IMPROVING CLUSTER PERFORMANCE THROUGH
THE USE OF PROGRAMMABLE NETWORK
INTERFACES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University
By

Darius Buntinas, B.S., M.S.

* ok k% %
The Ohio State University

2003

Dissertation Committee: Approved by

Professor Dhabaleswar K. Panda, Adviser

Professor Ponnuswamy Sadayappan _
Adviser

Department of Computer
and Information Science

Professor Mario Lauria

Professor Srinivasan Parthasarathy

© Copyright by
Darius Buntinas

2003

ABSTRACT

Cluster computing systems are becoming increasingly popular computing environ-
ments for day-to-day computational needs because they are cost-effective and afford-
able. While clusters are considerably less expensive than massively parallel processors
(MPPs), MPP communication performance is typically much better than cluster com-
munication performance. Some modern network interface controllers (NICs) have
programmable processors which can be used to offload communications processing
from the host processor.

Process skew is inherent in cluster communication systems. Some processes may
be delayed, relative to other processes, due to various unavoidable causes. Many col-
lective communication operations are implemented in a manner in which all partici-
pating processes need to perform the operation in order for the operation to proceed.
This means that if one process is delayed, it may cause other processes to be delayed
when performing a collective operation.

This dissertation investigates the use of programmable NICs to improve cluster
performance. We approach this problem by focusing on improving the performance,
scalability, and tolerance to process skew of synchronization operations and collective
communication operations through the use of NIC-based operations and NIC-based

primitives.

i

NIC-based operations and primitives improve the performance of cluster systems.
Latency is improved in some operations by performing the operation directly at the
NIC and avoiding sending messages over the slow I/O bus. Host processor utilization
is improved because host processor involvement in the operation is reduced. This also
allows computation to be overlapped with the operation. NIC-based operations are
also less sensitive to process skew.

To demonstrate the effect of NIC based operations, we have designed and imple-
mented NIC-supported broadcast/multicast, barrier synchronization, reduction and
atomic remote memory operations, as well as a application-bypass broadcast. The
NIC-supported implementations improved the performance of the operations over
the conventional host-based implementations. For instance, our NIC-based barrier
operation showed improved latency by a factor of improvement of up to 2.22. The
NIC-based reduction operation showed improved host processor utilization by a fac-
tor of improvement of up to 2.7. Our NIC-supported application-bypass broadcast
showed a factor of improvement of up to 16 in terms of host utilization in the presence

of process skew.

iii

VITA

March 22, 1970 ...t Born — Chicago, Illinois, USA
January 1994 B.S. Computer Science,
Loyola University Chicago
January 1994 M.S. Computer Science,
Loyola University Chicago
January 1995 — June 2003 Graduate Teaching Associate,
The Ohio State University
January 1999 — June 2003 Graduate Research Associate,
The Ohio State University
June 1999 — September 1999 Graduate Research Assistant,
Los Alamos National Laboratory
June 2001 — September 2001 Givens Associate,

Argonne National Laboratory

PUBLICATIONS

D. Buntinas, D. K. Panda, J. Duato, and P. Sadayappan. “Broadcast/Multicast
over Myrinet using NIC-Assisted Multidestination Messages.” Proceedings of Int’l

Workshop on Communication and Architectural Support for Network-Based Parallel
Computing (CANPC). January 2000.

D. Buntinas, D. K. Panda and P. Sadayappan. “Fast NIC-Based Barrier over Myrinet /

GM.” Proceedings of International Parallel and Distributed Processing Symposium
(IPDPS). April 2001.

D. Buntinas, D. K. Panda, and P. Sadayappan. “Performance Benefits of NIC-Based

Barrier on Myrinet/GM.” Proceedings of International Workshop on Communication
Architecture for Clusters (CAC). April 2001.

v

D. Buntinas, D. K. Panda, and W. Gropp. “NIC-Based Atomic Remote Memory
Operations in Myrinet/GM.” Proceedings of Workshop on Novel Uses of System Area
Networks (SAN). February 2002.

D. Buntinas and D. K. Panda. “NIC-Based Reduction in Myrinet Clusters: Is It
Beneficial?” Proceedings of Workshop on Novel Uses of System Area Networks (SAN).
February 2003.

D. Buntinas, A. Saify, D. K. Panda and J. Nieplocha. “Optimizing Synchronization
Operations for Remote Memory Communication Systems.” Proceedings of Interna-
tional Workshop on Communication Architecture for Clusters (CAC). April 2003.

D. Buntinas, D. K. Panda and Ron Brightwell. “Application-Bypass Broadcast in
MPICH over GM.” Proceedings of the International Symposium on Cluster Computing
and the Grid (CCGRID). May 2003.

FIELDS OF STUDY

Major Field: Computer and Information Science

Studies in:

Computer Architecture Prof. Dhabaleswar K. Panda
Theory and Algorithms Prof. Rephael Wenger
Software Methodology Prof. Neelam Soundarajan

TABLE OF CONTENTS

Page

Abstract ii

Vita . . . e iv

List of Tables ix

List of Figures X
Chapters:

1. Imtroduction 1

1.1 Software Layers in a Cluster Computing Environment 3

1.1.1 Communication Operations in Programming Models 4

1.2 Trends in Network Technologies)

1.2.1 Benefits of NIC-Supported Operations 7

1.2.2 Limitations in NIC Capabilities 9

1.3 Problem Description o Lo 10

1.4 Our Approach 11

1.5 Dissertation Overview 14

2. NIC-Assisted Broadcast/Multicast 16

2.1 NIC-Assisted Multidestination Message Passing 17

2.2 Broadcast/Multicast with the Multi-send Primitive 20

2.3 Constructing an Optimal Multicast Tree 22

2.4 Our Implementation of the Multi-send Primitive 23

2.5 Experimental Results 25

2.6 Related Work 28

2.7 Summary 30

vi

3. NIC-Based Barrier Synchronization 31

3.1 NIC-Based Barrier and Performance Benefits 33
3.1.1 Estimated Performance Improvement 34

3.2 Designlssues 36
3.2.1 Handling Unexpected Barrier Messages 36
3.2.2 Initialization and Cleanup 37
3.2.3 Reliability and In-Order Delivery 38
3.2.4 Multiple Concurrent Barriers 39

3.3 Barrier Algorithm oo 39
3.3.1 Algorithm Descriptions 39
3.3.2 Algorithm Implementation. 40

3.4 Implementation oL 42
34.1 Overviewof GM 0 oL 42
3.4.2 NIC-Based Barrierin GM 44
3.4.3 MPICH Modifications 46

3.5 Performance Evaluation 46
3.5.1 GM-Level Performance 48
3.5.2 MPI-Level Overhead 50
3.5.3 MPI-Level Performance and Scalability 51
3.5.4 Granularity of Computation 51
3.5.5 Varying Arrival Times o8
3.5.6 Synthetic Application Performance 59

3.6 Summary e 59
4. NIC-Based Reduction L. 61
4.1 NIC-Based Reduction, 64
4.2 Design and Implementation 0oL 65
4.2.1 Unexpected Messages 66
4.2.2 Multiple Instances of the Reduction Operation 66
4.2.3 Generating and Specifying the Tree Structure 67
4.2.4 Performing Floating Point Operations at the NIC 67

4.3 Experimental Resultso 000 67
4.3.1 Basic Reduction 000 68
4.3.2 Larger System Sizes 68
4.3.3 Host CPU Utilization 71
4.3.4 'Tolerating Process Skew 73

4.4 Summary Ll 75

vii

5. NIC-Based Atomic Remote Memory Operations 78

5.1 NIC-Based Atomic Remote Memory Operations 79

5.2 Implementation Lo 83

5.2.1 Overview of Myrinet and GM 83

5.2.2 Design Challenges and Our Implementation 85

5.2.3 Serializing Access to Host Memory 87

5.3 Implementing Distributed Locks with Atomic Remote Operations . 89

5.4 Experimental Results 91

5.4.1 Atomic Remote Memory Operations 91

5.4.2 Distributed Locks 93

5.4.3 Host and NIC Processor Utilization. 96

5.5 Summary e 98

6. NIC-Support for Application-Bypass Broadcast 99
6.1 Application-Bypasso 100

6.2 Design and Implementation 102

6.2.1 Design Alternatives 102

6.2.2 Overview of GM and MPICH over GM 103

6.2.3 Our Implementation 105

6.3 Experimental Results 106

6.4 Summaryl 110

7. Conclusions and Future Research Directions 114
7.1 Summary of Research Contributions 114

7.1.1 NIC-Assisted Broadcast/Multicast 114

7.1.2 NIC-Based Barrier Synchronization 115

7.1.3 NIC-Based Reduction 115

7.1.4 NIC-Based Atomic Remote Memory Operations 116

7.1.5 NIC-Support for Application-Bypass Broadcast 116

7.2 Future Research Directions 117
Bibliography L 119

viii

LIST OF TABLES

Table

5.1 Semantics of atomic memory operations

ix

LIST OF FIGURES

Figure Page
1.1 Block diagram of an MPP. 2
1.2 Block diagram of a cluster of workstations. 2
1.3 Software layers L 3
1.4 Communication operations in programming models 4
1.5 Host-based and NIC-supported communication operations 6
1.6 Block diagrams showing host-based and NIC-based broadcast 8
1.7 NIC support for programming models 12
2.1 NIC-supported broadcast for communication subsystems 17
2.2 Multiple host-based point-to-point operations and a NIC-assisted multi-

send operation to four destinations. 18
2.3 Timing diagram comparing latencies for sending one packet to four

destination using a multi-send operation and host-based point-to-point

operations.o 19
2.4 NIC-based multicast and a NIC-assisted multicast. 21
2.5 Performance of NIC-assisted multi-send operation versus multiple FM

send operations. Lo Lo 25
2.6 Multicast performance for NIC-assisted multicast using an optimal tree

with packet-wise pipelining (NA-optimal), versus multicast using bino-

mial tree with FM unicast send (FM-binomial). 27

X

2.7

2.8

2.9

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Multicast performance for NIC-assisted multicast using an optimal tree
without packet-wise pipelining (NA-optimal), and multicast using bino-
mial tree with FM unicast send (FM-binomial).

Multicast performance for NIC-assisted multicast using an optimal tree
with packet-wise pipelining (NA-optimal), and multicast using an op-
timal tree with FM unicast send (FM-optimal).
Multicast performance for NIC-assisted multicast using an optimal tree
without packet-wise pipelining (NA-optimal), and multicast using an
optimal tree with FM unicast send (FM-optimal).
NIC-based barrier for the MPICH middleware
Host-based barrier (left) and NIC-based barrier (right)

Timing diagram comparing latencies for host-based barrier and NIC-
based barrier Lo

Block diagram showing the components of GM.
Block diagram of the components of the MCP.

Comparison of NIC-based barrier and host-based barrier for two algo-
rith ms (PE and GB) using the LANai 7.2 and LANai 4.3 NICs

GM barrier latencies and MPI barrier latencies of NIC-based barriers
using 33MHz LANai 4.3 and 66MHz LANai 7.2 NICs

Performance of NIC-based barrier versus host-based barrier using 33MHz
LANai 4.3 and 66MHz LANai 72 NICs

Performance of NIC-based barrier versus host-based barrier using 33MHz
LANai 4.3 and 66MHz LANai 7.2 NICs for all number of nodes

Average execution time (compute time and barrier time) per loop for
host- and NIC-based barrier on eight nodes using 33MHz LANai 4.3
and 66MHz LANai 7.2 NICs

xi

28

29

29

32

33

34

43

43

49

a0

52

93

3.11

3.12

3.13

3.14

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Computation time required to achieve a particular efficiency factor
using 33MHz LANai 4.3 and 66MHz LANai 72 NICs 55

Total time of computation, varying at each node by 20%, followed by
a barrier for NIC-based and host-based barriers over 16 nodes using
33MHz LANai 4.3 NICs.o i 56

Difference in execution time between using host- and NIC-based bar-
riers performing computation (+ percentage) followed by a barrier (16
nodes; 33MHz LANai 4.3 NICs). 56

Performance of synthetic benchmarks (total computation time of 360us
and 2,100ps) for host-based and NIC-based barriers using 33MHz LANai
4.3 and 66MHz LANai 72 NICs 57

NIC-based reduction for the GM communication subsystem 62

Block diagrams of Host-based and NIC-based reductions across four
nodes. The circles represent the host processor of a node and squares
represent the NIC of anode. 63

Comparison of NIC-based reduction (NB) and host-based reduction
(HB) for integer (int) and floating-point (float) operations 69

Latency of NIC-based reduction (NB) and host-based reduction (HB)
for integer (int) and floating-point (float) operations using a 1-degree
tree (a chain) of varying depth 70

Latency of NIC-based reduction (NB) and host-based reduction (HB)
for integer (int) and floating-point (float) operations using trees of
depth 1 with varying degree 70

Average time spent by the host processor performing the reduction for
host-based (HB) and NIC-based (NB) reductions performing integer
(int) and floating-point (float) operations 72

Average time spent by the host process performing the reduction, with
different levels of process skew for host-based (HB) and NIC-based
(NB) reductions performing integer (int) and floating-point (float) op-
erations L 74

xii

4.8

5.1

5.2

9.3

5.4

3.5

2.6

5.7

2.8

2.9

6.1

6.2

6.3

6.4

Average time spent by the host process performing the reduction, with
a maximum delay value of 1000ps, for different system sizes for host-
based (HB) and NIC-based (NB) reductions performing integer (int)
and floating-point (float) operations

NIC-based atomic remote memory operations for the GM communica-
tion subsystem oL Lo L

Steps required to perform host-based and NIC-based atomic remote
memory operations.00l o s

Block diagram showing the components of GM.
Peterson’s mutual exclusion algorithm
Example of a distributed lock
Latencies of atomic operations,
Locking and unlocking with multiple nodes contending
The number of iterations a process at the home node of a lock can
perform in 1,000ps while a process at another node is locking and

unlocking the lock at a certainrate

The fraction of time the NIC processor is not idle while a process at
another node is locking and unlocking the lock at a certain rate

NIC-supported application-bypass broadcast for MPICH

Broadcast operation over four processes. The large arrows represent
timelines for each process. The shaded areas in these timelines repre-
sent a call by the application to the broadcast function, and the small
arrows represent broadcast messages.

Software and hardware layers for MPICH over GM

Average latency of MPI_Bcast function on 32 nodes. Small messages
sizes are 1, 2, 4, and 8 bytes, and large message sizes are 2048, 4096,
and 8192 bytes for non-application-bypass MPICH (n) and application-
bypass MPICH (ab)

95

96

100

102

103

6.5

6.6

Average latency of signal handler and MPI_Bcast function on 32 nodes.
Small messages sizes are 1, 2, 4, and 8 bytes, and large message sizes
are 2048, 4096, and 8192 bytes for non-application-bypass MPICH (n)
and application-bypass MPICH (ab)

Average latency of signal handler and MPI Bcast function with a av-
erage skew of 333ps for various number of processes. Small messages
sizes are 1, 2, 4, and 8 bytes, and large message sizes are 2048, 4096,
and 8192 bytes for non-application-bypass MPICH (n) and application-
bypass MPICH (ab)

xXiv

CHAPTER 1

INTRODUCTION

Cluster computing systems are becoming increasingly popular computing environ-
ments for day-to-day computational needs because they are cost-effective and afford-
able [55, 6, 58]. Such computing systems consist of high-end commodity workstations
connected with a high-performance commodity network. While clusters are consid-
erably less expensive than massively parallel processors (MPPs), the MPP communi-
cation performance is typically much better than the cluster communication perfor-
mance. This is because MPPs are designed for high performance parallel computing,
while workstations are designed to be stand-alone machines.

Figure 1.1 shows a block diagram of a typical MPP. The MPP consists of a col-
lection of nodes which are connected using a custom high performance interconnect.
Each node consists of one or more processing elements (PEs), memory, and a commu-
nication assist (CA). The CA provides an interface to the interconnect, and assists in
generating outgoing messages and handling incoming messages. This reduces the in-
volvement of the PEs in performing communication operations. Considerable research
has been done on efficient communication operations on MPPs [44, 46, 56, 53, 20).

Figure 1.2 shows a block diagram of a cluster of workstations. Such a cluster
consists of several high performance workstations connected by a high performance
network. A workstation consists of one or more central processing units (CPUs),
memory, and various I/O devices including a network interface card (NIC). Notice
that workstations do not have a CA, so all communication processing must be per-
formed by the CPU. Also, notice that the NIC is connected to the I/O bus which is
slower than the system bus.

These issues lead to poor system performance in clusters of workstations. Com-
munication sent between workstations must pass over the slow I/O bus, resulting in
high message latency. Also, the CPU must be involved in performing the communi-
cation, which results in poor utilization of the CPU by the application, and makes
the overlap of communication and computation difficult.

Furthermore, with the introduction of new high-performance networking tech-
nologies available for clusters, such as Quadrics [30], Myrinet [10] and Gigabit Eth-
ernet, these issues become even more important. As network bandwidth and latency

1

System Bus

Node

Node

Node

i

i

Node

i

Interconnection Network

=—==Ig =—-c==Ig === =—=c=Ig
B0 O Beco O Moo O M. O

Figure 1.1: Block diagram of an MPP.

To Switch

’0' TERy !""

Figure 1.2: Block diagram of a cluster of workstations.

Applications

Programming Models

(Distributed Memory, Distributed Shared Memory)

Communication Subsystems

(GM, EMP, FM)

Networking Technologies
(Myrinet, Gigabit Ethernet, QsNet)

Figure 1.3: Software layers

improve, the issues of the NIC being on the slow I/O bus and the need for CPU
involvement in communication become more of a bottleneck for high performance
computing.

1.1 Software Layers in a Cluster Computing Environment

Figure 1.3 shows the various software layers in a cluster computing environment.
At the bottom layer are the high-performance networking technologies available for
clusters. Examples of these are Myrinet, Gigabit Ethernet, and QsNet. Above this
layer is the communication subsystems layer. This layer represents the software that
provides the communication primitives for a particular networking hardware. Ex-
amples of these are GM [34] and FM [41], which are communication subsystem for
Myrinet, and EMP [49, 50, 3], which is a communication subsystem for Gigabit Eth-
ernet.

On top of the communication subsystem layer is the programming model layer. A
programming model provides a paradigm to the application programmer which is in-
dependent of the communication subsystem or hardware that the program is running
on. The two major programming models for high-performance parallel computing
are Distributed Memory (DM), also called Message Passing, and Distributed Shared
Memory (DSM). Typically a middleware library is written to support a particular pro-
gramming model, such as MPICH [22, 33], which implements the DM programming
model, or Global Arrays [37][38, 36], which implements a logical-DSM programming

Applications

(Programming Models

Collective

Synchronjzation
Communications

Operations

Point-to—-Point
Operations

Communication Subsystem

|
Networking Technology J

Figure 1.4: Communication operations in programming models

model. At the top layer we find the actual parallel applications which are written
using a middleware library.

1.1.1 Communication Operations in Programming Models

Programming models often use synchronization operations and collective commu-
nications. These are typically implemented using point-to-point messages. Figure 1.4
shows these communication operations in relation to the software layers and to the
point-to-point communication operations, which are implemented at the communica-
tion subsystem layer.

ARMCIT [38] is a middleware which provides synchronization operations, such as
atomic remote memory operations and locking. These operations are traditionally
implemented using point-to-point messages and a server thread at each node. When
a process performs a synchronization operation it sends a request using a point-to-
point message to the server thread at the remote node. The server receives the
request performs the operation, and sends a reply back to the intiating process. To
avoid wasting computational resources, the server thread would block waiting for an
incoming request. The incoming request would trigger an interrupt to wake the server
thread.

MPICH is a middleware which uses collective communication operations such as
broadcast and reduction. These are also typically implemented using point-to-point
messages. In a broadcast operation, messages are broadcast from the root to the
other processes over a broadcast tree using point-to-point messages. In order for the
broadcast operation to proceed, all of the participating processes need to call the
broadcast function. When a process calls the broadcast function, the process waits
to receive the message from its parent process, then re-sends the message to its child
processes.

1.2 Trends in Network Technologies

Some modern NICs, such as Myrinet [10], Quadrics [30], and those using the
Alteon chip-set (e.g., Netgear 620 [35]) have programmable processors [8, 1]. These
programmable NICs can be used to offload communication processing from the host
processor. The basic idea of NIC-supported operations is to have the NIC perform,
or assist in performing, a communication operation [57, 25, 7, 48, 14, 16, 17, 15, 40,
39, 13]. This raises the question of whether using a programmable NIC in this way
can make up for the lack of a CA, and improve cluster performance.

Figure 1.5 illustrates the difference between traditional host-based communication
operations and communication operations supported by a programmable NIC. The
diagrams show four nodes, consisting of a host and a NIC, performing a generic
communication operation where each node sends a message to every other node.

Figure 1.5(a) shows a traditional host-based implementation of this communica-
tion operation. In this figure, we see that all communication is initiated by the host,
sent through the NIC to the NIC at the receiving node, and finally received at the host
of the receiving node. If the operation were to be implemented in a NIC-supported
manner using a programmable NIC, the operation may look like that in Figure 1.5(b).
Here, notice that the hosts need only initiate the operation, then check for the result
later. The operation is performed by the NIC. By offloading the communication pro-
cessing to the NIC in this way, we reduce the number of times the data is transferred
between the host and the NIC, improving the performance of the operation. Also,
because the NIC is performing the operation, the host is free to perform other useful
computation while the operation is being performed by the NIC, improving the host
processor utilization.

In this dissertation, we will refer to a processor at the NIC as a NIC processor and
a processor at the host as a host processor. We also distinguish between two ways
that communication operations can be supported by programmable NICs. One way
is using a NIC-based operation where the operation is completely performed by the
NIC. Another way is to use NIC-based primitives to assist in performing the opera-
tion. In some cases a complete NIC-based implementation would be infeasible, due
to the complexity of the operation or because of limited NIC resources. For instance,

(a) Host-based

(b) NIC-supported

Figure 1.5: Host-based and NIC-supported communication operations

a completely NIC-based reduction operation can be implemented for a small number
of elements, and for standard arithmetic operations. However, for larger number of
elements, or for user-defined arithmetic operations, a completely NIC-based imple-
mentation may not be possible. In these cases, a simpler NIC-based primitive can
be implemented which could assist the host in performing the operations. The NIC-
based primitive would improve the performance of the operation over a completely
host-based implementation.

1.2.1 Benefits of NIC-Supported Operations

As mentioned, we expect that using NIC-support will improve the latency of the
operation, as well as to free-up the host processor for other computation. Let us use a
broadcast operation as a specific example to illustrate more benefits of NIC-supported
operations.

Figure 1.6 shows block diagrams of a traditional host-based broadcast and a NIC-
based broadcast. A broadcast in a point-to-point network is typically performed using
a broadcast tree [5]. The root node sends the message to its children which receive
the message and then send the message on to their children. Figure 1.6(a) shows four
nodes of a traditional host-based broadcast. Node 0 is the root node, and Node 1
is one of its children. The other two children of Node 0 are not shown. Node 1 has
two children, Nodes 2 and 3. Nodes 2 and 3 are leaf nodes, and have no children. In
this diagram, Host 0 sends the message to be broadcast three times, once to each of
its children. The message to Node 1 is received at the NIC, which forwards it to the
host. Upon receiving the message the host then sends this same message twice, once
to each of its children.

In Figure 1.6(b) we see the NIC-based broadcast. Notice here, that Host 0 sends
the message once to the NIC. The NIC, then transmits the message to each child.
This avoids having the host initiate multiple messages, and reduces the number of
times the data is sent over the PCI bus. At Node 1, we see that when the message is
received by the NIC, as well as forwarding the message to the host, the NIC sends the
message to Nodes 2 and 3. By having the NIC forward the data to the children, the
data does not have to be sent to the host and back down again. This again reduces
the traffic on the PCI bus, but also reduces the latency of the operation: as soon as
the message is received by the NIC it can be forwarded to the node’s children.

This example suggests several benefits of using NIC-supported communication
operations over host-based communication operations. We describe these below.

e Reduced latency of the operation — This example suggests that a NIC-
based broadcast operation would complete faster than the host-based broadcast
because the messages at the intermediate nodes need not be passed to the host,
only to have the host turn around and send them back through the NIC to its
children.

Host 0 Host 1 Host 2 Host 3
NIC NIC NIC %NC
Host 2 Host 3
NIC %NC

Figure 1.6: Block diagrams showing host-based and NIC-based broadcast

L::::

(a) Host-based

Host O Host 1

(b) NIC-based

e Reduced host processor involvement in the operation — We also see from
this example that the hosts only to need send one message to the NIC, rather
than one per child. Similarly, if the operation were a gather operation, once the
process sends its data to the NIC, it can proceed with other useful computation,
and need not wait for messages to be received from its child processes or for
the operation to complete. This frees up the host processor for other useful
computation.

e Allows for non-blocking or split-phase operations — Although in this
example, the broadcast operation does not lend itself to a non-blocking im-
plementation, other collective operations can benefit from a non-blocking, or
split-phase, implementation. For instance, if an all-reduce operation were to
be implemented at the NIC, the host process can initiate the operation in one
phase, and receive the result in the second phase. In the first phase, the host
process provides its data to the NIC and initiates the operation. It can then
proceed with other computation that does not depend of the result of the all-
reduce operation. When the application needs the result of the operation, it
can perform the second phase, and wait for the result from the NIC. This allows
the reduction operation to be overlapped with useful compuation at the host.

e Improved tolerance to process skew — Another benefit is that even if the
host at one of the intermediate nodes is not ready to perform the broadcast, its
children can still receive the broadcast message. For instance, in the host-based
case, if Host 1 is delayed and did not reach the portion of the program that exe-
cutes the broadcast, when the broadcast message is received from Node 0, it will
not be forwarded to Nodes 2 and 3 until Host 1 executes the broadcast, even if
Nodes 2 and 3 are waiting to receive it. In the NIC-based case, because the host
is not involved in actually performing the broadcast, even if Host 1 is not ready
to receive the message, the NIC will still forward the message to Nodes 2 and 3,
allowing them to proceed. This concept is known as application-bypass [11]. The
concept of application-bypass is to allow communication operations to proceed
without the intervention of the application.

1.2.2 Limitations in NIC Capabilities

We have illustrated some of the benefits of moving communication operations from
the host to the NIC. However, there are some limitations in implementing operations
at the NIC, namely the speed of the NIC processor and the size of the NIC memory.
Host processor speed ranges from 700MHz to 2.4GHz, and the host memory capacity
ranges from 512MB to 8GB. Whereas the NIC processor speed ranges from 33MHz
to 233MHz, and NIC memory capacity ranges from 256KB to 64MB. There is over

a magnitude of difference in processor speed and memory capacity between the NIC
and the host.

This difference can affect the performance of the communication operation. Simi-
larly, the limited memory can affect the scalability of the operation, and the number
of concurrent instances of the operation that the NIC can support. For this reason,
careful design and efficient implementation is critical if the operation is to perform
well and scale well.

1.3 Problem Description

The primary objective of this research is to improve cluster performance through
the use of programmable NICs. We approach this problem by focusing on improv-
ing the performance, scalability, and tolerance to process skew of synchronization
operations and collective communication operations through the use of NIC-based
operations and NIC-based primitives.

As described in the first section, cluster computing environments typically have
poor communication performance when compared to MPP environments due to the
lack of a CA and the fact that the NIC is on the slower I/O bus. In order for clusters to
take full advantage of modern high performance network technologies, this issue must
be addressed. Programmable NICs can potentially be used to compensate for the lack
of a communication assist in commodity workstations and improve communication
performance. Specifically, programmable NICs can be used to support collective
communication operations, such as barrier and reduction, as well as synchronization
operations, such as atomic remote memory operations.

Another issue that impacts the performance of collective communication oper-
ations in clusters is process skew. During the course of the excution of a parallel
program, processes may become skewed in time, i.e., some processes may fall behind
other processes. This may be due to various reasons such as imbalanced or asymetric
code. Collective communications operations are typically implemented by middle-
ware libraries at the application level. That is, the operation proceeds only once the
application at each participating process calls the collective communication function.
So, if one process is delayed in calling the function, due to process skew, other pro-
cesses may be unnecessarily delayed. Dealing with process skew becomes even more
important as system sizes increase. This means a scalable collective communication
operation must be tolerant to process skew.

Completely NIC-based implementations of collective communication operations
are naturally tolerant to process skew because the operation is implemented at the
NIC, so the operation can proceed even if the application has not yet called the
collective communication function. Similarly NIC-based primitives can be used to
improve a collective communication operation’s tolerance to process skew by allowing

10

the operation to bypass the application and proceed, even if the process is delayed
and has not yet called the collective communication function.
This dissertation specifically focuses on the following problems:

1.

2.

Can programmable NICs be used to support communication operations?
Will these communication operations perform well, and scale well?

How can NIC-based communication operations be used to support synchroniza-
tion operations?

How can NIC-based primitives be used to assist in performing collective com-
munication operations?

Can the use of NIC-based primitives reduce the impact of processor skew on
collective communication operations?

We describe our approach to these problems in the next section.

1.4 Our Approach

Figure 1.7 illustrates our approach to to the problems described in the previous
section. In the figure, the dotted lines represent the existing method for implementing
the communication operations. In this dissertation, we use NIC-based operations to
implement synchronization operations and collective communication operations. We
also use NIC-based primitives to make collective communication operations which are
based on point-to-point operations more tolerant to process skew. These options are
represented by the solid lines.

Below we describe in detail our approach to the problems described in the previous

section.

Using programmable NICs to support communications operations and

improve their performance — We have designed and implemented NIC-
supported broadcast/multicast, barrier, reduction, and atomic remote memory
operations. We have also designed and implemented a NIC-based primitive
which makes a host-based broadcast operation more tolerant to process skew.

Because of the limited resources available at the NIC, careful design and im-
plementation of these operations is crucial in order for the operations to per-
form well and be scalable. There are many issues that need to be addressed
when designing and implementing NIC-based operations and primitives, such
as, choosing an appropriate algorithm, guaranteeing the reliable delivery of op-
eration messages, handling multiple concurrent instances of the operation, and
dealing with unexpected messages.

11

‘ Applications

|
(Programming Models

Synchronjzation Collective
Operations - ComrEumcathns

NIC—élased j NIC-Based .
Operations Primitives
NIC-Supported Operations
1 Communication Subsystem
1
‘ Networking Technology

T
-

’Q

Point—to—Point
Operations

---« Existing
— Proposed

Figure 1.7: NIC support for programming models

Because NIC-based operations and primitives are performed by the NIC, inter-
mediate messages do not have to be passed to the host, reducing the number of
times the data passes over the PCI bus. This can improve performance when
large amounts of data needs to be transferred, due to the limited bandwidth of
the PCI bus compared to the bandwidth of the network. Even when the amount
of data is small, the latency of having the message be sent to the host only to
have another message be sent back down is eliminated in NIC-based operations,
and reduced in NIC-based primitives. This offsets the fact that the operation is
being performed by the NIC processor which is slower than the host processor.

Using NIC-based operations to reduce host processor involvement in syn-
chronization operations — In synchronization operations, such as atomic re-
mote memory operations, it is desirable to eliminate the involvement of the
remote host process. In a typical host-based implementation, a server thread
would be used on each node. This thread would be used to handle asynchronous
requests. The thread could be implemented either to poll for incoming requests
or to block while waiting for the requests. However, these options either waste
processor resources or give poor performance.

We have implemented NIC-based atomic remote memory operations which elim-
inate the need for the server thread. Because the operation is performed directly
by the NIC, the computational thread at the host is not disturbed. This leads
to better performance for the operation and better host processor utilization
than the host-based implementation.

12

Because synchronization operations may need to modify data-structures used by
the host process, access to these data-structures needs to be serialized to avoid
race conditions. For host-based implementations, these issues have long been
studied and various efficient solutions are available. A new set of constraints
is introduced by moving the operation to the NIC. For instance, while a host
process can access NIC memory using loads and stores, the latency of accessing
NIC memory over the PCI bus is considerably higher than accessing local mem-
ory. Futhermore, the NIC can only access host memory using DMA. We have
redesigned the traditional synchronization scheme taking these constraints into
account, resulting in an efficient algorithm to serialize access to host data.

Using NIC-based primitives to reduce the effects of process skew — As
described previously, during the course of the excution of a parallel program,
processes may become skewed. Process skew can affect the performance and
scalablity of collective communication operations. Collective communication
operations are typically implemented by middleware libraries at the application
level. So if one process is delayed in calling the function due to process skew,
other processes may be unnecessarily delayed.

For instance, the typical host-based broadcast operation is performed by for-
warding messages sent by the root along a broadcast tree. When a non-root
process calls the broadcast function, it waits to receive the message from its
parent, then sends the message to its children. Notice that if a process is de-
layed, and does not call the broadcast function, even if the message from its
parent is received, the message will not be forwarded on to its children until the
process finally calls the broadcast function. So all of the processes which are
its decendants in the broadcast tree will have to wait for the process to catch
up. Note that process skew also affects the scalability of a collective communi-
cation operation. For instance, as the number of processes participating in the
broadcast increase, the depth of the broadcast tree increases, so the effect of a
delayed process higher up in the tree also increases.

We have implemented an application-bypass broadcast operation which uses
point-to-point messages along with a NIC-based primitive. In an application-
bypass operation, the operation will proceed independently from the applica-
tion. This can be implemented by using interrupts and a signal handler, or
server thread. However generating an interrupt for every message affects perfor-
mance. In our implementation, the NIC-based primitives is used to selectively
interrupt the host only when necessary. This allows the process to poll for in-
coming messages when it is ready to receive the message, avoiding the cost of
the interrupt, but it will interrupt the process when the process is not actively
polling for the message, allowing the operation to proceed.

13

1.5 Dissertation Overview

In this dissertation, we describe how we improve cluster performance through the
use of programmable NICs. We present the design, implementation and evaluation
of NIC-supported collective communication operations, NIC-supported synchroniza-
tion opertions, and an application-bypass collective communication operation using
a NIC-based primitive. The NIC-supported collective communication operations,
broadcast, barrier synchronization and reduction are described in Chapters 2, 3 and
4, respectively. Chapter 5 describes our research on NIC-based atomic remote mem-
ory operatons, and Chapter 6 describes our research on application-bypass broadcast
using a NIC-based primitive.

Chapter 2 describes our design of a NIC-supported broadcast operation. This
operation was added to the Illinois Fast-Messages [42, 29] communication subsystem.
We designed the broadcast operation using a NIC-based multi-send primitive which
requires minimal assistance from the NIC. This primitive improves the performance
of sending the same message to multiple destinations, by having the host process send
one copy of the message to the NIC and having the NIC send a copy of the message
to each destination. To fully utilize the benefits of this primitive, we also propose a
method for constructing an optimal multicast tree using the new primitive. When
evaluating our NIC-supported broadcast, we find significant improvements in latency
over the traditional host-based broadcast operation.

We describe our NIC-based barrier synchronization operation in Chapter 3. This
was implemented by modifying the GM communication subsystem. The barrier op-
eration is implemented in a completely NIC-based manner. By reducing the round-
trips over the PCI bus, the latency of the operation is reduced significantly. We
implemented the operation using two different algorithms, namely, pairwise-exchange
and gather-and-broadast, to evaluate the performance benefits. We also modified
MPICH-GM, an implementation of MPI over GM, to use the NIC-based operation.
We also evaluate our implementations using two different generations of NICs, to see
the impact of using faster NIC processors.

Our NIC-based reduction operation is described in Chapter 4. In this operation,
the host processes send their data, and topology information to the NICs, and the
NICs perform the reduction. The root process then reads the result from the NIC.
One major challenge to this design was the lack of floating-point support at the NIC.
In order to be able to perform floating-point operations, the operations had to be
performed in software. Despite the added overhead of performing floating-point op-
erations in software, the NIC-based operation performs better than the host-based
implementation. A major benefit of using NIC-based reduction is the improved tol-
erance to process skew. We saw a sigificant improvement in host processor utilization
in the presence of process skew when using NIC-based reduction versus host-based
reduction.

14

In Chapter 5 we present our NIC-based atomic remote memory operations. By
implementing atomic operations at the NIC, the host process is not interrupted to
perform the operation. This improves the host processor utilization. Also, because of
the efficient implementation, the load on the NIC processor is less with the NIC-based
implementation than with the host-based implementation, making the NIC-based
operation perform better, and scale better. Because the operation may be used to
modify data-structures that are being accessed by the host process, we implemented a
mutex operation between the NIC and the host to serialize access to the host memory
and avoid race conditions. The mutex had to be designed carefully to reduce polling
over the PCI, and to consider the fact that the NIC does not have load/store access
to host memory. We implemented distributed locking using the NIC-based atomic
remote memory operations, and found a considerable performance improvement over
the host-based implementation.

We describe our application-bypass broadcast implementation using NIC-based
primitives in Chapter 6. We implemented the broadcast using host-based point-to-
point messages, but used a NIC-based primitive to allow the broadcast operation to
efficiently proceed even if the process has not called the broadcast function. Our
primitive allows interrupts to be generated only for certain messages, and only when
the process is not actively polling for the messages. This allows broadcast to be
implemented in an application-bypass manner without negatively impacting the per-
formance of the operation with unnecessary interrupts. We see a signifiant improve-
ment in host processor utilization in the presence of process skew when using the
application-bypass broadcast over the traditional broadcast. We also see the impact
of process skew on the traditional broadcast implementation increase with system size,
while the application-bypass broadcast was virtually unaffected. This indicates that
application-bypass broadcast would scale much better than the traditional broadcast.

Finally, in Chapter 7 we present our conclusions and describe topics for further
research.

15

CHAPTER 2

NIC-ASSISTED BROADCAST/MULTICAST

Broadcasting and multicasting are common operations in parallel and distributed
programs. For example, MPI [33] has a broadcast operation defined as part of the
standard. It would be beneficial to be able to reduce the latency of this operation
as much as possible. In Section 1.2.2 we described the difference in speeds between
the NIC processor and the host processor. This may limit the amount of work that
can be done by the NIC without compromising performance. This raises a challenge
whether new communication mechanisms can be developed for clusters to support
broadcast/multicast with minimal NIC assistance, while delivering good performance.

In this chapter we take on this challenge and introduce a NIC-based multides-
tination message passing primitive. Such a mechanism has been developed earlier
for router-based parallel systems [46, 44, 56] to support efficient collective commu-
nication. We describe our design and implementation of a multi-send primitive to
support efficient broadcast/multicast that requires minimal assistance from the NIC.
Our scheme is designed with the idea that as much processing as possible should be
done by the host processor. This gives us more flexibility with, for example, creating
multicast trees which would be optimal for a particular message size, or choosing a
multicast tree dynamically based on requirements of bandwidth versus latency for a
particular message. Also, because the proposed scheme does less processing at the
NIC, the impact of adding such NIC-assisted multicast operation to a communication
subsystem is very small, less than 500ns for non-multi-send packets.

We have implemented the multi-send primitive as a modification to Illinois Fast-
Messages (FM) 2.1 [42, 29] running over a Myrinet [10] network. To fully utilize the
benefits of this primitive, we propose a method for constructing an optimal multicast
tree using the new primitive. We have evaluated this scheme and obtained a factor
of improvement of up to 1.85 for multicasting 16K messages with 16 nodes.

Figure 2.1 illustrates our approach to adding NIC-supported broadcast to the FM
communication subsystem. The dotted line indicates how the broadcast operation
is traditionally implemented using point-to-point messages. The solid line shows our
implentation using NIC-based primitives to improve the performance of the operation.

16

Co R#h%ﬁgé{ﬁons
NIC-Based - e :
i Point-to—-Point
Operations l
NIC-Supported Operations

—L Fast Messages (FM)

Communication Subsystem

1
‘ Networking Technology

---- Existing
— Proposed

Figure 2.1: NIC-supported broadcast for communication subsystems

The rest of this chapter is organized as follows. Section 2.1 describes the new multi-
send primitive, followed by Section 2.2 which describes broadcasting and multicasting
using the new primitive. Construction of the optimal multicast tree is described in
Section 2.3. The implementation details are discussed in Section 2.4 followed by our
experimental results in Section 2.5. Related work is discussed in Section 2.6. We
summarize our work in Section 2.7.

2.1 NIC-Assisted Multidestination Message Passing

The basic idea is to create a multi-send primitive in which the host writes the
packet data to the NIC only once followed by a list of destinations. The NIC would
then transmit copies of the packet to each of those destinations. Figure 2.2 shows
two diagrams where Host 0 is sending packets to Hosts 1 through 3. Figure 2.2(a)
shows Host 0 making three unicast (point-to-point) sends, each of which is forwarded
by the NIC to its destination. Figure 2.2(b) shows the host making a single multi-
send operation to the NIC which then forwards a copy of the packet to each of the
destinations.

Figure 2.3(a) shows the timing diagram for a multi-send operation sending a packet
to four destinations, and the receive time for the last destination. Figure 2.3(b) shows
the corresponding timing diagram for host-based point-to-point operations. In the
figure the interval marked Send corresponds to the time it takes the host to assemble
a packet and write it to the send queue on the NIC, and the interval marked X mit
corresponds to the time it takes the NIC to transmit the packet from the send queue
to the network. The interval marked Recv corresponds to the combined time for the
NIC to receive the packet, (including the network latency), for the NIC to forward
the packet to the host, and for the host to process the packet. Notice that in both

17

Host O Host 1 Host 2 ®Host 3
MNC %N) leC
/
(a) Host-based
Host 3
NIC

Host 0 Host 1 Host 2
NIC NIC %NC

(b) NIC-assisted

€

Figure 2.2: Multiple host-based point-to-point operations and a NIC-assisted multi-
send operation to four destinations.

18

| Send
Host ‘
Sender Xmit | Xmit | Xmit | Xmit |
NIC ‘ ‘ ‘
Receiver Recv
(a) Multi-send
| Send Send Send Send
Host ‘
Sender NIC Xmit | Xmit | Xmit | Xmit |
| | | |
. Recv |
Receiver ‘

(b) Host-based point-to-point

Figure 2.3: Timing diagram comparing latencies for sending one packet to four des-
tination using a multi-send operation and host-based point-to-point operations.

diagrams the receive time for a packet at the last receiver is overlapped with the
transmission time at the sender for that same packet. In Figure 2.3(b), for the first
three packets, the network transmit time of one packet is overlapped with the host
send time of the next. As indicated below, timing parameters for FM over Myrinet
are such that this will always be the case, regardless of the packet size. Though it is
not shown in these figures, packet reception can also be pipelined between the NIC
and the host.

Let us compare the latency of sending a packet to k£ destinations using a multi-
send operation with the latency of sending a packet to £ destinations using the usual
host-based point-to-point operations. The time for the £th destination to receive the
packet using a multi-send operation would be (tsena + (K — 1) X txmit + treev), and
(k X tgena + treew) using host-based point-to-point operations. We have timed the
host send, the NIC transmit and the receive operations in FM 2.1 on our cluster
consisting of 300MHz Pentium II machines with 33MHz LANai 4.3 Myrinet cards.
We measured the send time to be (2.78634540.0301usxm), the NIC transmit time
to be (1.3958us+0.0075usxm) and the receive time to be (4.2820us+0.0230usxm),
where m is the packet size in bytes. Thus for sending a 1,536 byte packet to six
destinations, tge,q would be 49.0199us, txmi¢ would be 12.9158us, and tge., would be

19

39.61us. The multi-send operation would take 153.2089us and the usual host-based
point-to-point method would take 333.7294us. This leads to a factor of improvement
of 2.18. We can see that multi-send is a powerful primitive.

The estimates above were made without write-combining support!. Without
write-combining, we achieve about 31.7 megabytes per second throughput when
the host is writing a packet to the NIC. Assuming write-combining is enabled, we
could get 90 megabytes per second throughput [1]. Then the send time would be
(2.7863154+0.0106 s X m) which would be 19.0679us for a 1,536 byte message. The
multi-send operation would then take 123.2569us while the usual host-based point-
to-point method would take 154.0174us. This would lead to a factor of improvement
of 1.25. While the improvement is not as great as without write-combining, it is still
significant.

2.2 Broadcast/Multicast with the Multi-send Primitive

While the multi-send primitive is powerful, for covering a large number of des-
tinations we need to perform broadcasts and multicasts hierarchically in order to
minimize the overall broadcast/multicast latency. This can be done by having the
host at each intermediate node receive the message, then issue another multi-send
operation to forward the message to its child nodes. This raises a challenge: how to
create an optimal tree? It is also interesting to analyze how this scheme is different
from the NIC-based multicast schemes described in [7, 57, 52, 28].

In the NIC-based scheme [7, 57, 52, 28], the incoming multicast packet is transmit-
ted to the child nodes by the NIC after it has been forwarded to the host. Figure 2.4
illustrates the difference in the two methods. This figure shows two diagrams where
Node 0 sends a message to multiple destinations, one of which is Node 1. Node 1
then sends to Nodes 2 and 3. Figure 2.4(a) shows a completely NIC-based scheme
where the packet coming into Node 1 from Node 0 is sent to Nodes 2 and 3 by the
NIC after being forwarded to the host. Figure 2.4(b) shows Node 1 forwarding the
incoming packet to the host. The host then issues a multi-send operation to transmit
the packet to Nodes 2 and 3.

While it may seem that the completely NIC-based scheme would always be better
than the method we are proposing, we believe that that is not the case when the NIC
has a very slow processor. The completely NIC-based approach puts more responsi-
bility on the NIC which, as previously mentioned, has a processor 5-15 times slower
than the host. We believe that the additional processing power available at the host
will allow greater flexibility in, for instance, tree construction. So that depending on
the message size and quality of service requirements, a tree optimal in either band-
width or latency, for that message size can be used for sending the message. This

'In our configuration, the write-combining feature was not working in the Myrinet driver supplied
with the FM distribution.

20

Host 2 Host 3
NIC %NC

(a) NIC-based

Host O Host 1 Host 2 Host 3
NIC NIC NIC %NC

(b) NIC-assisted

Figure 2.4: NIC-based multicast and a NIC-assisted multicast.

21

could be done on a per-message basis. This chapter will examine how to construct a
multicast tree that is optimal for latency, and study the performance of such a tree.

2.3 Constructing an Optimal Multicast Tree

In this section, we show how to construct an optimal multicast tree using the
proposed new multi-send primitive. The basic idea is to construct a tree such that
the maximum number of nodes will be sending at any time. Such a tree would be
optimal in terms of latency.

Bar-Noy and Kipnis [4] have shown that in the postal model, a broadcast tree
optimal in terms of latency is based on the following recurrence relation. In the
postal model, a broadcast to F)(t) nodes can be completed in ¢ time.

1 if 0 <t< A,
FA(t)—{ Fat—1)+ F(t—A) ift> A

In this recurrence relation, A is defined as the ratio of (i) the total amount of time
from when the sender of a packet starts sending it to when the receiver receives
the complete packet and (ii) the amount of time that the sender spends sending the
packet. One unit of time is defined as the time the sender spends sending a packet.
It then takes A time for a recipient to fully receive a packet after the sender starts
sending it. It is assumed that as soon as a node receives a packet, it will start sending
it to its children nodes.

Intuitively, one can think of F)(¢) as the number of nodes which have received the
packet at time £. This is equal to the number of nodes which had already received the
packet previously (i.e. F)(t — 1)), plus the number of nodes which have just received
the packet. The packets which were just fully received at time ¢ must have been sent
at A time before then. Since, at that time there were F)(¢t — A) nodes which would
have sent these packets, there would be that many new nodes receiving the packet at
time ¢.

In our design, the NIC will be transmitting the packets to different nodes. So we
need to apply the postal model from the point of view of the NIC. Specifically, when
a packet is sent from a node, say, node 0, to another node, Node 1, which will receive
it and send it to a third node, Node 2, then) is defined as the ratio of i) the time
from when the NIC at Node 0 starts transmitting the packet to Node 1 until the NIC
at Node 1 is ready to transmit the packet to Node 2 and ii) the time it takes the NIC
to finish transmitting the packet. Note that part i) of the ratio is simply the one way
latency of a packet (i.e. the time it takes for the NIC to transmit the packet plus the
time it takes for the host to receive it plus the time for the host to send the packet
to the NIC).

To construct the tree, we used an algorithm similar to the “simple top-down greedy
algorithm” in [12]. The tree is stored as a list of destination lists, one per host. The

22

algorithm uses two queues called the new queue and the old queue. We start with
the root node and enqueue it in the new queue with time 0. Then, for each node p
in (p1,p2,--.pn_1) we do the following:

e dequeue the node ¢ that has the minimal time ¢ of both of the queues.
e add p to the destination list of ¢

e enqueue p onto the new queue with time ¢ + A

e enqueue ¢ onto the old queue with time ¢ + 1

While there are algorithms which may construct the tree faster [12], this algo-
rithm is simple and general. Because we were constructing the tree off-line in our
test program, we were not concerned with the running time of this algorithm. This
algorithm does, however, produce a tree that is optimal in the postal model for a
given A [12, 4].

So far we have focused on multicasting a single packet. For multi-packet messages,
there are two ways for intermediate nodes to forward the message to it children. One
way would be for the node to receive the whole message, then send the message to its
children. The other method would be for the node pipeline the message in a packet-
wise fashion. In other words, the node would receive the message one packet at a
time, and forward the packets to its children as soon as they are received rather than
waiting for the whole message to be received.

The decision on whether to pipeline the message or not will mostly depend on
whether the communication subsystem supports it. FM, for instance, does not sup-
port message pipelining in general (though we were able to do this in a special case).
In Section 2.5 we will show performance results with and without pipelining.

2.4 Our Implementation of the Multi-send Primitive

We used Illinois Fast Messages (FM) version 2.1 from the HPVM 1.0 distribution
for the base of our experiments. This version was used because it is the latest version
of FM available for Linux.

In FM 2.1, a message is associated with a stream. In order to send a message,
a stream is created between the node and the destination with the FM APT call FM_
begin message(). Data can then be sent on the stream using the FM_send_piece()
API call. When enough data is sent to fill a packet, FM creates a packet and writes it
to the NIC which in turn transmits it to the destination node. On the receiving side,
FM calls a message handler to optionally re-assemble the message, packet by packet,
into the user buffer. A stream is terminated using the FM_end message() API call,
at which time any remaining data is assembled into a packet and written to the NIC.

23

To avoid loosing packets due to buffer overflow at the receiver, FM uses a flow
control scheme using credit management. One credit corresponds to one packet buffer
at the receiver. On starting FM, each sender starts with a certain amount of credits
for each receiver. Before any packet is sent FM checks if the sender has sufficient
credits for the receiving node. If there are no available credits at the receiver, then
the sender blocks until it receives more credits, otherwise, the sender decrements the
number of credits it has for that receiver and sends the packet. Whenever a node
receives a packet it increments a counter of the number of credits it needs to return
to the sender. These credits are returned to the sender either by piggybacking the
credits on a data packet sent to that node, or via an explicit credit packet.

We modified FM by adding a new API call, FM_begin message multi() which
creates a stream between the sender and all destinations specified in the destination
list given as an argument. As with a regular FM stream, data is sent using FM_send_
piece() and the stream is terminated with FM_end message(). The flow control
mechanism was also modified. Before a packet is sent credits are checked for every one
of the destinations. If there are not enough credits for any destination, the operation
blocks until there are. Basically, rather than just verifying that we have credits for
a single destination, we check that we have enough credits for each destination. For
returning credits normal FM unicast packets have a field for piggybacking them. In
our scheme we use piggyback credits for each destination as described below.

When a packet is ready to be sent, the packet is assembled for the first destination
and written to the send frame on the NIC. Next a list of information on each additional
destination is assembled and written to a new field which is added to the send frame.
Each entry in the list holds the logical node number, the physical node number and the
returned credits for that destination. These are be used to update the corresponding
fields in the packet header so that the packet can be sent to each destination.

Since the host assembles the packet such that it is ready to be sent to the first
destination, the NIC can transmit the packet without checking whether it is a multi-
destination packet. Only after the NIC has initiated the transmit DMA and is waiting
for it to complete, will it check for additional destinations. This way our modifications
add no overhead at the NIC for sending standard FM messages. The NIC then
updates the logical node number, credit and route fields of the packet for the next
destination. This is done as soon as the transmit DMA pointer has passed those fields
but without waiting for the entire DMA to finish. This allows the header field updates
to be overlapped with the DMA for all but the smallest messages. After updating the
fields, the NIC waits for the DMA to finish then the DMA is immediately initiated
to transmit the packet to the next destination. This is repeated for each additional
destination.

24

10000 ; . . . T — : :
FM send to 1 dest —— 1 destination ——

FM send to 3 dests - a5 | 3 destinations -

FM send to 7 dests - : 7 destinations -

FM send to 15 dests = g 15 destinations -
— Multi-send to 1 dest ---=--- € 3
9 1000 £ Multi-send to 3 dests ---o-- o
3 Multi-send to 7 dests ---s-- © 25}
= Multi-send to 15 dests - = o
S
g = <
o 5 27 .
8 100 I el
Q 15 - o
(TN

B
¥
—

10

1 4 16 64 256 1024 4096 16384 1 4 16 64 256 1024 4096 16384

Message Size (byte) Message Size (byte)
(a) Latency (b) Factor of improvement

Figure 2.5: Performance of NIC-assisted multi-send operation versus multiple FM
send operations.

2.5 Experimental Results

The performance tests were run on a cluster of 16 300MHz Pentium IT machines
each with 128MB of RAM running RedHat 5.2 Linux with kernel version 2.0.36. The
machines are connected by a Myrinet LAN network with LANai 4.3 cards via a 16
port switch.

We tested the performance of the multi-send primitive and compared it with
multiple unicast sends. In every iteration of our test routine, the root would send
messages to the destinations, and then the last destination would send a zero byte
message back to the root after receiving a copy of the message. This was timed for
1,000 iterations, then the average was taken for the result. This was done varying the
message size and number of destinations. Figures 2.5(a) and 2.5(b) show the results
of this test. Notice that for messages less than 32 bytes, our scheme performs slightly
worse than the host-based scheme. This is due to the fact that the NIC transmit time
is not smaller than the host send time and due to the overhead of adding the multi-
send primitive to FM. However, the NIC-assisted scheme performs clearly better than
the host-based scheme for larger messages. It can be observed that the multi-send
primitive achieves a factor of improvement of 3.51 for sending a 16K message to 15
destinations.

To test the performance of a multicast operation using the multi-send primitive,
we ran a test similar to the one described above. One iteration of the test routine
would send a message along a multicast tree, then one of the leaf nodes would send
a zero byte message back to the root. This was timed for 1,000 iterations then the

25

average was taken. Because we couldn’t be sure which leaf node would receive the
message last, we ran the loop several times, each time changing the leaf node which
would return the message, then taking the maximum value. In order to cut down
on the number of leaf nodes to test we only tested the leaf nodes which were the
last children of their parents. This was then varied for message size and number of
destinations. When we were using the optimal multicast tree in our tests, we needed
to use a value for A which would produce the best performance. Since the value of A
depends on the message size, in our test program, for each message size we constructed
a new tree based on integer A values from 1 to the number of nodes participating,
and took the minimum. So each point in our multicast performance graphs is the
minimum over each tree, of the maximum for each responding leaf node in that tree,
of the average of 1,000 iterations.

Also, to study the performance impact of pipelining for multi-packet messages, we
incorporated modifications to our test program as outlined in Section 2.3. As soon
as a packet was received by the intermediate node, it would be sent out, rather than
wait for the whole message to arrive. To pipeline a message, the application would
have to open a stream to its destination(s), then receive the incoming message one
packet at a time until it has received it completely, then close the stream.

This cannot normally be done in FM 2.1 because while a stream is open, FM
does not allow the application to make a call to receive parts of a message. This
is done to avoid certain deadlock conditions. When a stream is opened with FM_
begin message() or FM_begin message multi(), FM sets a lock so that any calls to
receive a message return immediately without receiving. To get around this, we used
a version of this call, FM_unsafe _begin message multi() which does not set a lock.
This version is intended to be used only inside a message handler. We used it outside
a message handler in our main routine. Since the lock is not set when we open the
stream, we are then able to receive the packets of the incoming message and send
them out. Though this approach may lead to deadlock in the general case, because
our test programs ran one multicast at a time, there were no cyclical dependencies
and no deadlock could occur. We used this method, not to show how to pipeline
messages in FM, but rather to demonstrate the performance of our scheme when
pipelining is possible.

We will next compare NIC-assisted multicasting to host-based multicasting. Be-
cause the binomial tree is most often used for host-based multicast operations, as
used in MPI, we will use the binomial tree for the host-based multicast, and compare
it to the NIC-assisted multicast using an optimal tree as discussed in Section 2.3.
Then, because the binomial tree may not be the best tree for host-based multicast,
we will use an optimal tree for the host-based multicast and compare that with the
NIC-assisted multicast also using an optimal tree. In each case, we will show the
impact of message pipelining.

26

1.9

10000 T T T T T T
FM-binomial, 4 node —— 4 node ——
FM-binomial, 8 node - 18 | 8node -
FM-binomial, 16 node - 16 node - .
NA-optimal, 4 node = - € 4710 ¥
. NA-optimal, 8 node ---=--- o g
o 1000 + NA-optimal, 16 node o~ A [L s
2 > 1.6 K
=] = g
5 Eas|
g 5
T - 14
8 100 s
g 137
12+
10 11 !
1 4 16 64 256 1024 4096 16384 1 4 16 64 256 1024 4096 16384
Message Size (byte) Message Size (byte)
(a) Latency (b) Factor of improvement

Figure 2.6: Multicast performance for NIC-assisted multicast using an optimal tree
with packet-wise pipelining (NA-optimal), versus multicast using binomial tree with
FM unicast send (FM-binomial).

Figure 2.6 compares NIC-assisted multicast using an optimal tree with pipelining
against the host-based multicast using a binomial tree. Notice that the NIC-assisted
scheme is better for every message size and every number of destinations. The dip in
the factor of improvement for 2048 byte messages with 16 nodes is due to packetization
effects. The graph also shows a factor of improvement of 1.86 for multicasting a 16K
message to four nodes and a factor of improvement of 1.85 for multicasting a 16K
message to 16 nodes.

Figure 2.7 shows the same comparison as above but without message pipelining.
We can see that the when compared to the pipelined case, performance does not
change for one packet messages (FM packets are 1,536 byte) or for four nodes of
any size. This is because pipelining does not occur for single packet messages, and
for a four node broadcast the optimal tree is flat (A = 2), i.e., the root sends the
message directly to all the three destinations, so again no pipelining would occur.
While the performance improvement is not as great for multi-packet messages with
eight and 16 nodes, when compared to the case when messages are pipelined, there is
still a 1.53 and 1.30 factor of improvement for 16K messages with eight and 16 nodes,
respectively.

To see what impact the shape of the tree had on the performance we are seeing, the
optimal tree algorithm was used with the host-based unicast primitive and compared
with the same data for the multi-send primitive above. Figures 2.8 and 2.9 show the
results of this comparison. In this test, our scheme performs a little worse than the
host-based method for messages less than 32 bytes. We believe that this is due to

27

1.9

10000 T T T T
FM-binomial 4 node ——
FM-binomial 8 node - 18
FM-binomial 16 node - -
NA-optimal 4 node - S 171
- NA-optimal 8 node ---=--- s e
§ 1000 v NA-optimal 16 node -~ ,*"/iy % 16 |
2 s
> E15)
g S 1.4
S 100 5
3 13}
w
12t
10 n n n n n n 11 L L L n n n
1 4 16 64 256 1024 4096 16384 1 4 16 64 256 1024 4096 16384
Message Size (byte) Message Size (byte)
(a) Latency (b) Factor of improvement

Figure 2.7: Multicast performance for NIC-assisted multicast using an optimal tree
without packet-wise pipelining (NA-optimal), and multicast using binomial tree with
FM unicast send (FM-binomial).

the overhead of the additions to FM similar to that observed for Figure 2.5(a). For
multi-packet messages, the optimal tree for the host-based method turned out to be
a binomial tree (i.e. A = 1), so the performance improvement for those messages is
the same as in the previous graphs.

2.6 Related Work

NIC-based multicasting has been previously proposed by Verstoep et.al. [57] and
Bhoedjang et.al. [7]. Their schemes perform the entire multicast operation at the
NIC, as opposed to our scheme which uses a multi-send operation as a primitive for
multicast.

Verstoep, et. al. extend FM 1.1 to include NIC-based multicasting. In their scheme
(called FM/MC) [57], the multicast is performed completely at the NIC-level. At
intermediate nodes, the packet is forwarded to the host, but then immediately trans-
mitted to the child nodes without involving the host. The host receive queues are
divided into multicast queues and unicast queues. In order to prevent buffer over-
flow, credits are managed separately for each. One multicast credit corresponds to
one packet buffer in each host in the network, rather than just for one host, as with
unicast credits. One NIC on the network is designated as a credit manager which
distributes and collects the multicast credits. A NIC must request credits from the
manager before multicasting a packet. However, once a multicast has been initiated,

28

10000 : : 1.9 : .
FM-optimal 4 node —— 4 node ——
FM-optimal 8 node - 1.8 - 8node -~

FM-optimal 16 node 17 16 node ~x--
NA-optimal 4 node :

NA-optimal 8 node --- 1.6

o m oo X

1=
[
‘91000 £ NA-optimal 16 node ---o-- §
) g 15+ 1
2 2
) E 147 1
c 3
i) © 13 r 1
S 100} 5
S 12 J
(o]
o1 1
1r 1
10 0.9 S S
1 4 16 64 256 1024 4096 16384 1 4 16 64 256 1024 4096 16384
Message Size (byte) Message Size (byte)
(a) Latency (b) Factor of improvement

Figure 2.8: Multicast performance for NIC-assisted multicast using an optimal tree
with packet-wise pipelining (NA-optimal), and multicast using an optimal tree with
FM unicast send (FM-optimal).

10000 T — T T T T 1.9 T T T T T T
FM-optimal 4 node —— 4 node ——
FM-optimal 8 node - 1.8 - 8node -]
FM-optimal 16 node - 176 16 node ¥]
NA-optimal 4 node = =
— NA-optimal 8 node ---=--- £ 16} 1
9 1000 £ NA-optimal 16 node ---o-- g s
3 o 15 ¢ - E
7 E14f 1
c u—
g S 1.3 R
S 100 + 1 5
S 12t 1
(]
O 1
1r 1
1 4 16 64 256 1024 4096 16384 1 4 16 64 256 1024 4096 16384
Message Size (byte) Message Size (byte)
(a) Latency (b) Factor of improvement

Figure 2.9: Multicast performance for NIC-assisted multicast using an optimal tree
without packet-wise pipelining (NA-optimal), and multicast using an optimal tree with
FM unicast send (FM-optimal).

29

the intermediate nodes do not need to check for credits and can immediately forward
the packet to their children when they receive it.

Bhoedjang et. al. propose a new message passing protocol called Link-level Flow
Control (LFC) [7]. This system does all flow control at the NIC and also performs the
multicast completely at the NIC. In this system data for a packet is copied to a buffer
pool on the NIC by the host, then the host writes a descriptor to the send queue. The
NIC polls the send queue and transmits the packets when there are sufficient credits.
In order to send a multicast packet, the host simply has to add one descriptor for
each destination but refer them to the same data. At an intermediate node, the NIC
receives the packet then adds descriptors for its children to the send queue.

The main difference between our scheme and the schemes described above, is that
a multicast operation in the schemes described above is done completely at the NIC.
Also, our scheme keeps the receive queues and credit management unified for both
unicast and multicast messages.

2.7 Summary

We have introduced a new NIC-based multi-send primitive, which uses the NIC
to transmit multiple copies of a packet to different destinations. We then showed
how this primitive can be used in a multicast tree to further improve performance for
large numbers of destinations.

The multi-send primitive gave us a 3.51 factor of improvement over conventional
host-level iterative sends for 16K messages. We also observed a 1.85 factor of im-
provement for 8K messages and 16 nodes when using the primitive in a multicast
operation using an optimal tree versus using a binomial tree with the traditional
host-level unicast sends.

30

CHAPTER 3

NIC-BASED BARRIER SYNCHRONIZATION

Barrier synchronization is a common operation in parallel and distributed sys-
tems. An efficient implementation is important because while processors are waiting
on a barrier, generally, no computation can be performed, which impacts parallel
speedup. The efficiency of barrier operations also affects the granularity of a parallel
computation. If the barrier latency is high, then the granularity must also be high.
With a lower latency barrier operation finer-grained computation can be supported.
So it is important to minimize the amount of time spent waiting on the barrier.

Earlier generation SMP systems and MPP systems, such as the Cray T3E and
CM-5, had special hardware to perform barriers. However clusters built from com-
modity components lack the communication assists to perform these operations. Di-
etz [18] had proposed providing hardware barrier over a separate network for clusters
of workstations. Such approach requires two networks and may not be cost effective.

Most current clusters use software barriers based on host-based point-to-point
communication. With host-based communication, each message is initiated by the
host, passed to the NIC, then to the NIC on the receiving node and finally to the
receiving host. The one way latency of such a host-based message may be as high
as 30ps. Depending on the algorithm a software barrier would take log, N (e.g., a
pairwise-exchange algorithm as used in MPICH [22]) to 2log, N (e.g., a gather-and-
broadcast algorithm as described in [31]) steps, where N is the number of participating
processors. So a barrier across 16 processors would take 120 to 240us per barrier.
This provides high overhead for a barrier and does not lead to scalable or fine grained
parallel implementations.

In a barrier operation, often the reception of one message triggers the sending of
another message. A NIC-based implementation improves the responsiveness of the
barrier by eliminating the round trip over the PCI bus. In this chapter, we investigate
the design issues of such an implementation, such as being able to handle multiple
concurrent, barriers with different processes which use the same NIC, being able to
handle multiple consecutive barriers, assuring reliable, in-order delivery of the barrier
messages, and initialization of barrier state at the NIC. We also describe the imple-
mentation of a NIC-based barrier as an addition to Myricom’s GM communication
subsystem.

31

Programming Models

MPICH ‘ Cor%r%lj%ﬁgz\ilt ons

NIC—-Based Point—.t.olPoint
NIC-Supported Operations

Communica(ti;oMubsystem

1
‘ Networking Technology

---- Existing
— Proposed

Figure 3.1: NIC-based barrier for the MPICH middleware

Our NIC-based barrier implementation achieved a barrier latency of 102.14ps for
16 processes which is a 1.78 factor of improvement over the host-based barrier for
the same algorithm using LANai 4.3 cards. This factor of improvement is expected
to increase with the size of the system and with the speed of the NIC processor.
Using LLANai 7.2 cards, which has a faster processor, we achieved a 1.83 factor of
improvement for just eight processes. We expect that the factor of improvement will
also increase if an additional programming layer, such as MPI, is added over GM
because of the additional overhead the layer adds to each message sent or received.
Another feature of our NIC-based barrier implementation is better utilization of the
host processor. Because the barrier algorithm is performed at the NIC, the processor
is free to perform computation while polling for the barrier to complete. This is known
as a split-phase barrier [23]. Our NIC-based barrier operation promises scalable fine-
grained parallel computation over clusters of workstations.

Figure 3.1 illustrates our approach to adding NIC-based barrier to the GM com-
munication subsystem, and how this new functionality is provided to the MPICH mid-
dleware library. The dotted line indicates how the barrier operation is traditionally
implemented using point-to-point messages. The solid line shows our implentation
using the NIC-based barrier operation.

This chapter is organized as follows. Section 3.1 describes the basic idea of NIC-
based barriers. We describe the design issues involved in implementing NIC-based
barrier in Section 3.2. The implementation details are discussed in Section 3.4. The
details of the barrier algorithms used are described in Section 3.3 followed by an eval-
uation of our implementation in Section 3.5. We summarize our work in Section 3.6.

32

Figure 3.2: Host-based barrier (left) and NIC-based barrier (right)

3.1 NIC-Based Barrier and Performance Benefits

The basic idea of the NIC-based barrier is to have the host initiate a barrier
operation at the NIC and have the NIC notify the host when it has completed the
barrier. Figure 3.2 shows block diagrams comparing host-based barrier to NIC-based
barrier. The diagrams show barrier operations, where processes at Nodes 0 and 1
exchange messages at the same time as processes as Nodes 2 and 3 exchange messages,
after which the processes at Nodes 0 and 3 exchange messages at the same time as
the processes at Nodes 1 and 2 exchange messages. The diagram on the left in Figure
3.2 shows a host-based barrier. In the host-based barrier, in order for a message to
be sent the host transfers the message to the NIC which transmits it on the network
to the receiving NIC. The receiving NIC receives the message and transfers it to the
host. Once the host receives the message, it can initiate sending a message to the
next host.

By basing the barrier operation at the NIC, rather than at the host, the interme-
diate messages need not be transferred between the host and the NIC. The diagram
on the right in Figure 3.2 shows a NIC-based barrier. In the NIC-based barrier model,
the host sends a message to the NIC to initiate the barrier operation and waits for
notification from the NIC that the barrier has completed. The barrier messages are
then exchanged between NICs and need not be transferred to the host. As soon as a
NIC receives a barrier message, the message to the next process can be sent directly.

33

d HR Send HR d HR

Host
NIC _| SDMA| Xmit || RDMA | | SDMA] Xmit || RDMA | | SDMA] Xmit || RDMA |

| Recv | [I| Recv | [I Recv | |

' |
—| [~—Network
(a) Host-based

Send HR
Host
NIC Xmit | Xmit | Xmit | |RDMA |

| Rew ||| Recv | |

| Recv |
| |
— Network

(b) NIC-based

Figure 3.3: Timing diagram comparing latencies for host-based barrier and NIC-based
barrier

3.1.1 Estimated Performance Improvement

In this section we estimate the performance improvement of using a NIC-based
barrier over using a host-based barrier. This estimate is based on a pairwise-exchange
algorithm similar to the one used in MPICH[22]. To perform a barrier with N pro-
cesses using this algorithm, each process exchanges messages with loga N other pro-
cesses (This algorithm is described in more detail in Section 3.3.). Figure 3.3 compares
the latency of a host-based barrier with a NIC-based barrier for eight processes. In
these diagrams it takes three message exchanges per process to complete the barrier.
Each timing diagram shows the breakdown of a barrier operation at a single node.
For simplicity, we assume that each node has only one process and that all processes
start the barrier at the same time, so the timing diagrams for all eight nodes would
look the same. We also assume that the NICs have separate receive and transmit
channels? to the network, so that one message can be received while another is being
transmitted. In these diagrams, Send corresponds to the time from when the host
initiates the send until the NIC detects it. SDM A is the time it takes for the NIC to
transfer the data for the message from the host memory to the NIC transmit buffer.
Xmit corresponds to the time for the NIC to transmit the message on the network.
We assume that the network is wormhole routed. Thus the time between when the
transmit starts at the sender and when the receive starts at the receiver is small.

2Current Myrinet NICs support this feature.

34

This time is represented as Network in the diagrams. Recv represents the time for a
message to be received by the NIC. The time to transfer a message from the NIC to
the host is represented as RDM A. Finally, H Recv corresponds to the time it takes
the host to process the message once it has been transferred from the NIC.

Figure 3.3(a) shows the barrier latency for a host-based barrier. After the host
transfers the message for the first destination to the NIC, the NIC starts transmitting
it. The NIC will start receiving a message after a delay of Network once the message
has started being transmitted. Since we assume that the barriers started at the same
time on all nodes, the NIC will receive a message sent to it after a delay of Network
after it has started transmitting its message. The diagram shows these transmit and
receive events occurring concurrently. Once the message has been received, the NIC
transfers the message to the host which processes it. The host then initiates sending
a message to the second destination and the process is repeated. After the process is
repeated again for the third destination, the barrier has completed.

Figure 3.3(b) shows the latency for a NIC-based barrier. Here, the host transfers a
message to the NIC to initiate the barrier operation. The NIC starts transmitting the
message to the first destination. As before, the NIC starts receiving a message from
the corresponding node after a delay of Network. After the message has been received
by the NIC, the NIC starts transmitting the message for the second destination. Again
the message from the corresponding node is received while the second message is being
transmitted and, similarly, for the third message. After the third message has been
received, the NIC transfers a notification to the host. Once the host processes the
notification, the barrier has completed.

From these diagrams, we can see that the latency for an eight node host-based
barrier is 3 x (Send+SDM A+ Network+ Recv+ RDM A+ H Recv), while the latency
for a NIC-based barrier is only Send + 3 x (Network + Recv) + RDM A + H Recv.
More generally, for an N process system, the host-based barrier latency would be:

THost ~=1logy, N x (Send + SDM A + Network + Recv + RDM A + H Recv) (3.1)

Barrier

And for the NIC-based barrier it would be:

TYIC = Send +log, N x (Network + Recv) + RDMA + H Recv (3.2)

Barrier

The factor of improvement of the NIC-based barrier over the host-based barrier
is given by:

Host
Factor of Improvement = % (3.3)

Barrier

logy, N x(Send+SDM A+ Network+Recv+RDM A+ H Recv)
Send+logy N X(Network+Recv)+RDM A+ H Recv

35

From Equation 3.3 we can predict that as the host send overhead increases, say
from the addition of another programming layer such as MPI, the factor of improve-
ment will increase. The factor of improvement will also increase as the number of
nodes increases and as the network performance increases.

3.2 Design Issues

There are several major issues in designing a NIC-based barrier operation. One
issue is how to handle unexpected barrier messages that are received by a node which
hasn’t initiated a barrier. Another issue is initializing barrier data structures at the
NIC when a process opens an endpoint, and similarly cleaning up data structures
after an endpoint is closed. Reliability and in-order delivery of barrier messages must
also be addressed. The last issue is to handle multiple concurrent barriers at the same
NIC.

In this section we first describe our system model and then identify these design
issues and present some solutions. In the next section, we identify the solutions we
have implemented.

System model: A system consists of a collection of nodes. Each node consists
of one or more programmable NICs and one or more host processors. The nodes are
connected, through the NICs, by a communication network. Processes run on a host
processor and can communicate with each using the NICs by using an abstraction
called a communication endpoint. A process can allocate one or more such endpoints.
An endpoint is associated with a particular NIC at the node, so that messages sent
or received by the process are handled by that NIC. Messages are sent from one
endpoint to another. Similarly, a barrier operation is associated with endpoints.
A barrier operation synchronizes the processes which are attached to the specified
endpoints.

3.2.1 Handling Unexpected Barrier Messages

If all processes start the barrier operation at the same time, then keeping track
of which messages were received would be easy, because the barrier messages would
be received in the same order as they are expected. In practice, however, processes
may initiate barrier operations in an asynchronous manner. Thus, a NIC may receive
barrier messages before the NIC is ready for them and possibly even before the host
has initiated the barrier. To make matters worse, there may be multiple consecutive
barriers with different subsets of processes, so the NIC may receive barrier messages
from future barriers. In the worst case, a process might perform multiple consecu-
tive two-process barriers, one with every other process in the system. Then, if that
process is slower than the others and the other processes reach their barriers first,
the associated NIC would receive N — 1 unexpected barrier messages, where N is

36

the number of processes in the system. So the NIC must be prepared to receive a
barrier message from any process on any node in any order at any time. However,
once a process initiates a barrier operation and is waiting for it to complete, it will
not initiate another one until that barrier completes. So the NIC can receive at most
one unexpected message from every other process on every node.

One method of handling unexpected barrier messages is to accept and record the
reception of every unexpected barrier message in a unexpected barrier message record.
For instance, a flag could be allocated for every possible communication endpoint on
every possible node. When a barrier message is received, the flag corresponding to
the endpoint that sent the message would be set. Then, when the NIC is ready to
receive a barrier message from a particular endpoint, the NIC would simply have to
check the corresponding flag to see if that message has already been received. The
flags are then reset after they are read to allow another unexpected message to be
recorded from that same endpoint. Representing the flags as a bit array is the most
space efficient representation and also setting, resetting or checking the flags would
take constant time. Because GM allows only eight endpoints per NIC, this overhead
is only one byte per connection.

3.2.2 Initialization and Cleanup

Another problem is how to initialize the data structures recording these messages,
and how to clean them up after a partially completed barrier is aborted. For example,
let’s say process A on Node 0 initiates a barrier with process B on Node 1, and that
process B dies before a barrier message is received. When the NIC at Node 1 receives
the message it will record it as an unexpected message, possibly destined to a process
that hasn’t started yet. Now, say, process A is killed, and two new processes A’
and B' are started on Nodes 0 and 1 respectively, and reuse the same endpoints as
the previous processes. If process B’ initiates a barrier, the NIC will see that it has
received a message from Node 0 from the same endpoint that process A’ is using and
will assume that it has received a barrier message from A’ even though that message
was sent by A. It is possible now for B’ to complete the barrier before A’ starts the
barrier.

Before we discuss possible solutions, we need to make certain assumptions about
the state of the system when a process is started. Processes that will communicate
may not all start at the same time. Because of this, it is possible that when a node
sends a message to a remote endpoint the remote process to which the message was
sent may not have started yet. This may be unavoidable, but is usually benign. In
the worst case this message would have to be retransmitted. It is also possible that
a different process is still using that endpoint. This has more serious implications.
Messages may be sent between the nodes, each one thinking that the message has
been sent or received by a different process. To avoid this possibility, it is sufficient

37

to require that if a process p will communicate with a process ¢ through a remote
endpoint e, then when process p is started the endpoint e cannot be owned by a
process other than ¢. Furthermore, no old messages can be in the communication
channels between p and ¢. While this may seem like a rather strict requirement,
this usually happens in practice. For instance when a parallel program is started on
several machines, if a resource, such as an endpoint, is not available to one process,
the whole program is aborted and restarted once the resource is available. A way
around this requirement is to include a mechanism to distinguish messages of one
parallel program from another.

One naive solution is to simply clear the unexpected barrier message record of all
messages destined for a particular endpoint when that endpoint is opened. This may
solve the problem mentioned above, but that does not allow barrier messages to be
received for a process that hasn’t started, or opened an endpoint. This may happen,
if, for instance, the first action of a program is to do a barrier in order to make sure
all its peers have started.

A better solution is to have the NIC reject any barrier messages for a closed
endpoint. Then, the sender of the barrier message will resend the message, but only
if the endpoint that initiated the barrier has not closed since the message was sent.
Then, with the above requirement about the state of the system when a process
starts, we know that once a process opens an endpoint, and starts accepting barrier
messages, no old messages will be received. While this method may increase the
latency of the barrier, this will only be the case if a participating endpoint has not
been opened yet.

Another solution is to record received barrier messages for a closed port, but then
reject those messages once the endpoint is opened. Then, the NICs which sent those
messages will then resend them, but only if the endpoints which initiated the barriers
have not closed since the original message was sent. This has the same drawbacks as
the previous solution, except, it would require only one retransmission, rather than
an unbounded number. Thus we adopt this approach in our implementation.

3.2.3 Reliability and In-Order Delivery

A lost barrier message could hang processes indefinitely. Therefore it is important
to provide a mechanism to deliver barrier messages reliably. Related to this issue is
the guarantee of the order in which the messages will be delivered. There are two
design options with regard to the delivery order of barrier messages relative to non-
barrier messages. If barrier messages are guaranteed to be delivered in-order with
regard to non-barrier messages, then messages sent before a barrier is initiated by the
sending process will be received before the barrier completes at the receiving process.
Similarly messages sent after a barrier completes on the sending process, will not be
delivered before the barrier completes on the receiving process. This will not be true

38

if the relative order of barrier messages and non-barrier messages is not preserved.
Instead, the order of messages will be maintained separately among barrier messages
and among non-barrier messages.

One method of preserving the relative order between barrier messages and non-
barrier messages is to use the same mechanism to provide in-order and reliable delivery
for both types of messages. This is the approach we adopt in our implementation.

3.2.4 Multiple Concurrent Barriers

Because barriers using message passing do not depend on holding shared resources,
independent barriers on separate nodes can occur concurrently. However, if a NIC
can be used by more than one process, then the NIC-based barrier mechanism must
be designed to allow multiple processes to initiate barrier operations concurrently. If
two processes using the same NIC are participating in the same barrier, it may be
possible to provide an optimization, where a barrier message need not actually be
sent, but rather just have a flag set to indicate that it has been received. Our initial
implementation allows multiple instances of barriers to exist concurrently on the same
NIC. We intend to incorporate the above optimization in our final implementation.

3.3 Barrier Algorithm

In this section we describe two algorithms for performing barriers and how we im-
plemented them on the NIC. The first is a gather-and-broadcast algorithm (GB) [31],
and the second is a pairwise exchange algorithm (PE) that is used in MPICH [22].

3.3.1 Algorithm Descriptions

The GB algorithm constructs a fixed dimensional tree of the nodes participating
in the barrier. The algorithm then proceeds in two phases: gather and broadcast.
In the gather phase, each node, except the root, waits to receive a gather message
from each child, then sends a gather message to its parent. The root waits for a
gather message from all its children, then sends a broadcast message to each of them
and exits the barrier. As each other node receives the broadcast message, it sends
the broadcast to each child then also exits the barrier. We would expect that the
dimension of the tree would impact the performance of the barrier. Thus, depending
on the parameters of the communication subsystem and the size of the barrier one
could use a different dimension tree to get the best performance.

The PE algorithm runs as follows. Assuming we have a power-of-two number of
nodes, we start the algorithm by placing each node into its own group; i.e., if we have
N nodes, then there are N groups each with one node. Then the algorithm proceeds
recursively by merging groups, two at a time, until there is only one group. The

39

algorithm is then finished. To merge two groups, each node in one group exchanges
messages with exactly one node in the other group. The nodes in those two groups
then form one new group. Because the message exchanges can happen concurrently,
this can be accomplished in one step. The algorithm runs in a total of log, N steps
if N is a power of two.

If N is not a power of two, then we divide the nodes into a set S and a set S’
such that |S| is the largest power of two less than N. We then pair each node in S’
with a node in S. Each node in S’ will send a message to its corresponding node in
S, which waits for the message. Next, the nodes in S perform a barrier as described
above. Finally, the nodes in S which had received a message from the nodes in S’
send a message back to their corresponding node in S’. For non-power-of-two number
of nodes the algorithm should run in |log, N | + 2 steps.

NIC processors are typically much slower than the host processors (e.g., Myrinet
NIC processor speeds range from 33MHz to 233MHz while processor speeds for a
typical host processor might range from 300MHz to 3GHz). For this reason it may
be more efficient to have the host processor perform some parts of the algorithm.

An issue here is the construction of the tree for the GB algorithm. One alternative
is to pass the list of participating nodes to the NIC and have the NIC construct the
tree. However, the tree construction is a relatively computationally intensive task
which can easily be computed at the host. The host at a particular node needs to
inform the NIC only of the children and parent of the node, rather than all the nodes
in the barrier. This also reduces the amount of data that has to be transferred to
the NIC. Similarly, for the PE algorithm, the task of determining the pairings can be
done either at the NIC, or at the host. Again, this can be done much quicker at the
host and also the whole list of nodes need not be transferred to the NIC.

3.3.2 Algorithm Implementation

Both algorithms were implemented on the NIC. We will first describe the changes
to the GM API, then describe the implementation details at the NIC.

We added two new functions to the GM API to support NIC-based barriers: gm_
provide_barrier_buffer () and gm_barrier_send with_callback(). Before initiat-
ing a barrier the host calls gm_provide_barrier_buffer() to provide the NIC with
a receive token. To perform a barrier, the host must compute the barrier tree (for
the GB algorithm), or the list of processes with which to exchange messages with (for
the PE algorithm). Then, the process then calls gm_barrier_send with_callback().
For the GB algorithm, the process specifies, in the function call, the parent node id
and port id, and the node and port ids of each of the children. For the PE algorithm,
the process specifies the list of nodes and port numbers with which to exchange mes-
sages. Next, the host polls gm_receive() until it receives a GM_BARRIER_COMPLETED_
EVENT. The reception of this event indicates the completion of the barrier. Because we

40

separate the barrier initiation from the polling of the barrier completion, a split-phase
barrier [23] can be performed, where some bounded computation can be done while
polling for the barrier completion.

In the GB algorithm, the gm_barrier_send with_callback() function creates a
send token with the node list and passes it to the token queue on the NIC. There is
a separate packet type for each phase. When the SDMA state machine receives the
barrier send token from the process, it first sets the send token pointer in the port
structure to this send token, then it checks if it received a barrier gather packet from
each of its children. If so, it clears the bits for the received packets, and queues the
send token for the parent node. If it has not received a gather packet from each child,
then it must wait until all have been received.

When a barrier gather packet is received, the packet is recorded, then, if the send
token pointer in the port data structure is non-zero, the RDMA state machine checks
to see if gather packets have been received from all the children, and, if so, the send
token is prepared to send a barrier gather packet with the parent’s port id and is
queued in the send queue for the parent’s node id.

When the root node receives gather messages from each child, or when a child
receives a barrier broadcast packet, the RDMA state machine sends a receive token to
the host indicating that the barrier has completed, and sets the send token pointer
in the port data structure to zero. Then the send token is prepared to send a barrier
broadcast packet to the first child, and is enqueued on the connection to the node
of the first child. Once the SDMA state machine has prepared the packet to be
transmitted, the send token is updated to be sent to the next child, and it is re-
queued. This continues until a broadcast packet has been sent to each child. Then
the send token is returned to the port.

In the PE algorithm, the gm_barrier_send_with_callback() function creates a
send token with the node list and passes it to the token queue on the NIC. When
the SDMA state machine receives the barrier send token from the host, it sets the
node indez to point to the first node in the node list, sets the destination node id and
port id of the send token to this first node and port, then sets the send token pointer
in the port data structure to point to the send token to indicate that a barrier has
been initiated. Then, after the SDMA state machine prepares the packet to be sent,
it checks to see if a barrier packet has been received from that same destination. If it
has, it 1) clears the bit for that message, 2) increments the index in the send token
to point to the next destination, 3) writes the next destination’s port number in the
send token, 4) removes the send token from the current queue and 5) queues the send
token in the queue for the connection for the next destination. If the expected barrier
packet was not yet received, then the send token is simply removed from the queue.

When a barrier packet is received, the RDMA state machine checks if the port
that the message is addressed to has received a barrier send token from the host
by checking if the pointer to the send token is non-zero. If so, and if this is the

41

expected barrier message, then the send token is updated and enqueued for the next
destination. In all other cases, the reception of the message is simply recorded.

Once the packet to the last destination has been sent and the corresponding packet
has been received, the barrier is complete. The NIC DMASs a receive token to the host,
returns the send token, and sets the send token pointer in the port data structure to
Zero.

3.4 Implementation

In this section we describe our implementation of a NIC-based barrier as an addi-
tion to Myricom’s message passing system, GM[34], version 1.2.3. First, we describe
GM, then identify our design choices and describe the implementation details of each.

3.4.1 Overview of GM

GM consists of a driver, a library and a Myrinet control program (MCP). The
driver loads the MCP on to the NIC when it is loaded. During the execution of a
program the driver is used mainly for opening ports, pinning and unpinning memory,
and to put a process to sleep or to wake a process for blocking functions. A port
is a data structure through which a process can communicate with the NIC while
bypassing the operating system. A port also serves as a communication endpoint.
Once a port is opened, the process can communicate with the NIC, bypassing the
OS and avoiding system call overhead. In GM version 1.2.3, each NIC can support a
maximum of eight ports, some of which are reserved.

At the host level GM is connectionless, but provides reliability by maintaining
reliable connections between NICs of different nodes. Flow control is used between
the NIC and the host to avoid buffer overflows. To provide this reliability GM uses
the concept of tokens. When a process opens a port, it has a certain number of send
tokens and receive tokens. Each send token corresponds to a send event. For sending
a message the process fills-in a send token describing the send event and queues it on
the send queue. Once the NIC has completed the event, and has freed the resources
corresponding to that event, the send token is returned to the process.

In order to receive a message, the process must allocate a buffer into which the
message will be received and pass a receive token describing the buffer to the NIC.
Once the NIC has DMAed the data into the buffer, the receive token is returned to
the process. The process must poll to detect returned receive tokens. Messages may
only be sent from and received into buffers which are pinned in memory. Memory is
pinned using special functions supplied by GM.

Figure 3.4 is a block diagram of GM where a process has two ports through
which send tokens and receive tokens are transferred to and from the MCP without

42

Lg \7,% A Process A
= H 1| Y Library| | Driver !

DMA from Token Receiv DMA
host queuel JFL= to
host

r—F&DMA

L Receive
\Jm buffers

Send
queues

Transmit
LfTHbuﬂers

To network From network

(N)ACKs
(N)ACKs

Figure 3.5: Block diagram of the components of the MCP.

going through the driver. The figure also shows DMA operations which transfer data
directly to and from the process’ memory.

The NIC has a data structure for each local port, which contains the send and
receive queues. The NIC also has data structures each corresponding to a connection
to one node in the system. The connection structure contains information about the
state of the connection and the port from which to send next.

Figure 3.5 shows a block diagram of the MCP. The MCP consists of four state
machines called SDMA, SEND, RECV and RDMA. The SDMA state machine polls
for new send tokens and queues them on the queue for the appropriate connection.
The SDMA state machine is also responsible for initiating a DMA to transfer data
from the host memory to the transmit buffers in the NIC and to prepare the packet for

43

transmission. Once the packet is ready to be transmitted, the send token is moved to
the sent list. The SEND state machine is responsible for transmitting packets which
were prepared by the SDMA state machine and any acknowledgment packets which
may be pending. The RECV state machine receives incoming packets into receive
buffers and handles acknowledgment and negative acknowledgment packets. When
the RECV state machine receives an acknowledgment it removes the token associated
with that send from the sent list and passes it back to the host. The RDMA state
machine prepares acknowledgment and negative acknowledgment packets and DM As
the data to the host buffer corresponding to an appropriate receive token. The RDMA
state machine also adds receive tokens in the receive queue to notify the process that
the receive has completed.

3.4.2 NIC-Based Barrier in GM

We added two new procedures to GM called gm_provide_barrier_buffer() and
gm_barrier with callback(). The gm provide _barrier buffer() procedure trans-
fers a barrier receive token to the NIC. The NIC will return this token to the process
when the barrier has completed. This procedure is actually a misnomer because no
buffer is needed by the barrier. It was named this because it is the analog of gm_
provide_receive_buffer().

The gm barrier with_callback() procedure fills in a send token describing the
nodes and ports with which to exchange messages and queues it on the send queue.
The NIC, upon receiving the token, will perform the barrier operation, then return
the receive token, previously provided by a gm_provide_barrier_buffer() call, to
the process indicating that the barrier has completed. Note that the send token need
not be returned when the receive token is returned. For instance, in the PE algorithm,
if there is a non-power of 2 number of nodes participating in the barrier, then some
nodes in the set S, described in Section 3.3, will be sending messages to the nodes
in the set S’. In this case, the NIC need not wait for this last message to be sent
before returning the receive token to notify the process. The send token will then be
returned when this last send is complete.

Multiple Concurrent Barriers

In order for our implementation to support multiple concurrent barriers, we must
allow multiple barriers to exist on the same NIC. Since each port may participate in
a barrier independently, the NIC must keep the state of each barrier separate. We do
this by putting the state information in the send token and keeping a pointer in the
port data structure to this send token. This way, when a barrier packet is received,
the RDMA state machine can access the state of the barrier by simply dereferencing
the pointer. The token will store a list of the port ids and node ids with which barrier

44

messages will be exchanged, as well as an index, node indez, into this list to indicate
which is the next node to receive from or to send to.

Handling Unexpected Barrier Messages

To handle unexpected barrier messages, we used an unexpected barrier message
record. Because there is already a data structure per connection, and each connection
has at most eight ports, the record was implemented as a bit array for each connection.
When an unexpected barrier message is received, the bit corresponding to the source
port and connection is set. The NIC can then check for received messages by checking
the appropriate bit. After a bit is checked, the bit is cleared.

Reliability and In-Order Delivery, and Initialization and Cleanup

The difficulty in providing reliability is that in GM, when a reliable packet is
transmitted, the send token is added to the sent token list. Only once the packet is
acknowledged is the send token de-queued and returned to the process. If a packet
is negatively acknowledged, all packets sent after that packet must be resent. This is
done by pushing the contents of the sent list back on the send queue.

In our current implementation, which uses unreliable barrier packets, once a bar-
rier packet has been transmitted, it is de-queued then re-queued in the queue for the
next destination. Now, since our barrier scheme uses only one send token, and the
token can potentially be used to send to multiple destinations, if two or more barrier
packets need to be retransmitted, the same token would have to be queued twice.

One solution is to have the barrier event use one token for every destination. Then
the NIC will queue a send token separately for each packet sent. Another solution
is to provide a separate retransmission mechanism just for barrier messages. Under
this solution, the barrier messages will be acknowledged separately and will have
separate sequence numbers. This will require separate acknowledgment packet types
and structures to keep track of sequence numbers, as well as routines to resend the
barrier messages. As discussed in Section 3.2.3, barrier messages and non-barrier
messages will not necessarily be received in the same order that they were sent.

We have implemented some of the components necessary to provide reliability.
We intend to complete the implementation soon. As described in Section 3.2.2, a
barrier message retransmission mechanism is necessary for handling barrier messages
which are sent to ports which are closed. Since we have not finished implementing
this mechanism, when performing our benchmark programs, we must ensure that any
barrier that is initiated completes normally (i.e., no participating port is closed during
a barrier operation).

45

3.4.3 MPICH Modifications

MPICH is designed using a layered approach, such that all that needs to be done to
port MPICH to use a new communications device, is to write a new channel interface
for that device. The channel interface defines a set of low level data-transfer primitives
which are used by the upper layers. The host-based MPI_Barrier() barrier operation
is normally implemented at an upper layer using the high level MPI_Sendrecv() call.
However, if a barrier operation is implemented in a channel interface, then by defining
the MPID_Barrier and MPID_FN_Barrier macros, that operation will be used instead
of the upper layer one.

We modified MPICH-GM version 1.2..3 to use our NIC-based barrier operation.
As we will describe in Section 3.5, the PE algorithm performs better than the GB
algorithm. For this reason we only used the PE algorithm for MPICH-GM. In the GM
channel interface, a send is queued at the host until there is a send token available to
issue a gm_send () call. When the token is returned, the entry for that send is marked
as complete. Receive requests are similarly queued, and marked as complete when
the receive token is returned. The MPID DeviceCheck() procedure receives messages
from the NIC and marks the completed sends as complete. It also keeps track of the
token counts and sends pending messages when send tokens are available.

We implemented a low level procedure called gmpi_barrier () to perform the NIC-
based barrier. The macros described above were defined to refer to this function.
This function first determines the list of nodes with which the NIC will exchange
messages. This is done using the same basic algorithm that the MPICH host-based
barrier algorithm uses, which was described in Section 3.3. Next, the procedure
calls MPID DeviceCheck() until all pending sends and receives have completed and
until there is at least one send token and at least one receive token available. Now
the procedure is ready to perform the barrier. The procedure calls gm provide_
barrier_buffer() followed by gm barrier with_callback() and decrements the
send and receive token counts. The procedure now sets a flag barrier_done and polls
MPID DeviceCheck() until the flag is set. The procedure MPID DeviceCheck() was
modified to set this flag when a barrier receive token is received. When the callback
function associated with the barrier is called, the send token count is incremented.

3.5 Performance Evaluation

In this section, we evaluate performance benefits of our implementation. The
evaluation is done along multiple angles:

GM-level performance — We evaluate the basic performance of the barrier op-
eration at the GM-level. We compare the performance of the two algorithms
using LANai 4.3 NICs with 33MHz processors, and LANai 7.2 NICs with faster,

46

66MHz processors. This will indicate the effects of faster NICs on the perfor-
mance of the operation.

MPI-level overhead — We have evaluated the amount of overhead that the MPI
layer adds to the barrier latency compared to the GM-level barrier. This will
indicate whether applications at the MPI level can effectively utilize the perfor-
mance of the NIC-based barrier.

MPI-level performance and scalability — Scalability is an important factor in
collective communications. Modern clusters can have 1,000 or more nodes, so it
is important that collective communication operations such as barrier perform
well as the system size increases. We evaluated the performance of the NIC-
based barrier and compared it to the host-based barrier at the MPI level. We
also compared the scalability of the NIC-based barrier to the host-based barrier.

Granularity of computation — The latency of a barrier operation affects the
granularity of computation. If the cost of performing a barrier is high, then
the amount of computation performed between barriers will have to be large,
otherwise the efficiency of the program suffers. So, by reducing the latency of
the barrier, the program can be written using finer granularity without loosing
efficiency. We evaluated the performance of a computational loop with barrier
for varying granularity of computation.

Varying arrival times — In most real applications, nodes participating in a barrier
may arrive at the barrier at different times. We evaluated the performance of
the NIC-based and host-based barriers while varying the delay between the
barriers.

Performance evaluation with synthetic application — Because the barrier
latency in many message passing systems has been high, few benchmarks exist
which use barrier heavily. For instance, the NAS[2] benchmarks use very few
barriers. In order to simulate a higher granularity application, we wrote a
synthetic benchmark. Each synthetic application performs several phases of
computation each followed by a barrier. The length of the computation varies
from one phase to the next. We compared the overall execution times of the
applications using NIC-based barrier and host-based barrier.

The performance results were run on a cluster of 16 dual 300MHz Pentium II
machines each with 128MB of RAM, running RedHat 6.0 with SMP kernel version
2.2.5. The machines are connected by a Myrinet[10] LAN network using NICs with
33MHz LANai 4.3 processors. These are connected to a 16 port switch. Eight of
these machines are also connected by another Myrinet LAN network using NICs with
66MHz LANai 7.2 processors. These are connected to an eight port switch.

We describe the results of our evaluation in the following subsections.

47

3.5.1 GM-Level Performance

We tested the latency of our NIC-based barrier implementation and compared it
to a host-based barrier implementation on GM. We compared the performance for
both the GB and PE algorithms. To test the barrier latency, we ran 100,000 barriers
consecutively and took the average latency. Tests were performed for 2, 4 and 8 nodes
using LANai 4.3 and the LANai 7.2 NICs, and for 16 nodes using LANai 4.3 NICs.

The performance of the GB algorithm on a given system for a given size depends
on the dimension of the gather and broadcast tree. In order to find the optimal
dimension for the tree, we ran the test for every dimension from 1 to N — 1, where
N is the number of nodes participating in the barrier. The latencies reported in the
graphs are the minimum latencies over all dimensions.

Figure 3.6(a) shows the barrier latencies of NIC-based and host-based barriers for
each algorithm using the LANai 4.3 cards. Notice that the NIC-based PE barrier
performed better than all other barriers, with a 16-node barrier latency of 102.14ps.
Also, the NIC-based GB barrier performed better than either host-based barrier ex-
cept for the two node barrier. The NIC-based GB barrier performed worse for the two
node barrier than the host-based GB barrier because of the overhead of processing
the barrier algorithm at the NIC. The 16 node barrier latency of the NIC-based GB
barrier is 152.27ps. The host-based PE barrier performed better than the host-based
GB barrier.

Figure 3.6(b) shows the factor of improvement of the NIC-based barrier over the
host-based barrier for both algorithms using the LANai 4.3 cards. For a barrier with
16 nodes, the NIC-based PE barrier gave a 1.78 factor of improvement over the host-
based PE barrier, while the NIC-based GB barrier gave a 1.46 factor of improvement
over the host-based GB barrier.

One possible reason why the factor of improvement for the GB algorithm is not
as large as that for the PE algorithm is that in the broadcast phase of the host-based
barrier, the messages sent by the host are pipelined through the NIC, i.e., after the
host transfers a send event to the NIC, it is free to transfer the next send event while
the NIC is processing the first one. So part of the overall send time of one message
is overlapped with that of the subsequent message. There is no such overlapping in
the PE algorithm because the host must wait to receive a message before sending the
next one.

We also ran similar tests using the LANai 7.2 cards. Because we only have eight
of these cards, we show the results for up to only eight nodes. Figure 3.6(c) shows
the barrier latencies for NIC-based and host-based barriers for each algorithm using
these cards. Notice that the faster NIC processor improved the performance of all
implementations. With the faster NICs the NIC-based barrier using the PE algorithm
performed a barrier in 49.25ps compared to 90.24ps for the host-based PE barrier for
eight nodes.

48

NIC PE —+— ‘ ‘ i =
—~ 200 1 NICGB ~x] g
8 Host PE -~ I o
% 150 | HostGB " B P ©
2 - R g
g g
2 100 =
2 9]
[=
- 50 £
© 4
L L L L L L L 0'8 L L L L L L
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Nodes Number of Nodes
(a) Latency LANai 4.3 (b) Factor of Improvement LANai 4.3
NIC PE —— ‘ ‘ ‘ 2 2 ‘ ‘ ‘ ‘ ‘ ‘
—~ 2001 NICGB ~x- 1 g]
] Host PE - o
2 150 | HostGB & i 8 1
~ o
> IS 4
2 100 1=
i) s} i
8 S
50 4 g GB —+— |
& ‘ PE ——x—
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Nodes Number of Nodes
(c) Latency LANai 7.2 (d) Factor of Improvement LANai 7.2

Figure 3.6: Comparison of NIC-based barrier and host-based barrier for two algorith
ms (PE and GB) using the LANai 7.2 and LANai 4.3 NICs

49

120

o

$ 100

=

> 80

e

Q 60

©

- 40

Q -

% 20 & 1
m 0 1 1

2 4 8 16
Number of Nodes

Figure 3.7: GM barrier latencies and MPI barrier latencies of NIC-based barriers
using 33MHz LANai 4.3 and 66MHz LANai 7.2 NICs

Figure 3.6(d) shows the factor of improvement of the NIC-based barrier over the
host-based barrier for both algorithms using the LANai 7.2 cards. This shows a 1.83
factor of improvement of the NIC-based barrier over the host-based barrier using the
PE algorithm for eight-nodes. This is a greater factor of improvement than we saw
for the LANai 4.3 cards for eight nodes which was 1.66.

3.5.2 MPI-Level Overhead

To evaluate the MPI overhead, we compared the latencies of the barrier operations
at the GM level and at the MPI level. To determine the latency of the barriers, we
performed 10,000 consecutive barriers and took the average latency of each barrier
at each node. Figure 3.7 shows the results of these experiments using 33MHz LANai
4.3 and 66MHz LANai 7.2 NICs. When using the 33MHz NICs there was a 3.22ps
overhead for the 16 node NIC-based barrier. For the 66MHz NICs, there was only
a 1.16us overhead for the eight node NIC-based barrier. Note that the overhead of
MPI operation to initiate a NIC-based barrier does grow slightly with the number of
nodes. For the pairwise-exchange algorithm that we are using, it grows at a rate of
log, N, where N is the number of nodes participating in the barrier. By taking this
into account, it can be observed that our MPI-level barrier implementation to use the
GM-level NIC-based barrier is extremely efficient.

20

3.5.3 MPI-Level Performance and Scalability

To evaluate the performance of NIC-based barriers at the MPI-level, we performed
10,000 consecutive barriers using the MPI Barrier () function, and took the average
latency of each barrier at each node. These experiments were performed for host-based
and NIC-based barriers using both LANai 4.3 NICs and LANai 7.2 NICs. Figures
3.8(a) and 3.8(b) show the results of these experiments for power-of-two numbers of
nodes. Figure 3.8(a) shows a latency of 105.37ps for the NIC-based barrier (NB)
compared to 216.70ps for the host-based (HB) barrier using the 33MHz LANai 4.3
NICs for a 16 node barrier. Similarly, a barrier latency of 46.41us is observed for
the NIC-based barrier using the 66 MHz LANai 7.2 NICs for an eight node barrier,
compared to 102.86us for the host-based barrier.

Figure 3.8(b) shows the factors of improvement for the NIC-based barrier over
the host-based barrier. Notice that the NIC-based barrier delivered a 2.09 factor of
improvement for 16 nodes using the LANai 4.3 NICs and a 2.22 factor of improvement
for 8 nodes using the LANai 7.2 NICs. Notice also that for both NICs the factor of
improvement increases with system size. This indicates that the NIC-based barrier
scales better than the host-based barrier. Figure 3.9(a) shows the barrier latency for
all (including non-power of two) nodes and Figure 3.9(b) the factor of improvement
of the NIC-based barrier versus the host-based barrier for these nodes. From these
graphs we see that even with non-power-of-two numbers of nodes, the NIC-based
barrier scales better than the host-based barrier. Notice that, in some cases, the
latency of performing a barrier with a non-power-of-two number of nodes is greater
than the latency of performing a barrier with a greater power-of-two number of nodes
(e.g., 7 nodes v.s. 8 nodes for NIC-based using the LANai 4.3). This is because for a
barrier with a non-power-of-two number of nodes, two extra steps must be taken to
send and receive from the nodes in set S’, as described in Section 3.3.

3.5.4 Granularity of Computation

To examine the effects of NIC-based barrier on granularity of computation, we
performed 10,000 loops of computation at the MPI-level followed by an MPI-level
barrier. We varied the length of the computation to simulate different levels of gran-
ularity. In Figure 3.10, we varied the length of computation from 1.50ps to 129.75ps
to examine the effects of NIC-based barrier for very fine levels of granularity. Figure
3.10 shows the average execution time (computation time and barrier time) per loop
as the computation time varies. Results are presented for both NIC-based (NB) and
host-based (HB) barriers on eight nodes using 33MHz LANai 4.3 (33) and 66MHz
LANai 7.2 (66) NICs. Notice that for the host-based barriers, we see a flat spot where
the execution time does not increase much for computation time per loop going up to
around 17ps for the LANai 4.3 NICs and around 8us for the LANai 7.2 NICs. This

ol

250 x ;

)

3

= 200

>

Q 150

g

3 100

2 50

©

m 0 1 1

2 4 8 16

Number of Nodes
(a) Latency

c

o

&

)

>

o

o

E

©

S

@

L 1 1 1

2 4 8 16

Number of Nodes

(b) Factor of improvement

Figure 3.8: Performance of NIC-based barrier versus host-based barrier using 33MHz
L ANai 4.3 and 66MHz LANai 7.2 NICs

52

250 x ;

o

&

3 200

>

2 150

i

8 100

E 50 | g

5] -

o 0 | |

2 i 2 16

Number of Nodes
(a‘) Latency

=

Q

£

]

>

2

o}

IS

IS

S

g

L 1 | |

2 i 8 16

Number of Nodes

(b) Factor of improvement

Figure 3.9: Performance of NIC-based barrier versus host-based barrier using 33MHz
LANai 4.3 and 66MHz LANai 7.2 NICs for all number of nodes

93

280
260
240
220
200
180
160
140
120 + .
100 ﬁéﬁﬁlix/
o=

0 200 40 60 80 100 120 140

Computation time per loop (usec)

Sk

=R]

Execution Time (psec)

1 1

Figure 3.10: Average execution time (compute time and barrier time) per loop for
host- and NIC-based barrier on eight nodes using 33MHz LANai 4.3 and 66MHz
LANai 7.2 NICs

is due to to fact that when the host sends the last message of a barrier and com-
pletes the barrier, the NIC may still be transferring the message from the host to the
transmit buffer or transmitting the message when the next barrier call is made. The
next barrier will send a message which must be delayed until the NIC has finished the
previous message. We don’t see the same effect with the NIC-based barrier because
the NIC does not notify the host that the barrier has completed until just before it
starts transmitting the last message. By the time the notification reaches the host
and the host initiates the next barrier, the message will have been transmitted.

To compare the granularity of computation possible using NIC-based barriers
versus using host-based barriers, we plotted graphs which show the minimum com-
putation time required between barriers for a program to have a certain efficiency
factor. We assume that the program performs computation followed by a barrier,
and performs no other communication. We define our efficiency factor as the ratio
of computation time to the total execution time (i.e., computation time and barrier
time). Figures 3.11(a) through 3.11(d) show the computation time required to achieve
efficiency factors of 0.25, 0.50, 0.75 and 0.90 for both the LANai 4.3 and the LANai
7.2 NICs.

We see from these figures that the minimum computation time for a particular
efficiency factor when using NIC-based barriers is less than that when using host-based
barriers. For instance, Figure 3.11(b) shows the graph for a 0.50 efficiency factor.

54

o 250 o 400

& % 350

2 ! 2

= 200 = 300

£ £

£ 150t E 250

s g 200

2 100 =

g - g M0

2 50L 2 100

IS £ 50 ¥

S o ‘ ‘ S o ‘ ‘

2 4 8 16 2 4 8 16
Number of Nodes Number of Nodes
(a) 0.25 efficiency factor (b) 0.50 efficiency factor

'S 800 S 2000

9 700 - @ 1800

‘q‘)’ 600 E/ 1600

E 500 g 1400

= £ 1200

c 400 < 1000

£ 300 g 800

g g 600

S 200 2 400

g 100& E 200#

o 0 : : 8 0 : :

2 4 8 16 2 4 8 16
Number of Nodes Number of Nodes
(c) 0.75 efficiency factor (d) 0.90 efficiency factor

Figure 3.11: Computation time required to achieve a particular efficiency factor using
33MHz LANai 4.3 and 66MHz LANai 7.2 NICs

95

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Execution Time (psec)

1 1 1

128 256 512 1024 2048 4096

Computation Time (usec)

Figure 3.12: Total time of computation, varying at each node by 20%, followed by a
barrier for NIC-based and host-based barriers over 16 nodes using 33MHz LANai 4.3

NICs.

5 8

2 52

g?; 7ok
o O 65V
oF g |
25 50|
5% 5
X 35t

30
64

0% — +e o m o R
1.25% — o -
2.5% —x o, e T
5% 5 0. \\\I\\‘
10% = Lo
15% o .
20% o

1 1 1 1

T
g

%

X

=

128 256 512 1024 2048 4096

Computation Time (usec)

Figure 3.13: Difference in execution time between using host- and NIC-based barri-
ers performing computation (+ percentage) followed by a barrier (16 nodes; 33MHz

LANai 4.3 NICs).

o6

33HB 2100 —+— ‘
S 4000 133 NB 2100
@ 3500 | 33HB360 - x-
< 3000 | 33NB360 o |
= 66 HB 2100 = -
S 2500 r 66 NB 2100 ---o--]
— 2000 | 66HB360 e . 3
2 1500 | 66NB e e 4
o K]
g ﬁ {0
LLl 0]
8 16
Number of Nodes
(a) Execution time
E 2 T T
Q L 5*4
GE.) 18 r S : J
> 17+ e]
S 16]
o . 3
g 154~ i
S %431 I 33--360 —— |
5 33--2100
g l2r 66 - 360 x|
g 117 66 -- 2100 o
1 L !
2 4 8 16

Number of Nodes

(b) Factor of Improvement

Figure 3.14: Performance of synthetic benchmarks (total computation time of 360us
and 2,100ps) for host-based and NIC-based barriers using 33MHz LANai 4.3 and
66MHz LANai 7.2 NICs

57

The minimum computation time for 16 nodes is 366.40ps for the host-based barrier
and 204.76us for the NIC-based barrier using the LANai 4.3 NICs. For the LANai
7.2 NICs over eight nodes, the host-based barrier requires 179.18us of computation
between barriers to maintain the efficiency factor, while the NIC-based barrier needs
only 120.62ps of computation. For a 0.90 factor of efficiency, Figure 3.11(d) shows
that using the LANai 4.3, the host-based barrier requires 1,831.98ps, as compared
to 1,023.82ps for the NIC-based barrier to maintain the efficiency factor. Using the
LANai 7.2 NIC, the host-based barrier needs 895.911s of computation time while the
NIC-based barrier needs only 603.11ps for 0.90 factor of efficiency. From these results
we can see that finer granularity programs can be written using NIC-based barrier
without losing efficiency.

3.5.5 Varying Arrival Times

In real applications, the nodes participating in a barrier do not always reach
the barrier at the same time. Often some nodes reach the barrier before others.
To examine the effects of varying arrival times on barrier performance, we performed
10,000 loops of computation followed by a barrier. The length of computation at each
node was varied by a percentage of the mean in both directions from the mean (e.g.,
4096ps £20%). Figure 3.12 shows the execution time of this benchmark for 16 nodes
with the computation time varying from 64ps to 4096 ps with a 20% variation in the
computation time using LANai 4.3 NICs. Notice that the difference in the execution
time of the benchmarks using NIC-based barriers and host-based barriers gets smaller
as the computation time gets larger. This is because the total variation in the arrival
times gets larger. Figure 3.13 shows the difference between the benchmarks using
host-based and NIC-based barriers over 16 nodes using LANai 4.3 NICs. Notice that
the difference gets smaller as the computation time and percent variation increases,
i.e., as the total variation in arrival time increases. Notice also, that for 0% variation
the difference does not decrease. This indicates that the amount of computational
delay itself does not affect the difference in execution time, but rather it is the total
amount of variation that affects the difference. So, as the variation in arrival times
increases, the execution time of the benchmark using NIC-based barriers increases
slightly faster than that for the benchmark using host-based barriers. This indicates
that the host-based barrier is not as sensitive to a variation in arrival time as the NIC-
based barrier. Even though the NIC-based barrier is more sensitive to the variation in
arrival time than the host-based barrier, it always performs better than the host-based
barrier.

o8

3.5.6 Synthetic Application Performance

In order to evaluate how the barrier performance would affect an application, we
ran two synthetic MPI-level applications. The synthetic applications consist of sev-
eral steps each of which consists of computation followed by a barrier. The mean
computation time varies from one step to the next. Within each step, the computa-
tion time varies randomly from one node to the next by +10% from the mean. The
execution time of each synthetic application was taken over 10,000 runs. The first
application was designed such that it performed eight steps and had computation
times of 10, 20, 30, ... 80ps, for the respective steps, for a total of 360ps of com-
putation. The second application had 20 steps and had computation times of 10,
20, 30, ... 200ps, for a total of 2,100ps of computation. Figure 3.14(a) shows these
results for host-based (HB) and NIC-based (NB) barriers using 33MHz LANai 4.3
(33) and 66 MHz LANai 7.2 (66) NICs. Notice that in all cases the NIC-based barrier
performs better than the host-based barrier. Figure 3.14(b) shows the factor of im-
provement, for the applications using NIC-based barriers versus the applications using
host-based barriers. Using the LANai 4.3 NICs, we see a 1.86 factor of improvement
in the 360ps application and a 1.87 factor of improvement in the 2,100us application,
for 16 nodes. Using the LANai 7.2 NICs, which have faster processors, we see a 1.92
factor of improvement for the 360ps application and a 1.93 factor of improvement for
the 2,100ps application over only eight nodes. These results indicate that a NIC-level
barrier implementation on large clusters using NICs with faster processors can deliver
very good performance benefits at the application level.

3.6 Summary

In this chapter, we presented our design, implementation and evaluation of NIC-
based barrier. We implemented the NIC-based barrier in GM and showed that it
performed better than the host-based barrier. We then modified MPICH-GM version
1.2..3, to use the NIC-based barrier. This was done in an efficient manner which
added only 3.22pus overhead to the GM implementation of the NIC-based barrier over
16 nodes using the 33MHz LANai 4.3 NICs. When comparing the performance of the
barriers at the MPI level, we found a 2.09 factor of improvement for 16 nodes using
the LANai 4.3 NICs and a 2.22 factor of improvement for 8 nodes using the 66 MHz
LANai 7.2 NICs. Furthermore, the factor of improvement increased with the number
of participating nodes. This indicates that the NIC-based barrier scales better than
the host-based barrier.

We also evaluated the impact of the NIC-based barrier on the granularity of
computation. We found that for a program to have a 0.90 factor of efficiency using
the LANai 4.3 NICs, at least 1831.98ps of computation must be performed per barrier
if the host-based barriers are used, but only 1023.82ps if a NIC-based barrier is used.
This value is 44% lower than for the host-based barrier. So, using the NIC-based

99

barrier allows for finer grained programs without lowering the efficiency. We noticed
that the NIC-based barrier is more sensitive to variation in arrival times than the host-
based barrier. However, the NIC-based barrier always performed better than the host-
based barrier. To evaluate the impact of using the NIC-based barrier on applications,
we used synthetic applications. We found up to a 1.93 factor of improvement when
using NIC-based barriers versus using a host-based barrier. This indicates that using
the NIC-based barrier in applications which perform many barrier calls will deliver
significant performance benefits.

60

CHAPTER 4

NIC-BASED REDUCTION

Reduction-to-one and reduction-to-all operations are common operations in par-
allel and distributed systems. These collective operations can involve many processes.
It is therefore important to make these operations fast and efficient. Research has
previously been done to make these operations efficient in MPP environments by tak-
ing advantage of the particular characteristics of the underlying architecture [21, 45].
However, clusters lack the communication assists which could be used to implement
these operations efficiently. We have shown how programmable NICs can be used in
cluster environments to support reduction operations. A NIC-based reduction imple-
mentation would not only provide an efficient reduction operation, but would also
provide significant potential for overlap of computation with communication. In this
chapter we explore the benefits of NIC-based support for reduction operations for
integer and floating-point operations. It is worthwhile to note that a large fraction of
reduction operations are performed using small data sizes of just a few elements [27].
This means that a specialized reduction operation which can efficiently perform the
operation on a small number of elements would be useful.

Using NIC-based reduction can significantly reduce host CPU utilization. This is
because the NIC processor is performing the operation rather than the host processor.
Another benefit of NIC-based reduction is that a parallel program using these oper-
ations is less sensitive to process skew. Processes of a parallel program can become
unsynchronized, or skewed, during the course of running the application. This can
happen as a result of unbalanced or asymmetric code, through random, unpredictable
causes such as a process being context switched, or because the processes may not
have been started at the same time. Such skew can have a significant impact on the
performance of a parallel program when host-based collective communications oper-
ations, such as reduction are used. In a reduction operation, at a particular node,
data from certain nodes must be received before the arithmetic operation can be per-
formed and the result can be forwarded to other nodes. If this reduction operation
is implemented at the application-level then upon calling the reduction function, the
process waits to receive all of the messages, performs the operation, and sends the
result on. This means that if a process is delayed and hasn’t performed the reduction

61

Cor%r%lj%ﬁgz\ilt ons
NIC-Based Point.—.tbiPoint
NIC-Supported Operations

Communica(ti;OMubsystem

1
‘ Networking Technology

---- Existing
— Proposed

Figure 4.1: NIC-based reduction for the GM communication subsystem

operation, then another process may also be delayed waiting for that message, and so
cannot continue with useful computation. However, because the NIC-based reduction
operation is performed by the NIC, and not the host, once the process passes its data
to the NIC, it can continue with its computation, and will not be stalled due to a
delayed process.

We have implemented a NIC-based reduction-to-one operation to perform integer
and floating-point operations on single 64 bit elements. In this chapter we describe
the design and implementation of this operation as well as the evaluation of the
implementation. OQur implementation achieves a 1.19 factor of improvement over the
traditional host-based implementation when performing integer operations on a 16
node system. We show that NIC-based reduction would be even more beneficial for
larger system sizes. Our evaluation also shows that using NIC-based reduction can
reduce host CPU utilization with a factor of improvement of 2.7, and can reduce the
effects of process skew with a factor of improvement of up to 4.5.

Figure 4.1 illustrates our approach to adding NIC-based reduction to the GM
communication subsystem. The dotted line indicates how the redution operation is
traditionally implemented using point-to-point messages. The solid line shows our
implentation using the NIC-based reduction operation.

The rest of this chapter is organized as follows. In the next section, we describe
the general concept of a NIC-based reduction operation. In Section 4.2 we describe
our design and implementation, followed by the evaluation of our implementation in
Section 4.3. Finally we summarize our work in Section 4.4.

62

0 1 2 3
©p ©p
AT

(a) Host-based

0 1 2 3
!

il

M T I

(b) NIC-based

Figure 4.2: Block diagrams of Host-based and NIC-based reductions across four nodes.

The circles represent the host processor of a node and squares represent the NIC of
a node.

63

4.1 NIC-Based Reduction

Before we describe the general concept of NIC-based reduction, we will briefly
describe traditional host-based reduction. In traditional host-based reduction in a
message-passing system, messages are passed between processes running at the host,
and the arithmetic operations are performed by the host processors. When the oper-
ation is complete, the result of the operation will be located at one of the processes.
Processes participating in the reduction operation are organized in a logical tree.
Each process receives reduction messages from its children, which contain a partial
result from the subtree of that child. Next, each process performs the arithmetic
operation on its data and the partial results received from its children. The process
then sends this result to its parent. Figure 4.2(a) shows a block diagram of a host-
based reduction operation across four nodes. Node 0 sends its data to Node 1. When
Node 1 receives this message it performs the arithmetic operation on the data from
Node 0 and its data. Node 1 then sends this result to Node 3. Node 3 receives data
from Node 2 and Node 1, and performs the arithmetic operation on its own data and
the data sent by Nodes 1 and 2.

In a NIC-based reduction, each process sends its data to the NIC. The NIC will
then wait for the messages from its children, perform the arithmetic operation, and
either send a message to its parent, or if this node is the root of the tree and has no
parent, it will forward the result to the host. Figure 4.2(b) shows a block diagram of
a NIC-based reduction operation across four nodes. Here we see each process sending
its data to the NIC. The NICs at Nodes 0 and 2 immediately forward their data to
their parents, since they are leaf nodes. The NIC at Node 1 receives the message from
Node 0 and performs the arithmetic operation on this data and the data sent from
the host. It then sends this result to the NIC at Node 3. The NIC at Node 3 receives
the messages from the NICs at Nodes 1 and 2, performs the arithmetic operation on
this data and on the data sent from the host, then forwards this result to the host.

Notice that in the host-based reduction, messages received at intermediate nodes,
such as Node 2, are received by the NIC, forwarded to the host, which performs the
arithmetic operation and sends another message that is sent down to the NIC to be
transmitted. In the NIC-based case, because the arithmetic operation is performed
at the NIC, such messages do not have to be passed between the NIC and the host.
Only the initial data needs to be passed from the host to the NIC. This can improve
the performance of the reduction operation.

Another potential benefit of NIC-based reduction is reduced host involvement in
the operation. For non-root nodes, once the host has sent its data to the NIC, it
no longer has to be involved in the reduction operation. In the host-based case, the
host process must either wait to receive the messages from its children, or it must be
interrupted when the messages arrive so that it can perform the arithmetic operation

64

on them. Since interrupts are time consuming operations, using these can lead to
poor reduction latency, and is not commonly used for reduction operations.

However, the alternative of waiting for the messages has its own drawbacks. If
processes are skewed, meaning that some processes are performing the reduction
operation while others are lagging behind and have not yet started the operation, then
intermediate processes may be waiting for other processes in their subtree to catch up.
This can lead to poor overall application performance. By using NIC-based reduction
the host needs only to supply the data to the NIC. It can then proceed on with other
useful computation. This allows greater overlap of computation and communication
operations. Furthermore, because the host is not involved in actually performing the
operation, NIC-based reduction is a non-blocking operation. The root process need
not wait idle for the result after it sends its data to the NIC. It can proceed with
other computation and only get the result from the NIC when it needs it. This can
further reduce host involvement.

4.2 Design and Implementation

We implemented our NIC-based reduction operation as a modification to the GM
message passing system [34] which uses the Myrinet network [10], a popular system
area network for clusters. Before we describe the design and implementation of our
NIC-based reduction, we will give some background on GM and Myrinet.

Myrinet is a high-performance full-duplex 2Gbps network which uses NICs with
programmable processors. GM is a user-level message passing system which uses the
programmable NICs for much of the protocol processing. GM consists of three com-
ponents: a kernel module, a user-level library, and a control program which runs on
the NIC processor. When a user application wishes to send a message it calls the ap-
propriate function from the library. This function constructs a send descriptor which
describes what data is to be sent and to which process to sent it to. This descriptor is
then written to the NIC using PIO. The NIC detects that a new descriptor has been
written and processes it, DMAing the data from the host buffers and transmitting
the message. In order to receive a message, the process must provide memory buffers
in host memory into which the NIC will DMA the message data. This is done by
sending the NIC a receiwve descriptor which describes such a buffer. When the NIC
receives a message it DM As the data into one of the buffers, then DM As a notification
to the host process that a message has been received. The host process can either
poll for these notifications, or can block while waiting. In the latter case the NIC will
signal an interrupt after it DM As the notification.

We implemented a NIC-based reduction operation by modifying GM version 1.6.3.
Our implementation can perform binary AND and OR operations, as well as integer
and floating point SUM, MIN and MAX operations on a single 64 bit data element.
The host process passes a descriptor to the NIC describing the reduction operation.

65

As the NIC receives reduction messages from the network, it performs the arithmetic
operation on the data and stores the result. Once messages from all of the children
have been received and processed, if the process initiating the reduction operation is
the root, the NIC DMAs a notification to the host, including the result, indicating
that the reduction has completed, otherwise, the NIC transmits the result to the
parent NIC.

There are several design issues in this implementation, namely, dealing with un-
expected messages, dealing with multiple instances of the reduction operation, gen-
erating and specifying the tree structure, and performing floating point operations at
the NIC. In the rest of this section we will discuss these issues.

4.2.1 TUnexpected Messages

Because processes are not always synchronized, it is possible that some processes
may execute the reduction operation before others. This means that a NIC may
receive reduction messages from other NICs before the host process has initiated the
reduction operation and send its data. Since the host has not informed the NIC
which processes to expect data from, and what arithmetic operation to perform, the
NIC cannot process the messages. Such a message can be handled in one of two
ways. One option is to reject the message and request that the sender retransmit it
later. Another option is for the NIC to store the data until the host has initiated the
corresponding reduction operation. The first option can lead to high latency because
the messages need to be retransmitted after a delay. While the second option gives
better performance, it requires NIC memory to be allocated for storing this data.
Since NIC memory is limited, this may limit the number of messages that can be
stored.

We used a hybrid approach where we provided a limited number of buffers to store
unexpected data, and reject messages once these are full. When the NIC receives a
descriptor from the host for a reduction operation, it checks the list of unexpected
messages. If it finds any unexpected messages that match, it performs the operation
on that data, and frees that unexpected message buffer.

4.2.2 Multiple Instances of the Reduction Operation

When a non-root process initiates a reduction operation, after it sends the data
to the NIC, it can proceed with its computation. This means that a process can
initiate a second reduction operation before the NIC has completed the first. The
NIC needs to be able to process multiple instances of the operations in the correct
order. We did this by keeping a queue of instances of reduction operations for each
host process. When a reduction message is received from the network for a particular
process, the NIC searches the list of instances for that process looking for a matching
instance. If a matching instance is found, the arithmetic operation is performed for

66

that instance, otherwise the message is considered an unexpected message and is
handled as described above.

4.2.3 Generating and Specifying the Tree Structure

The tree structure can be generated by either the NIC or the host process. How-
ever, because NIC processors are typically much slower than host processors, it would
be more efficient to have the host construct the tree and pass a list of children and
the parent to the NIC. We used this option. The send descriptor was only 64 bytes
so we are limited as to the number of children that can be specified. Four bytes are
needed for each child: two bytes are needed to specify a GM node, one byte is needed
to specify the GM port, and one byte is used in the algorithm to indicate whether
a reduction message has been received from this process. Since we also include the
eight-byte data in the descriptor, and 12 more bytes are used in the descriptor for
other fields, there is only room to specify nine children, and one parent.

The shape of the reduction tree is also an important design issue. The latency
of the operation increases with each level of the tree, so a very deep tree may not
be desirable. On the other hand, a very shallow tree increases network contention as
many child nodes transmit their data to one parent node. The exact shape of the tree
depends on the performance characteristics of the reduction operation. We have not
fully investigated the optimal tree shape for NIC-based reduction. For our evaluation
we used a binomial tree because this is the most common tree used for reduction
operations, e.g., MPICH [22] uses a binomial tree.

4.2.4 Performing Floating Point Operations at the NIC

The Myrinet NIC processors do not have floating point units. So in order to be
able to perform floating point operations, we had to use floating point operations
implemented in software. We used the SoftFloat [24] library for these operations.
SoftFloat is a free software implementation of the IEC/IEEE Standard for Binary
Floating-point Arithmetic, and supports all functions dictated by the standard for
32, 64, and 128 bit floating point formats. We used only the 64 bit format in our
implementation.

4.3 Experimental Results

In this section, we evaluate our implementation on a cluster of 16 quad-SMP
700MHz Pentium-III nodes with 66MHz/64bit PCI. The nodes are connected to a
Myrinet2000 network. The NICs are PCI64B cards with 2MB of memory and 133MHz
LANai 9.1 processors. These are connected to 16 ports of a 32 port switch. We
compare our NIC-based reduction implementation, which is based GM version 1.6.3,

67

to a host-based reduction implementation using the same version of GM. We evaluate
the basic reduction operation, the host CPU utilization of the reduction operation,
and its tolerance of process skew.

4.3.1 Basic Reduction

To evaluate the performance of our reduction implementation, we compare the
time from when the leaf node furthest away from the root initiates the operation until
the root node receives the result. We performed the test in the following manner. All
of the nodes perform the reduction operation. As soon as the root node completes
the operation and receives the result, it sends a message to the last leaf node of the
tree. Once this node receives the message it takes the time between when it initiated
the reduction operation and when it received the message, then subtracts off the one
way latency time. We take the average time over 10,000 iterations.

We performed the evaluation for 2, 4, 8 and 16 nodes using integer operations and
floating-point operations. Figure 4.3 shows the results of this evaluation. The figures
show the results for the integer and floating point SUM operation. Notice also that
the results for the host based floating point and integer operations were very similar,
so the two lines on the graph are on top of one another. The graphs show that for
integer operations, NIC-based reduction performs better than host-based for all but
the two node case. We see that the floating-point operations add some overhead, but
that NIC-based reduction is still better than the host based reduction for all but the
two and four node cases. We see up to a 1.19 factor of improvement for the integer
operation, and up to a 1.06 factor of improvement for floating point operations.

4.3.2 Larger System Sizes

The factor of improvement for NIC-based reduction increases with the number of
nodes. This indicates that for larger system sizes, the NIC-based reduction operation
may be even more beneficial. In order to investigate how the relative performance
of NIC-based reduction would change with an increase in system sizes we compared
the performance of the operations using a 1-degree tree, in other words a chain, and
varied the depth of the tree. Figure 4.4 show the results of this comparison. Notice
again in this graph that the lines for host-based floating-point and integer operations
overlap. This graphs shows us that as the depth of the tree increases the latency
of the host-based operation increases faster than the NIC-based operation. In fact
the time for host-based integer reduction increases at a rate of 3.70ns per level of
depth faster than that for NIC-based integer reduction. Similarly, the latency of
host-based floating-point reduction increases at a rate of 2.64ps per level of depth
faster than that of NIC-based floating-point reduction. We see that for a tree of
depth 1 host-based reductions perform better than NIC-based reductions. Similarly,
host-based floating-point reduction performs better than NIC-based floating-point

68

45 r r
40
35

Latency (usec)

20 - HB-int ——— 7
NB-int <
15 ¢ HB-float =
] NB-float =
10 ‘

2 4 8 16
Number of Nodes

(a) Latency

1.2
1.15
1.1
1.05

0.95
0.9
0.85
0.8 {,
0.75
0.7

Factor of Improvement

Number of Nodes

(b) Factor of Improvement

Figure 4.3: Comparison of NIC-based reduction (NB) and host-based reduction (HB)
for integer (int) and floating-point (float) operations

69

Figure 4.4: Latency of NIC-based reduction (NB) and host-based reduction (HB) for
integer (int) and floating-point (float) operations using a 1-degree tree (a chain) of

varying depth

Figure 4.5: Latency of NIC-based reduction (NB) and host-based reduction (HB) for
integer (int) and floating-point (float) operations using trees of depth 1 with varying

degree

Latency (usec)

Latency (usec)

180
160
140
120
100
80
60
40

180
160
140
120
100
80
60
40

20 [

0

20 L&

HB-int ——

NB-int — e
HB-float — =
1 NB-fIgat ©

ol

7 9 11 13
Depth of Tree

15

HB-int ——

NB-int -
HB-float -
NB-float =

Degree of Tree

70

reduction for the tree of depth 2. We believe that this is because of the overhead of
the more complicated operation at the slower NIC processor. As the depth increases,
the number of times messages have to be sent between the NIC and the host at
intermediate nodes increases in host-based reduction. Since NIC-based reduction
avoids this overhead, it performs better for deeper trees.

As system sizes increase, and trees get larger, the maximum degree of the tree
also increases. To study the effect of increasing the degree of a tree, we compared
the latency of NIC-based and host-based reduction operations for trees of depth 1
with varying degree. Figure 4.5 shows the results of this test. Again the host-
based floating-point and integer lines overlap. We see here that host-based reductions
perform better than NIC-based for any of the trees. However host-based integer
reduction performs only about 2.19ps better, and host-based floating-point reduction
performs only 3.63us better. Furthermore, while there is a slight increase in overhead
for NIC-based reductions as the degree of the tree increases, it is quite small, 0.22ps
per degree for the integer reduction, and 0.24ps per degree for the floating-point
reduction. For trees such as binomial trees the depth of the tree increases at the
same rate as the depth of the tree. This indicates that the NIC-based reduction will
continue to perform better than the host-based reduction for large system sizes.

4.3.3 Host CPU Utilization

One of the major benefits of NIC-based reduction is that it reduces the load on
the host processor. Omnce the host process sends its data to the NIC, it is free to
perform useful computation. To compare the host CPU utilization for NIC-based
and host-based reduction, we timed how long the host process spends performing
the reduction at each node. Our test consists of each process performing a barrier
synchronization followed by a reduction operation. Figure 4.6 shows the average of
10,000 iterations of this test.

In Figure 4.6(a) we see the average host CPU utilization for NIC-based and host-
based reduction for various numbers of nodes. Notice that for all but two node
reductions, NIC-based reductions use the host CPU less than host-based reductions.
Also note that the average CPU utilization for host-based reduction increases as the
number of nodes increases. This is because, in the reduction tree, as the number
of nodes increases, there are more interior nodes, which are waiting for reduction
messages from their children. In NIC-based reduction, we see that the average host
CPU utilization actually decreases as the system size increases. This is because for
non-root nodes, the host process simply has to construct the send descriptor and
send it to the NIC. So regardless of how many nodes are performing the reduction,
the host CPU utilization at non-root nodes is only a few hundred nanoseconds. In
this test, the root node waits for the result of the reduction after it sends its data to
the NIC, so the CPU utilization for the root node will increase with the latency to

71

o 15 : T
)
2 14+ —
= ,
je) 1
c HB-float 1
= HB-int —— |
; NB-float -~
D— NB-Int & 7
O 9] 1
q) 7 L - i
g 6 L T
)
S 5 1 1
< 2 4 8 16
Number of nodes
(a) Average host CPU utilization
3 T T

Factor of improvement

Number of nodes

(b) Factor of Improvement

Figure 4.6: Average time spent by the host processor performing the reduction
for host-based (HB) and NIC-based (NB) reductions performing integer (int) and
floating-point (float) operations

72

perform the reduction, as it does for host-based reduction. However, as the number of
nodes increases, the CPU utilization at the root increases slower than the number of
nodes performing the reduction, so the average host CPU utilization decreases with
the number of nodes.

Note, that NIC-based reduction allows for a non-blocking implementation, where
the root process does not wait for the result from the NIC after it sends its data.
Instead, the process can go on to perform other useful computation, that does not
depend on the result, and it would only read the result from the NIC once it needs
that data. This would allow a further reduction in CPU utilization.

Figure 4.6(b) shows the factor of improvement in CPU utilization for NIC-based
reduction over host-based reduction. We see a factor of improvement of 2.7 for integer
operations and 2.3 for floating point operations. Notice that the factor of improvement
increases as the system size increases.

4.3.4 Tolerating Process Skew

Another major benefit of NIC-based reduction over host-based reduction is its
tolerance to process skew. In order to see what effect process skew has on host CPU
utilization, we timed how long each host process spends performing the reduction
operation, while varying the skew between processes.

In this test, the processes perform a barrier synchronization, followed by a delay,
the length of which is chosen at random between 0 and a maximum delay value. The
processes then perform a reduction operation. This is repeated 10,000 times. By
varying the maximum delay value, the level of skew between processes varies. As the
maximum delay value increases, the skew between processes increases.

The results of this test are shown in Figure 4.7. Figure 4.7(a) shows the average
time spent by all of the host processes of 16 nodes performing the reduction, as
the maximum delay value is varied. Recall, that in a tree-based reduction, a node
must receive all messages from its children, as well as provide its own data, before
it can pass the result on to its parent. When a child node or, more generally, any
descendant node is delayed, the reduction operation at that node cannot proceed.
We would expect, then, that as process skew increases, the number of descendants
of a process which are delayed increases, as well as the amount by which they are
delayed. For host-based reduction, where the host processes must wait for messages
from child processes, process skew results in processes that are stalled and cannot
perform useful computation.

We see, in Figure 4.7(a), that for host-based reduction, as the maximum delay
increases, the CPU utilization increases dramatically. However, for NIC-based re-
ductions, only the root node is delayed by skewed processes. Because the reduction
operation is performed at the NIC, non-root processes simply have to pass their

73

Average host CPU utilization (psec)

Factor of improvement

Figure 4.7: Average time spent by the host process performing the reduction, with
different levels of process skew for host-based (HB) and NIC-based (NB) reductions

140
120
100
80
60
40
20

HB-float T | |
L HB-int - A
NB-float -
: NB-int]
. e -}
200 400 600 800 1000

Maximum delay (usec)

(a) Average host CPU utilization

1 1 1 1

200 400 600

Maximum delay (usec)

800

(b) Factor of Improvement

performing integer (int) and floating-point (float) operations

74

data to the NIC. This makes non-root processes unaffected by process skew. In Fig-
ure 4.7(a), we see process skew has relatively little effect on the average time host
processes spend on reduction.

Figure 4.7(b) shows the factor of improvement in CPU utilization for NIC-based
reduction over host-based reduction. We see up to a 4.5 factor of improvement for
both integer operations and floating point operations. Furthermore we see significant
improvements even when process skew is small. For instance we see a 3.7 factor
of improvement for integer operations even when the maximum delay value is only
200ps.

We also evaluated the effect of system size on host CPU utilization by fixing the
skew and varying the number of nodes performing the reduction. In Figure 4.8(a)
we see that as the number of nodes increases, the average host CPU utilization for
host-based reduction increases. However, for NIC-based reductions, we see that the
average host CPU utilization decreases. This is because in the NIC-based case, only
the root process is affected by process skew. As the number of processes increases
the time spent by the root process contributes a smaller fraction to the average. For
the host-based case, each process can be affected by skew, and as the number of
processes increases, there are more processes which can be delayed, relative to their
parents and ancestors, so the average host CPU utilization increases as the system
size increases. Figure 4.8(b) shows the factor of improvement for NIC-based reduction
over host-based reduction. We see up to a 4.5 factor of improvement for both integer
operations and floating point operations.

These results indicate that NIC-based reduction operations are much more toler-
ant to process skew than host-based reduction. Furthermore we see that process skew
has a greater impact on host-based reduction as system size increases. This means
that using NIC-based reduction can significantly increase the scalability of a system
in the presence of process skew.

4.4 Summary

We have presented our implementation of a NIC-based reduction operation, and
evaluated it. We found up to a 1.19 factor of improvement for integer reduction and
1.06 factor of improvement for floating-point reduction. We also give evidence that
NIC-based reduction will perform better than host-based reduction in larger systems.
Though this improvement is not very large, the fact that the operation does not
involve the host allows useful computation at the host to be overlapped with the
reduction operation at the NIC. In fact, we have shown a 2.7 factor of improvement
in CPU utilization when using NIC-based reduction for integer operations and a
2.3 factor of improvement when using floating point operations. We further note
that NIC-based reduction can be used in a non-blocking fashion which would further
improve the CPU utilization.

75

o 140 : Y .
[0 D
S 120 ¢ a
b= / HB-float
N 100 | HB-int ———- 1
g Yoo, NB-float - =~
) 80 g NB-int = |
o
O
% 60 r A
o -
< e
Q40 t —
E |
D)
> 20 ! *
< 2 4 8 16
Number of nodes
(a) Average host time
5 T T

Factor of improvement

Number of nodes

(b) Factor of Improvement

Figure 4.8: Average time spent by the host process performing the reduction, with
a maximum delay value of 1000ps, for different system sizes for host-based (HB)
and NIC-based (NB) reductions performing integer (int) and floating-point (float)
operations

76

We have also shown that NIC-based reduction is much more tolerant to process
skew than the host-based implementation. In the presence of process skew NIC-
based reduction gives a 4.5 factor of improvement in CPU utilization over host-based
reduction. We also noticed that when the system size increases, the effect of the
skew impacts host-based reduction much more than the NIC-based reduction. This
indicates that NIC-based reduction would greatly improve the scalability of certain
applications.

7

CHAPTER 5

NIC-BASED ATOMIC REMOTE MEMORY
OPERATIONS

Efficient implementations of synchronization operations such as locks and sem-
aphores is important in parallel and distributed systems. These operations can be
efficiently implemented using hardware atomic Read-Modify-Write (RMW) memory
operations, such as test&set, compare&swap, etc., on shared memory machines [19].
As clusters are becoming more cost effective and popular, other methods for im-
plementing locks are necessary, since such atomic RMW operations have not been
available which operate across nodes of a cluster. Synchronization operations for
clusters are typically implemented with lock manager process running on one or more
nodes which performs the operation. Such a process serves only to handle the syn-
chronization operations and does not directly contribute to the computation. In fact,
because it uses computational resources at the node it is running on, it negatively
impacts the computation because it reduces useful processor utilization at that node.

By using remote atomic memory operations which are supported by the commu-
nication layer, such as those described in the InfiniBand Architecture (IBA) stan-
dard [26], locks can be performed without the intervention of the remote host. This
means that lock manager processes are not needed, leading to improved processor uti-
lization. Furthermore, because context switches at the host processor are not needed
to handle the lock requests, locks implemented using communication layer remote
atomic memory operations can lead to better lock performance.

In this chapter we describe our implementation and evaluation of NIC-based re-
mote atomic memory operations. We implemented these operations by modifying
the GM message passing system [34] which uses programmable Myrinet [10] network
cards. We found up to a 1.25 factor of improvement for performing a remote atomic
operation using our NIC-based approach over using the best host-based implemen-
tation. When we implemented a distributed lock algorithm using the remote atomic
operations our NIC-based implementation gave up to a 2.6 factor of improvement
over the host-based implementation. Furthermore, we found that locks implemented
with host-based atomic operations had a significant impact on host processor and NIC

78

Synchronjzation
Opgratlons .

e
L
"
.
......
~a
"~
"~
L]

/
NIC—Based DT t0—POi
g
NIC-Supported Operations

Communication Subsystem

1
‘ Networking Technology

---- Existing
— Proposed

Figure 5.1: NIC-based atomic remote memory operations for the GM communication
subsystem

processor utilization, while locks implemented with NIC-based atomic operations had
little to no impact.

Figure 5.1 illustrates our approach to adding NIC-based atomic remote memory
operations to the GM communication subsystem. The dotted line indicates how
the atomic operations are traditionally implemented using point-to-point messages.
The solid line shows our implentation using the NIC-based atomic remote memory
operations.

The rest of the chapter is organized as follows. In Section 5.1 we describe the
basic concept of NIC-based atomic remote memory operations. Section 5.2 describes
the implementation of these operations, and Section 5.3 describes how to implement
distributed locks using the operations. In Section 5.4 we present our experimental
results, and summarize our work in Section 5.5.

5.1 NIC-Based Atomic Remote Memory Operations

The basic idea of the NIC-based remote atomic operations is to have the NIC
perform the operation directly rather than dedicate a separate thread at the host
to perform the operation. The application initiating the remote atomic operation
would send a message to the NIC at the remote node indicating which operation
to perform along with the operands. The remote NIC, upon receiving the message,
would perform the operation atomically on the memory at the host. The atomicity
of an operation is guaranteed, with respect to other NIC-based atomic operations,
by ensuring that the NIC does not perform any other operations on that memory
region until that operation has completed. In order to guarantee atomicity of the
NIC-based operation with respect to the host process, either all local operations need

79

to be performed by the NIC, or a mutex can be used to serialize access to the host
memory. Figure 5.2(a) shows an example of an atomic operation being performed by a
thread running on the host processor (host-based atomic operation) and Figure 5.2(b)
shows an example of an atomic operation being performed by the NIC (NIC-based
atomic operation).

In order to perform an atomic operation on a remote memory region without using
NIC-based atomic operations, the remote node would need to have a thread which
receives the requests, performs the operations and returns the result. This is shown in
Figure 5.2(a). Here, an application at node 0 sends a request for an atomic operation
to a thread at node 1 which performs the operation. This is performed in seven steps:

1.

6.
7.

A message is generated by the application at the host of Node 0 and is sent to
the NIC.

. The NIC then transmits it to the NIC at Node 1.

. The NIC at Node 1 receives the message and forwards it to the thread which is

handling the atomic operations.

Upon receiving the message, the thread at Node 1 performs the operation spec-
ified in the message on the host’s memory.

. This thread then sends a reply message to the NIC.

The NIC at Node 1 then transmits it back to node 0.

This reply is received by the NIC at Node 0 and is forwarded to the application.

Using NIC-based atomic operations, no thread is needed at the remote host to
handle the atomic operations. Instead, the operations are performed directly by the
NIC. Figure 5.2(b) shows a NIC-based atomic operation on remote memory. This
operations is performed as follows:

1.

2.

An application at Host 0 sends a special atomic operation message to the NIC.
This NIC transmits it to the NIC at Node 1.

Upon receiving the message, the NIC copies the value stored at the memory
location specified in the message using DMA.

. The NIC then performs the operation using this value.

. If necessary, the NIC copies the new value back to the memory location, again

using DMA.

80

2

(b) NIC-based

Figure 5.2: Steps required to perform host-based and NIC-based atomic remote mem-
ory operations.

81

6. The NIC transmits the result back to the NIC at Node 0. Note that this step
can be performed concurrently with the previous step.

7. The NIC at Node 0, upon receiving the result message, forwards it to the
application.

The main advantage of using the NIC-based approach is that the operation can be
performed without the intervention of a host thread. With the host-based approach,
the atomic operation requests need to be handled at the host. This can be done by
having the main application periodically poll for these messages, however, this can
lead to poor response time for the operation if the main application polls infrequently.
Another option for the host-based approach is to have a separate server thread to
handle these requests. When using a server thread, unless a separate processor at
the host can be dedicated to this thread, the thread should block while waiting for
the requests. The main thread is then interrupted when an incoming request is
received so that the server thread can process the request. When the server thread
and main thread share a CPU, blocking the server thread while it is idle will lead to
better utilization of the CPU by the main thread. However, when there are many
such requests, the repeated interrupts can lead to poor performance of the main
application. By using the NIC-based approach atomic operations can be performed
without interfering with any processes at the host. The application process can be
running on the host CPU, while the NIC is performing the atomic operations directly
on host memory.

Just about any atomic operation can be implemented using this scheme. The only
constraint is the processing power of the NIC processor. Typically, the NIC processor
is much slower than the host processor. For instance, the LANai processors on the
Myrinet NICs range from 33MHz to 233MHz, while host processors may range from
300MHz to 2GHz. Furthermore, NIC processors may not have floating point units,
so any floating point operation would have to be simulated using integer operations.
For this reason it would probably not be beneficial to perform complex operations.
Another constraint is the NIC processor’s access to the host memory. Most NICs do
not support PIO access to the host memory from the NIC. Rather any transfers of
data from host memory initiated by the NIC must be done using DMA. While DMA
performs well for transferring large data, there is an overhead to setting up the DMA
which makes it less efficient for performing small data transfers. So the number of
data transfers between the NIC and host memory should be limited.

We implemented the following three atomic primitives: fetch&add, fetch&write
and compare&swap. The fetch&add and fetch&write operations take four parameters:
the target node id, the target port id, the remote virtual memory address, and a 32-bit
data word. The compare&swap operation takes one additional 32-bit parameter which
is used for the compare part of the operation. Table 5.1 describes the semantics of
the operations. For each operation, the table shows the value of the memory location

82

Memory Contents Return
Operation Before Op ‘ After Op Value
fetch&add(data) X X + data X
fetch&write(data) X data X
compare&swap(data, compare) X { ;i(ata Lftﬁzxge =X X

Table 5.1: Semantics of atomic memory operations

before the operation and after, as well as the value returned to the caller. The data
value in the table represents the data that is to be written to the memory location
and the compare value in the table represents what the value stored in the target
memory location is compared to.

5.2 Implementation

In this section we describe our implementation of the NIC-based remote atomic
operations as a modification of Myricom’s message passing system GM|[34] version
1.5. We will first give a brief overview of Myrinet[10] and GM, then describe our
implementation.

5.2.1 Overview of Myrinet and GM

Myrinet is a low latency, high bandwidth, wormhole routed network. The links
are full-duplex and have either 1.28+41.28 gigabits per second or 2+2 gigabits per
second link rate. The newer NICs and switches provide the 242 Gbps link rate.

The Myrinet NIC consists of a programmable LA Nai processor, memory, one DMA
engine for transferring data between the NIC memory and the host memory, one DMA
engine for transmitting data from the NIC memory and the network and another
DMA engine for receiving data from the network to the NIC memory. Depending on
the revision of the card, the LANai processor runs at either 33, 66, 133, or 200MHz,
and has between 1 and 4 MB of SRAM. The programmable processor runs a control
program which allows host processes to directly interact with the NIC bypassing the
operating system (OS-bypass) for low latency communication.

GM is a user-level message passing system that uses the Myrinet network. GM
consists of a kernel module, a library and a Myrinet control program (MCP). The
driver loads the MCP on to the NIC when it is loaded. During the execution of a
program, the driver is used mainly for opening ports, pinning and unpinning memory,
and to put a process to sleep for blocking functions. A portis a data structure through

83

Figure 5.3: Block diagram showing the components of GM.

which a process can communicate with the NIC. Once a port is opened, the process
can communicate with the NIC, bypassing the operating system and avoiding system
call overhead.

Figure 5.3 is a block diagram of GM where a process has two ports through
which send tokens and receive tokens are transferred to and from the MCP without
going through the kernel. The figure also shows DMA operations which transfer data
directly to and from memory regions of the process.

At the host level GM is connectionless, but it provides reliability by maintaining
reliable connections between NICs of different nodes. When a packet is sent by the
NIC, the NIC keeps a send record with enough information to reconstruct the packet.
The send record also has a timestamp of when the packet was sent. Until the packet
is acknowledged, the NIC checks the timestamp of each send record to determine if
a packet needs to be resent. If a packet times-out, using the information in the send
record, the NIC DMASs the data for the packet again from host memory, reconstructs
the packet and transmits it. Upon receiving an acknowledgment for a packet, the
corresponding send record is deleted. Packets also have sequence numbers which are
used to ensure correct packet ordering. If a packet is received out of order, or if
a duplicate packet is received, it is dropped and an acknowledgment packet is sent
re-acknowledging the last packet correctly received.

Flow control is used between the NIC and the host to avoid buffer overflows. To
provide this flow control GM uses the concept of tokens. When a process opens a
port, it has a certain number of send tokens and receive tokens. Each send token
corresponds to a send event. For sending a message the process fills-in a send token
describing the send event and passes it to the NIC. The message may consist of

84

several packets. The NIC takes care of packetizing the data. Omnce the NIC has
finished sending the message and all of the packets have been acknowledged, the NIC
returns the send token to the process in a callback function.

Data can only be sent from or received into pinned memory regions. This is
necessary so that the pages that contain the data are not paged out by the operating
system while the data is being transmitted by the NIC. GM provides special functions
which pin memory and inform the NIC of the physical address and virtual address of
the pages to be used for address translation when DMAing the data. This is known
as registering memory.

In order to send or receive a message, the process must pass a receive token
describing the buffer to the NIC. Once the NIC has DMAed the data into the buffer,
the receive token is returned to the process. The process can either poll to detect
returned receive tokens, or block and wait for the receive tokens.

5.2.2 Design Challenges and Our Implementation

We implemented two ways for the return value of the operation to be provided
to the host process. In one method a receive token is created by the NIC which
contains the return value. In this method, the process would call gm_receive(), or
one of its variants, to get the return value. In the other method, the NIC would
DMA the return value directly to a memory location specified by the process when
the operation is initiated. This method saves the time taken by the NIC to create a
receive token, and is slightly faster.

We added three functions to the GM API, and modified the MCP. The gm_
provide_atomic_buffer() function passes a receive token to the NIC. This function
is used if the process is to receive the return value with a receive token. The process
must ensure that the NIC has sufficient receive tokens to receive the return values for
the atomic remote memory operations. The gm_atomic_send with_callback() func-
tion is used to initiate an atomic remote memory operation in which the return value
is provided to the process with a receive token. The function builds a send token and
passes it to the NIC initiating the atomic remote memory operation. The send token
describes the atomic operation and includes all of the necessary parameters plus a tag
value which the application will use to match the atomic operation request with the
return value. The process then checks for the completion of the operation using the
gm_receive() function or one of its variants. When the operation is completed, the
gm_receive() function returns a receive token with the return value of the operation
along with the tag value which was provided in the corresponding call to gm_atomic_
send with_callback().

The gm atomic_send with callback direct() function is used to initiate an
atomic remote memory operation where the return value is DMAed directly to the

85

process’ memory. In this function, the tag value is not needed. Instead, the process
supplies the memory address of the location where the return value is to be DMAed.

When the NIC receives the send event, it transmits an atomic operation packet
to the destination node with all relevant parameters. Upon receiving the packet, the
NIC at the destination node checks for packet corruption and correct packet sequence,
and when the DMA engine to the host is free, performs the operation.

The operation is performed in the following manner. The NIC DMAs the data
from the target host memory location to a temporary location. The NIC then cal-
culates the new value of the target memory location (as described in Table 5.1), and
DMAs the new value to the host memory. Because the NIC performs this operation
without interruption, the atomicity of the operation is guaranteed with regard to
other atomic requests. We will describe guaranteeing atomicity with regard to the
host process in the next section. The return value is stored in a table and a reply
packet is sent back to the initiating node. The reply packet also serves as an acknowl-
edgment for the atomic operation packet. Upon receiving the reply packet, the NIC
checks for packet corruption, processes the acknowledgment and sends a receive token
to the application. The NIC performs each of the operations using one or two DMAs.

In our implementation, we had to address the following challenges: how to inform
the NIC that a particular memory region should be used for atomic operations, how
to notify the calling process of the return value, and how to provide reliability.

We addressed the first challenge of how to inform the NIC that a particular mem-
ory region should be used for atomic operations by using the same method that GM
uses to provide directed sends. In GM, directed sends are messages where the data is
written directly to the receiver’s memory without the receiver calling gm receive().
The sender of the message provides the address of the buffer at the receiver. This type
of communication is sometimes called RMA (for remote memory access) or RDMA
(for remote direct memory access). With directed sends, the sender can specify any
registered memory region at the receiver as the destination address. We used the
same idea. Atomic operations can be performed on any 32-bit word in any registered
memory region at the target node.

The number of memory locations that can be used by the atomic remote memory
operations is limited only by the amount of memory that a process can register in GM,
which, for GM version 1.5 on Linux, is 7/8 of the physical memory of the host. We
can specify a remote memory location by a triple: a node id, to identify a particular
machine on the network; a port id, to identify a particular process on that machine;
and the virtual address of the memory location in the address space of that process.
The method of distributing this triple to other nodes in the system is left up to the
programmer (e.g., by simply sending the triple in a message).

The second challenge was how to notify the calling process of the return value.
Atomic remote memory operations produce a return value which the calling process
must receive. We needed a mechanism by which the calling process can receive the

86

value. We used the two methods described above: using receive tokens, and DMAing
the value directly to host memory. The receive token had space for small message
data to be sent to the host, this allowed for the result to be included in the token.
When the NIC receives the return value from the NIC at the remote node, it passes
the process a receive token containing the return value. In order for the calling process
to match the call to the atomic operation with the return value, the process specifies
a tag value when the operation is initiated which is then included in the receive token
along with the return value.

In the second method, upon received a reply packet, the NIC will DMA the
return value followed by a flag value to the address specified in gm_atomic_send_
with_callback_direct() when the operation was initiated. The flag value is used to
indicate to the process that the return value has been DMAed, so before calling gm_
atomic_send with_callback_direct(), the process must reset the flag. By using a
different address for each outstanding atomic operation, a tag value is not needed to
match return values to a particular instance of an atomic operation.

The third implementation challenge was to provide reliability for the atomic op-
erations messages. To do this, we used mechanisms similar to the ones used by GM
with two differences. First the reply packet doubles as an acknowledgment packet to
the atomic operation packet, so a separate packet is not needed. Second, we handle
duplicate atomic operation packets differently. A duplicate atomic operation packet
cannot be dropped because the initiating node needs the return value of the atomic
operation. Furthermore, because the operations are not idempotent we cannot repeat
the operation to get the return value. Instead, the NIC keeps a table of return values
and sequence numbers. Upon receiving a duplicate atomic operation packet, the NIC
looks up the return value and re-sends a reply packet. Because there are a limited
number of entries in the table of return values, each NIC must limit the number of
unacknowledged atomic operations it sends, otherwise it is possible that some of the
return values for outstanding packets will not be stored. This method of using a table
to record return values is similar to the one described in the InfiniBand Architecture
standard[26].

5.2.3 Serializing Access to Host Memory

Allowing NIC-based atomic operations to modify data which the host process
may be accessing, may lead to race conditions. One way to avoid race conditions is
to only allow the host process to access a variable when it is known that the NIC
will not perform an atomic operation on it. This may be possible in some cases, but
not in general. Another option is to force the host process to use the NIC to access
these variables. While this will increase the latency of accessing those local variables,
this option may be acceptable in cases where the host process rarely accesses those
variables.

87

char turn;
char interested[2];

enter_region (int process) {

interested[process] = TRUE;

turn = process;

while (interested[l-process] == TRUE && turn == process) skip;
}

© 00 ~N O b W N =

10 leave_region (int process) {
11 interested[process] = FALSE;
12 }

Figure 5.4: Peterson’s mutual exclusion algorithm

A third option is to use a mutex to serialize access between the NIC and the
host. There are many mutex algorithms available [47, 51]. Since we only needed
to provide mutual exclusion between two parties, the NIC and one host process, we
used Peterson’s algorithm because it is simple and efficient in this context. Figure 5.4
shows Peterson’s algorithm. When a party, either the NIC or the host process, wants
to enter the critical region and modify a variable, it sets its interested variable to
TRUE to indicate that it is attempting to enter the critical section (line 5). It then sets
the turn variable to its identifier, in line 6. Next, in line 7, it waits until the other
party is not interested, or the turn variable is no longer set to its identifier. The turn
variable is used to break ties. If both parties are attempting to enter the region at
exactly the same time, one of the parties will set the turn variable before the other.
Then when they enter the while loop on line 7, eventhough both parties have their
interested variables set, the turn variable will be set to one of the parties’ identifiers,
allowing the other party to exit the while loop, and enter the critical section. Once
the party has entered the critical section, it performs the atomic operation, then exits
the critical section by setting its interested variable to FALSE, in line 11.

There are several constraints in applying this algorithm to NIC-based atomic op-
erations. First the NIC does not have load/store access to the host memory. Instead,
it must use DMA to modify or read host memory. DMA transfers are optimized for
large data sizes, and moving single variables using DMA is much higher than access-
ing the data using loads and stores. Another constraint is the time it takes for the
host process to access NIC memory over the PCI bus. Although the host can access
NIC memory using loads and stores, the time to access the memory over the PCI

88

bus, which is uncached, is considerably longer than the time to access local memory,
especially if it is cached. These constraints mean that it is impractical to have the
NIC poll on a variable stored at the host. Similarly, it is very costly to have the host
poll on a variable stored at the NIC.

We modified the algorithm to account for these constraints. First we located
the NIC’s interested variable in host memory, and the host’s interested variable
in NIC memory. We then located the turn variable at the NIC. So when the NIC
requests the critical section it performs one DMA, to set its interested variable at
the host, then sets the turn variable using a local store. Next, it polls on the host’s
interested variable and the turn variable which are both local. When the host
requests the critical region, it sets its interested variable and the turn variable over
the PCI bus in NIC memory. Notice that the NIC’s interested variable is stored
in host memory, so polling on this variable is efficient. However the host must still
check the turn variable which is located in NIC memory. In order to limit the effect of
polling on the turn variable, the host polls on the turn variable using an exponential
backoff scheme: The host checks turn the first iteration of the while loop, then skips
the next iteration, checks it on the following one, then skips two iterations, polls the
following one then skips four iterations, and so on. We note that the turn variable is
used only to break ties, and will only change in the time between lines 5 and 7. This
means that the longer the host is polling on the mutex, the less likely it is that turn
will change. We achieved very good performance using this scheme.

5.3 Implementing Distributed Locks with Atomic Remote
Operations

One use of remote atomic memory operations is in distributed locks. We imple-
mented a software queuing lock using atomic remote memory operations similar to
the MCS[32] lock. The MCS lock is intended for shared memory machines, but we
extended the idea for distributed memory machines using atomic remote memory
operations. The algorithm creates a distributed linked list of processes waiting for
the lock. The process at the head of the queue holds the lock. In this algorithm,
each process has a next variable which points to the process which has requested the
lock immediately after this process, and a boolean locked variable which indicates
whether the node is waiting for the lock. These two variables should be stored so
that atomic remote memory operations can be performed on them. The lock itself
is a variable which points to the last node to request the lock. The lock variable is
stored at the home node of the lock.

When a process, p, requests a lock, it first sets its next variable to NIL. Next, it
performs a fetch&write(p) operation on the lock variable to determine which process
is currently last on the queue (i.e., its predecessor. If the queue is empty (i.e., the
predecessor is NIL), then this node has acquired the lock. Otherwise, it sets its own

89

locked variable to true, then performs a remote write to write p to its predecessor’s
next variable, thereby inserting itself in the queue. It then polls on its own locked
variable until it becomes false.

To release a lock, a process, p, first checks if its own next variable is NIL. If it
is not, then it performs a remote write operation on its successor’s locked variable
setting it to false thereby successfully releasing the lock. Otherwise, it performs
a compare&swap(NIL, p) operation on the lock variable. If this succeeds, (i.e.,
operation wrote a NIL to the locked variable) then process p was the last node
on the queue, and has successfully released the lock. If the operation failed, this
indicates that another process has begun requesting the lock, and has updated the
lock variable, but has not yet updated process p’s next variable. Process p should
then poll on its next variable until that process updates it, at which point process p
should perform a remote write setting the 1ocked variable at that process to false.

Figure 5.5 gives an example of how the lock algorithm works. In the figure, the
circle with the L in it represents the lock variable stored at the home node. The
boxes with the numbers in them represent the processes requesting the lock. The
arrows coming out of the boxes represent the next variable, and the squares in the
boxes represent the boolean 1ocked variable. A filled in square indicates that locked
is set to true and that the process is waiting on the lock. Step (a) shows the initial
state where there are no processes requesting the lock. Step (b) shows the state
after process 1 acquires the lock. In (c) we see the state after processes 2 and 3 have
requested the lock, but before process 1 has released the lock. Notice that the 1locked
variables for processes 2 and 3 are shown as true. When process 1 releases the lock, it
will notice that its next variable points to process 2. It will then change process 2’s
locked variable to false, so that process 2 can acquire the lock, as shown in step (d).
Step (e) shows the state where only process 3 is left in the queue and has acquired
the lock. If process 3 releases the lock before another process requests it, the lock
variable will be set to NIL, and the state will be the same as in step (a).

Because we implemented the lock algorithm for distributed memory, we cannot use
simple memory pointers for the next and lock variables as used in the original MCS
algorithm. As we described in Section 5.2.2, a remote memory location is specified as
a triple of the node id, port id, and virtual memory address. Instead of using memory
pointers, our lock implementation uses process ranks. Each process then has an array
where the ith element stores the remote memory triple describing the location of the
1th process’ next and locked variables. For example, when a process releases a lock,
and reads a value of 4 in its next variable, it gets the remote address triple for its
successors locked variable by looking up the 4th entry in the array.

90

(@)

(b)

—

© i kL il
2 L]

i

—

L

30

(d)

i

(€)

Vi

Figure 5.5: Example of a distributed lock

5.4 Experimental Results

In this section, we evaluate our implementation of NIC-based atomic remote mem-
ory operations. We first evaluate the individual operations and compare them to host-
based implementations. Next we implement a distributed lock using atomic remote
memory operations and evaluate the performance of the locks using our NIC-based
implementation and the host-based implementations. Finally, we evaluate impact of
using NIC-based versus host-based atomic remote memory operation on host proces-
sor and NIC processor utilization.

The performance results were run on a cluster of 16 quad 700MHz Pentium III
machines. The machines are connected by a Myrinet[10] LAN network using NICs
with 133MHz LANai 9.1 processors. These are connected to 16 ports of a 32 port
switch.

5.4.1 Atomic Remote Memory Operations

We tested the performance of the NIC-based atomic operations and compared it
to host-based implementations. Three different versions of the NIC-based operations
were tested. In the first version, mutex, a receive token was used to provide the
process with the return value, and access to the host memory was serialized using

91

7 7 7 7
25 ” ”
m 7 7
(&}
= 15 - 7 =27 = =
>] = = ==
2 7 ==Y = =
& 10 - =z =z =z
5 5. ZI= 700 -
5 7 =z =z =7
0 v ==Y = =z
cmpswap cmpswap fetchadd fetchwrite
(miss) Fhlt)
NIC(no mutex) — Host?poll =
IC(mutex Host(spin—block) ==
NIC(direct) wm Host(block no—spin) =

Figure 5.6: Latencies of atomic operations

a mutex. In the second version, no-muter, a receive token was again used, but no
mutex was used. In the third version, direct, the return value was DMAed to the
process, and a mutex was used by the remote NIC to serialize access to host memory.

A host-based test consists of a process which sends atomic operation request mes-
sages to a server process on another node. The server process receives the request
messages, performs the operations and returns reply messages. Because a host-based
implementation would most likely to be on a separate thread which would be interrupt
driven, we tested three different methods that the server could use for checking for in-
coming messages. In the first case, poll, the server process is polling for the reception
of new request messages. In the second case, spin-block, the server process polls for a
short while, then blocks waiting for the message. In the last case, block no-spin, the
server process blocks immediately waiting for a new message without polling. These
three cases correspond to the GM functions gm_receive(), gm blocking receive()
and gm_blocking receive no_spin(), respectively.

The tests consist of taking the average time of 10,000 iterations of each atomic
operation. The compare&swap operation was evaluated in two ways, once where
the compare failed (miss) so that the swap was not performed, and once there the
compare succeeded (hit). Figure 5.6 shows the results of these tests. Notice that the
NIC-based no-mutex and direct perform better than any of the host-based operations,
and that the NIC-based mutex version performs better than the host-based blocking-
no-spin. The NIC-based no-mutex compare&swap (hit) operation took an average
of 15.9us as compared to the best host-based implementation, polling, which took

92

an average of 19.8ps. This gives a 1.25 factor of improvement. The spin-block host-
based implementation took an average of 19.8us, and the blocking-no-spin host-based
implementation took an average of 29.2us. The NIC-based implementation showed a
1.84 factor of improvement over this host-based blocking-no-spin implementation.

One should note, that these tests represent the best-case configurations. At each
node there is only one process running. In this situation, for the host-based imple-
mentation, the polling and spin-block versions of the server thread perform much
better than the block-no-spin version. However, these versions would typically not
be used in a situation where the server thread was sharing a single processor with
another thread. In such a situation, if a server thread uses polling receives, the CPU
will be under-utilized whenever the server thread is scheduled and no messages are
coming in. Using blocking-no-spin receives releases the CPU when no messages are
waiting to be received, and will not schedule the process until a message comes in.
This leads to better performance of the main thread because it get scheduled more
often. Using spin-block receives works in a similar manner as using blocking-no-spin
receives, except that when there are no messages to receive, the operation polls for a
while before blocking. This works well when incoming messages are bursty, so that
many messages can be handled with one interrupt. Otherwise, if no new message is
received, the time that the server thread spends polling is wasted. This again would
lead to poor main thread performance.

5.4.2 Distributed Locks

The lock test for our host-based implementation consists of the main thread, a
server thread and a shared memory region which both threads can read from and write
to. The main thread requests and releases locks by sending remote atomic operation
requests to the server threads at the target node. The server thread performs the
operations on the target memory location in the shared memory region. The NIC-
based implementation consists of just a single thread which requests and releases
locks using NIC-based remote atomic memory operations.

In this test we took the average time it takes for one process at one particular
node to repeatedly acquire and release a remote lock. To vary the load, we added
more nodes also repeatedly locking and unlocking the same lock. The tests were
run using both an SMP enabled kernel, so that one CPU was available for each
thread, and using a uniprocessor kernel (UP), in which case both threads shared
the same processor. For the tests run on the SMP kernel, the server thread for the
host-based implementation used polling receives, since this performed better than
the other receive methods when there was no other thread contending for the CPU.
While for the tests run on the uniprocessor kernel, the server thread used polling-no-
spin receives, because this performed better than the other receive methods when the

93

400 : — Y Y Y
Host No-Spin UP —+—
350 Host Poll SMP ——<— |
NICUP Ko
o 300 ¢ NIC SMP = |
3
= 250 f o
% 200 r XXXX |
— 150 | T e
el g B
s :]
100 %%,,.% |
%m%»—%-v%“"*»r»%,..%”
50 L L 1 ! .)
2 4 6 8 10 12 14 16

Number of Nodes

(a) Latency

Factor of Improvement

14 /l ! ! ! ! ! !
2 4 6 8 10 12 14 16

Number of Nodes

(b) Factor of Improvement

Figure 5.7: Locking and unlocking with multiple nodes contending

94

18000 T T T T T T T T

16000 % | | g

[&]

(D)

7]

=3

S

o X

= 14000 | NS]
UC'J \\\\\

S 12000 t X 1
K

£ 10000 r % 1
)

2 8000 | |
c NIC-based —— "«

Q Host-based -

O 6000 ! | ! 1 1 1

0O 2 4 6 8 10 12 14 16 18
Lock-unlocks per second (x1000)

Figure 5.8: The number of iterations a process at the home node of a lock can
perform in 1,000pus while a process at another node is locking and unlocking the lock
at a certain rate

server thread was sharing the processor with the main thread. For the NIC-based
case, we used the implementation which used receive tokens, but no mutex.

Figure 5.7 shows the results of this test. We show the results for the host-based
blocking-no-spin using the uniprocessor (UP) kernel, and the host-based polling using
the SMP kernel and compare them to the NIC-based implementations on each kernel.
Notice that in both graphs the NIC-based implementation outperforms the host-
based implementations. Notice also that because there is only one process necessary
for the NIC-based implementation, the NIC-based implementation gives the same
performance using either kernel. As expected the host-based polling implementation
on the SMP kernel outperforms the host-based blocking implementation using the
uniprocessor kernel because of the lack of context switching overhead in the SMP
case.

Figure 5.7(b) shows the factor of improvement of the NIC-based implementation
over the host-based implementation for the SMP and uniprocessor (UP) kernels. We
see up to a 2.6 factor of improvement for the UP case and up to a 2.1 factor of
improvement for the SMP case.

95

90% w w
° NIC-based —+— <
80% Host-based - X

70% |]
60% | ><]
50% | 7]
40% |
30%]
20% | P]
10% [.~ :

0% ! ! ! !
0 5 10 15 20 25

Lock-unlocks per second (x1000)

NIC processor utilization

Figure 5.9: The fraction of time the NIC processor is not idle while a process at
another node is locking and unlocking the lock at a certain rate

5.4.3 Host and NIC Processor Utilization

To test the impact of using the atomic operations on host processor utilization
we performed a test where a process (the counter process) at the home node of a
lock performs a loop for 1,000ps and counts how many iterations of the loop it was
able to perform. While the counter process is doing that, a process at another node
repeatedly locks and unlocks the lock. We inserted a delay just after the lock operation
and another just after the unlock operation. By varying these delays, we can alter
the rate at which the lock-unlocks are performed. We also performed the test where
no lock or unlock operations were performed to serve as a baseline (idle case). When
running a uniprocessor kernel, the number of iterations that the counter process is
able to perform in the alloted time gives an indication of the amount of host processor
time that is used in handling incoming atomic operation requests. The more time that
the processor is spending handling incoming requests, the fewer iterations the counter
process is able to complete. In this test we used the uniprocessor (UP) kernel and
the blocking-no-spin version of the server thread for the host-based implementation.
This way, when atomic operation requests are received, the counter process will be
interrupted by the server process, and the impact can be measured.

Figure 5.8 shows the results of this test. The figure shows the number of iterations
that the counter process was able to complete while lock-unlock operations were
happening at a certain rate. As expected, the NIC-based implementation is unaffected

96

by the number of atomic operations being performed, because the operations are
performed completely by the NIC and require no intervention of the host processor.
However, for the host-based implementation we see that the processor utilization by
the counter thread at the home node decreases as the number of atomic operations
the server node is processing increases. In the host-based implementation, the main
thread must be interrupted so that the server thread can process the incoming request
leading to decreased processor utilization by the counter process.

We also evaluated the impact of handling atomic remote memory operations on
NIC processor utilization. To perform this test we instrument the firmware to count
the amount of time that the NIC spends in the idle loop waiting for an event. We
perform this test similarly to the host processor utilization test. A node varies the
rate at which it repeatedly locks and unlocks a lock located at another node. We
then take the percentage of time that the NIC at the home node of the lock is not in
the idle loop. This indicates what the load is on the NIC processor.

Figure 5.9 shows the results of this test. We see that as the rate of locking
and unlocking increases, the NIC processor utilization increases for both the NIC-
based and the host-based implementations. However, the host-based implementation
increases much faster than the NIC-based. In fact, the host-based implementation
increases about twice as fast as the NIC-based implementation. This indicates that
the NIC-based implementation has less impact on the NIC processor than the host-
based.

The reason for this is that in the host-based implementation, a process at the re-
questing node sends a message to the server process at the target node. The NIC at
the target node must receive the message, process it, send it to the host process, then
send an acknowledgment to the NIC at the requesting node. After the server thread
processes the request, it send a reply message back to the requesting process. The
NIC has to process the send token, transmit a message, then process the acknowledg-
ment from the NIC at the requesting node. In the NIC-based case, the target NIC
only has to handle receiving one message from the requesting node. Once it handles
this message it sends the reply back, which also acts as an acknowledgment for the
request message. The amount of time to actually perform the operation is small com-
pared to the overhead of processing messages and acknowledgments. The host-based
implementation has to handle two messages, whereas the NIC-based implementation
has to handle only one message. This seems to fit with the results shown in Fig-
ure 5.9, where the utilization for the host-based implementation grows twice as fast
as the utilization for the NIC-based implementation.

Notice in Figure 5.7(a) that for the NIC-based case, the latency of locking and
unlocking the lock remains relatively constant between 2 to 7 nodes for the NIC-based
cases, while in the host-based SMP case it starts increasing immediately. The reason
for this is due to the load on the NIC processor. In the host-based case, with two
processes performing locks and unlocks, the NIC processor is saturated, so even if the

97

host processor can handle more requests, the NIC is the bottleneck, and incoming
requests are delayed. In the NIC-based case, the NIC processor is not saturated until
around 7 processes are contending for the lock, so requests can be processed as soon
as they arrive.

5.5 Summary

In this chapter, we presented an implementation of NIC-based atomic remote
memory operations. We added support for atomic remote memory operations to GM
version 1.5. We then evaluated the performance of the NIC-based atomic operations
and compared them with atomic operations implemented at the host level. We found
up to a 1.25 factor of improvement for the compare&swap operation when comparing
the best NIC-based implementation to the best host-based implementation. Using
these atomic operations to implement a distributed lock, we saw up to a 2.6 factor
of improvement when using NIC-based atomic operations. Because the NIC-based
atomic operations do not use the host processor they gave us better host processor
utilization and NIC processor utilization than when using the host-based implemen-
tations.

By using the NIC-based remote atomic memory operations along with remote
memory access methods provided by some communication layers such as Quadrics
and GM, applications can reduce the number of messages that need to be handled by
the application. This means that for applications which currently use server threads,
the number of interrupts can be reduced, or that the server thread can be eliminated
altogether. This would lead to better host processor utilization and performance
of the main thread. Such an approach demonstrates potential for designing high
performance system area networks for next generation clusters and servers.

98

CHAPTER 6

NIC-SUPPORT FOR APPLICATION-BYPASS
BROADCAST

Process skew is an important aspect in parallel and distributed systems which has
not received much attention. Many collective communication benchmarks [43, 54]
perform the collective communication with all processes starting the operation at the
same time. While this would be ideal when running a parallel application, it is not
realistic. Processes can become skewed as a result of unbalanced code, where one
process has more computation to perform than others, of asymmetric code, where
different processes perform different computation or communication operations, of
using heterogeneous systems, where nodes in the system have different performance
characteristics, as well as of random, unpredictable effects such as the processes not
being started at exactly the same time, or processors receiving interrupts during com-
putation. Process skew may be more severe in georgaphically distributed computing
systems, where communication time between remote nodes may be variable. The
effects of process skew become more severe as the size of the system grows.

Collective communication operations can impose implicit synchronization. When
processes are skewed, such synchronization will cause certain processes to wait idle
for other processes to catch-up. With certain collective communication operations
this synchronization is unavoidable unless a split-phase approach is used, such as a
reduce-to-all operation where all processes must provide input and start the operation
before any can finish, and with others, such as barrier, synchronization is the desired
effect. However for other collective operations such as broadcast and reduce-to-one it
is desirable to reduce the amount of implicit synchronization in order to reduce the
effects of skew and improve overall system performance.

For instance, the broadcast operation in MPICH [22] is implemented such that a
process will not forward the broadcast message until that process has made a call to
MPT Bcast () and received the message. If a process is slow to call MPI_Bcast (), other
processes may be delayed as a result. A more desirable implementation would be to
allow the broadcast operation to bypass the application. The concept of application-
bypass operations was discussed in [11]. We will describe application-bypass in detail
in the next section.

99

Programming Models
MPICH ‘ colallectly

unications

NIC-Supported Operations

GM
Communication Subsystem
|

‘ Networking Technology

---- Existing
— Proposed

Figure 6.1: NIC-supported application-bypass broadcast for MPICH

We have designed and implemented an application-bypass broadcast operation by
modifying GM [34] and MPICH over GM. We then evaluated our implementation and
found that using application-bypass broadcast we see a factor of improvement of up
to 16 when the processes are skewed. We also noticed that the effects of process skew
become more severe as system size increases, and that application-bypass broadcast
is considerably less sensitive to process skew than non-application-bypass broadcast.
This indicates that that an application-bypass approach is critical for dealing with
process skew allowing collective communications operations to be scalable.

Figure 6.1 illustrates our approach to application-bypass broadcast to MPICH
using NIC-based primitives. The dotted line indicates how the broadcast operation
is traditionally implemented using point-to-point messages. The solid line shows our
implentation using NIC-based primitives and point-to-point messages to make the
broadcast operation bypass the application.

The outline of the rest of this chapter is as follows. In the next section we de-
scribe the basic idea of application-bypass. The design and implementation of our
application-bypass broadcast operation are described in Section 6.2. We evaluate our
implementation in Section 6.3, the summarize our work in Section 6.4.

6.1 Application-Bypass

The basic idea of an application-bypass operation is that the application need not
be involved in order for the operation to proceed. Broadcast is an operation which
can be implemented in an application-bypass manner. The broadcast operation in
many message passing systems is performed by creating a logical binomial tree over
the processes participating in the broadcast. The root process sends a copy of the

100

data to each of its children. Each non-root process waits to receive the data, then
sends copies of the data to each of its children, if any. At the application level, each
process pariticipating in the broadcast will call the broadcast function.

In MPICH, the MPI Bcast () function performs the broadcast by first waiting for
the message to be received from the parent process, if this process is not the root,
then sending copies of the message to each child process. The broadcast operation
in MPICH is not implemented in an application-bypass manner. If a message is
received by a process, the message will not be forwarded to its children until the
process calls MPI_Bcast (). This means that if a non-root, non-leaf node is delayed, the
descendants of that process will also be delayed, even if they have called MPI_Bcast (),
and are waiting for the message. If the broadcast operation were implemented in an
application-bypass manner, as soon as a process receives a broadcast message, it
would forward the message to its children, regardless of whether the process has
called MPI _Bcast ().

Figure 6.2 illustrates the concept of an application-bypass broadcast. Figure 6.2(a)
shows a non-application-bypass broadcast, while Figure 6.2(b) shows an application-
bypass broadcast. These diagrams show four processes. The root process, Process 0,
sends messages to its children, Processes 2 and 1. Process 2 receives the message
and sends it to Process 3. Notice that in this example, the processes do not call
broadcast at the same time, in particular, Process 2 calls the broadcast call much
later than Processes 0 and 3. Because of this, in the non-application-bypass case
shown in Figure 6.2(a) we see that even though Process 3 had called the broadcast
function and was waiting for the message, it did not receive the message until after
Process 2 finished its computation and called the broadcast function.

In the application-bypass broadcast operation shown in Figure 6.2(b), as soon as
the broadcast message arrives at Process 2, it receives the data into a temporary
buffer, and sends a copy to Process 3. Process 3 can receive the message much sooner
because it doesn’t have to wait for Process 2 to call the broadcast function. Once
Process 2 calls the broadcast function, it will copy the data for the broadcast message
from the temporary buffer to its final location.

Application-bypass operations can be even more important in large scale or het-
erogeneous systems. In such systems it is more likely for processes to be skewed, and
so collective communication operations may not be called at the same time by all of
the processes. Non-application-bypass operations can impose implicit synchroniza-
tion among the processes, which means some faster processes will sit idle waiting for
slower processes to catch up. Application-bypass operations can reduce the amount
of synchronization that such operations cause. This can reduce the amount of time
processes spend waiting for each other and can improve overall application perfor-
mance.

101

i i
=
AV VARV AV VAR VAR V4
(a) Non-application-bypass (b) Application-bypass

Figure 6.2: Broadcast operation over four processes. The large arrows represent
timelines for each process. The shaded areas in these timelines represent a call by
the application to the broadcast function, and the small arrows represent broadcast
messages.

6.2 Design and Implementation

In this section we will describe the design and implementation of application-
bypass broadcast. We start by identifying some design alternatives which we consid-
ered, next we give an overview of MPICH over GM, then describe our implementation
in detail.

6.2.1 Design Alternatives

We identified several options for implementing application-bypass broadcast. One
design option is to use a broadcast thread to perform the broadcast operation. To
perform a broadcast, the main thread would send a message to its broadcast thread.
The broadcast thread would be polling for incoming messages and would broadcast
the message among the broadcast threads associated with the other processes. After
broadcasting the message, the broadcast threads would send the message to their main
thread. Because the broadcast thread is constantly polling for incoming messages it
consumes processor resources which could be better used by its main thread on a
uniprocessor system, or by additional computation threads on an SMP system. For
this reason this option may not be practical in a real system.

102

zA pplication
'MPICH)

KGM KerneI\
L

\

component

- - S N
M i1 net k NIC component
-

J

Figure 6.3: Software and hardware layers for MPICH over GM

Another alternative would be to have the broadcast thread block while waiting for
an incoming message. This option would not waste processor resources, but would
increase the latency of performing a broadcast because of the interrupt overhead. The
cost of performing interrupts for every broadcast may make this option impractical.

We chose to implement a third option which uses a single thread and a signal
handler. This option does not waste processor resources because the signal hander is
only called when a broadcast message needs to be processed. Furthermore, because
there is only one thread, when the thread is polling for a message, there is no need
for a signal to be generated to process an incoming message. Our implementation
allows the thread to disable interrupts at the NIC when polling for a message. This
gives us the best of both previous design alternatives: low latency broadcast and low
processor usage overhead.

6.2.2 Overview of GM and MPICH over GM

Before we describe our implementation we will briefly describe some internal de-
tails of GM and MPICH over GM. Figure 6.3 shows the software and hardware layers
associated with MPICH over GM. GM is a user-level communication subsystem over
the Myrinet [9] network. The Myrinet network is a 2Gbps full duplex network with
network interface cards (NICs) that have programmable processors. GM consists of
a kernel component, a user-level library and a NIC component. The kernel compo-
nent is used for things like setting up new communication endpoints, and registering

103

memory, and is not used in the critical path. The NIC component is code which is
executed on the NIC processor. Almost all of the protocol processing is performed
at the NIC. The user-level library is basically used as an interface between the host
process and the NIC code.

MPICH is an implementation of the MPI [33] message passing interface standard.
MPICH has been ported to many different platforms and networks including GM.

The broadcast operation in MPICH is performed, as described earlier, by propa-
gating messages over a broadcast tree. Each process participating in the broadcast
makes a call to MPI_Bcast(). The root node and source or destination buffer are
specified as parameters to this function. A communicator is also given as a parame-
ter which specifies the group of processes which will participate in the broadcast. In
the call to MPI_Bcast (), each process determines its parent process, if any, then waits
to receive the message from this process. Once the message is received, it determines
which processes are its children and sends the message to them.

When a process makes a call to receive a message, MPICH checks to see if the
message has already been received. It searches a queue called the unezpected message
queue for messages which match certain criteria specified in the receive call, such
as sender id, datatype, and tag. If the message is not found, a descriptor is posted
describing the anticipated message, as well as the memory location where the data
should be received into. MPICH will then optionally poll for incoming messages until
the message has been received.

When a message arrives at a process, MPICH first checks the list of posted receives,
to see if this message is expected. If it is expected, it copies the data to the location
specified in the descriptor, then marks the descriptor that the receive has completed.
If MPICH finds no posted descriptor matching the incoming message, the message is
copied into the unexpected queue.

MPICH over GM uses two modes in sending messages: eager and rendez-vous. The
eager mode is used to send small messages. In this mode the data for the message is
copied into a send buffer and is transmitted from the buffer. The copy to a send buffer
is necessary because GM can only send data which is located in a pinned memory
region. Pinning a memory region requires a system call and so is faster to copy the
data to a pre-pinned buffer and send it from there than to perform the system call
to pin the data in its original location. When the message is received, GM places the
message in a pre-pinned buffer at the receiver. The data for the message must then
be copied out of this buffer to its final location.

For large messages because the cost of copying the data becomes quite large, it is
faster to pin the memory of the original source of the data at the sender and the final
destination at the receiver, then send the data directly from the original location to
the final destination eliminating any copies of the data. The rendez-vous protocol
is used to perform this. The sender sends a request-to-send message to the receiver,
pins the memory for the source of the data and waits for a response from the receiver.

104

Upon receiving the request-to-send message, the receiver pins the memory for the
final destination of the data and sends the address of this to the sender in a OK-to-
send message. When the sender receives this message, it sends the data directly from
the source location to the remote destination.

6.2.3 Our Implementation

We modified MPICH over GM version 1.2.4..8a to provide application-bypass
broadcast functionality. We also modified GM version 1.5.2.1 to allow signals to be
generated when messages are received.

In MPICH, the broadcast operation is performed by a process when the application
calls MPI_Bcast (). In order for the broadcast operation to bypass the application, the
broadcast operation would have to be performed as soon as the broadcast message is
received by the MPICH library. We did this by defining a new message type. When
such a message type is received by the MPICH progress engine, copies of the message
are sent to each of the children. Once the copies of the message are sent, the progress
engine handles the message the same way as any other received message.

The list of children of a process is calculated by knowing the processes that are par-
ticipating in the broadcast and which process is the root of the broadcast. Normally
these parameters are supplied by the application to the MPI_Bcast () call. However,
in our implementation, for non-root nodes, the broadcast operation is not performed
in the MPI_Bcast () function. Instead, we added a field to the header of broadcast
messages to identify the root. Also, MPICH includes a contezt id field in each mes-
sage which can be used to uniquely identify an MPI communicator. A communicator
specifies which processes are participating in a collective communication. When a
communicator is created, we computed the list of children for that communicator,
for each possible root. We store this array of lists of children in a hash table hashed
on the communicator’s context id. Then when an incoming broadcast message is
received, we can get the list of children by getting the array from the hash table using
the context id of the message, and indexing on the root, which is also given in the
message.

In our implementation of application-bypass broadcast, we only considered mes-
sages sent in the eager mode. For MPICH over GM these are messages which are less
than 16KB. With rendez-vous messages, the final destination must be known in order
for the message to be sent. However, the final destination of the broadcast message is
not known until the application calls MPI_Bcast (). Using a temporary buffer to store
a broadcast rendez-vous message would require memory copies which would defeat
the purpose of using the rendez-vous mode for large messages. We intend to study
this issue in the future.

We added a signal handler which calls the progress engine to process any new mes-
sages. In order to avoid race conditions we added a mutex variable which is set when

105

the process calls the progress engine. When the signal handler is called, it checks the
mutex variable and exits if it is set. The mutex variable is reset when the process
exits the progress engine. However, this could lead to a case where we could lose a
signal for a new broadcast message. For example, a new broadcast message could be
received just before the process left the progress engine. The signal handler would be
called, but it would exit immediately, because the mutex variable indicates that the
process is executing the progress engine. When the process continues executing, it
would leave the progress engine without handling the newly received broadcast mes-
sage. To deal with this situation, we added a loop around the progress engine which
keeps calling the progress engine while there are messages waiting to be received.
This way, any broadcast message received after the progress engine processed the last
message, and before it resets the mutex will be handled, because the loop condition
will find that there is a pending receive. Any broadcast message received after the
mutex variable is reset will be handled by the signal handler.

GM does not have the capability to generate signals when a message is received.
We modified GM to add this capability. Since performing an interrupt for every
incoming message would have a severe impact on performance, we wanted to perform
interrupts only when necessary. We did this by defining a new packet type in GM.
Only the reception of these packets generates a signal. This way the sender of a
message can specify that a signal will be generated for the receiving process when the
message is received.

We also allow a process to disable the signal generation at the user level. We
added a flag to the data structure at the NIC which is mapped into the process’
address space. The process simply has to write to the flag to enable or disable signal
generation. Since this flag is located in NIC memory any accesses by the host will go
over the PCI bus. This is considerably slower than accessing local memory, and may
interfere with other PCI traffic. For this reason care must be taken when accessing
this flag not to adversely impact system performance.

We used the signaling capability that we added to GM to generate signals for
sending broadcast messages to non-leaf nodes. This limits the number of interrupts
to only those cases where it could benefit. Furthermore, we disabled signaling at the
NIC whenever the process calls MPI_Bcast () or whenever the process is waiting for a
receive. This way, if the process is already polling for a message, there is no need to
generate a signal to have the broadcast message processed. By eliminating as many
interrupts as possible, we reduce the impact of using a signal handler while giving us
the advantages of application-bypass broadcast.

6.3 Experimental Results

We performed our evaluation on a 32 node cluster consisting of 16 700MHz quad-
SMP Pentium III nodes with 66MHz/64 bit PCI slots, and 16 1GHz dual-SMP

106

250 ‘ ‘ ‘ ‘ ‘ ‘ 35 ‘ ‘ ‘ ‘ ‘ :
200] S |
£ 150] s]
oy E
& 100 1 5 1
3 JSi]
Q
50 4, 1 8 |
—
R S U
O L L L I it T
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Average Skew (psec) Average Skew (usec)
(a) Latency — Small (b) Factor of Improvement — Small
700 9 . ‘ ‘ ‘ ‘ ‘
8192 ——
600 i = 8 4096 — e x
§ .| 2048 A
< 500 . o £
o a ab-4096 ---=--- S5l]
= 400 t ©o ab-2048 o | e
oy o, I EST g 1
3 200 T ;‘i;‘»«r&:g’_‘f*‘] % 3]
100 | e i RN Lo, |
0 I 1 st
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Average Skew (psec) Average Skew (psec)
(c) Latency — Large (d) Factor of Improvement, — Large

Figure 6.4: Average latency of MPI_Bcast function on 32 nodes. Small messages sizes
are 1, 2, 4, and 8 bytes, and large message sizes are 2048, 4096, and 8192 bytes for
non-application-bypass MPICH (n) and application-bypass MPICH (ab)

107

Pentium III nodes with 33MHz/32 bit PCI slots. The cluster was connected us-
ing a Myrinet-2000 network. The network consists of 28 PCI64B cards with 133MHz
LANai 9.1 processors and 4 PCI64C cards with 200MHz LANai 9.2 processors and
are connected using fiber cables to a 32 port switch. Each of the nodes ran the 2.4.18
Linux kernel. Our tests were performed using GM version 1.2.5.1 and MPICH version
1.2.4..8a which are the same versions as our modified GM and MPICH.

We evaluated our implementation using micro-benchmarks. The first micro-
benchmark compares the average time to perform MPI _Bcast(). In this micro-
benchmark, the root process calls MPI_Bcast() while the other processes perform
a delay loop, followed by a call to MPI_Bcast(). This test is performed 1,000 times
with an MPI_Barrier() being called before each test. The number of iterations a
process performs in the delay loop is chosen randomly, between 0 and a maximum
delay value, by each process each time the test is performed. Notice that increasing
the maximum delay value, increases the skew between the processes.

Since we used a heterogeneous system, we wanted to normalize the delay loops.
We did this by having each process count how many iterations it can compute in
50pus. The maximum delay value was then incremented by that many iterations. For
the 700 MHz machines, this was about 17,500 iterations, while on the 1GHz machines
this was about 25,000. The graphs show the average skew time in microseconds for
convenience.

Figure 6.4 shows the average time each process spent in the MPI Bcast() call
over 32 processes. Figure 6.4(a) shows these results for 1, 2, 4 and 8 byte mes-
sages. The graph does not show much differentiation between the message sizes,
however a large difference is seen between the application-bypass MPICH and non-
application-bypass MPICH. Notice that as the skew increases, the average time spent
in MPI Bcast() by the non-application-bypass MPICH increases when the average
skew is larger then 17ps. This is as we expected because as the skew between processes
increases more processes are being delayed longer waiting for one of their ancestors to
call MPT Bcast (). However, for application-bypass MPICH, we see that the average
time spent in MPI_Bcast () actually decreases as the skew increases. We don’t see an
increase as the skew increases as we did with the non-application-bypass MPICH be-
cause even if a non-leaf process is performing the delay loop when a broadcast message
is received, the process will be interrupted and the broadcast operation will be allowed
to proceed. The reason why the average time spent in MPI_Bcast () actually decreases
is because as the time each process spends in the delay loop increases, the probability
that the broadcast message has arrived and that the broadcast operation has com-
pleted before the process calls MPI_Bcast () increases. If the broadcast message has
arrived before the process calls MPI_Bcast (), then all that needs to be performed
in the MPI_Bcast () function is to copy the received data to the final memory loca-
tion. Notice that when the average skew is 17pus, the time the non-application-bypass
MPICH spends in MPT Bcast () decreases compared to when there is no skew. This is

108

because some of the time that processes lower down in the broadcast tree would spend
waiting for the broadcast message to propagate down the tree is overlapped with the
delay loop. Although the broadcast message may be delayed because a process higher
up in the tree is delayed, this delay is smaller than the time which is overlapped.

Figure 6.4(b) shows the factor of improvement of performing broadcasts using
application-bypass MPICH over non-application-bypass MPICH for small messages.
The graph shows a factor of improvement of up to 30 for the time spent in MPI_Bcast ()
when the average skew is 333ps and when broadcasting a 1 byte message. The im-
provement for 2, 4 and 8 byte messages is similar.

We performed the same evaluations using large messages. Figure 6.4(c) shows the
results for 2K, 4K and 8K messages. Again we see that the time spent in MPI_Bcast ()
for application-bypass MPICH processes decreases as the skew increases, while for
non-application-bypass MPICH processes the time increases once the skew is large
enough that the effect of the overlap of the broadcast and delay loop is no longer
seen. Notice that even when the skew is small or even zero, the application-bypass
MPICH processes spend less time in MPI_Bcast() than the non-application-bypass
MPICH processes. We believe that this is because even when the skew is zero, and
the processes spend no time in the delay loop, the processes are still skewed slightly
due to the nature of a distributed system. Even though a MPI Barrier() is called
before each test, not all processes will leave the barrier at exactly the same time. It is
possible that some processes may receive the broadcast message while still performing
the barrier. In application-bypass MPICH, when the message is to be forwarded to
the child processes, the data will be copied from the receive buffer into the send
buffers and the messages are sent to the children. In non-application-bypass MPICH,
the message is copied into the unexpected queue. When MPI Bcast () is called, the
data is copied out of the unexpected queue and into the final memory location, then
the data is copied from this memory location and into the send buffers to be sent
to the child processes. Notice that the non-application-bypass MPICH has an extra
memory copy in the critical path, which explains why we see a larger difference for
larger message sizes when the skew is small.

Figure 6.4(d) shows a factor of improvement in the time spent in the MPI_Bcast ()
function of up to 8 for 2K messages, up to 4.2 for 4K messages, and 2.2 for 8K messages
when the average skew is 333ps.

Just considering the time a process spends in MPI_Bcast() does not consider
the time the application-bypass MPICH spends performing the operation when a
broadcast message is received before the call to MPI_Bcast() is made. In order to
evaluate the impact of performing the broadcast operation asynchronously and of
the associated interrupts on the computation, we first timed the delay loop when
there are no incoming broadcast messages. Then we timed the total time the process
spends in the delay loop and the MPI_Bcast() call, and subtracted off the time it
would have spent in the delay loop had there been no incoming broadcast messages.

109

What is left is the time the process spends broadcasting. Figure 6.5 shows the results
of these tests for 32 processes. Again the graph for small messages, Figure 6.5(a),
does not show much difference between the different message sizes, but a significant
difference is seen between the application-bypass MPICH and non-application-bypass
MPICH. Notice that these results are very similar to those for just the time spent
in MPI_Bcast(). There is about a 6ps overhead in the application-bypass case for
processing broadcast messages by the signal handler for small messages. Figure 6.5(b)
shows a factor of improvement of up to 16 for application-bypass MPICH processes
over non-application-bypass MPICH processes. This is a significant improvement over
non-application-bypass MPICH.

Figure 6.5(c) shows the results of the same test for large messages. As with the
small messages, the results are very similar to the results for just the MPI_Bcast ()
function. For large messages there is about a 11lps, 15pus, and 20ps overhead for
processing 2K, 4K, and 8K broadcast messages in the signal handler, respectively.
Figure 6.5(d) shows factors of improvement of up to 2 for 8K messages, 3.6 for 4K
messages, and 6.2 for 2K messages. Again, these are significant improvements.

In order to see how application-bypass broadcast can benefit systems of different
sizes, we performed a test similar to the previous, except we used an average skew
of 333ps and varied the number of processes. As before, for 32 processes, we used
both the 700MHz machines and 1GHz machines, but for 16 and fewer processes,
only the 700MHz machines were used. Figure 6.6 shows these results. Notice that
for small messages, in Figure 6.6(a), as the system size increases the time taken by
the application-bypass MPICH processes remains almost constant. This is because
for all but the two process case, all of the delay of propagating the message down
the broadcast tree is overlapped by the delay loop. The increase in time seen in
the non-application-bypass MPICH results as the number of nodes increases is due
primarily to process skew. As the number of processes participating in the broadcast
increases, the number of processes waiting in MPI Bcast () for an ancestor to finish
the delay loop and perform the broadcast also increases. We see a similar effect
in Figure 6.6(c) for large messages. The time increases much slower as the system
size increases for application-bypass MPICH versus non-application-bypass MPICH.
These results indicate that the effects of process skew become more severe as system
size increases. Furthermore, they indicate that an application-bypass approach is
critical for dealing with process skew allowing collective communications operations
to be scalable.

6.4 Summary

We have described our design implementation of application-bypass broadcast us-
ing NIC-based primitives and evaluated our implementation. Our evaluation shows

110

250

200

150

100

Latency (psec)

50

0 50 100 150 200 250 300 350
Average Skew (usec)

(a) Latency — Small

700

600

500

§ ® ab-4096 ---=---
2 400 See Dab—2048 e
> g, By oo

[S]

c

3]

©

-

300 [¥

PEl
i
. x
%
X
X

200 b et]

*
*
k
o
ik

100 o oo R S

PRI
€ 0000060 06 o

O L L L L L L
0 50 100 150 200 250 300 350

Average Skew (usec)

(c) Latency — Large

Factor of Improvement

Factor of Improvement

16
14 1
12 1
10 1
8 4
6 4
4]
2 4
0 L L L L L L
0 50 100 150 200 250 300 350
Average Skew (psec)
(b) Factor of Improvement — Small
7 ; : . . . :
8192 ——
6 | 4096 o .
2048 o~
5 L . ** i
Al . |
3+ J
2+ J
l ¥ '*,,

0 50 100 150 200 250 300 350
Average Skew (psec)

(d) Factor of Improvement, — Large

Figure 6.5: Average latency of signal handler and MPI_Bcast function on 32 nodes.
Small messages sizes are 1, 2, 4, and 8 bytes, and large message sizes are 2048,
4096, and 8192 bytes for non-application-bypass MPICH (n) and application-bypass

MPICH (ab)

111

250 — ; :
200 r i
o
Q , n-8 ——
g 150 | e Nd .
2 r n-2 -oxe
c n-1 a
g 100 ab-8 e]
3 ab-4 o
L ab-2 e i
%0 ab-1 e
0
2 4 8 16 32
Number of Nodes
(a) Latency — Small
600 — : ;
n-8192 ——
N-4096 -
500 1 02048 oxe
S ab-8192 =
@ 400 | ab-4096 ---=--- 1
el ab-2048 ---o---
2 300 j
c
Q
T 200 |
-
100 y
O

Figure 6.6: Average latency of signal handler and MPI_Bcast function with a average
skew of 333ps for various number of processes. Small messages sizes are 1, 2, 4, and
8 bytes, and large message sizes are 2048, 4096, and 8192 bytes for non-application-

Number of Nodes

(c) Latency — Large

Factor of Improvement

Factor of Improvement

16

16
Number of Nodes

(d) Factor of Improvement, — Large

bypass MPICH (n) and application-bypass MPICH (ab)

112

14 T 1
12]
10]
8t]
6]
4+ 8 —— |
4 e
2t 2 e
1 &

0

2 4 8 16 32

Number of Nodes

(b) Factor of Improvement — Small
7 — ‘ :
6l .
51]
4
3
2
N
0 L L L

that an application-bypass broadcast is not as sensitive to process skew as non-
application-bypass broadcast. In fact, using the application-bypass broadcast, we
have seen a factor of improvement of up to 16 when processes are skewed. Further-
more we see that in a non-application-bypass broadcast the effects of process skew
increase as the system size increases. We note that while process skew can be reduced
by careful design of parallel programs and close control of the computing environment,
we believe that process skew cannot be eliminated altogether. For this reason, we
believe that the use of NIC-based primitives to support application-bypass collective
communication operations is critical to improving the scalability of those operations,
and of the system in general.

113

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this dissertation we investigated the use of programmable NICs to improve
cluster performance. We approached this problem by focusing on improving the
performance, scalability, and tolerance to process skew of synchronization operations
and collective communication operations through the use of NIC-based operations and
NIC-based primitives. Our research has shown that NIC-supported operations offer
improved performance over the conventional host-based implementation. Specifically,
the NIC-supported operations offered improved latency, scalability, host processor
utilization, and better tolerance to process skew.

7.1 Summary of Research Contributions

We presented our design, implementation and evaluation of NIC-supported broad-
cast/multicast, barrier synchronization, reduction, atomic remote memory operations,
and application-bypass broadcast. Below, we summarize the contributions and results
of this dissertation.

7.1.1 NIC-Assisted Broadcast/Multicast

In Chapter 2 we presented a new NIC-based multi-send primitive which we used
to improve the performance of broadcast/multicast operations. The primitive uses
the NIC to transmit multiple copies of a packet to different destinations. We also
presented a method for computing a multicast tree which would be optimal in terms
of latency.

When comparing the multi-send to conventional host-based iterative sends, we saw
up to a 3.51 factor of improvement for 16K messages. When the primitive was used to
support multicast using a multicast tree, we saw up to a 1.85 factor of improvement
for 8K messages and 16 nodes.

114

7.1.2 NIC-Based Barrier Synchronization

We presented our NIC-based barrier operation in Chapter 3. In this chapter, we
described design challenges, and the implementation of the operation by modifying
the GM communication subsystem. We also presented how the MPICH middleware
library was modified to use the more efficient NIC-based barrier over the conventional
host-based barrier which was implemented using point-to-point messages.

An extensive evaluation was performed comparing the performance of the NIC-
based barrier to the host-based barrier, at both the communication subsystem layer,
as well as the programming models layer, using two generations of NICs, the 33MHz
LANai 4.3 NICs and 66 MHz LANai 7.2 NICs, which have different performance char-
acteristics.

When comparing the performance of the barriers at the programming models
level, using MPICH, we found a 2.09 factor of improvement for 16 nodes using the
LANai 4.3 NICs and a 2.22 factor of improvement for 8 nodes using the 66 MHz
LANai 7.2 NICs. Furthermore, the factor of improvement increased with the number
of participating nodes, indicating that the NIC-based barrier scales better than the
host-based barrier.

We also evaluated the impact of the NIC-based barrier on the granularity of
computation. We found that for a program to have a 0.90 factor of efficiency using
the LANai 4.3 NICs, at least 1831.98ps of computation must be performed per barrier
if the host-based barriers are used, but only 1023.82ps if a NIC-based barrier is used.
This value is 44% lower than for the host-based barrier. So, using the NIC-based
barrier allows for finer grained programs without lowering the efficiency. We noticed
that the NIC-based barrier is more sensitive to variation in arrival times than the host-
based barrier. However, the NIC-based barrier always performed better than the host-
based barrier. To evaluate the impact of using the NIC-based barrier on applications,
we used synthetic applications. We found up to a 1.93 factor of improvement when
using NIC-based barriers versus using a host-based barrier. This indicates that using
the NIC-based barrier in applications which perform many barrier calls will deliver
significant performance benefits.

7.1.3 NIC-Based Reduction

Chapter 4 presents our design, implementation and evaluation of a NIC-based
reduction operation. We designed our NIC-based reduction operation to perform
integer and floating point operations, and implemented it by modifying the GM com-
munication subsystem. The basic operation showed a factor of improvement of up
to a 1.19 for integer reduction and 1.06 for floating-point reduction. We also give
evidence that NIC-based reduction will perform better than host-based reduction in
larger systems.

115

The real benefit of this operation is the fact that it allows better overlap of compu-
tation at the host with the reduction operation at the NIC. We saw up to a 2.7 factor
of improvement in processor utilization when using NIC-based reduction for integer
operations and a 2.3 factor of improvement when using floating point operations.
The NIC-based implementation also allows the operation to bypass the application
making it more tolerant to process skew than the host-based implementation. In the
presence of process skew NIC-based reduction gives a 4.5 factor of improvement in
processor utilization over host-based reduction. We also noticed that when the system
size increases, the effect of the skew impacts host-based reduction much more than
the NIC-based reduction. This indicates that NIC-based reduction would greatly
improve the scalability of certain applications.

7.1.4 NIC-Based Atomic Remote Memory Operations

We designed and implemented NIC-based atomic remote memory operations by
modifying the GM communication subsystem. This work was presented in Chapter 5.
The NIC-based implementation allows atomic operations to be performed at a remote
node without intervention of the remote node’s host processor.

We evaluated our implementation, comparing it with a conventional host-based
implementation. Our design included a method for serializing access to host memory
to ensure the atomicit of the operation being performed at the NIC. We found up to a
1.25 factor of improvement for the compare&swap operation when comparing the best
NIC-based implementation to the best host-based implementation. We used atomic
remote memory operations to implement distributed locking. The locking algorithm
implemented with the NIC-based operations gave up to a a 2.6 factor of improvement
over the implementation with host-based operations. The NIC-based operations gave
better host processor utilization, and NIC processor utilization. This means that the
NIC-based implementation could handle more atomic requests than the host-based
implementation before the NIC processor was saturated. This work demonstrates
the potential for designing NIC-based operations which would allow asynchronous
operations to be performed with minimal impact on host processor utilization.

7.1.5 NIC-Support for Application-Bypass Broadcast

Some degree of process skew is inevitable in cluster environments. We have seen
that the effect of process skew on collective communication operations which do not
bypass the application increases with system size. With the increase in size of mod-
ern cluster systems to thousands of nodes, the effect of process skew must be ad-
dressed. In Chapter 6, we describe how we used NIC-based primitives to implement
an application-bypass broadcast operation in the MPICH middleware library.

We evaluated our implementation and saw a factor of improvement of up to 16
when processes are skewed. We noticed that as system size increased, the effect

116

of process skew increased for the conventional broadcast, but the application-bypass
broadcast operation showed little to no effect. This research indicates that implement-
ing collective communication operations in an application-bypass manner is critical
for scalability in large systems.

7.2 Future Research Directions

As technology improves, NIC processors are becoming more powerful. This gives
the opportunity for improved performance for NIC-based operations, as well as the
ability to implement more complex operations. This leaves many interesting research
directions to pursue. Below we describe some of these areas of future research.

Non-blocking or split-phase collective communication operations — In many
middleware libraries collective communication operations are blocking opera-
tions. In a blocking operation, when the application calls the function initiating
the operation, the function does not return until the operation has completed.
This makes overlapping collective communication operations with computation
difficult, expecially for operations such as all-reduce and all-gather, where each
process supplies data to the operation and and receives data from the opera-
tion. If the operation is implemented as a NIC-based operation, after a process
initiates the operation, it must wait idle until the operation completes, and it
receives the result of the operation. In a non-blocking or split-phase implemen-
tation, the process can initiate the operation, then proceed with other compu-
tation which does not depend on the result. When the process finally needs the
result, it can then wait for the operation to complete. Depending on how much
computation can be performed that doesn’t need the result of the operation,
some or all of the operation can be overlapped with useful computation.

Research needs to be done to determine how best to incorporate non-blocking
collective operations into existing middleware libraries, and how to modify ex-
isting applications to make best use of these operations.

Using fast-trap interrupts for NIC-based reduction operations — NIC pro-
cessors typically lack support for floating-point operations. For this reason,
floating-point operations must be emulated in software at the NIC. This severely
impacts performance of reduction operations. One solution to this would be to
have the host processor perform the floating-point operations, while the NIC
performs the rest of the reduction operation. The NICs would exchange mes-
sages, and collect the data on which the arithmetic operation will be performed.
The NIC will then send an interrupt to the host, and the host would perform the
operation. To do this efficiently, a fast-trap interrupt should be used. A fast-
trap interrupt is a light-weight interrupt, which doesn’t do a full context switch,
such as flushing page tables, performing bottom-half handlers, etc. Because a

117

full context switch is not performed, the fast-trap handler would not be able
to modify kernel data structures, or access process address spaces, however, it
would be able to read data from the NIC using a hardware address supplied by
the NIC, perform the floating-point operations and write the result back down
the the NIC. Research should be done to investigate the potential advantages
of using such an approach, especially for reduction operations data with several
elements.

Other NIC-based collective operations — We have implemented NIC-spported
broadcast, barrier and reduction. Further work needs to be done so provide
support for other collective operations, such as all-reduce, all-to-all, all-gather,
etc.

NIC support for software distributed shared memory systems — As we
demonstrated with NIC-based atomic remote memory operations, NIC-based
operations can be used to eliminate or reduce the need for a server process. Such
an approach can also be used for supporting operations in software distributed
shared memory (SDSM) systems. Page invalidation, optimistic page fetching,
and distributed locking are examples of operations which could benefit from
NIC support. By implementing such opertations at the NIC, the host processor
need not be interrupted, giving better processor utilization by the computational
thread.

NIC support for high-performance distributed filesystems — As with SDSM
systems, high-performance distributed filesystems can also benefit from NIC
support. Again, eliminating the interaction with the server thread improves
performance and processor utilization. Research needs to be done to investigate
how best to use NIC support for locking of file regions, and optimistic access to
cached file data.

118

BIBLIOGRAPHY

[1] S. Araki, A. Bilas, C. Dubnicki, J. Elder, K. Konishi, and J. Philbin. User-
space communication: A quantitative study. In Proceedings of the 1998 SC’98
Conference, November 1998.

[2] D. H. Bailey, E. Barszcz, L. Dagum, and H.D. Simon. NAS Parallel Benchmark
Results. Technical Report 94-006, RNR, 1994.

[3] P. Balaji, P. Shivam, P Wycoff, and D. K. Panda. High performance user-level
sockets over gigabit ethernet. In Cluster 2002, September 2002.

[4] A.Bar-Noy and S. Kipnis. Designing broadcast algorithms in the postal model for
message-passing systems. Mathematical Systems Theory, pages 381-390, Septem-
ber 1994.

[6] Michael Barnett, David G. Payne, Robert A. van de Geijn, and Jerrell Watts.
Broadcasting on meshes with worm-hole routing. Journal of Parallel and Dis-
tributed Computing, 35(2):111-122, 1996.

[6] Donald J. Becker, T. Sterling, D. Savarese, E. Dorband, U. A. Ranawake, and
C. V. Packer. Beowulf: A Parallel Workstation for Scientific Computation. In
Proceedings of the 1995 International Conference on Parallel Processing (ICPP),
pages 11-14, 1995.

[7] R. A. F. Bhoedjang, T. Ruhl, and H. E. Bal. Efficient Multicast on Myrinet Using
Link-Level Flow Control. In Proceedings of the 27th International Conference on
Parallel Processing (ICPP 98), pages 381-390, August 1998.

[8] R. A. F. Bhoedjang, T. Riihl, and H. E. Bal. User-Level Network Interface
Protocols. IEEE Computer, 31(11), November 1998.

[9] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-Second Local Area Net-
work. IEEE Micro, pages 29-35, Feb 1995.

[10] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. Seizovic,
and W. Su. Myrinet - a gigabit per second local area network. In IEEE Micro,
February 1995.

119

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Ron Brightwell, Rolf Riesen, Bill Lawry, and A. B. Maccabe. Portals 3.0: Proto-
col building blocks for low overhead communication. In Proceedings of the 2002
Workshop on Communication Architecture for Clusters (CAC), April 2002.

J. Bruck, L. De Coster, N. Dewulf, C. Ho, and R. Lauwereins. On the design and
implementation of broadcast and global combine operations. IEEE Transactions
on Parallel and Distributed Systems, 7(3):256-265, March 1996.

D. Buntinas and D. K. Panda. NIC-based reduction in Myrinet clusters: Is
it beneficial? In Proceedings of the Workshop on Novel Uses of System Area
Networks (SAN), February 2003.

D. Buntinas, D. K. Panda, J. Duato, and P. Sadayappan. Broadcast/Multicast
over Myrinet using NIC-Assisted Multidestination Messages. In Proceedings of

Int’l Workshop on Communication and Architectural Support for Network-Based
Parallel Computing (CANPC), pages 115-129, 2000.

D. Buntinas, D. K. Panda, and W. Gropp. NIC-based atomic remote memory
operations in Myrinet/GM. In Workshop on Novel Uses of System Area Networks
(SAN-1), February 2002.

D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-based barrier over
Myrinet/GM. In Proceedings of the International Parallel and Distributed Pro-
cessing Symposium 2001, (IPDPS), April 2001.

D. Buntinas, D. K. Panda, and P. Sadayappan. Performance benefits of NIC-
based barrier on Myrinet/GM. In Proceedings of the Workshop on Communica-
tion Architecture for Clusters (CAC) held in conjunction with IPDPS 01, April
2001.

W. E. Cohen, H. G. Dietz, and J. B. Sponaugle. Dynamic Barrier Architec-
ture for Multi-mode Fine-grain Parallelism using Conventional Processors. In
International Conference on Parallel Processing, Aug 1994. to appear.

D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware-
Software Approach. Morgan Kaufmann, March 1998.

D. Dai and D. K. Panda. Building Efficient Limited Directory-Based DSMs:
A Multidestination Message Passing Based Approach. Technical Report OSU-
CISRC-4/96-TR21, Dept. of Computer and Information Science, The Ohio
State University, Apr 1996. Symposium on Parallel and Distributed Process-
ing (SPDP), under review.

R. A. Van de Geijn. On Global Combine Operations. Journal of Parallel and
Distributed Computing, 22:324-328, 1994.

120

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Com-
puting, 22(6):789-828, September 1996.

R. Gupta. The Fuzzy Barrier: A Mechanism for the High Speed Synchronization
of Processors. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 54-63, 1989.

John Hauser. SoftFloat. http://www.cs.berkeley.edu/~jhauser/arithmetic/
SoftFloat.html.

Y. Huang and P. K. McKinley. Efficient Collective Operations with ATM Net-
work Interface Support. In Proceedings of the International Conference on Par-
allel Processing, pages 1:34-43, Chicago, IL, Aug 1996.

InfiniBand trade association, InfiniBand architecture specification, volume 1,
release 1.0. http://www.infinibandta.com.

D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Git-
tings. Predictive performance and scalability modeling of a large-scale applica-
tion. In Proceedings of Supercomputing (SC2001), November 2001. Available
from http://www.sc2001.org/papers/pap.pap255.pdf.

R. Kesavan and D. K. Panda. Optimal Multicast with Packetization and Net-
work Interface Support. In Proceedings of International Conference on Parallel
Processing, pages 370-377, Aug 1997.

M. Lauria, S. Pakin, and A. Chien. Efficient layering for high speed communica-
tion: Fast Messages 2.x. In Proceedings of the 7th High Performance Distributed
Computing Conference (HPDC7), July 1998.

Quadrics Supercomputers World Ltd. QsNet high performance interconnect.
http://www.quadrics.com/website/pdf/gsnet.pdf.

P. K. McKinley, Y.-J. Tsai, and D. F. Robinson. A Survey of Collective Commu-
nication in Wormhole-Routed Massively Parallel Computers. Technical Report
MSU-CPS-94-35, Dept. of Computer Science, Michigan State University, 1994.

J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Transactions on Computer Systems,
9(1):21-65, February 1991.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Mar 1994.

121

[34] Myricom GM Myrinet software and documentation. http://www.myri.com/scs/
GM/doc/gm_toc.html, 2000.

[35] Netgear. http://www.netgear.com.

[36] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A non-uniform-
memory-access programming model for high performance compuers. The Journal
of Supercomputing, 10:197-220, 1996.

[37] J. Nieplocha, R. J. Harrison, and R. L. Littlefield. Global arrays: A portable
“shared memory” programming model for distributed memory computers. In
Supercomputing 94, 1994.

[38] Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote memory copy
library for distributed array libraries and compiler run-time systems. 3rd Work-
shop on Runtime Systems for Parallel Programming (RTSPP) of International
Parallel Processing Symposium IPPS/SPDP ’99, April 1999.

[39] Ranjit Noronha and Nael Abu-Ghazaleh. Early cancellation: An active NIC
optimization for time-warp. In 16th Workshop on Parallel and Distributed Sim-
ulation, May 2002.

[40] Ranjit Noronha and Nael Abu-Ghazaleh. Using programmable NICs for time-
warp optimization. In International Parallel and Distributed Processing Sympo-
sium (IPDPS), April 2002.

[41] S. Pakin, V. Karamcheti, and A. Chien. Fast Messages: Efficient, Portable Com-
munication for Workstation Clusters and Massively Parallel Processors. IEEFE
Concurrency, pages 60-73, April-June 1997.

[42] S. Pakin, M. Lauria, and A. A. Chien. High performance messaging on worksta-
tions: Illinois fast messages on myrinet. In Proceedings of Supercomputing 99,
November 1995.

[43] Pallas MPI benchmarks - PMB, part MPI-1. ftp://ftp.pallas.com/pub/
PALLAS/PMB/PMB-MPI1.pdf.

[44] D. K. Panda. Fast Barrier Synchronization in Wormhole k-ary n-cube Networks
with Multidestination Worms. In International Symposium on High Performance
Computer Architecture, pages 200-209, 1995.

[45] D. K. Panda. Global Reduction in Wormbhole k-ary n-cube Networks with Mul-
tidestination Exchange Worms. In International Parallel Processing Symposium,
pages 652-659, Apr 1995.

122

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

D. K. Panda, S. Singal, and R. Kesavan. Multidestination Message Passing in
Wormbhole k-ary n-cube Networks with Base Routing Conformed Paths. IEEE
Transactions on Parallel and Distributed Systems, 10(1):76-96, Jan 1999.

G. L. Peterson. Myths about the mutual exclusion problem. Information Pro-
cessing Letters, 12:115-116, June 1981.

Ian Philp and Yin-Ling Liong. The scheduled transfer protocol (ST). In Work-
shop on Communication, Architecture and Applications for Network-Based Par-
allel Computing (CANPC-99), January 1999.

P. Shivam, P. Wyckoff, and D. K. Panda. EMP: Zero-copy OS-bypass NIC-driven
Gigabit Ethernet Message Passing. In Int’l Conference on Supercomputing (SC
’01), November 2001.

P. Shivam, P. Wycoff, and D. K. Panda. Can user level protocols take advan-
tage of multi-CPU NICs? In International Parallel and Distributed Processing
Symposium (IPDPS’02), April 2002.

Abraham Silberschatz and Peter Galvin. Operating System Concepts. Addison
Wesley, 4th edition, 1994.

R. Sivaram, R. Kesavan, D. K. Panda, and C. B. Stunkel. Where to Provide
Support for Efficient Multicasting in Irregular Networks: Network Interface or
Switch? In Proceedings of the 27th International Conference on Parallel Pro-
cessing (ICPP ’98), pages 452-459, August 1998.

R. Sivaram, D. K. Panda, and C. B. Stunkel. Efficient Broadcast and Multicast
on Multistage Interconnection Networks using Multiport Encoding. IEEE Trans-
actions on Parallel and Distributed Systems, 9(10):1004-1028, October 1998.

Sphinx parallel microbenchmark suite. http://www.llnl.gov/CASC/sphinx/
sphinx.html.

T. Sterling, J. Salmon, D. Becker, and D. F. Savarese. How to Build a Beowulf.
MIT Press, 1999.

C. B. Stunkel, R. Sivaram, and D. K. Panda. Implementing Multidestination
Worms in Switch-Based Parallel Systems: Architectural Alternatives and their
Impact. In Proceedings of the 24th IEEE/ACM Annual International Symposium
on Computer Architecture (ISCA-24), pages 50-61, June 1997.

K. Verstoep, K. Langendoen, and H. Bal. Efficient Reliable Multicast on Myrinet.
In Proceedings of the International Conference on Parallel Processing, pages
I11:156-165, Aug 1996.

123

[58] M. S. Warren, D. J. Becker, M. P. Goda, J. K. Salmon, and T. Sterling. Par-
allel supercomputing with commodity components. In Proceedings of the In-

ternational Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’97), pages 13721381, 1997.

124

