivates the need for Quality of Service (QoS) features [13] in next-generation
clusters, which are not provided by any of the above-mentioned networks and proto-
cols. Specifically, we require support for service differentiation, which entails provid-

ing different service levels (in terms of bandwidth, delay or delay jitter) to different



communication flows. QoS issues have been dealt with in other contexts such as
ATM networks. However, the solutions rely on switches to provide sophisticated
packet scheduling disciplines [31]. The complexity and high buffer requirements of
these schemes are unacceptable in clusters. Moreover, the issue of contention between

multiple flows at an end host has not been raised in prior work.

1.2 Problem Statement and our Approach

The above discussion demonstrates the need for a solution for service differentia-

tion in clusters that:

e handles multiple communication flows contending for both network and end-

node resources,

e does not introduce much overhead, i.e., does not suffer from much performance

degradation, and does not have significantly higher buffer requirements, and,

e can readily be used by higher layers, enabling applications to take advantage of

the scheme.

In this thesis, we propose one such solution for Myrinet clusters. We focus on “band-
width” as the QoS metric, and provide features for allocating bandwidths to different
communication flows in the desired proportion. Our proportional bandwidth alloca-
tion scheme delegates the responsibility of imposing the packet scheduling discipline
to source node NICs instead of switches. NIC-based "Rate control" is used in con-
junction with a bandwidth resource manager. The manager uses the global knowledge
of traffic patterns in the cluster to provide proportional bandwidth allocation to con-
tending flows. The advantages of our scheme are:

5



e It can handle flows contending for both end-node and network resources.

e It does not require any hardware modifications, and can hence work with com-
modity systems. Switches do not require additional (per-flow) buffering, and

are not required to detect non-conforming packets.

e As demonstrated by experimental results, proportional bandwidth allocation is

provided without much overhead.

e Finally, support for “best-effort” traffic, and extension to the programming en-

vironment layer (MPI), greatly simplifies application development.

It must be noted that the scope of our work is limited to bandwidth allocation. We
have not considered delay, delay jitter, or other QoS metrics. Further, we do not
address the issue of CPU contention, or contention with non-network traffic on the
I/O bus. In environments characterized by more that one compute-intensive job per
processor, or many 1/O-intensive jobs, our scheme needs to be used in conjunction
with CPU and I/O bus reservation schemes to ensure end-to-end bandwidth guar-
antees. Finally, we have implemented our scheme only for the wormhole-routed|24]

Myrinet cluster, though extensions to other networks is certainly feasible.

1.3 Thesis Organization

The rest of this thesis is organized in the following manner. Chapter 2 presents
background and related work. In Chapter 3, we introduce our approach and describe it
in detail. In Chapter 4, we outline design and implementation issues. Experimental
results are reported in Chapter 5. Conclusions and future work are presented in

Chapter 6.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we cover background material and discuss related work. The
notion of “communication flow” is made more concrete, and the operation of user-
level network protocols and wormhole-routed networks is described. We also illustrate
how communications flows are serviced in existing systems. Finally, we discuss related

work on QoS issues in network-based computing systems.

2.1 Communication Flows

A "communication flow" is a message stream with a well-defined source and a
well-defined sink. The communication end-points (sources and sinks) are logical;
there may be many such endpoints on the same network node. Additionally, many
communication flows may be multiplexed over the same physical link. Each end-point
may be the source or sink of many communication flows. Examples of communications
end-points are Virtual Interfaces (VIs) in VIA, Queue Pairs (QPs) in the Infiniband
Architecture [15], or TCP/IP sockets. Figure 2.1 further highlights these concepts.
The logical diagram represents three network nodes, N1, N2, and N3; four commu-
nication end-points, A, B, C, and D; and four communication flows, (A,B), (A,C),

(C,D), and (D,C).



Figure 2.1: Logical representation of communication flows.

2.2 User-Level Network Protocols

User-level network protocols allow message sends and receives without operating
system involvement, while still providing protected access to the network interface.
Figure 2.2 illustrates typical operations assocaited with a user-level network proto-
col. Operating system involvement is required initially, for registration of DM Aable
memory and setting up channels (VIA Virtual interfaces, GM ports or FM contexts,
etc.). Channels are constructs that, among other things, allow user applications to
inform the NIC firmware about new send or receive requests. This is typically done
by posting descriptors describing the required operation. A send descriptor specifies
the location and the size of the send buffer, as well as the destination. A receive
descriptor describes the location of the buffer where the received message is to be
placed.

The NIC firmware obtains descriptors by polling memory-mapped descriptor queues
(as in GM), or through a doorbell mechanism (as in VIA). Fetched send descriptors
are serviced by DMAing data from registered memory regions into the NIC buffer

and then dispatching packets to the network. On receiving packets from the network,
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Figure 2.2: Typical operations associated with a user-level network protocol.

the NIC DMAs the data into the registered memory buffers indicated by receive
descriptors.

In existing user-level network protocols, send descriptors from various flows are
typically serviced in a round-robin fashion. This is inherently unfair, as it favors
communication flows with longer message sizes. A fairer variation is supported by
some user-level network protocols. Here, a send descriptor is not serviced all at once,
but in multiple passes. Packet dispatches from various flows are interleaved to allow
uniform usage of NIC resources. However, in both cases, the scheduling discipline
does not take into account the service requirements of various communication flows.

The impacts of the two scheduling disciplines are illustrated in Figure 2.3. Two
flows, A and B, are shown. A’s message size is thrice the supported MTU (Maxi-
mum Transmission Unit), while B only has single-packet messages. In case a), with

round-robin servicing of send descriptors, A uses NIC resources thrice as often as B.



Figure 2.3: Impacts of two different packet scheduling disciplines in a user-level net-
work protocol.

In case b), with fair interleaved packet scheduling, NIC resource usage is uniform,

independent of message sizes.

2.3 Wormbhole-Routed Networks

In wormhole-routed networks [24|, packets are comprised of small units called flits.
The key distinction from store-and-forward networks is that a flit is forwarded to the
output port (if it is free) as soon as possible, without waiting for the entire packet to
arrive at the input port. This allows lower latencies and better network utilization.

Most wormhole-routed switches service packets destined for the same output port
in a round-robin fashion. A communication flow desiring high bandwidth may still
suffer if its packets have to traverse longer paths to the destination than packets from
other flows. This is so because the former may have to wait on more intermediate
switches than the latter.

This is illustrated in Figure 2.4, which shows four flows, A, B, C, and D. Flows B,
C, and D contend for a port on one switch, while flows A and B contend for a port
on the other switch. Although both switches service the flows in round-robin fashion,

flow B suffers because it has to traverse two switches on the path to its destination.
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Figure 2.4: Effect of contention in wormhole-routed networks.

2.4 Related Work

In recent years, a few other studies have examined service differentiation and
related QoS issues in clusters environments.

In [30] and [7], the authors propose entirely new hardware or hardware/software
infrastructures with QoS features. They outline design choices and describe the com-
ponents of the proposed architectures.

Other approaches ([16], [18], [23]) recommend modifications to existing hardware,
particularly switches, to incorporate low-cost packet scheduling and queueing algo-
rithms. In [12], Gerla et al describe three schemes for providing QoS in wormhole-
routed networks. However, these too require modifications to switches or extra NICs

on hosts.

11



Theoretical work in this area includes two admission control schemes ([27] and [5])
for meeting delay requirements in wormhole-routed networks. In [20], the authors
present simulation results of their scheme for best-effort bandwidth reservation by
manipulation of packet sizes for various communication flows.

Few studies have examined QoS issues in the context of User-level Network Pro-
tocols. FM-QoS [6] is an extension to FM that provides predictable performance
by devising conflict-free communication schedules. Feedback-based synchronization
[28] is used to maintain the notion of global time, required in order to meet these
schedules.

Our work differs from most prior work on QoS in cluster environments in two
important respects. Firstly, we simultaneously address the shortcomings of existing
networks and protocols (discussed earlier in this chapter) in dealing with the issues
of network and end-node contention. Secondly, our scheme does not require modi-
fications to existing hardware. Our scheme is purely implemented in software, and

firmware on the NIC.

12



CHAPTER 3

PROPORTIONAL BANDWIDTH ALLOCATION SCHEME

In this chapter, we describe our scheme for proportional bandwidth allocation in
Myrinet clusters. The overall architecture is introduced first, followed by detailed

descriptions of its various components.

3.1 Overall Architecture

As mentioned in Chapter 1, our scheme for proportional bandwidth allocation
in Myrinet clusters delegates the responsibility of imposing the packet scheduling
discipline to source node NICs instead of switches. NIC-based "Rate control" is
used in conjunction with a bandwidth resource manager. The manager uses the
global knowledge of traffic patterns in the cluster to provide proportional bandwidth
allocation to contending flows.

Figure 3.1 shows where the various components of our scheme appear in the four-
tiered architecture introduced in the first chapter. Note that no modifications are
made to the lower-most layer (hardware). Detailed descriptions of these components

appear below.

13



Applications

| API Extensions |
Programming Enviroment
| Bandwidth Resource Manager |

Communication Software

NIC-Based Rate Control

Hardware

Figure 3.1: Components of the Proportional Bandwidth Allocation scheme.

3.2 NIC-Based Rate Control

"Rate control" refers to the act of imposing a specific discipline on the rate at
which data is fed to the network interface and injected into the network. This has
previously been used in other contexts. For example, in the Infiniband Architecture,
"Injection rate control" seeks to prevent ports with high-speed links from overrunning
ports with slower links. Paced TCP [19] uses rate control in high delay-bandwidth
networks to allow the sender to reach its maximum window size during slow-start.

In this work, we propose the use of rate control to proportionally allocate band-
width between various flows that contend for NIC and network resources. The rate
at which packets are injected to the network interface affects how shared resources

are used (and hence the bandwidth achieved) by the corresponding flow.

14
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Figure 3.2: Easing network contention through rate control.

Consider two flows sourced at the same end-node. By regulating these flows by
different amounts, we can affect the usage of the PCI bus, the NIC-to-host DMA
engine, the NIC buffer, and the host-to-network DMA engine by the two flows, as
desired.

Rate control has a similar effect on flows contending in the network. A flow
can achieve the desired bandwidth if the rates of the interfering flows are suitably
manipulated. For the example given in Section 2.3, if flows C and D are regulated by
decreasing their packet rates to half of that for flow B, then the latter does not suffer
despite having to traverse more switches (Figure 3.2). In [5], Chen et al show how
rate control considerably improves network fairness and increases the probability of

meeting message deadlines for real-time communication.

3.2.1 NIC-Based vs. Host-Based Implementation

There are two clear alternatives as to where rate control can be implemented:
at the host or at the NIC. While a host-based implementation is simpler, it is not
preferable due to two reasons. Firstly, in most user-level protocols, the host deals with
messages, not packets. Messages can very large, which makes host-level rate control

much coarser. More importantly, since message sends bypass the operating system,

15



At any time ¢,
Let j be the communication flow such that ndt; = min (ndt;, ndts...ndt,)
If ndt; <=1

Dispatch packet from flow j.

ndt; = ndt; + idi;.

Figure 3.3: The Rate Control Algorithm.

there is no way to ensure that communication flows are actually regulated. On the
other hand, with a NIC-level implementation, all sends will have to go through the
NIC firmware with rate-control features. NIC firmware is downloaded to the NIC by

OS components and can hence be trusted.

3.2.2 Rate Control Algorithm

Our rate control algorithm associates each flow with a parameter called the Inter-
packet Dispatch Time (IDT). It refers to the minimum time interval between consec-
utive injections of packets from a communication flow to the network interface.

At any given time, let fi, f...f, be m communication flows sourced at a particular
node. Let (idt;, idty...idt,) be the corresponding IDT values. We also define a set
of Next Dispatch Time (NDT) values (ndt;, ndty...ndt,), which specify the absolute
time before which a packet from a given flow should not be dispatched. The NDT
values are initialized to the current time when communication starts. Then, we can
use the algorithm given in Figure 3.3 to implement packet scheduling at the network
interface.

The algorithm works as follows. Assuming that there are always outstanding send
requests, the communication system can service them at most once in every T time

units. This T corresponds to the peak achievable bandwidth of an uncontended flow,

16



| t [0|1]2]|3[4]|5]6][7][8]9]10]11]
ndt 0(2(2|4|4|6|6|8|8]10|10/|12
ndtg 0/0|3|3[6|6]6|6]9]9 12|12

Packet dispatched from flow: | A | B|A | B|A|-|A/B|A| B|A]| -

Table 3.1: Working of the Rate Control Algorithm

B,0z- Under the constraint that all IDT values are larger than T, the rates at which

1.1 .1, 1
tdty “idts Tidtz T T ddty,

packets from these flows are dispatched will be in the ratio of

Table 3.1 illustrates the algorithm with a concrete example. Here, flows A and B
have IDTs of 2 and 3 (normalized with respect to T'), respectively. The NDT values
for the two flows are initialized to zero. At ¢t = 0, since both ndt, and ndtg are equal,
a packet from flow A is arbitrarily chosen to be dispatched, and ndt, is updated to
2. Now, at t = 1, ndtg is less than ndts (and also less than t), so a packet from flow
B is dispatched, while simultaneously incrementing ndig by the corresponding IDT
value (3). The other values in the table are obtained similarly. We observe that the
ratio in which packets from the two flows are dispatched is 3 : 2 or % : % as expected.

Note, also, that there are some instances, such as ¢t = 5, when both ndig and ndty

are larger than ¢, hence no packet is dispatched.

3.3 Bandwidth Resource Manager

The bandwidth resource manager is a logical entity with the following responsi-

bilities:

e To handle bandwidth allocation or deallocations requests.

17



e To inform the rate control agents of changes in IDT values for various flows

arising from the above-mentioned allocations and deallocations.

Note that the resource manager may actually be implemented as a collection of many

entities, working as peers or in a master-slave fashion.
3.3.1 Call Admission Criteria

The criteria for admitting a bandwidth allocation request are as follows:

1. If the request is granted, then the cumulative bandwidth requirement for all
flows originating or terminating at the source node should not exceed its peak

capacity.

2. If the request is granted, then the cumulative bandwidth requirement for all
flows using the switch output ports traversed by this flow should not exceed the

corresponding outgoing link capacities.

3. Finally, if the request is granted, then the cumulative bandwidth requirement
for all flows originating or terminating at the destination node should not exceed

its peak capacity.

If the request can be granted according to the above criteria, then its IDT value is
chosen as follows:

idt = T x (Bmaz),
where B, is the requested bandwidth, and,

B4z is the maximum achievable bandwidth of a flow originating at the source node.

18



3.3.2 Support for “Best-Effort” Traffic

A desirable feature of the bandwidth resource manager is to support “best-effort”
traffic, i.e., flows with unspecified bandwidth requirements. The objective of the
resource manager is to maximize network usage by these flows, while not disturbing
allocations for other “premium” flows. Note that this requires that the IDT values for

best-effort flows be dynamically updated with changes in the allocation status.

3.4 API Extensions

API extensions are required to enable applications to request allocations or deallo-
cations. To facilitate portability, this must be done in a standard-compliant fashion.
As described in the following chapter, we have integrated our scheme with MPI. This
allows applications to take advantage of the QoS features of the underlying layers,

without requiring them to written directly over these layers.

3.5 Assumptions

In previous sections, we have shown that our scheme is capable of providing pro-
portional bandwidth allocation to flows contending at end-nodes and in the network.
It must be noted, however, that our scheme relies on certain assumptions. Below, we

outline these assumptions and indicate why they are required.

e All traffic in the cluster is internal, with well-defined sources and sinks. External

traffic, not subject to rate control, has the potential to disrupt cluster traffic.

e All nodes in the cluster belong to the same administrative domain and can

be trusted. Since rate control at the source node is done by trusted software

19



components, such as NIC firmware, there is no need for policing at the switches.
If this assumption were to be violated, switch modifications would be required

for enforcement of packet rates.

e The underlying network uses deterministic source routing, which means that
the path taken by packets from a given flow is fixed. This simplifies the call

admission criteria.

e The underlying network features programmable NICs (for implementing rate
control, without native support for the same), and provides fair access to switch

ports.

It must be noted that most of these assumptions are generally valid in modern clusters

with Myrinet interconnection.

20



CHAPTER 4

IMPLEMENTATION IN MYRINET/GM

In this chapter, we describe the implementation of the rate control feature and the
bandwidth resource manager over Myrinet/GM. Overviews of Myrinet and GM are
provided first. We also show how our scheme is integrated with the Message-Passing

Interface (MPI).

4.1 Myrinet and GM Overviews

Myrinet is a switched gigabit-per-second local area network technology. The
switches are crossbar and use wormhole switching. A Myrinet NIC connects to the
I/O bus and features a programmable processor, LANai, and three DMA engines
(one for host-NIC transfer, the other two for sending and receiving data to/from the
network respectively). The NIC also contains a small, but fast SRAM, which holds
the firmware and is also used to stage data that goes into and out of the network.

GM is a message-based communication system for Myrinet featuring low CPU
overhead, low latency and high bandwidth. Reliable delivery is provided between
end-points called ports. Two levels of priority are supported, and message order is
preserved for messages of the same priority between the same sending and receiving
ports. A combination of a port and a priority is given a special name: "sub-port".
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Messages must be sent from and received into DMAable memory. Also, sends and
receives are token-regulated; a client (i.e. user application) must have send and receive
tokens for a port in order to perform the corresponding operations.

The software components of GM include a library, a driver and the NIC firmware
called the Myrinet Control Program (MCP). The library links with the client and pro-
vides the Application Programming Interface (API). It includes functions for opening
ports, allocating DMAable memory, sending and receiving messages etc. The former
operations are carried out with the help of the driver, but no driver involvement is
required for message sends and receives. These are carried out through direct inter-
action between the client and the MCP as described below.

The MCP consists of four state machines: SDMA, RDMA, SEND and RECV.
When a client wishes to send a message, a send descriptor describing the message
is written to a memory-mapped location in the NIC. The SDMA state machine de-
tects the descriptor, builds a corresponding send token and inserts the token into an
appropriate send queue. Further, it polls send queues as described below, prepares
packets and DMAs data into the transmit buffer. The SEND state machine transfers
packets from the transmit buffer to the network. This is illustrated in Figure 4.1.

As shown in Figure 4.2, queues in GM are hierarchically arranged . At the highest
level is a circular connection queue, which has an entry for each remote node with
which communication is active. Each connection entry points to a circular queue of
sub-ports that are communicating over that connection. Lastly each sub-port entry
points to a queue of send tokens. GM defines two kinds of send tokens; those that are
“sendable”, and those that are not. The former category refers to tokens that have not

been completely serviced. The latter category includes those send tokens that have
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Figure 4.1: GM MCP operation for message sends.

been completely serviced, but are waiting to be acknowledged before being removed
from the queue. At any time, one connection entry and a corresponding sub-port
entry are designated as the "head" entries. After one packet dispatch corresponding
to the first “sendable” token from the head sub-port, the sub-port queue for the head
connection is rotated and so is the connection queue. This allows fair network access
as described in Section 2.2.

The RECV and RDMA state machines similarly cooperate for message receives.

4.2 Rate Control Implementation

We now look at the modifications made to various components of GM for the

implementation of the rate control feature.
4.2.1 GM Library

The GM library has been extended to allow the bandwidth resource manager to

specify the IDT values for various communication flows. A flow is defined as the
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ordered pair (source port, target port, priority). This ensures that GM message
order semantics are not violated, as rate control does not require out-of-order sends
on packets belonging to the same flow. A limitation of the current implementation is
that it allows a port to communicate with only one port on each remote machine.
The unit in which IDTs are specified is the least count of the Real Time Clock

(RTC) available on the LANai processor.

4.2.2 MCP SDMA State Machine

The MCP SDMA state machine implements the rate control algorithm introduced
in 3.2.2. The implementation can be divided into two logical parts:

Flow management: The SDMA state machines maintains the IDT, NDT, and
validity information for all flows sourced at that node. The state machine marks
flows as valid or invalid, depending upon whether or not there are send tokens for
the flow at that moment. As described above, the IDT values are supplied by the

bandwidth resource manager. The NDT value is initialized to zero when a flow is
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initiated. When a send token for that flow is enqueued, the NDT value is updated in
the following manner:
If the send token is the first “sendable” one in the queue
NDT = max (NDT, RTC).
Packet scheduling: The SDMA state machine determines the flow from which the
next packet is to be dispatched in the following manner:
Find the minimum NDT from all valid flows. Let us call it NDT,,;,.
If NDT,;, >=RTC
Service the first “sendable” token (if any) for the corresponding flow.

NDT + IDT.

4.3 Bandwidth Resource Manager Implementation

The bandwidth resource manager is implemented as a set of manager processes,
one on each node in the cluster. One of these processes is designated as the “mas-
ter” manager. The GM Library has been extended to allow applications to request
allocation or deallocation of bandwidth. These new functions, which are blocking in
nature, result in requests being issued to the the local manager. The local manager
forwards these requests to the “master” manager, which uses the admission criteria
described in Section 3.3.1, to decide if the request can or cannot be accepted. The
requesting manager is informed of the decision. If the request has be accepted, all
relevant managers are apprised of the updates in IDT values.

To support “best-effort” flows, the surplus bandwidth at each node and switch port
is fairly set aside for all such flows incident on the node or the port. The bandwidth

allocated to a flow is the minimum of these values for all nodes and ports traversed
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by it. Note that this simple arbitration is sub-optimal in terms of overall network

utilization.

4.4 Integration with MPI

While applications can directly be written over GM, ease of programming and
portability aspects are simplified if the programmer is presented with a familiar pro-
gramming model, such as the Message-Passing Interface (MPI). In this section we
give a brief overview of MPI, its implementation over GM, and the modifications we

made to this implementation.
4.4.1 MPI Overview

MPI [22] is a message passing library which offers a host of point-to-point and
collective interprocess communication functions to a set of single threaded processes
executing in parallel. All communication is performed within the confines of a com-
municator. A communicator is a process group, with each process having a unique
rank in the group, ranging from 0 to N-1, where N is the number of processes in the
communicator.

MPICH [11] is a freely available, portable implementation of MPI. The mechanism
for achieving portability is a specification called the Abstract Device Interface (ADI).
All MPI functions are implemented in terms of this ADI, while the ADI layer itself
can use message-passing functions native to the underlying system. MPICH-GM
is an implementation of MPI for Myrinet clusters that uses GM as the underlying

message-passing system.
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4.4.2 MPICH-GM Modifications

In order to take advantage of the QoS features provided by our version of GM in
a standard-compliant fashion, we use the “Attribute” mechanism provided by MPI.
MPI provides functions to set and get the values of attributes for a communicator. An
attribute is identified by an integer, keyval, and its value may be of any arbitrary type
(void * in C). When used with special keyvals for QoS attributes, the “set attribute”
call is mapped to the GM function for requesting bandwidth allocation or deallocation.
Process ranks are converted to appropriate GM node and port identifiers. Also, since
the MPI layer incurs additional overhead, bandwidths achieved at the MPI level are
lower than raw GM bandwidths. Therefore, the requested bandwidth is mapped
the corresponding raw GM bandwidth. The “get attribute” call is used similarly for
determining if the previously made request was accepted or denied.

Note that the use of the attribute mechanism for this purpose has previously made

in [26].
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we discuss our experimental results. We describe the test en-
vironment, and present results that demonstrate the effectiveness of our scheme in

providing proportional bandwidth allocation, without adding much overhead.

5.1 Test Environment

We evaluated our implementation on a cluster of machines with 300 MHz Pentium
IT processors, 128 MB RAM, running RedHat Linux 6.0 with kernel version 2.2.5.
These machines were connected by a 16-port Myrinet switch and had LANai 4.3
NICs with 33 MHz processors.

The experiments we conducted involved measuring the bandwidths and latencies
achieved for different message sizes or under different communication flow patterns.
Round-trip latency was measured using the standard ping-pong test. Bandwidth
measurements involved pumping a large number of messages, getting a small-sized
acknowledgement from the receiver, and dividing the total volume of data transferred

by the total elapsed time.
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Figure 5.1: Effect of the Rate Control feature on bandwidth.

5.2 Overhead of the Rate Control Mechanism

We determined the overhead of the rate control mechanism by comparing the
performance of unmodified GM with the modified version. Figure 5.2 demonstrates
that the rate control feature incurs an overhead of less than 1% in terms of latency,
averaged over a range of message sizes. Similarly, Figure 5.1 shows that the average
bandwidth loss for a range of message sizes is less than 1%, while the worst-case
bandwidth loss for any message size in the same range is 4.5%. Note that for some
message sizes, the modified version of GM appears to perform better than the unmod-
ified version. This is because of the difference in the message segmentation schemes in
the two versions. While the original version of GM attempts to segment multi-packet
messages into equal sized chunks, we have disabled that feature for our version. In

our case, all packets (other than the last one) for a message are MTU-sized.
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5.3 Determining Parameter Values

In order to map the bandwidth requirement of a flow to the corresponding IDT,
the bandwidth manager uses the values of the parameters T' and B,,,,. To determine
these values, we varied the IDT for a flow with 64KB-sized messages and measured
the achieved bandwidth. B,,., corresponds to the bandwidth achieved for IDT=0
(unregulated flow). Further, since packets are dispatched once every T time units,
setting an IDT value less than 7" will not affect the achieved bandwidth.

Using the above reasoning, we determined the value of T to be 96 LANai 4.3 RTC
units. As shown in Figure 5.3, for values of IDT less than 96, the achieved bandwidth
is equal to B,,.;- These values have been used for the remainder of our experiments.

In order to decide whether a new flow can be admitted, the bandwidth manager

must also be aware of the maximum rate at which packets can be dispatched from
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Figure 5.3: Effect of IDT on the achieved bandwidth.

a node, for different values of the incoming packet rate. We used a three node con-
figuration to determine these values. We established flow 1 from node A to node B,
and varied its IDT during the experiment. For each of these IDTs, we calculated
the maximum bandwidth possible for a second flow, flow 2, from node B to node C
that does not affect the first flow. In other words, flow 1 achieves almost the same
bandwidth for a given IDT as it would have, had flow 2 not existed. These maximum
bandwidths can simply be read off the graph, which is plotted in Figure 5.4. Note
that the sum of the bandwidths for the two flows is not constant. This is because the
amount of processing required for incoming messages is less than that for outgoing
messages. When packets are arriving at a much higher rate than the rate at which
they are being dispatched, the NIC is capable of doing more work per unit time,

leading to higher net throughput.

31



100 |

oo - —
_ 20 1'% ey
= RO ,* —— Flow 1
E a0 —=— Flow 2
_§ 40 Total
m a0

1|:| H r ;——'—\_\_\_*

I:I T T T T T T T

o 200 400 B0 g00 1000 1200 1400
IDT {LANai 4.3 RTC units)

Figure 5.4: Maximum bandwidth of an outgoing flow for various incoming packet
rates.

5.4 Proportional Bandwidth Allocation Using Rate Control

In this section, we discuss our results that show how rate control achieves propor-

tional bandwidth allocation for a variety of communication flow patterns.
5.4.1 Single Sender with Multiple Receivers

In these sets of experiments, we had a number of flows sourced at the same network
node, but destined for different network nodes. As a result of our single crossbar
switch topology, these flows do not contend in the network, but do experience end-
node contention. Figure 5.5 clearly demonstrates that by manipulating the IDT
values for two flows (with 64KB messages), we can proportionally allocate bandwidth

between them. Note that the bandwidth is being shared in the inverse ratios of the
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Figure 5.5: Proportional bandwidth allocation for two flows sourced at the same node.

IDT values. For example, when the IDT pair (27, 27T") is used, both flows achieve
bandwidths of 40.91 MB/s each; thus the bandwidth is allocated in the ratio of 55,
or 1 : 1. For the IDT pair (3%, 22F), the flows achieve bandwidths of 24.96 MB/s and
56.88 MB/s, which are again in the ratio of 10T.10T’ or 3 : 7. The same is also true for
three flows sourced at the same node (Figure 5.6). For the IDT triple (27, 4T, 4T),
the achieved bandwidths of (39.81, 20.5, 20.5) MB/s are in the ratio of 5=:-5:45, or

2T 4T 4T

2:1:1.
5.4.2 Single Receiver with Multiple Senders

In this experiment, we had two flows sourced at different nodes, directed to the
same destination. These flows experience network contention (for the switch port
leading to the receiving NIC). Figure 5.7 shows that our scheme still divides the
bandwidth for the two flows proportionally, in the inverse ratio of the IDT values.
For the IDT pair (107, *F), the achieved bandwidths of (8.52, 75.91) MB/s are in

9

the ratio of 10_T o7 Or 1:9.
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5.4.3 Receiving and Sending at the Same Node

In this experiment with three communication flows, packets from one flow arrive
at a network node at some rate. The maximum bandwidth achievable by an outgoing
flow, for a given incoming packet rate (as determined from Figure 5.4) is shared by
two flows sourced at that node, in the inverse ratio of the IDT values (Figure 5.8).
For the IDT triple (250, 250, 500), the incoming flow achieves a bandwidth of 16.37
MB/s corresponding to IDT=500. As can be read from Figure 5.4, the maximum

outgoing bandwidth achievable for this incoming rate is approximately 65.0 MB/s.

1.1

This value is shared equally by the two send flows, i.e., in the ratio of 55:55.
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5.5 MPI-Level Evaluation

While all the above experiments were conducted at the GM level, for the following
experiments, our bandwidth measurement application made use of MPI communica-

tion primitives.
5.5.1 Effect of the IDT on the Achieved Bandwidth

Figure 5.9 shows the effect of varying the IDT on the bandwidth achieved by a
communication flow at the MPI level. For comparison, the GM level bandwidth is
also shown. The results clearly demonstrate the overhead of the MPI layer: even for
IDT values less than 140, the communication flow achieves bandwidths in the range
of 50 MB/s, though the underlying GM layer is capable of sending at much higher

rates.
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Figure 5.10: Proportional bandwidth allocation between two flows sourced at the
same node (MPI-level).

5.5.2 Proportional Bandwidth Allocation between MPI-Level
Flows

Figure 5.10 shows the MPI-level bandwidth achieved by two flows sourced at the

same node, but destined for different nodes. Here again, the achieved bandwidths are

in the inverse ratio of the IDT values. Note that for MPI-level flows, we do not use

IDT values less than 140, since the overhead introduced by the MPI layer prevents

flows with such values from reaching a potentially higher bandwidth.
5.6 Best-Effort Communication Flows

In these experiments, we had best-effort communication flows co-existing with
premium communication flows in the cluster. We sought to observe the variations
in the bandwidths allocated to best-effort flows, as premium flows were initiated

and terminated. We used packet dispatch frequency as a measure of the achieved
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bandwidth. For this purpose, we collected the LANai RTC values at packet send
events in the MCP, and post-processed the collected data.

In the first experiment, we started with one best-effort communication flow that
was allowed to send out data at peak rate. At later points in time, we started premium
flow 1 (with a bandwidth requirement of 40 MB/s), and then premium flow 2 (with
a bandwidth requirement of 20 MB/s) on the same node. These flows were active
for some time, before terminating. Figure 5.11 shows the packet dispatch frequencies
for the three flows during these different stages, with zero values indicating that the
flow is not active (Note that for clarity, the graph has been perturbed a bit; near-zero
values should be interpreted as zeros). As can be seen, the packet rate of the best-
effort flow is adjusted according to the current allocation status of the premium flows.
When premium flow 1 is active, the packet dispatch frequency of the best-effort flow
is around 4.7 packets every thousand ticks of the LANai 4.3 RTC, which corresponds
to an approximate bandwidth of 38 MB/s. When premium flow 2 is also active, this
value drops to approximately 18 MB/s.

Figure 5.12 shows similar results for the case with two best-effort flows, and one
premium flow on the same node. Note that the bandwidth not allocated to the
premium flow is shared equally by the two best-effort flows. For example, before the
premium flow is started, the two best-effort flows each get around 39 MB/s, which is
approximately half the peak bandwidth. When the premium flow (with a 20 MB/s
bandwidth requirement) is active, the two best-effort flows share the surplus 58 MB/s
equally. As in the previous case, an uncontended best-effort flow is allowed to send

packets at peak rate.
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5.7 Summary of Results

In this chapter, we demonstrated how our scheme can provide proportional band-
width allocation for a variety of communication flow patterns, both at the GM level,
and at the MPI level. We also showed that our scheme does not incur much overhead.
On an average, increases in the latency and bandwidth losses are both minimal. Fi-
nally, we demonstrated how our scheme can support best-effort flows by dynamically

adjusting IDT values according to the allocation status of premium flows.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed a proportional bandwidth allocation scheme for Myrinet
clusters. The scheme uses rate control at source nodes, in conjunction with the global
knowledge of cluster traffic patterns. The implementation of NIC-based rate control,
and the bandwidth resource manager for the Myrinet/GM system was presented. We
also showed how the scheme can be integrated with the Message-Passing Interface.
Experimental results demonstrate that we can handle both end-node and network
contention, without adding significant overhead. Further, no hardware modifications
are necessary, allowing the use of commodity components.

As future work, we would like to develop schemes for other QoS metrics, such as
latency, delay jitter etc. We could also like to investigate how other programming ab-
stractions, such as the shared-memory model, can take advantage of a communication
flow-centric QoS scheme.

Another trend in network-based computing is the use of computing grids for the
deployment of geographically distributed applications. End-to-end QoS in these en-

vironments requires co-reservation of heterogeneous resources (networks, CPUs, I/O
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units), across multiple domains. The Globus Architecture for Reservation and Al-

location (GARA) [10] addresses these issues and we intend to integrate our scheme

with GARA.
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